[go: up one dir, main page]

JP2007240342A - Flaw detection apparatus and method - Google Patents

Flaw detection apparatus and method Download PDF

Info

Publication number
JP2007240342A
JP2007240342A JP2006063612A JP2006063612A JP2007240342A JP 2007240342 A JP2007240342 A JP 2007240342A JP 2006063612 A JP2006063612 A JP 2006063612A JP 2006063612 A JP2006063612 A JP 2006063612A JP 2007240342 A JP2007240342 A JP 2007240342A
Authority
JP
Japan
Prior art keywords
data
inspection object
shape data
flaw detection
dimensional shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006063612A
Other languages
Japanese (ja)
Inventor
Hajime Obikawa
元 帯川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2006063612A priority Critical patent/JP2007240342A/en
Publication of JP2007240342A publication Critical patent/JP2007240342A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

【課題】複雑な形状をした検査対象物の探傷を時間をおいて行う場合であっても作業性及び再現性が良く精度良く探傷検査データを得ることである。
【解決手段】予め定めた固定点Aを基準点として検査対象物11の画像データ及び検査対象物11上を探傷走査した探傷部12の走査軌跡データをセンサ部15で計測し、画像処理部19は計測した画像データに基づいて検査対象物の3次元形状データ及びその3次元形状データ上での探傷部12の走査軌跡データを演算し、座標補正部21は記憶部20に記憶された過去の検査対象物11の3次元形状データとの座標のずれを補正し、現在の検査対象物の3次元形状データを過去の検査対象物の3次元形状データの座標に一致させ、表示装置22に過去の探傷部の走査軌跡データを案内表示する。
【選択図】図1
An object of the present invention is to obtain flaw detection inspection data with good workability and reproducibility with high accuracy even when flaw detection is performed on an inspection object having a complicated shape.
An image processing unit (19) measures image data of an inspection object (11) and scanning trajectory data of a flaw detection part (12) flaw-scanned on the inspection object (11) with a predetermined fixed point (A) as a reference point. Calculates the three-dimensional shape data of the inspection object and the scanning trajectory data of the flaw detection unit 12 on the three-dimensional shape data based on the measured image data, and the coordinate correction unit 21 stores the past data stored in the storage unit 20. The coordinate deviation from the three-dimensional shape data of the inspection object 11 is corrected, the three-dimensional shape data of the current inspection object is made to coincide with the coordinates of the three-dimensional shape data of the past inspection object, and the past is displayed on the display device 22. The scanning trajectory data of the flaw detection part is displayed as a guide.
[Selection] Figure 1

Description

本発明は、複雑な形状をした検査対象物の探傷を行う探傷検査装置及び方法に関する。   The present invention relates to a flaw detection inspection apparatus and method for flaw detection of inspection objects having complicated shapes.

火力発電設備や水力発電設備等の構成設備には、様々な複雑な形状をしたものがある。例えば、火力発電設備のタービン翼形状や水力発電設備のベーン形状は、流体力学的に効率的な形状を有しており、また、配管のエルボ部は曲面形状をしており、さらにボイラ近傍のバーナーリングのように特有の曲面形状をしているものもある。これらの設備については、非破壊検査等の手法で健全性を精度よく評価したいというニーズがあるが、現状では人手によって探傷検査の作業が行われており、検査精度上の課題がある。   There are various complicated shapes of components such as thermal power generation facilities and hydroelectric power generation facilities. For example, the turbine blade shape of a thermal power generation facility and the vane shape of a hydroelectric generation facility have a hydrodynamically efficient shape, and the elbow part of the pipe has a curved surface shape, and further, the vicinity of the boiler Some have a unique curved shape, such as a burner ring. For these facilities, there is a need to accurately evaluate the soundness by a technique such as non-destructive inspection, but at present, the work of flaw detection inspection is performed manually, and there is a problem in inspection accuracy.

複雑な自由曲面を有する3次元形状の検査対象物の欠陥部分を超音波探傷するものとして、検査対象物の形状と欠陥部分の位置姿勢サイズを3次元的に画像表示し、精度の良い欠陥部分の測定及び対処方法を確定するできるようにしたものがある(例えば、特許文献1参照)。
特開平6−102258号公報
As an ultrasonic flaw detection method for a defect portion of a three-dimensional inspection object having a complex free-form surface, the shape of the inspection object and the position and orientation size of the defect portion are displayed in a three-dimensional image, and the defect portion is accurate. There is one that can determine the measurement and coping method (see, for example, Patent Document 1).
JP-A-6-102258

しかし、特許文献1のものでは、検査対象物の形状と欠陥部分の位置姿勢サイズを3次元的に画像表示するので精度の良い欠陥部分の測定が可能であるが、同一検査対象物の同一箇所を時間をおいて探傷検査することについて考慮されていない。   However, in Patent Document 1, since the shape of the inspection object and the position and orientation size of the defect portion are displayed in a three-dimensional image, it is possible to accurately measure the defect portion. The time is not taken into consideration for flaw detection.

火力発電設備や水力発電設備では定期的あるいは不定期に検査対象物を探傷検査する。その際に、同一検査対象物の同一箇所に対して探傷部を走査し、過去の探傷検査データと比較して検査対象物の健全性の評価を行う。従って、探傷部で走査する箇所が異なると、過去の探傷検査データとの比較が適正でなくなるので、探傷部で走査する箇所は同一箇所でなければならない。   In thermal power generation facilities and hydroelectric power generation facilities, inspection objects are flaw-detected regularly or irregularly. In that case, the flaw detection part is scanned with respect to the same location of the same test target object, and the soundness of a test target object is evaluated compared with the past flaw detection test data. Therefore, if the part scanned at the flaw detection part is different, comparison with the past flaw detection inspection data is not appropriate, so the part scanned at the flaw detection part must be the same part.

従来においては、同一検査対象物の同一箇所に対して手作業で探傷検査を行っているので作業性が悪く、また、検査対象物が複雑な形状をしている場合には探傷部で走査する箇所を同一箇所とすることが難しく再現性が悪い。従って、得られた探傷検査データの精度も低いものとなる。   Conventionally, since flaw detection inspection is performed manually on the same part of the same inspection object, workability is poor, and when the inspection object has a complicated shape, scanning is performed at the flaw detection section. It is difficult to make the same place, and reproducibility is poor. Therefore, the accuracy of the obtained flaw detection inspection data is also low.

