[go: up one dir, main page]

JP2007241037A - Polarizing element, manufacturing method thereof, and liquid crystal display element - Google Patents

Polarizing element, manufacturing method thereof, and liquid crystal display element Download PDF

Info

Publication number
JP2007241037A
JP2007241037A JP2006065473A JP2006065473A JP2007241037A JP 2007241037 A JP2007241037 A JP 2007241037A JP 2006065473 A JP2006065473 A JP 2006065473A JP 2006065473 A JP2006065473 A JP 2006065473A JP 2007241037 A JP2007241037 A JP 2007241037A
Authority
JP
Japan
Prior art keywords
control layer
liquid crystal
crystalline compound
polarizing
polarizing element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006065473A
Other languages
Japanese (ja)
Inventor
Yusuke Tochigi
佑介 栃木
Mitsuru Kano
満 加納
Hideaki Honma
英明 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2006065473A priority Critical patent/JP2007241037A/en
Publication of JP2007241037A publication Critical patent/JP2007241037A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Abstract

【課題】幅方向など所定の軸方向において屈折率の光軸および基材との配向角のバラツキが少なく容易かつ安価に製造しうる位相差制御層を有する偏光素子を提供する。
【解決手段】少なくとも1層の位相差制御層3、及び偏光膜2を有する偏光素子1であって、該位相差制御層3が、基材に対しての配向角が厳密な角度±1°未満で垂直配向または水平配向しているリオトロピック液晶性化合物を含み、屈折率の進相軸が偏光透過軸に対して、角度±1°未満で面内方向に垂直または平行か厚み方向に平行である偏光素子。
【選択図】図1
Provided is a polarizing element having a retardation control layer that can be easily and inexpensively manufactured with little variation in the optical axis of the refractive index and the orientation angle with a substrate in a predetermined axial direction such as the width direction.
A polarizing element 1 having at least one phase difference control layer 3 and a polarizing film 2, wherein the phase difference control layer 3 has an strict angle ± 1 ° with respect to a substrate. A lyotropic liquid crystal compound that is vertically or horizontally oriented with a refractive index whose fast axis is less than ± 1 ° with respect to the polarization transmission axis and is perpendicular or parallel to the in-plane direction or parallel to the thickness direction. A polarizing element.
[Selection] Figure 1

Description

本発明は幅方向など所定の軸方向において屈折率のバラツキが少なく容易に製造しうる位相差制御層を有する偏光素子およびその製造方法ならびに液晶表示素子に係る。
なお、「リオトロピック液晶性化合物」なる用語は水または有機溶媒にある特定濃度範囲で溶解させた際にある特定温度範囲で液晶性能を有する化合物のことを示し、本発明における実施の際には必ずしも液晶性を有している状態を示すものではない。また、「偏光膜(基材)に対しての配向角」は、より好ましくは±0.5°未満である。また、所定の軸方向の屈折率のバラツキは、より好ましくは±0.5°未満である。
The present invention relates to a polarizing element having a retardation control layer that can be easily manufactured with little variation in refractive index in a predetermined axial direction such as the width direction, a manufacturing method thereof, and a liquid crystal display element.
The term “lyotropic liquid crystalline compound” refers to a compound having liquid crystal performance in a specific temperature range when dissolved in a specific concentration range in water or an organic solvent. It does not indicate a state having liquid crystallinity. The “orientation angle with respect to the polarizing film (base material)” is more preferably less than ± 0.5 °. Further, the variation in the refractive index in the predetermined axial direction is more preferably less than ± 0.5 °.

液晶表示装置は、低電圧、低消費電力で、薄型化が可能であることから、パーソナルコンピュータ等の表示装置として広く採用されている。また近年では大型TVにも利用されている。しかしながら、液晶画面が大きくなるにつれて更なる広視野角化への要望が高まっており、視野角拡大のために位相差制御層が使用されてきている。このため、液晶画面の拡大に伴い位相差制御層も更に広幅化される方向にある。
一般的に、このような位相差制御層はフィルムの延伸または配向膜、ラビング処理などによる液晶分子の配向制御によって作製されている。
Liquid crystal display devices are widely used as display devices for personal computers and the like because they can be thinned with low voltage and low power consumption. In recent years, it is also used for large TVs. However, as the liquid crystal screen becomes larger, there is an increasing demand for a wider viewing angle, and a phase difference control layer has been used to expand the viewing angle. For this reason, the phase difference control layer tends to be further widened as the liquid crystal screen is enlarged.
In general, such a retardation control layer is produced by controlling the alignment of liquid crystal molecules by stretching a film or aligning a film, rubbing treatment or the like.

しかし、フィルムの延伸により配向制御をしてなる位相差制御層は、配向軸が幅方向によって異なる現象が起こりやすく、幅方向に均一な配向軸を有する位相差制御層を作製することは困難であった。このような配向軸のズレは表示コントラストの著しい低下を引き起こすことが知られている。   However, the retardation control layer that is controlled in orientation by stretching the film tends to cause a phenomenon in which the orientation axis varies depending on the width direction, and it is difficult to produce a retardation control layer having a uniform orientation axis in the width direction. there were. It is known that such misalignment of the alignment axis causes a significant decrease in display contrast.

このような問題の解決手段として、特許文献1では位相差制御層の偏光板への貼り合わせの際に軸のズレを調整することで、コントラストの低下を低減することが開示されている。しかし、かかる方法においては面内の配向軸のバラツキについて言及されておらず、その効果は十分でないという問題があった。   As a means for solving such a problem, Patent Document 1 discloses that a reduction in contrast is reduced by adjusting a shift of an axis when a retardation control layer is bonded to a polarizing plate. However, in this method, there is a problem that the variation of the in-plane alignment axis is not mentioned and the effect is not sufficient.

また、特許文献2では延伸時の温度調整によりフィルムを柔らかくして延伸ムラをなくす方法が開示されているが、配向軸のバラツキの範囲を3°以内としており、この範囲では大型の液晶表示素子として用いることは非常に難しい。   Patent Document 2 discloses a method of softening the film by adjusting the temperature during stretching to eliminate stretching unevenness. However, the range of variation in the orientation axis is within 3 °, and in this range, a large-sized liquid crystal display element is used. It is very difficult to use as.