本発明の目的は、複雑な形状をした検査対象物の探傷を時間をおいて行う場合であっても作業性及び再現性が良く精度良く探傷検査データを得ることができる探傷検査装置及び方法を提供することである。   SUMMARY OF THE INVENTION An object of the present invention is to provide a flaw detection inspection apparatus and method capable of obtaining flaw detection inspection data with good workability and reproducibility with high accuracy even when flaw detection is performed on an inspection object having a complicated shape. Is to provide.

請求項1の発明に係わる探傷検査装置は、予め定めた固定点を基準点として検査対象物の画像データ及び前記検査対象物上を探傷走査した探傷部の走査軌跡データを計測するセンサ部と、前記センサ部で計測した画像データに基づいて前記検査対象物の3次元形状データ及びその3次元形状データ上での探傷部の走査軌跡データを演算する画像処理部と、前記画像処理部で演算された前記検査対象物の3次元形状データ及びその3次元形状データ上での探傷部の走査軌跡データを記憶する記憶部と、前記画像処理部で得られた現在の検査対象物の3次元形状データと前記記憶部に記憶された過去の検査対象物の3次元形状データとの座標のずれを補正し現在の検査対象物の3次元形状データを過去の検査対象物の3次元形状データの座標に一致させる座標補正部と、前記座標補正部で補正された座標に一致させて現在の検査対象物の3次元形状データを表示するとともにその3次元形状データ上で前記記憶部に記憶された過去の探傷部の走査軌跡データを案内表示する表示装置とを備えたことを特徴とする。   The flaw detection inspection apparatus according to the invention of claim 1 is a sensor unit for measuring image data of an inspection object with respect to a predetermined fixed point as a reference point, and scanning trajectory data of a flaw detection part scanned on the inspection object; Based on the image data measured by the sensor unit, the image processing unit calculates the three-dimensional shape data of the inspection object and the scanning trajectory data of the flaw detection unit on the three-dimensional shape data, and is calculated by the image processing unit. Further, a storage unit for storing the three-dimensional shape data of the inspection object and scanning trajectory data of the flaw detection unit on the three-dimensional shape data, and the three-dimensional shape data of the current inspection object obtained by the image processing unit And the coordinate deviation of the 3D shape data of the past inspection object stored in the storage unit is corrected, and the 3D shape data of the current inspection object is changed to the coordinates of the 3D shape data of the past inspection object. one A coordinate correction unit to be displayed, and the three-dimensional shape data of the current inspection object is displayed in accordance with the coordinates corrected by the coordinate correction unit, and the past flaw detection stored in the storage unit on the three-dimensional shape data And a display device for guiding and displaying the scanning trajectory data of the part.

請求項2の発明に係わる探傷検査装置は、予め定めた固定点を基準点として検査対象物の画像データ及び前記検査対象物上を探傷走査した探傷部の走査軌跡データを計測するセンサ部と、前記センサ部で計測した画像データに基づいて前記検査対象物の3次元形状データ及びその3次元形状データ上での探傷部の走査軌跡データを演算する画像処理部と、前記画像処理部で演算された前記検査対象物の3次元形状データ及びその3次元形状データ上での探傷部の走査軌跡データを記憶する記憶部と、前記画像処理部で得られた現在の検査対象物の3次元形状データと前記記憶部に記憶された過去の検査対象物の3次元形状データとの座標のずれを補正し現在の検査対象物の3次元形状データを過去の検査対象物の3次元形状データの座標に一致させる座標補正部と、前記座標補正部で補正された座標に一致させた3次元形状データ上で前記記憶部に記憶された過去の探傷部の走査軌跡データに従って前記探傷部を走査する走査駆動部とを備えたことを特徴とする。   The flaw detection inspection apparatus according to the invention of claim 2 is a sensor unit that measures image data of an inspection object with respect to a predetermined fixed point as a reference point, and scanning trajectory data of a flaw detection part scanned on the inspection object. Based on the image data measured by the sensor unit, the image processing unit calculates the three-dimensional shape data of the inspection object and the scanning trajectory data of the flaw detection unit on the three-dimensional shape data, and is calculated by the image processing unit. Further, a storage unit for storing the three-dimensional shape data of the inspection object and scanning trajectory data of the flaw detection unit on the three-dimensional shape data, and the three-dimensional shape data of the current inspection object obtained by the image processing unit And the coordinate deviation of the 3D shape data of the past inspection object stored in the storage unit is corrected, and the 3D shape data of the current inspection object is changed to the coordinates of the 3D shape data of the past inspection object. one And a scanning drive unit that scans the flaw detection unit according to the past scan trajectory data of the flaw detection unit stored in the storage unit on the three-dimensional shape data matched with the coordinates corrected by the coordinate correction unit It is characterized by comprising.

請求項3の発明に係わる探傷検査方法は、予め定めた固定点を基準点として検査対象物の画像データ及び前記検査対象物上を探傷走査した探傷部の走査軌跡データを計測し、計測した画像データに基づいて前記検査対象物の3次元形状データ及びその3次元形状データ上での探傷部の走査軌跡データを演算し、演算された前記検査対象物の3次元形状データ及びその3次元形状データ上での探傷部の走査軌跡データを記憶し、現在の検査対象物の3次元形状データと記憶された過去の検査対象物の3次元形状データとの座標にずれがあるときはそのずれを補正して現在の検査対象物の3次元形状データを過去の検査対象物の3次元形状データの座標に一致させ、補正された座標に一致させて現在の検査対象物の3次元形状データを表示するとともにその3次元形状データ上で過去の探傷部の走査軌跡データを案内表示することを特徴とする。   The flaw detection inspection method according to the invention of claim 3 measures the image data of the inspection object and the scanning trajectory data of the flaw detection part scanned on the inspection object using a predetermined fixed point as a reference point, and the measured image 3D shape data of the inspection object and scanning trajectory data of the flaw detection part on the 3D shape data are calculated based on the data, and the calculated 3D shape data of the inspection object and the 3D shape data thereof are calculated. The scanning trajectory data of the flaw detection part above is stored, and if there is a deviation in the coordinates between the current 3D shape data of the inspection object and the stored 3D shape data of the past inspection object, the deviation is corrected. When the 3D shape data of the current inspection object is matched with the coordinates of the 3D shape data of the past inspection object, and the 3D shape data of the current inspection object is displayed by matching the corrected coordinates. Characterized in that it also guides display the scanning locus data of the past inspection unit in its three-dimensional shape data.

請求項4の発明に係わる探傷検査方法は、予め定めた固定点を基準点として検査対象物の画像データ及び前記検査対象物上を探傷走査した探傷部の走査軌跡データを計測し、計測した画像データに基づいて前記検査対象物の3次元形状データ及びその3次元形状データ上での探傷部の走査軌跡データを演算し、演算された前記検査対象物の3次元形状データ及びその3次元形状データ上での探傷部の走査軌跡データを記憶し、現在の検査対象物の3次元形状データと記憶された過去の検査対象物の3次元形状データとの座標にずれがあるときはそのずれを補正して現在の検査対象物の3次元形状データを過去の検査対象物の3次元形状データの座標に一致させ、補正された座標に一致させた3次元形状データ上で記憶された過去の探傷部の走査軌跡データに従って前記探傷部を走査することを特徴とする。   The flaw detection inspection method according to the invention of claim 4 measures the image data of the inspection object and the scanning trajectory data of the flaw detection part scanned on the inspection object using a predetermined fixed point as a reference point, and the measured image 3D shape data of the inspection object and scanning trajectory data of the flaw detection part on the 3D shape data are calculated based on the data, and the calculated 3D shape data of the inspection object and the 3D shape data thereof are calculated. The scanning trajectory data of the flaw detection part above is stored, and if there is a deviation in the coordinates between the current 3D shape data of the inspection object and the stored 3D shape data of the past inspection object, the deviation is corrected. Then, the past flaw detection unit stored on the three-dimensional shape data in which the three-dimensional shape data of the current inspection object is matched with the coordinates of the past three-dimensional shape data of the inspection object Running Characterized by scanning the inspection unit in accordance with the trajectory data.

本発明によれば、現在の検査対象物の3次元形状データと過去の検査対象物の3次元形状データとの座標のずれを補正して現在の検査対象物の3次元形状データを過去の検査対象物の3次元形状データの座標に一致させ、3次元形状データ上で過去の探傷部の走査軌跡データを案内表示するので、作業性及び再現性が向上し、探傷検査データの精度も向上する。また、過去の探傷部の走査軌跡データの案内表示に代えて、自動で過去の探傷部の走査軌跡データに従って探傷部を走査する場合には、さらに作業性が向上する。   According to the present invention, the three-dimensional shape data of the current inspection object is corrected by correcting the shift in coordinates between the three-dimensional shape data of the current inspection object and the three-dimensional shape data of the past inspection object, and the three-dimensional shape data of the current inspection object is converted to the past inspection. Matching the coordinates of the three-dimensional shape data of the object and guiding and displaying the scanning trajectory data of the past flaw detection part on the three-dimensional shape data, thereby improving the workability and reproducibility and improving the accuracy of the flaw detection data. . Further, when the flaw detection part is automatically scanned in accordance with the scan flaw data of the past flaw detection part instead of the guidance display of the scan flaw data of the past flaw detection part, the workability is further improved.

(第1の実施の形態)
図1は本発明の第1の実施の形態に係わる探傷検査装置のブロック構成図である。検査対象物11は特有の曲面形状を有した設備であり、この検査対象物11に対して、探傷部12は検査対象物11の探傷箇所を探傷走査する。探傷部12はリンク部13で支持され、走査機構部14でリンク部13を駆動することにより検査対象物11の探傷箇所を探傷走査する。探傷部12は、例えば超音波探触子等の各種非破壊検査装置である。
(First embodiment)
FIG. 1 is a block diagram of the flaw detection apparatus according to the first embodiment of the present invention. The inspection object 11 is a facility having a unique curved surface shape, and the flaw detection unit 12 performs flaw detection scanning on the inspection object 11 on the inspection object 11. The flaw detection unit 12 is supported by the link unit 13, and the flaw detection part of the inspection object 11 is flaw-scanned by driving the link unit 13 by the scanning mechanism unit 14. The flaw detection part 12 is various nondestructive inspection apparatuses, such as an ultrasonic probe, for example.

センサ部15も同様にリンク部16で支持され、走査機構部17でリンク部16を駆動することにより検査対象物11の周囲空間を走査し、検査対象物11の画像データ及び検査対象物11上を探傷走査した探傷部12の走査軌跡データを計測する。センサ部15は、例えばレーザーやCCDカメラ等を用いたセンサである。   Similarly, the sensor unit 15 is supported by the link unit 16, and the scanning mechanism unit 17 drives the link unit 16 to scan the surrounding space of the inspection object 11, and the image data of the inspection object 11 and the inspection object 11 are scanned. Scanning trajectory data of the flaw detection unit 12 that has been subjected to flaw detection scanning is measured. The sensor unit 15 is a sensor using, for example, a laser or a CCD camera.

センサ部15の走査機構部17は予め定めた固定点Aに設置され、センサ部15を移動させて複数角度位置から検査対象物11の画像データを計測する。複数角度位置から検査対象物11の画像データを得るのは、後述の演算処理装置18の画像処理部19で検査対象物11の3次元形状データを得るためである。   The scanning mechanism unit 17 of the sensor unit 15 is installed at a predetermined fixed point A, and moves the sensor unit 15 to measure image data of the inspection object 11 from a plurality of angular positions. The reason why the image data of the inspection object 11 is obtained from a plurality of angular positions is to obtain the three-dimensional shape data of the inspection object 11 by the image processing unit 19 of the arithmetic processing unit 18 described later.

なお、図1では一つのセンサ部15を移動させて複数角度位置から画像データを計測するようにしているが、複数のセンサ部15を設け、これら複数のセンサ部15から複数角度位置の画像データを得るようにしてもよい。 In FIG. 1, image data is measured from a plurality of angular positions by moving one sensor unit 15. However, a plurality of sensor units 15 are provided, and image data at a plurality of angular positions are provided from the plurality of sensor units 15. May be obtained.