このようにフィルム搬送方向以外の方向に延伸する処理場合、配向軸のバラツキを0°に押さえ込むことが非常に困難であることを勘案して、特許文献3では、左右把持手段を独立に制御し面内の配向軸ムラをある範囲で周期的に変動させ、実質的にコントラストの低下を防ぐ製造方法が開示されている。しかしながら、左右温度バランス、風量バランスの調整など製造方法が複雑であり、また製造中にフィルムの破断が起き易くなるという問題があった。   In this way, in the process of stretching in a direction other than the film transport direction, in consideration of the fact that it is very difficult to suppress the variation of the orientation axis to 0 °, in Patent Document 3, the left and right gripping means are controlled independently. A manufacturing method is disclosed in which in-plane alignment axis unevenness is periodically varied within a certain range to substantially prevent a decrease in contrast. However, there are problems that the manufacturing method such as the adjustment of the left / right temperature balance and the air volume balance is complicated, and the film is easily broken during the manufacturing.

また、液晶分子の配向制御によって作製された位相差制御層は、均一な配向軸が得られるなどの特徴を有しているが、その製造に際しては配向膜かつ/またはラビング処理が必要であり製造工程が複雑かつ容易でないという問題があった(特許文献4〜6)。   In addition, the retardation control layer prepared by controlling the alignment of liquid crystal molecules has a feature that a uniform alignment axis can be obtained. However, an alignment film and / or a rubbing treatment is required for its manufacture. There was a problem that the process was complicated and not easy (Patent Documents 4 to 6).

また、リオトロピック液晶性化合物を用い、配向膜およびラビング処理を用いずにせん断により配向制御を行って作成する位相差制御層も知られている(特許文献7、8)。いずれの特許文献でもリオトロピック液晶化合物のせん断による位相差制御層面内の配向には着目しているが、基材に対しての配向角について勘案していない。このため、広視野角化を目的とした位相差制御層として用いる場合には表示コントラスのムラが生じやすいという問題があった。
特開平11−160536号公報 特開2001−215332号公報 特開2005−331915号公報 特開平8−50206号公報 特開2001−154019号公報 特開2004−317651号公報 特開2002−296415号公報 特開2002−277633号公報
In addition, a retardation control layer is also known which is prepared by using an lyotropic liquid crystalline compound and performing alignment control by shearing without using an alignment film and a rubbing treatment (Patent Documents 7 and 8). In any of the patent documents, attention is paid to the orientation in the surface of the retardation control layer due to shearing of the lyotropic liquid crystal compound, but the orientation angle with respect to the substrate is not taken into consideration. For this reason, when used as a phase difference control layer for the purpose of wide viewing angle, there is a problem that unevenness of display contrast tends to occur.
JP-A-11-160536 JP 2001-215332 A JP 2005-331915 A JP-A-8-50206 JP 2001-154019 A JP 2004-317651 A JP 2002-296415 A JP 2002-277633 A

本発明は、所定の軸方向における屈折率の光軸のバラツキが少なく、また配向膜、ラビング処理などが不要で、容易に製造しうる位相差制御層を有する偏光素子および液晶表示素子の提供することを目的とする。
特にVAモード、IPSモードにおいて、光軸のバラツキが少なく配向膜、ラビング処理などが不要で容易に作成できる位相差制御層を有する偏光素子を提供することを目的とする。
The present invention provides a polarizing element and a liquid crystal display element having a retardation control layer that can be easily manufactured with little variation in the optical axis of the refractive index in a predetermined axial direction and without requiring an alignment film or a rubbing treatment. For the purpose.
In particular, it is an object of the present invention to provide a polarizing element having a retardation control layer that can be easily formed without requiring an alignment film or a rubbing process in the VA mode or IPS mode with little variation in the optical axis.

請求項1の発明は、少なくとも1層の位相差制御層、及び偏光膜を有する偏光素子であって、該位相差制御層が、リオトロピック液晶性化合物を含み、該リオトロピック液晶性化合物が偏光膜に対しての配向角が角度±1°未満で垂直配向または水平配向しており、かつ位相差制御層の屈折率の進相軸が偏光透過軸に対して、角度±1°未満で面内方向に垂直または平行か厚み方向に平行であることを特徴とする偏光素子である。   The invention of claim 1 is a polarizing element having at least one retardation control layer and a polarizing film, wherein the retardation control layer contains a lyotropic liquid crystalline compound, and the lyotropic liquid crystalline compound is a polarizing film. The orientation angle is less than ± 1 ° and the orientation is vertical or horizontal, and the fast axis of the refractive index of the retardation control layer is less than ± 1 ° with respect to the polarization transmission axis. The polarizing element is characterized by being perpendicular to or parallel to the thickness direction.

請求項2の発明は、少なくとも1層の位相差制御層、及び偏光膜を有する偏光素子の製造方法であって、偏光膜にリオトロピック液晶性化合物を含む塗液をせん断をかけながら塗布する工程、前記塗液を乾燥することによりリオトロピック液晶性化合物を配向固定化し位相差制御層を形成する工程、を含み、該リオトロピック液晶性化合物が偏光膜に対しての配向角が角度±1°未満で垂直配向または水平配向しており、位相差制御層の屈折率の進相軸が偏光透過軸に対して、角度±1°未満で面内方向に垂直または平行か厚み方向に平行に形成されていることを特徴とする偏光素子の製造方法である。   The invention of claim 2 is a method for producing a polarizing element having at least one phase difference control layer and a polarizing film, wherein a coating liquid containing a lyotropic liquid crystalline compound is applied to the polarizing film while shearing. Forming a retardation control layer by fixing the orientation of the lyotropic liquid crystalline compound by drying the coating liquid, wherein the lyotropic liquid crystalline compound is perpendicular to the polarizing film at an orientation angle of less than ± 1 °. It is oriented or horizontally oriented, and the fast axis of the refractive index of the phase difference control layer is formed perpendicular to the in-plane direction or parallel to the thickness direction at an angle less than ± 1 ° with respect to the polarization transmission axis. This is a method for manufacturing a polarizing element.