センサ部15で計測された複数角度位置の画像データは、演算処理装置18の画像処理部19に入力される。演算処理装置18は、例えばパーソナルコンピュータである。画像処理部19ではセンサ部15で計測された複数角度位置の画像データに基づいて検査対象物11の3次元形状データ及びその3次元形状データ上での探傷部12の走査軌跡データを演算する。そして、その演算結果である検査対象物11の3次元形状データ及びその3次元形状データ上での探傷部12の走査軌跡データを記憶部20に記憶する。   Image data at a plurality of angular positions measured by the sensor unit 15 is input to the image processing unit 19 of the arithmetic processing device 18. The arithmetic processing unit 18 is a personal computer, for example. The image processing unit 19 calculates the three-dimensional shape data of the inspection object 11 and the scanning trajectory data of the flaw detection unit 12 on the three-dimensional shape data based on the image data at a plurality of angular positions measured by the sensor unit 15. Then, the storage unit 20 stores the three-dimensional shape data of the inspection object 11 and the scanning trajectory data of the flaw detection unit 12 on the three-dimensional shape data, which are the calculation results.

なお、図示は省略しているが、探傷部12で測定した探傷検査データも演算処理装置18の記憶部20に探傷部12の走査軌跡データとともに記憶するようにしてもよい。この探傷検査データに基づいて検査対象物11の健全性を評価することになる。   Although not shown, the flaw detection inspection data measured by the flaw detection unit 12 may be stored in the storage unit 20 of the arithmetic processing unit 18 together with the scanning trajectory data of the flaw detection unit 12. The soundness of the inspection object 11 is evaluated based on the flaw detection data.

次に、座標補正部21は画像処理部19で得られた現在の検査対象物11の3次元形状データと記憶部20に記憶された過去の検査対象物11の3次元形状データとの座標のずれを補正するものであり、この補正により、現在の検査対象物11の3次元形状データを過去の検査対象物11の3次元形状データの座標に一致させ、補正した現在の検査対象物の3次元形状データを表示装置22に出力する。   Next, the coordinate correction unit 21 obtains the coordinates of the current three-dimensional shape data of the inspection object 11 obtained by the image processing unit 19 and the past three-dimensional shape data of the inspection object 11 stored in the storage unit 20. This correction corrects the deviation, and by this correction, the 3D shape data of the current inspection object 11 is made to coincide with the coordinates of the 3D shape data of the past inspection object 11, and 3 of the corrected current inspection object 3 is corrected. The dimensional shape data is output to the display device 22.

表示装置22は、座標補正部21で補正された座標に一致させて、現在の検査対象物11の3次元形状データを表示するとともに、その3次元形状データ上で記憶部20に記憶された過去の探傷部11の走査軌跡データを案内表示する。これにより、同一検査対象物の同一箇所に対して探傷部12を探傷走査できるようにし、探傷部12の探傷走査の再現性を向上できるようにしている。   The display device 22 displays the three-dimensional shape data of the current inspection object 11 in accordance with the coordinates corrected by the coordinate correction unit 21 and the past stored in the storage unit 20 on the three-dimensional shape data. The scanning trajectory data of the flaw detection section 11 is displayed as a guide. Thereby, the flaw detection part 12 can be flaw-scanned with respect to the same location of the same inspection object, and the reproducibility of flaw detection scan of the flaw detection part 12 can be improved.

次に、座標補正部21での座標の補正について説明する。定期点検のように時間をおいて同一検査対象物の同一箇所に対して探傷部12を走査するにあたり、センサ部15の走査機構部17を予め定められた固定点Aに設置することになるが、この固定点Aにセンサ部15の走査機構部17を完全に一致させて設置することは困難である。また、この固定点Aにセンサ部15の走査機構部17を完全に一致させて設置したとしても、検査対象物11の位置がずれていたり、また、固定点A自体の位置がずれていたりする。このような場合、過去に測定したセンサ部15と検査対象物11との相対位置と、今回のセンサ部15と検査対象物11との相対位置との間にずれが生じる。   Next, correction of coordinates in the coordinate correction unit 21 will be described. When scanning the flaw detection unit 12 with respect to the same part of the same inspection object at regular intervals as in the regular inspection, the scanning mechanism unit 17 of the sensor unit 15 is installed at a predetermined fixed point A. It is difficult to install the scanning mechanism unit 17 of the sensor unit 15 so as to be completely coincident with the fixed point A. Even when the scanning mechanism 17 of the sensor unit 15 is completely aligned with the fixed point A, the position of the inspection object 11 is shifted, or the position of the fixed point A itself is shifted. . In such a case, a deviation occurs between the relative position between the sensor unit 15 and the inspection object 11 measured in the past and the current relative position between the sensor unit 15 and the inspection object 11.

座標補正部21は、このずれを検知して補正し、現在の検査対象物11の3次元形状データを過去の検査対象物11の3次元形状データの座標に一致させる。センサ部15と検査対象物11との相対位置のずれの検知は、ベクトルの回転とベクトルの平行移動とで検知する。   The coordinate correction unit 21 detects and corrects this deviation, and matches the current 3D shape data of the inspection object 11 with the coordinates of the 3D shape data of the past inspection object 11. Detection of a relative position shift between the sensor unit 15 and the inspection object 11 is detected by vector rotation and vector translation.

いま、説明を簡単にするために、2次元座標でのベクトルの回転について説明する。図2はベクトルの回転の説明図である。図2に示すように、過去のセンサ部15と検査対象物11との相対位置を示すベクトルP’(Px’、Py’)に対し、現在のセンサ部15と検査対象物11との相対位置が原点0の回りに角度φだけ回転したベクトルP(Px、Py)となっていたとする。この場合、(1)式に示す関係が成り立つ。

Figure 2007240342
Now, in order to simplify the description, the rotation of a vector in two-dimensional coordinates will be described. FIG. 2 is an explanatory diagram of vector rotation. As shown in FIG. 2, with respect to a vector P ′ (P x ′, P y ′) indicating a relative position between the past sensor unit 15 and the inspection object 11, the current sensor unit 15 and the inspection object 11 are Assume that the relative position is a vector P (P x , P y ) rotated by an angle φ around the origin 0. In this case, the relationship shown in the equation (1) is established.
Figure 2007240342

この(1)式の関係を行列で表現すると(2)式が得られる。(2)式中のRot(φ)は回転行列である。

Figure 2007240342
When the relationship of the expression (1) is expressed by a matrix, the expression (2) is obtained. In the equation (2), Rot (φ) is a rotation matrix.
Figure 2007240342

ベクトルP(Px、Py)を原点の回りに角度φだけ回転してできるベクトルP’(Px’、Py’)を求めるにはベクトルPの左側から回転行列Rot(φ)を掛ければよいことになる。回転行列Rot(φ)は角度φが求まれば求まる。 To obtain a vector P ′ (P x ′, P y ′) obtained by rotating the vector P (P x , P y ) around the origin by an angle φ, the rotation matrix Rot (φ) can be multiplied from the left side of the vector P. It will be good. The rotation matrix Rot (φ) is obtained when the angle φ is obtained.