請求項3の発明は、少なくとも1層の位相差制御層、及び偏光膜を有する偏光素子の製造方法であって、透明性基材にリオトロピック液晶性化合物を含む塗液をせん断をかけながら塗布する工程、前記塗液を乾燥することによりリオトロピック液晶性化合物を配向固定化し位相差制御層を形成する工程、位相差制御層を形成された透明性基材と偏光膜を貼り合わせる工程、を含み、該リオトロピック液晶性化合物が基材に対しての配向角が角度±1°未満で垂直配向または水平配向しており、位相差制御層の屈折率の進相軸が偏光透過軸に対して、角度±1°未満で面内方向に垂直または平行か厚み方向に平行に形成されていることを特徴とする偏光素子の製造方法である。   The invention of claim 3 is a method for producing a polarizing element having at least one phase difference control layer and a polarizing film, wherein a coating liquid containing a lyotropic liquid crystalline compound is applied to a transparent substrate while applying shear. A step of drying the coating liquid to align and fix the lyotropic liquid crystalline compound to form a retardation control layer, and a step of bonding the transparent substrate on which the retardation control layer is formed and the polarizing film, The lyotropic liquid crystalline compound is oriented vertically or horizontally with an orientation angle with respect to the substrate of less than ± 1 °, and the fast axis of the refractive index of the retardation control layer is an angle with respect to the polarization transmission axis. It is a manufacturing method of a polarizing element, characterized in that the polarizing element is formed to be less than ± 1 ° or perpendicular to the in-plane direction or parallel to the thickness direction.

請求項4の発明は、少なくとも1層の位相差制御層、及び偏光層を有する偏光素子の製造方法であって、透明性基材にリオトロピック液晶性化合物を含む塗液をせん断をかけながら塗布する工程、前記塗液を乾燥することによりリオトロピック液晶性化合物を配向固定化し位相差制御層を形成する工程、該透明性基材の位相差制御層が形成された面とは歯引退の面に偏光層を形成する工程、を含み、該リオトロピック液晶性化合物が基材に対しての配向角が角度±1°未満で垂直配向または水平配向しており、位相差制御層の屈折率の進相軸が偏光透過軸に対して、角度±1°未満で面内方向に垂直または平行か厚み方向に平行に形成されていることを特徴とする偏光素子の製造方法である。   The invention of claim 4 is a method for producing a polarizing element having at least one retardation control layer and a polarizing layer, and a coating liquid containing a lyotropic liquid crystalline compound is applied to a transparent substrate while shearing. A step of drying and fixing the lyotropic liquid crystalline compound to form a phase difference control layer by drying the coating liquid, and a surface of the transparent substrate on which the phase difference control layer is formed is polarized on the tooth retraction surface. Forming a layer, wherein the lyotropic liquid crystalline compound is vertically or horizontally oriented with an orientation angle of less than ± 1 ° with respect to the substrate, and the fast axis of the refractive index of the retardation control layer Is a method of manufacturing a polarizing element, characterized in that it is formed perpendicular to the in-plane direction or parallel to the thickness direction at an angle of less than ± 1 ° with respect to the polarization transmission axis.

請求項5の発明は、前記リオトロピック液晶性化合物が重合性を示し、リオトロピック液晶性化合物が配向された状態で熱または紫外線照射により重合固定化する工程、を含むことを特徴とする請求項2〜4のいずれかに記載の偏光素子の製造方法である。   The invention according to claim 5 includes a step of polymerizing and fixing by irradiating heat or ultraviolet rays in a state where the lyotropic liquid crystalline compound exhibits polymerizability and the lyotropic liquid crystalline compound is aligned. 4. A method for producing a polarizing element according to any one of 4 above.

請求項6の発明は、前記リオトロピック液晶性化合物を含む塗液がさらに重合性化合物を含み、リオトロピック液晶性化合物が配向された状態で熱または紫外線照射により重合固定化する工程、を含むことを特徴とする請求項2〜5のいずれかに記載の偏光素子の製造方法である。   The invention of claim 6 includes a step of polymerizing and immobilizing the coating liquid containing the lyotropic liquid crystalline compound by heat or ultraviolet irradiation in a state where the lyotropic liquid crystalline compound further contains a polymerizable compound and the lyotropic liquid crystalline compound is aligned. It is a manufacturing method of the polarizing element in any one of Claims 2-5.

請求項7の発明は、液晶セル及び請求項1に記載の偏光素子を少なくとも1つ以上備えた液晶表示素子である。   A seventh aspect of the present invention is a liquid crystal display element including at least one liquid crystal cell and the polarizing element according to the first aspect.

請求項8の発明は、前記液晶セルが、液晶を電圧無印加時に実質的に垂直に配向させ、電圧印加時に実質的に水平に配向させる垂直配向モードの液晶セルであることを特徴とする請求項7に記載の液晶表示素子である。   The invention of claim 8 is characterized in that the liquid crystal cell is a liquid crystal cell of a vertical alignment mode in which the liquid crystal is aligned substantially vertically when no voltage is applied and is aligned substantially horizontally when a voltage is applied. Item 8. The liquid crystal display element according to Item 7.

請求項9の発明は、前記液晶セルが、液晶セルの少なくとも一方に電極を有し、互いに平行な関係にある一対の透明基板の間に液晶が基板に平行に配向しており、かつ液晶の分子長軸の方向が、液晶セルに付与される電圧の変化により、基板に平行な面内で変化するように構成されている液晶セルであることを特徴とする請求項7に記載の液晶表示素子である。   According to a ninth aspect of the invention, the liquid crystal cell has an electrode on at least one of the liquid crystal cells, the liquid crystal is aligned parallel to the substrate between a pair of transparent substrates, and the liquid crystal cell 8. The liquid crystal display according to claim 7, wherein the direction of the molecular major axis is a liquid crystal cell configured to change in a plane parallel to the substrate by a change in voltage applied to the liquid crystal cell. It is an element.