次に、角度φは以下のようにして求める。図3はセンサ部15のリンク部16の説明図である。図3に示すように、センサ部15のリンク部16は3個のリンク23a、23b、23cから構成されているとする。リンク23aの長さをl1、リンク23bの長さをl2、リンク23cの長さをl3、リンク23aとxとのなす角をφ1、リンク23aとリンク23bとのなす角をφ2、リンク23bとリンク23cとのなす角をφ3とすると、(3)式が成り立つ。

Figure 2007240342
Next, the angle φ is obtained as follows. FIG. 3 is an explanatory diagram of the link unit 16 of the sensor unit 15. As shown in FIG. 3, it is assumed that the link portion 16 of the sensor portion 15 includes three links 23a, 23b, and 23c. The length of the link 23a is l 1 , the length of the link 23b is l 2 , the length of the link 23c is l 3 , the angle formed by the link 23a and x is φ 1 , and the angle formed by the link 23a and the link 23b is φ 2, when the angle formed between the links 23b and the link 23c and phi 3, (3) expression holds.
Figure 2007240342

リンク23aの長さl1、リンク23bの長さl2、リンク23cの長さl3は既知であるので、リンク23aとxとのなす角φ1、リンク23aとリンク23bとのなす角φ2、リンク23bとリンク23cとのなす角φ3を求めるには、検査対象物11の異なる3つの位置について、(3)式のx、yを測定すればよい。例えば、センサ部15と検査対象物11の右上部端、右下部端、左上部端との間のx、yを測定し、連立方程式を立てて、リンク23aとxとのなす角φ1、リンク23aとリンク23bとのなす角φ2、リンク23bとリンク23cとのなす角φ3を求める。そして、(2)式にこれら角度φ1、φ2、φ3を代入して過去のセンサ部15と検査対象物11との相対位置を示すベクトルP’(Px’、Py’)に一致させる。 Since the length l 1 of the link 23a, the length l 2 of the link 23b, and the length l 3 of the link 23c are known, the angle φ 1 formed by the link 23a and x, and the angle φ formed by the link 23a and the link 23b 2. In order to obtain the angle φ 3 formed by the link 23b and the link 23c, x and y in the expression (3) may be measured at three different positions of the inspection object 11. For example, x and y between the sensor unit 15 and the upper right end, lower right end, and upper left end of the inspection object 11 are measured, a simultaneous equation is established, and an angle φ 1 formed by the link 23a and x, An angle φ 2 formed by the link 23a and the link 23b and an angle φ 3 formed by the link 23b and the link 23c are obtained. Then, by substituting these angles φ 1 , φ 2 , and φ 3 into the equation (2), a vector P ′ (P x ′, P y ′) indicating the relative position between the past sensor unit 15 and the inspection object 11 is obtained. Match.

以上の説明では、2次元座標でのベクトルの回転について説明したが、3次元座標でのベクトルの回転の場合も同様な考えで求めることができる。3次元ベクトルの場合には、x軸、y軸、z軸の回りに角度φだけ回転する回転行列Rot(x,φ)、Rot(y,φ)、Rot(z,φ)を用いる。回転行列Rot(x,φ)、Rot(y,φ)、Rot(z,φ)は(4)式に示される。

Figure 2007240342
In the above description, rotation of a vector with two-dimensional coordinates has been described. However, the same idea can be obtained for rotation of a vector with three-dimensional coordinates. In the case of a three-dimensional vector, a rotation matrix Rot (x, φ), Rot (y, φ), Rot (z, φ) that rotates around the x-axis, y-axis, and z-axis by an angle φ is used. The rotation matrix Rot (x, φ), Rot (y, φ), and Rot (z, φ) are expressed by the equation (4).
Figure 2007240342

また、ベクトルの回転だけでなく、ベクトルの平行移動も加味させて座標の補正を行うことも可能である。ベクトルPの平行移動は(5)式で示される。

Figure 2007240342
It is also possible to correct coordinates by taking into account not only vector rotation but also vector translation. The translation of the vector P is expressed by equation (5).
Figure 2007240342

すなわち、x軸、y軸、z軸方向にそれぞれlx、ly、lz だけ平行移動させるベクトルをlとすると、ベクトルP’は3次元座標においてベクトルPを、x軸、y軸、z軸方向にそれぞれlx、ly、lz だけ平行移動させたときのベクトルである。このベクトルlを考慮にいれて座標の補正をすることも可能である。 That is, assuming that a vector that is translated by l x , l y , and l z in the x-axis, y-axis, and z-axis directions is l, the vector P ′ represents the vector P in three-dimensional coordinates, and the x-axis, y-axis, z It is a vector when translated in the axial direction by l x , l y , and l z , respectively. It is also possible to correct the coordinates in consideration of this vector l.

次に、本発明の第1の実施の形態の探傷検査装置を用いて、複雑な曲面形状を有した設備の探傷検査を行う場合を説明する。図4はボイラ近傍のバーナリングとエレメント管との溶接部の斜視図、図5は図4のバーナリングとエレメント管との溶接部の一部切欠断面図である。   Next, a case will be described in which a flaw detection inspection is performed on equipment having a complicated curved surface shape by using the flaw detection inspection apparatus according to the first embodiment of the present invention. 4 is a perspective view of a welded portion between the burner ring and the element tube in the vicinity of the boiler, and FIG. 5 is a partially cutaway sectional view of the welded portion between the burner ring and the element tube in FIG.