本発明は、リオトロピック液晶のせん断塗布および偏光膜(基材)との相互作用により配向形成されたリオトロピック液晶性化合物により複屈折性を示すため所定の軸方向における屈折率のバラツキが少ない位相差制御層を有する偏光素子を作製できるという効果を奏する。
また、偏光膜に直接位相差制御層を形成する、偏光膜を形成する保護基材に位相差制御層を形成した後偏光層と貼り合わせ偏光素子を作製する、または、透明性基材に位相差制御層を形成した後偏光素子に貼り合わせることにより、従来の液晶化合物を用いた位相差制御層で必要であった配向膜やラビング処理が不要であり、位相差制御層を有する偏光素子を容易かつ安価に製造しうるという効果を奏する。
また、位相差制御層の屈折率の進相軸が偏光透過軸に対して、角度±1°未満で面内方向に垂直または平行か厚み方向に平行であることにより、VAモード、IPSモード液晶表示素子へ適用できるという効果を奏する。
The present invention provides phase difference control with little variation in refractive index in a predetermined axial direction because it exhibits birefringence by a lyotropic liquid crystal compound formed by alignment by shear coating of a lyotropic liquid crystal and interaction with a polarizing film (base material). There exists an effect that the polarizing element which has a layer can be produced.
In addition, a retardation control layer is formed directly on the polarizing film, a retardation control layer is formed on the protective base material on which the polarizing film is formed, and then a polarizing element is bonded to the polarizing layer, or a transparent base material is provided. By forming a phase difference control layer and then bonding it to a polarizing element, an alignment film and a rubbing treatment that are necessary for a phase difference control layer using a conventional liquid crystal compound are unnecessary, and a polarizing element having a phase difference control layer is provided. There is an effect that it can be manufactured easily and inexpensively.
Further, the fast axis of the refractive index of the phase difference control layer is less than ± 1 ° with respect to the polarization transmission axis and is perpendicular or parallel to the in-plane direction or parallel to the thickness direction. There exists an effect that it can apply to a display element.

本発明は、少なくとも1層の位相差制御層、及び偏光膜を有する偏光素子であって、リオトロピック液晶性化合物が偏光膜に対しての配向角が角度±1°未満で垂直配向または水平配向しており、かつ位相差制御層の屈折率の進相軸が偏光透過軸に対して、角度±1°未満で面内方向に垂直または平行か厚み方向に平行であることを特徴とする偏光素子およびその製造方法および該偏光素子を備えた液晶表示素子である。   The present invention is a polarizing element having at least one retardation control layer and a polarizing film, wherein the lyotropic liquid crystalline compound is vertically or horizontally aligned with an orientation angle of less than ± 1 ° with respect to the polarizing film. The polarizing element is characterized in that the phase advance axis of the refractive index of the phase difference control layer is less than ± 1 ° with respect to the polarization transmission axis and is perpendicular or parallel to the in-plane direction or parallel to the thickness direction. And a manufacturing method thereof and a liquid crystal display device including the polarizing element.

所定の軸方向における屈折率の光軸のバラツキ角度±1°未満で、より好ましくは±0.5°未満にすることにより、表示コントラストの低下を防ぐことができる。所定の軸方向における屈折率の光軸のバラツキの制御は位相差膜面内の配向および偏光膜に対しての配向角のバラツキの制御によって行なうことができる。   By reducing the optical axis variation angle of the refractive index in a predetermined axial direction to less than ± 1 °, more preferably less than ± 0.5 °, it is possible to prevent the display contrast from being lowered. Control of the variation in the optical axis of the refractive index in the predetermined axial direction can be performed by controlling the alignment in the retardation film plane and the variation in the orientation angle with respect to the polarizing film.

また、位相差制御層の屈折率の進相軸が偏光透過軸に対して面内方向に垂直または平行か厚み方向に平行であることから、表示用液晶駆動セルはVAモードまたはIPSモードの液晶駆動セルであることが好ましい。   In addition, since the fast axis of the refractive index of the phase difference control layer is perpendicular or parallel to the in-plane direction or parallel to the thickness direction with respect to the polarization transmission axis, the display liquid crystal driving cell is a VA mode or IPS mode liquid crystal. A drive cell is preferred.

図1、2に本発明の液晶表示素子の一実施形態を示す。図1、2の液晶表示素子は、偏光膜及び位相差制御層を有する偏光素子、表示用駆動液晶セル、および偏光素子から構成されている。   1 and 2 show an embodiment of the liquid crystal display element of the present invention. 1 and 2 includes a polarizing element having a polarizing film and a phase difference control layer, a display driving liquid crystal cell, and a polarizing element.

本発明の位相差制御層はリオトロピック液晶性化合物を含むことを特徴としており、具体的には、リオトロピック液晶状態の塗布液をせん断をかけながら、偏光膜、後工程で偏光層の保護基材となる透明性基材又は別の基材に塗布し、偏光膜(基材)との相互作用を利用することによりリオトロピック液晶性化合物を配向させた後、配向固定化して位相差制御層とするものである。この際、従来の液晶化合物を用いた位相差制御層で必要であった配向膜やラビング処理が不要となる。また、フィルムの延伸により作製した位相差制御層とは異なり所定の軸方向に屈折率を揃えられる。   The retardation control layer of the present invention is characterized by containing a lyotropic liquid crystalline compound. Specifically, while applying a shearing coating liquid in a lyotropic liquid crystal state, a polarizing film, and a protective substrate for the polarizing layer in a subsequent step, It is applied to a transparent base material or another base material, and after aligning the lyotropic liquid crystalline compound by utilizing the interaction with the polarizing film (base material), the orientation is fixed to form a retardation control layer It is. At this time, an alignment film and a rubbing treatment that are necessary in a phase difference control layer using a conventional liquid crystal compound are not required. Moreover, unlike the retardation control layer produced by extending | stretching a film, a refractive index can be arrange | equalized in a predetermined axial direction.

本発明における偏光膜は、特に限定するものではなく、公知の偏光膜を用いることができる。例えば、ポリビニルアルコールの延伸フィルムとヨウ素錯体からなる偏光層が2枚の保護基材で挟みこまれた偏光膜、ポリビニルアルコールの延伸フィルムと二色性色素からなる偏光層が2枚の保護基材で挟みこまれた偏光膜、配向した二色性色素からなる偏光層を2枚の保護基材で挟みこまれた偏光膜などを例示できる。
前記保護基材は、特に限定するものではないが、セルロースアセテートフィルムやガラス基板などを例示することができる。また、これらの基材に親水化処理や疎水化処理などの表面処理を施したものを用いることもできる。
The polarizing film in this invention is not specifically limited, A well-known polarizing film can be used. For example, a polarizing film in which a polarizing layer made of a stretched polyvinyl alcohol film and an iodine complex is sandwiched between two protective substrates, a polarizing layer made of a stretched film of polyvinyl alcohol and a dichroic dye is two protective substrates Examples thereof include a polarizing film sandwiched between 2 and a polarizing film formed by sandwiching a polarizing layer made of an oriented dichroic dye between two protective substrates.
Although the said protective base material is not specifically limited, A cellulose acetate film, a glass substrate, etc. can be illustrated. In addition, those obtained by subjecting these substrates to a surface treatment such as a hydrophilic treatment or a hydrophobic treatment can also be used.

また、位相差制御層を偏光膜の保護基材とは別の透明基材上に設け、後から位相差制御層と偏光膜を貼り合わせる場合において、透明基材としては、特に限定するものではないが、セルロースアセテートフィルムやガラス基板などを例示することができる。   In addition, when the retardation control layer is provided on a transparent substrate different from the protective substrate of the polarizing film, and the retardation control layer and the polarizing film are bonded later, the transparent substrate is not particularly limited. A cellulose acetate film, a glass substrate, etc. can be illustrated although there is no.

また、偏光膜を構成する保護基材の一方の面上に位相差制御層を設け、反対の面上に偏光層を形成する場合、形成法は限定するものではなく、種々の方法を用いることができる。
例えば、ポリビニルアルコールの延伸フィルムとヨウ素錯体からなる偏光層を貼り合わせる方法や、偏光材料を塗布し形成させる方法などが挙げられる。
In addition, when a retardation control layer is provided on one surface of a protective substrate constituting a polarizing film and a polarizing layer is formed on the opposite surface, the forming method is not limited, and various methods are used. Can do.
For example, a method of bonding a stretched film of polyvinyl alcohol and a polarizing layer made of an iodine complex, a method of applying and forming a polarizing material, and the like can be mentioned.

偏光膜に対しての配向角を角度±1°未満で垂直配向または水平配向するためには、基材との相互作用が重要であり、手段については特に限定するものではないが、例えば、基材に合わせた分子設計、基材の表面処理などが有効な手段として挙げられる。
なお、ここでいう偏光膜に対しての配向角は、偏光膜を構成する基材に対しての配向角である。また、位相差制御層を別の基材上に設け、後から偏光膜と貼り合わせる場合においては、位相差制御層に用いる基材に対しての配向角である。
In order to perform vertical alignment or horizontal alignment at an angle of orientation of less than ± 1 ° with respect to the polarizing film, the interaction with the substrate is important, and the means is not particularly limited. Examples of effective means include molecular design according to the material and surface treatment of the substrate.
In addition, the orientation angle with respect to a polarizing film here is an orientation angle with respect to the base material which comprises a polarizing film. Moreover, when providing a phase difference control layer on another base material and sticking with a polarizing film later, it is an orientation angle with respect to the base material used for a phase difference control layer.

前記偏光膜との相互作用の利用手段については特に限定するものではないが、例えば、偏光膜を構成する基材に合わせた分子設計、基材の表面処理などが有効な手段として挙げられる。とりわけ液晶表示素子に用いられる偏光素子の保護基材はケン化処理により親水化処理されてなるトリアセチルセルロース(TAC)フィルムが主に用いられるため、ケン化処理したTACフィルムとの相互作用を考慮した分子設計を行なうことは、コスト・工程数を増やすことなく基材に対しての配向角を制御できるという利点を有している。   The means for utilizing the interaction with the polarizing film is not particularly limited. Examples of effective means include molecular design tailored to the substrate constituting the polarizing film and surface treatment of the substrate. In particular, since the protective substrate of the polarizing element used in the liquid crystal display element is mainly a triacetyl cellulose (TAC) film that has been hydrophilized by a saponification treatment, the interaction with a saponified TAC film is considered This molecular design has the advantage that the orientation angle relative to the substrate can be controlled without increasing the cost and the number of steps.

前記塗布液には、リオトロピック液晶性化合物のせん断配向性を低下させない範囲において、リオトロピック液晶性化合物や水または有機溶媒の他に、重合性化合物、界面活性剤などを添加することができる。前記有機溶媒としては、アセトン、2−プロパノール、ジオキサン、メタノール、エタノール、イオン性液体などを用いることができる。   In addition to the lyotropic liquid crystalline compound, water, or an organic solvent, a polymerizable compound, a surfactant, and the like can be added to the coating solution as long as the shear orientation of the lyotropic liquid crystalline compound is not lowered. As the organic solvent, acetone, 2-propanol, dioxane, methanol, ethanol, ionic liquid, or the like can be used.

前記リオトロピック液晶性化合物としては、せん断流動により容易に配向を制御できるリオトロピック液晶性を示すものが好ましい。このような化合物としては、クロモニック色素、非特許文献(M.Yoshioら,J.Am.Chem.Soc.,2004,126,994−995.)に記載の化合物などが知られている。クロモニック色素の一例としてはクロモグリケイトナトリウム塩(DSCG:化学式(1)に示す化合物)やアセナフトキノキサリンスルホン酸塩などが挙げられる。また、前記前記リオトロピック液晶化合物には重合性能を有するものを用いることもできる。   As the lyotropic liquid crystalline compound, those exhibiting lyotropic liquid crystallinity whose alignment can be easily controlled by shear flow are preferable. As such compounds, chromonic dyes, compounds described in non-patent literature (M. Yoshio et al., J. Am. Chem. Soc., 2004, 126, 994-995.) And the like are known. Examples of chromonic dyes include cromoglycate sodium salt (DSCG: compound represented by chemical formula (1)), acenaphthoquinoxaline sulfonate, and the like. Moreover, what has superposition | polymerization performance can also be used for the said lyotropic liquid crystal compound.

Figure 2007241037
Figure 2007241037

塗布液の塗布方法としては、スロットダイ塗布、ワイヤーバー塗布などのウェット塗布法を利用することができる。   As a coating method for the coating solution, wet coating methods such as slot die coating and wire bar coating can be used.

前記配向固定化方法としては、せん断塗布により得られるリオトロピック液晶性化合物が配向した状態で、塗布液の溶媒を蒸発させるまたは、熱または紫外線照射により重合する方法が挙げられる。   Examples of the alignment fixing method include a method in which the solvent of the coating solution is evaporated or polymerization is performed by heat or ultraviolet irradiation in a state where the lyotropic liquid crystalline compound obtained by shear coating is aligned.

また、本発明では、位相差制御層を保護するための保護層を設けても良い。
保護層としては耐薬品性があり、透過率が高く、光学的に等方な層であることが好ましく、このようなものとしては例えばシリカ膜を挙げることができる。
In the present invention, a protective layer for protecting the retardation control layer may be provided.
The protective layer is preferably a layer having chemical resistance, high transmittance, and optically isotropic properties. Examples of such a protective layer include a silica film.