例えば、図4に示すように、バーナリング24はフロントプレート25を介したボイラの外側に設けられており、バーナリング24とエレメント管26との溶接部27が探傷箇所である。図5に示すように、探傷部12はバーナリング24とエレメント管26との溶接部27の近傍に配置され探傷走査を行う。この探傷走査を行う際の探傷部12の走査軌跡データ及び検査対象物11であるバーナリング24とエレメント管26との画像データをセンサ部15で計測する。   For example, as shown in FIG. 4, the burner ring 24 is provided outside the boiler via the front plate 25, and a welded portion 27 between the burner ring 24 and the element tube 26 is a flaw detection location. As shown in FIG. 5, the flaw detection unit 12 is arranged in the vicinity of the welded portion 27 between the burner ring 24 and the element tube 26 and performs flaw detection scanning. The sensor 15 measures the scanning trajectory data of the flaw detection unit 12 and the image data of the burner ring 24 and the element tube 26 as the inspection object 11 when performing this flaw detection scanning.

図4に示すように、センサ部15の走査機構部17は予め定めた固定点Aに設置され、センサ部15を移動させて複数角度位置からバーナリング24とエレメント管26の溶接部27近傍の画像データを計測する。図4では3つの異なる角度位置から溶接部27近傍の画像データを得るようにしている。これは、前述したように、演算処理装置18の画像処理部19で検査対象物11であるバーナリング24とエレメント管26の溶接部27近傍の3次元形状データを得るためである。なお、各々の角度位置でのリンク部16の角度φ1、φ2、φ3も3次元形状データとともに計測される。また、図4では探傷部12の走査機構部14及びリンク部13の図示を省略している。 As shown in FIG. 4, the scanning mechanism 17 of the sensor unit 15 is installed at a predetermined fixed point A, and the sensor unit 15 is moved to move the burner ring 24 and the element tube 26 near the welded portion 27 from a plurality of angular positions. Measure image data. In FIG. 4, image data in the vicinity of the welded portion 27 is obtained from three different angular positions. As described above, this is because the image processing unit 19 of the arithmetic processing unit 18 obtains the three-dimensional shape data in the vicinity of the burner ring 24 that is the inspection object 11 and the welded portion 27 of the element tube 26. Note that the angles φ 1 , φ 2 , and φ 3 of the link portion 16 at each angular position are also measured together with the three-dimensional shape data. In FIG. 4, illustration of the scanning mechanism unit 14 and the link unit 13 of the flaw detection unit 12 is omitted.

演算処理部18の画像処理部19は、このようにして計測した画像データに基づいて、溶接部27近傍の3次元形状データ及びその3次元形状データ上での探傷部12の走査軌跡データを演算する。そして、座標補正部21は、記憶部20に記憶された過去の溶接部27近傍の3次元形状データと現在の溶接部27近傍の3次元形状データとを比較し、その座標にずれがあるかどうかを判定する。座標にずれがあるときはそのずれを補正して現在の溶接部27近傍の3次元形状データを過去の溶接部27近傍の3次元形状データの座標に一致させる。   The image processing unit 19 of the calculation processing unit 18 calculates the three-dimensional shape data in the vicinity of the welded portion 27 and the scanning trajectory data of the flaw detection unit 12 on the three-dimensional shape data based on the image data thus measured. To do. Then, the coordinate correction unit 21 compares the past three-dimensional shape data in the vicinity of the welded portion 27 stored in the storage unit 20 with the current three-dimensional shape data in the vicinity of the welded portion 27, and whether there is a deviation in the coordinates. Determine if. If there is a shift in coordinates, the shift is corrected so that the current 3D shape data in the vicinity of the welded portion 27 matches the coordinates of the past 3D shape data in the vicinity of the welded portion 27.

そして、補正された座標に一致させて現在の溶接部27近傍の3次元形状データを表示装置22に表示する。その際に、その3次元形状データ上で過去の探傷部12の走査軌跡データを案内表示する。作業員はこの表示装置22に表示された案内表示に従って探傷部12を探傷走査することになる。 Then, the three-dimensional shape data in the vicinity of the current welded portion 27 is displayed on the display device 22 in accordance with the corrected coordinates. At that time, the past scanning trajectory data of the flaw detection unit 12 is guided and displayed on the three-dimensional shape data. The worker scans the flaw detection unit 12 according to the guidance display displayed on the display device 22.

第1の実施の形態によれば、予め定めた固定点Aにセンサ部15の走査機構部17を設置して、複数角度位置から画像データを計測し、検査対象物11の3次元形状データ及び探傷部12の探傷走査軌跡データを求め、現在の検査対象物11の3次元形状データと過去の検査対象物11の3次元形状データとの座標のずれを補正して現在の検査対象物の3次元形状データを過去の検査対象物の3次元形状データの座標に一致させ、3次元形状データ上で過去の探傷部の走査軌跡データを案内表示するので、作業性及び再現性が向上し、探傷検査データの精度も向上する。   According to the first embodiment, the scanning mechanism unit 17 of the sensor unit 15 is installed at a predetermined fixed point A, image data is measured from a plurality of angular positions, and the three-dimensional shape data of the inspection object 11 and The flaw detection scanning trajectory data of the flaw detection unit 12 is obtained, and the deviation of coordinates between the current 3D shape data of the inspection object 11 and the past 3D shape data of the inspection object 11 is corrected, and 3 of the current inspection object 3 is corrected. By matching the three-dimensional shape data with the coordinates of the three-dimensional shape data of the past inspection object and guiding and displaying the scanning trajectory data of the past flaw detection part on the three-dimensional shape data, the workability and reproducibility are improved, and the flaw detection is performed. The accuracy of inspection data is also improved.

(第2の実施の形態)
図6は本発明の第2の実施の形態に係わる探傷検査装置のブロック構成図である。この第2の実施の形態は、図1に示した第1の実施の形態に対し、表示装置22に代えて、探傷部12を自動走査する走査駆動部28を設けたものである。図1と同一要素には同一符号を付し重複する説明は省略する。
(Second Embodiment)
FIG. 6 is a block diagram of a flaw detection inspection apparatus according to the second embodiment of the present invention. In the second embodiment, a scanning drive unit 28 that automatically scans the flaw detection unit 12 is provided in place of the display device 22 in the first embodiment shown in FIG. The same elements as those in FIG. 1 are denoted by the same reference numerals, and redundant description is omitted.