<実施例1>
透明基材として厚み80μmのトリアセチルセルロースフィルム(富士写真フィルム社製)を用い、ケン化処理により親水化処理を行なった。
この基材にリオトロピック液晶性インキ(Optiva Inc社製VAE003)を、#2のワイヤーバーを用いて塗布した。
塗布後、室温にて乾燥を行ない塗布膜を得た。得られた塗布膜の任意20点を、Axometrics社製Mueller Matrix Polarimetersを用いて塗布方向に対する面内進相軸の配向方向および基材に対しての配向角を測定したところ、0°±0.3°および0°±0.4°と屈折率の軸および基材に対しての配向角のバラツキが少ないことがわかった。
別途厚み80μmのケン化処理済トリアセチルセルロースフィルム(富士写真フィルム社製)にOptiva社製N015インキを塗布し、偏光膜を作製した後、前記位相差制御層付きトリアセチルセルロースフィルムと貼り合わせ偏光素子を得た。
<Example 1>
A triacetyl cellulose film (manufactured by Fuji Photo Film Co., Ltd.) having a thickness of 80 μm was used as a transparent substrate, and hydrophilic treatment was performed by saponification treatment.
A lyotropic liquid crystalline ink (VAE003 manufactured by Optiva Inc) was applied to the substrate using a # 2 wire bar.
After coating, drying was performed at room temperature to obtain a coated film. Arbitrary 20 points of the obtained coating film were measured for the orientation direction of the in-plane fast axis with respect to the coating direction and the orientation angle with respect to the substrate using Mueller Matrix Polarimeters manufactured by Axometrics. It was found that there was little variation in the orientation angle with respect to the axis of the refractive index and the substrate at 3 ° and 0 ° ± 0.4 °.
Separately, a saponified triacetylcellulose film (manufactured by Fuji Photo Film Co., Ltd.) having a thickness of 80 μm was coated with Optiva's N015 ink to produce a polarizing film, and then bonded to the triacetylcellulose film with the retardation control layer and polarized. An element was obtained.

<実施例2>
偏光膜として日東電工製NPF−SEG1224DUを用い、プラズマ処理により親水化処理を行なった。次にこの偏光板にリオトロピック液晶性インキ(Optiva Inc社製VAE003)を、#2のワイヤーバーを用いて塗布した。
塗布後、室温にて乾燥を行ない塗布膜を得た。次に、塗布膜上に保護層としてSiOxとスパッタリング法にて500nm設けた。得られた偏光素子を蒸留水に10時間つけ、塗布膜側のフィルムを偏光素子より剥がし乾燥後、実施例1の要領で、塗布膜の面内相軸の配向方向および基材に対しての配向角を測定したところ、0°±0.4°および0°±0.4°と屈折率の軸および基材に対しての配向角のバラツキが少ない位相差制御層であることがわかった。以上より、位相差制御層を備えた偏光素子が作製可能であることがわかった。
<Example 2>
NPF-SEG1224DU manufactured by Nitto Denko was used as the polarizing film, and hydrophilic treatment was performed by plasma treatment. Next, lyotropic liquid crystalline ink (VAE003 manufactured by Optiva Inc) was applied to the polarizing plate using a # 2 wire bar.
After coating, drying was performed at room temperature to obtain a coated film. Next, 500 nm was provided as a protective layer on the coating film by SiOx and sputtering. The obtained polarizing element is immersed in distilled water for 10 hours, the film on the coating film side is peeled off from the polarizing element and dried. Then, in the same manner as in Example 1, the orientation direction of the in-plane phase axis of the coating film and the substrate When the orientation angle was measured, it was found to be 0 ° ± 0.4 ° and 0 ° ± 0.4 °, a phase difference control layer with little variation in orientation angle with respect to the refractive index axis and the substrate. . From the above, it was found that a polarizing element provided with a retardation control layer can be produced.

本発明の液晶素子の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the liquid crystal element of this invention. 本発明の液晶素子の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the liquid crystal element of this invention.

符号の説明Explanation of symbols

1 偏光素子,
2 偏光膜
3 位相差制御層
4 表示用駆動液晶セル
5 透明性基材
1 polarizing element,
2 Polarizing film 3 Phase difference control layer 4 Display driving liquid crystal cell 5 Transparent substrate

Claims (9)

少なくとも1層の位相差制御層、及び偏光膜を有する偏光素子であって、
該位相差制御層が、リオトロピック液晶性化合物を含み、
該リオトロピック液晶性化合物が偏光膜に対しての配向角が角度±1°未満で垂直配向または水平配向しており、
かつ位相差制御層の屈折率の進相軸が偏光透過軸に対して、角度±1°未満で面内方向に垂直または平行か厚み方向に平行であることを特徴とする偏光素子。
A polarizing element having at least one retardation control layer and a polarizing film,
The retardation control layer contains a lyotropic liquid crystalline compound;
The lyotropic liquid crystalline compound is oriented vertically or horizontally with an orientation angle with respect to the polarizing film of less than ± 1 °,
The polarizing element is characterized in that the fast axis of the refractive index of the phase difference control layer is less than ± 1 ° with respect to the polarization transmission axis and is perpendicular or parallel to the in-plane direction or parallel to the thickness direction.
少なくとも1層の位相差制御層、及び偏光膜を有する偏光素子の製造方法であって、
偏光膜にリオトロピック液晶性化合物を含む塗液をせん断をかけながら塗布する工程、前記塗液を乾燥することによりリオトロピック液晶性化合物を配向固定化し位相差制御層を形成する工程、
を含み、該リオトロピック液晶性化合物が偏光膜に対しての配向角が角度±1°未満で垂直配向または水平配向しており、位相差制御層の屈折率の進相軸が偏光透過軸に対して、角度±1°未満で面内方向に垂直または平行か厚み方向に平行に形成されていることを特徴とする偏光素子の製造方法。
A method of manufacturing a polarizing element having at least one retardation control layer and a polarizing film,
A step of applying a coating liquid containing a lyotropic liquid crystalline compound to the polarizing film while shearing, a step of forming a retardation control layer by fixing the orientation of the lyotropic liquid crystalline compound by drying the coating liquid,
The lyotropic liquid crystalline compound is oriented vertically or horizontally with an orientation angle with respect to the polarizing film of less than ± 1 °, and the fast axis of the refractive index of the retardation control layer is relative to the polarization transmission axis A method of manufacturing a polarizing element, characterized in that the polarizing element is formed at an angle of less than ± 1 ° and perpendicular or parallel to the in-plane direction or parallel to the thickness direction.
少なくとも1層の位相差制御層、及び偏光膜を有する偏光素子の製造方法であって、
透明性基材にリオトロピック液晶性化合物を含む塗液をせん断をかけながら塗布する工程、前記塗液を乾燥することによりリオトロピック液晶性化合物を配向固定化し位相差制御層を形成する工程、位相差制御層を形成された透明性基材と偏光膜を貼り合わせる工程、
を含み、該リオトロピック液晶性化合物が基材に対しての配向角が角度±1°未満で垂直配向または水平配向しており、位相差制御層の屈折率の進相軸が偏光透過軸に対して、角度±1°未満で面内方向に垂直または平行か厚み方向に平行に形成されていることを特徴とする偏光素子の製造方法。
A method of manufacturing a polarizing element having at least one retardation control layer and a polarizing film,
A step of applying a coating liquid containing a lyotropic liquid crystalline compound to a transparent substrate while applying shear, a step of forming a retardation control layer by fixing the orientation of the lyotropic liquid crystalline compound by drying the coating liquid, and a phase difference control A step of laminating a transparent substrate on which a layer is formed and a polarizing film;
The lyotropic liquid crystalline compound is oriented vertically or horizontally with an orientation angle with respect to the substrate of less than ± 1 °, and the fast axis of the refractive index of the retardation control layer is relative to the polarization transmission axis A method of manufacturing a polarizing element, characterized in that the polarizing element is formed at an angle of less than ± 1 ° and perpendicular or parallel to the in-plane direction or parallel to the thickness direction.
少なくとも1層の位相差制御層、及び偏光層を有する偏光素子の製造方法であって、
透明性基材にリオトロピック液晶性化合物を含む塗液をせん断をかけながら塗布する工程、前記塗液を乾燥することによりリオトロピック液晶性化合物を配向固定化し位相差制御層を形成する工程、該透明性基材の位相差制御層が形成された面とは歯引退の面に偏光層を形成する工程、
を含み、該リオトロピック液晶性化合物が基材に対しての配向角が角度±1°未満で垂直配向または水平配向しており、位相差制御層の屈折率の進相軸が偏光透過軸に対して、角度±1°未満で面内方向に垂直または平行か厚み方向に平行に形成されていることを特徴とする偏光素子の製造方法。
A method of manufacturing a polarizing element having at least one retardation control layer and a polarizing layer,
A step of applying a coating liquid containing a lyotropic liquid crystalline compound on a transparent substrate while applying shear, a step of forming a retardation control layer by fixing the orientation of the lyotropic liquid crystalline compound by drying the coating liquid, the transparency A step of forming a polarizing layer on the surface where the phase difference control layer of the substrate is formed and the surface of the tooth retraction;
The lyotropic liquid crystalline compound is oriented vertically or horizontally with an orientation angle with respect to the substrate of less than ± 1 °, and the fast axis of the refractive index of the retardation control layer is relative to the polarization transmission axis A method of manufacturing a polarizing element, characterized in that the polarizing element is formed at an angle of less than ± 1 ° and perpendicular or parallel to the in-plane direction or parallel to the thickness direction.
前記リオトロピック液晶性化合物が重合性を示し、リオトロピック液晶性化合物が配向された状態で熱または紫外線照射により重合固定化する工程、を含むことを特徴とする請求項2〜4のいずれかに記載の偏光素子の製造方法。   The lyotropic liquid crystalline compound exhibits polymerizability, and includes a step of polymerizing and fixing by heat or ultraviolet irradiation in a state where the lyotropic liquid crystalline compound is aligned. Manufacturing method of polarizing element. 前記リオトロピック液晶性化合物を含む塗液がさらに重合性化合物を含み、リオトロピック液晶性化合物が配向された状態で熱または紫外線照射により重合固定化する工程、を含むことを特徴とする請求項2〜5のいずれかに記載の偏光素子の製造方法。   The coating liquid containing the lyotropic liquid crystalline compound further comprises a polymerizable compound, and includes a step of polymerizing and fixing by irradiation of heat or ultraviolet rays in a state where the lyotropic liquid crystalline compound is aligned. The manufacturing method of the polarizing element in any one of. 液晶セル及び請求項1に記載の偏光素子を少なくとも1つ以上備えた液晶表示素子。   A liquid crystal display element comprising at least one liquid crystal cell and at least one polarizing element according to claim 1. 前記液晶セルが、液晶を電圧無印加時に実質的に垂直に配向させ、電圧印加時に実質的に水平に配向させる垂直配向モードの液晶セルであることを特徴とする請求項7に記載の液晶表示素子。   8. The liquid crystal display according to claim 7, wherein the liquid crystal cell is a vertical alignment mode liquid crystal cell in which liquid crystal is aligned substantially vertically when no voltage is applied and is aligned substantially horizontally when a voltage is applied. element. 前記液晶セルが、液晶セルの少なくとも一方に電極を有し、互いに平行な関係にある一対の透明基板の間に液晶が基板に平行に配向しており、かつ液晶の分子長軸の方向が、液晶セルに付与される電圧の変化により、基板に平行な面内で変化するように構成されている液晶セルであることを特徴とする請求項7に記載の液晶表示素子。   The liquid crystal cell has an electrode on at least one of the liquid crystal cells, the liquid crystal is aligned parallel to the substrate between a pair of transparent substrates in parallel with each other, and the direction of the molecular major axis of the liquid crystal is The liquid crystal display element according to claim 7, wherein the liquid crystal display element is configured to change in a plane parallel to the substrate by a change in voltage applied to the liquid crystal cell.
JP2006065473A 2006-03-10 2006-03-10 Polarizing element, manufacturing method thereof, and liquid crystal display element Pending JP2007241037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006065473A JP2007241037A (en) 2006-03-10 2006-03-10 Polarizing element, manufacturing method thereof, and liquid crystal display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006065473A JP2007241037A (en) 2006-03-10 2006-03-10 Polarizing element, manufacturing method thereof, and liquid crystal display element

Publications (1)

Publication Number Publication Date
JP2007241037A true JP2007241037A (en) 2007-09-20