図6において、走査駆動部28には座標補正部21で補正された座標に一致させた3次元形状データ及び記憶部20に記憶された過去の探傷部12の走査軌跡データが入力され、走査駆動部28は座標補正部21で補正された3次元形状データ上で探傷部12が過去の探傷部12の走査軌跡データに従って走査するように探傷部12の走査機構部14を駆動する。これにより、自動的に探傷部12を補正された座標に従って探傷走査できる。   In FIG. 6, the scanning drive unit 28 is input with the three-dimensional shape data matched with the coordinates corrected by the coordinate correction unit 21 and the scanning trajectory data of the past flaw detection unit 12 stored in the storage unit 20. The unit 28 drives the scanning mechanism unit 14 of the flaw detection unit 12 so that the flaw detection unit 12 scans according to the scanning trajectory data of the past flaw detection unit 12 on the three-dimensional shape data corrected by the coordinate correction unit 21. Thereby, the flaw detection part 12 can be automatically scanned according to the corrected coordinates.

この場合、表示装置22を設けて、過去の探傷部12の走査軌跡データの案内表示を併せて行うようにしてもよい。この場合は、探傷部12の走査機構部14による自動での探傷走査を表示装置22で監視することが可能となる。   In this case, a display device 22 may be provided to display guidance for scanning trajectory data of the past flaw detection unit 12 together. In this case, it is possible to monitor the automatic flaw detection scanning by the scanning mechanism unit 14 of the flaw detection unit 12 with the display device 22.

第2の実施の形態によれば、自動で過去の探傷部12の走査軌跡データに従って、探傷部12を走査できるので、検査対象物の探傷検査の作業性がさらに向上する。   According to the second embodiment, since the flaw detection section 12 can be automatically scanned according to the scanning trajectory data of the past flaw detection section 12, the workability of the flaw detection inspection of the inspection object is further improved.

本発明の第1の実施の形態に係わる探傷検査装置のブロック構成図。The block block diagram of the flaw detection inspection apparatus concerning the 1st Embodiment of this invention. ベクトルの回転の説明図。Illustration of vector rotation. 本発明の第1の実施の形態におけるセンサ部のリンク部の説明図。Explanatory drawing of the link part of the sensor part in the 1st Embodiment of this invention. ボイラ近傍のバーナリングとエレメント管との溶接部の斜視図、A perspective view of a welded portion between a burner ring and an element pipe in the vicinity of the boiler; 図4のバーナリングとエレメント管との溶接部の一部切欠断面図4 is a partially cutaway cross-sectional view of the welded portion between the burner ring and element tube of FIG. 本発明の第2の実施の形態に係わる探傷検査装置のブロック構成図。The block block diagram of the flaw detection inspection apparatus concerning the 2nd Embodiment of this invention.

符号の説明Explanation of symbols

11…検査対象物、12…探傷部、13…リンク部、14…走査機構部、15…センサ部、16…リンク部、17…走査機構部、18…演算処理装置、19…画像処理部、20…記憶部、21…座標補正部、22…表示装置、23…リンク、24…バーナリング、25…フロントプレート、26…エレメント管、27…溶接部、28…走査駆動部 DESCRIPTION OF SYMBOLS 11 ... Inspection object, 12 ... Flaw detection part, 13 ... Link part, 14 ... Scanning mechanism part, 15 ... Sensor part, 16 ... Link part, 17 ... Scanning mechanism part, 18 ... Arithmetic processing unit, 19 ... Image processing part, DESCRIPTION OF SYMBOLS 20 ... Memory | storage part, 21 ... Coordinate correction part, 22 ... Display apparatus, 23 ... Link, 24 ... Burnering, 25 ... Front plate, 26 ... Element pipe | tube, 27 ... Welding part, 28 ... Scanning drive part

Claims (4)