Family

ID=38586622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006065473A Pending JP2007241037A (en) 2006-03-10 2006-03-10 Polarizing element, manufacturing method thereof, and liquid crystal display element

Country Status (1)

Country Link
JP (1) JP2007241037A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009082791A (en) * 2007-09-28 2009-04-23 Dainippon Printing Co Ltd Die coater, mouth piece for die coater, die-coating method employing die coater, and optical element and liquid crystal display prepared by using die coater
JP2010015019A (en) * 2008-07-04 2010-01-21 Hitachi Displays Ltd Liquid crystal display device and manufacturing method for the same
JP2012507619A (en) * 2008-11-05 2012-03-29 韓国生産技術研究院 Lyotropic chromonic liquid crystal composition, method for producing lyotropic chromonic liquid crystal coating film, and lyotropic chromonic liquid crystal coating film produced thereby
WO2015129706A1 (en) * 2014-02-26 2015-09-03 富士フイルム株式会社 Polarizing plate and image display device
CN112805136A (en) * 2018-10-26 2021-05-14 东洋纺株式会社 Alignment film for transfer printing of liquid crystal compound alignment layer
US11092729B2 (en) 2017-12-26 2021-08-17 Lg Chem, Ltd. Polarizing plate and liquid crystal display device comprising same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0383001A (en) * 1989-08-28 1991-04-09 Nitto Denko Corp Phase difference plate and production thereof
JP2004151310A (en) * 2002-10-30 2004-05-27 Sony Corp Liquid crystal display device
WO2004065524A1 (en) * 2003-01-17 2004-08-05 Nitto Denko Corporation Anisotropic film manufacturing
JP2004226830A (en) * 2003-01-24 2004-08-12 Seiko Epson Corp Liquid crystal display and electronic equipment
JP2006047882A (en) * 2004-08-06 2006-02-16 Nippon Zeon Co Ltd Optical laminate, polarizing plate, and liquid crystal display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0383001A (en) * 1989-08-28 1991-04-09 Nitto Denko Corp Phase difference plate and production thereof
JP2004151310A (en) * 2002-10-30 2004-05-27 Sony Corp Liquid crystal display device
WO2004065524A1 (en) * 2003-01-17 2004-08-05 Nitto Denko Corporation Anisotropic film manufacturing
JP2004226830A (en) * 2003-01-24 2004-08-12 Seiko Epson Corp Liquid crystal display and electronic equipment
JP2006047882A (en) * 2004-08-06 2006-02-16 Nippon Zeon Co Ltd Optical laminate, polarizing plate, and liquid crystal display device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009082791A (en) * 2007-09-28 2009-04-23 Dainippon Printing Co Ltd Die coater, mouth piece for die coater, die-coating method employing die coater, and optical element and liquid crystal display prepared by using die coater
JP2010015019A (en) * 2008-07-04 2010-01-21 Hitachi Displays Ltd Liquid crystal display device and manufacturing method for the same
JP2012507619A (en) * 2008-11-05 2012-03-29 韓国生産技術研究院 Lyotropic chromonic liquid crystal composition, method for producing lyotropic chromonic liquid crystal coating film, and lyotropic chromonic liquid crystal coating film produced thereby
US8580143B2 (en) 2008-11-05 2013-11-12 Korea Institute Of Industrial Technology Lyotropic chromonic liquid crystal composition, method for manufacture of lyotropic chromonic liquid crystal coating film, and lyotropic chromonic liquid crystal coating film manufactured thereby
WO2015129706A1 (en) * 2014-02-26 2015-09-03 富士フイルム株式会社 Polarizing plate and image display device
US11092729B2 (en) 2017-12-26 2021-08-17 Lg Chem, Ltd. Polarizing plate and liquid crystal display device comprising same
CN112805136A (en) * 2018-10-26 2021-05-14 东洋纺株式会社 Alignment film for transfer printing of liquid crystal compound alignment layer

Similar Documents

Publication Publication Date Title
US12019336B2 (en) Optical laminate comprising a twisted angle of a refractive index anisotropic layer having a twisted structure, image display device, and glass composite
WO2008059721A1 (en) Elliptic polarizing plate and vertically aligned liquid crystal display using the same
CN100392500C (en) Liquid crystal display device
CN105492936A (en) Polarizing plate, method for manufacturing same and liquid-crystal display device comprising same
JP2008181091A (en) Optical laminate and liquid crystal panel using the same
JP6723359B2 (en) Wavelength selective reflection film, optical film, method of manufacturing wavelength selective reflection film, and image display device
JP2007241037A (en) Polarizing element, manufacturing method thereof, and liquid crystal display element
CN114514451A (en) Optical film, circular polarizer, organic electroluminescence display device
JP2012519301A (en) Optical compensation film in which alignment in thickness direction of nematic liquid crystal compound in which two or more mesogens have a constant bond angle is a hybrid type, and method for producing the same
JP2009288440A (en) Retardation film, method for manufacturing retardation film, polarizing plate, and liquid crystal display
JP2018060152A (en) Set of polarizing plates for ips mode and ips mode liquid crystal display using the same
WO2017094253A1 (en) Retardation film, method for producing same, polarizing plate provided with retardation film, and liquid crystal display
JP2003232922A (en) Polarizing plate and liquid crystal display
JP2008077043A (en) Optical compensation sheet, polarizing plate, and liquid crystal display device
JP2018060150A (en) Set of polarizing plate for IPS mode and IPS mode liquid crystal display device using the same
JP2018054887A (en) Polarizing plate set and IPS mode liquid crystal display device using the same
JP2000009936A (en) Production of optical compensation sheet
JP2004309598A (en) Retardation plate, elliptical polarizing plate and liquid crystal display device
JP6699514B2 (en) Set of polarizing plates for IPS mode and IPS mode liquid crystal display device using the same
JP4204597B2 (en) Optical compensation sheet manufacturing method
CN116243417A (en) Laminated film, circularly polarizing plate, and display device
JP2001100031A (en) Optical compensation sheet, elliptically polarizing plate and liquid crystal display device
JP2007279477A (en) Liquid crystal element, manufacturing method thereof and liquid crystal display panel
JP2009258412A (en) Coating liquid, process for producing the same, and polarizing film
JP2005521081A (en) Liquid crystal display device with elliptical polarizer based on disk-like liquid crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110419