予め定めた固定点を基準点として検査対象物の画像データ及び前記検査対象物上を探傷走査した探傷部の走査軌跡データを計測するセンサ部と、前記センサ部で計測した画像データに基づいて前記検査対象物の3次元形状データ及びその3次元形状データ上での探傷部の走査軌跡データを演算する画像処理部と、前記画像処理部で演算された前記検査対象物の3次元形状データ及びその3次元形状データ上での探傷部の走査軌跡データを記憶する記憶部と、前記画像処理部で得られた現在の検査対象物の3次元形状データと前記記憶部に記憶された過去の検査対象物の3次元形状データとの座標のずれを補正し現在の検査対象物の3次元形状データを過去の検査対象物の3次元形状データの座標に一致させる座標補正部と、前記座標補正部で補正された座標に一致させて現在の検査対象物の3次元形状データを表示するとともにその3次元形状データ上で前記記憶部に記憶された過去の探傷部の走査軌跡データを案内表示する表示装置とを備えたことを特徴とする探傷検査装置。   Based on the image data measured by the sensor unit that measures image data of the inspection object and scanning trajectory data of the flaw detection part that has been flaw-scanned on the inspection object with a predetermined fixed point as a reference point 3D shape data of the inspection object and scanning trajectory data of the flaw detection unit on the 3D shape data, 3D shape data of the inspection object calculated by the image processing unit, and A storage unit for storing scanning trajectory data of the flaw detection unit on the three-dimensional shape data, a three-dimensional shape data of the current inspection target obtained by the image processing unit, and a past inspection target stored in the storage unit A coordinate correction unit that corrects a deviation in coordinates with the three-dimensional shape data of the object and matches the three-dimensional shape data of the current inspection object with the coordinates of the three-dimensional shape data of the past inspection object; A display device that displays the three-dimensional shape data of the current inspection object in accordance with the corrected coordinates and guides and displays the scanning trajectory data of the past flaw detection portion stored in the storage portion on the three-dimensional shape data A flaw detection inspection apparatus characterized by comprising: 予め定めた固定点を基準点として検査対象物の画像データ及び前記検査対象物上を探傷走査した探傷部の走査軌跡データを計測するセンサ部と、前記センサ部で計測した画像データに基づいて前記検査対象物の3次元形状データ及びその3次元形状データ上での探傷部の走査軌跡データを演算する画像処理部と、前記画像処理部で演算された前記検査対象物の3次元形状データ及びその3次元形状データ上での探傷部の走査軌跡データを記憶する記憶部と、前記画像処理部で得られた現在の検査対象物の3次元形状データと前記記憶部に記憶された過去の検査対象物の3次元形状データとの座標のずれを補正し現在の検査対象物の3次元形状データを過去の検査対象物の3次元形状データの座標に一致させる座標補正部と、前記座標補正部で補正された座標に一致させた3次元形状データ上で前記記憶部に記憶された過去の探傷部の走査軌跡データに従って前記探傷部を走査する走査駆動部とを備えたことを特徴とする探傷検査装置。   Based on the image data measured by the sensor unit that measures image data of the inspection object and scanning trajectory data of the flaw detection part that has been flaw-scanned on the inspection object with a predetermined fixed point as a reference point 3D shape data of the inspection object and scanning trajectory data of the flaw detection unit on the 3D shape data, 3D shape data of the inspection object calculated by the image processing unit, and A storage unit for storing scanning trajectory data of the flaw detection unit on the three-dimensional shape data, a three-dimensional shape data of the current inspection target obtained by the image processing unit, and a past inspection target stored in the storage unit A coordinate correction unit that corrects a deviation in coordinates with the three-dimensional shape data of the object and matches the three-dimensional shape data of the current inspection object with the coordinates of the three-dimensional shape data of the past inspection object; A flaw detection inspection comprising: a scan driving unit that scans the flaw detection unit according to the scan trajectory data of the past flaw detection unit stored in the storage unit on the three-dimensional shape data matched with the corrected coordinates apparatus. 予め定めた固定点を基準点として検査対象物の画像データ及び前記検査対象物上を探傷走査した探傷部の走査軌跡データを計測し、計測した画像データに基づいて前記検査対象物の3次元形状データ及びその3次元形状データ上での探傷部の走査軌跡データを演算し、演算された前記検査対象物の3次元形状データ及びその3次元形状データ上での探傷部の走査軌跡データを記憶し、現在の検査対象物の3次元形状データと記憶された過去の検査対象物の3次元形状データとの座標にずれがあるときはそのずれを補正して現在の検査対象物の3次元形状データを過去の検査対象物の3次元形状データの座標に一致させ、補正された座標に一致させて現在の検査対象物の3次元形状データを表示するとともにその3次元形状データ上で過去の探傷部の走査軌跡データを案内表示することを特徴とする探傷検査方法。   The image data of the inspection object and the scanning trajectory data of the flaw detection part scanned on the inspection object are measured using a predetermined fixed point as a reference point, and the three-dimensional shape of the inspection object is measured based on the measured image data The data and the scanning trajectory data of the flaw detection part on the three-dimensional shape data are calculated, and the calculated three-dimensional shape data of the inspection object and the scanning trajectory data of the flaw detection part on the three-dimensional shape data are stored. When there is a deviation in the coordinates between the 3D shape data of the current inspection object and the stored 3D shape data of the past inspection object, the deviation is corrected and the 3D shape data of the current inspection object Is matched with the coordinates of the three-dimensional shape data of the past inspection object, and the three-dimensional shape data of the current inspection object is displayed in accordance with the corrected coordinates, and the past search is performed on the three-dimensional shape data. Flaw inspection method characterized by guiding displaying the scanning trace data parts. 予め定めた固定点を基準点として検査対象物の画像データ及び前記検査対象物上を探傷走査した探傷部の走査軌跡データを計測し、計測した画像データに基づいて前記検査対象物の3次元形状データ及びその3次元形状データ上での探傷部の走査軌跡データを演算し、演算された前記検査対象物の3次元形状データ及びその3次元形状データ上での探傷部の走査軌跡データを記憶し、現在の検査対象物の3次元形状データと記憶された過去の検査対象物の3次元形状データとの座標にずれがあるときはそのずれを補正して現在の検査対象物の3次元形状データを過去の検査対象物の3次元形状データの座標に一致させ、補正された座標に一致させた3次元形状データ上で記憶された過去の探傷部の走査軌跡データに従って前記探傷部を走査することを特徴とする探傷検査方法。   The image data of the inspection object and the scanning trajectory data of the flaw detection part scanned on the inspection object are measured using a predetermined fixed point as a reference point, and the three-dimensional shape of the inspection object is measured based on the measured image data The data and the scanning trajectory data of the flaw detection part on the three-dimensional shape data are calculated, and the calculated three-dimensional shape data of the inspection object and the scanning trajectory data of the flaw detection part on the three-dimensional shape data are stored. When there is a deviation in the coordinates between the 3D shape data of the current inspection object and the stored 3D shape data of the past inspection object, the deviation is corrected and the 3D shape data of the current inspection object Is matched with the coordinates of the three-dimensional shape data of the past inspection object, and the flaw detection portion is scanned according to the scan trajectory data of the flaw detection portion stored on the three-dimensional shape data matched with the corrected coordinates. Flaw inspection wherein the.
JP2006063612A 2006-03-09 2006-03-09 Flaw detection apparatus and method Pending JP2007240342A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006063612A JP2007240342A (en) 2006-03-09 2006-03-09 Flaw detection apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006063612A JP2007240342A (en) 2006-03-09 2006-03-09 Flaw detection apparatus and method

Publications (1)

Publication Number Publication Date
JP2007240342A true JP2007240342A (en) 2007-09-20

Family

ID=38586027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006063612A Pending JP2007240342A (en) 2006-03-09 2006-03-09 Flaw detection apparatus and method

Country Status (1)

Country Link
JP (1) JP2007240342A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010032339A (en) * 2008-07-29 2010-02-12 Kawasaki Heavy Ind Ltd Position measuring method and position measuring device
JP2012145512A (en) * 2011-01-14 2012-08-02 Hitachi Ltd Ultrasonic flaw detection device and ultrasonic flaw detection method
JP2014013174A (en) * 2012-07-04 2014-01-23 Hitachi-Ge Nuclear Energy Ltd Three-dimensional ultrasonic flaw detection method
JP2015075415A (en) * 2013-10-10 2015-04-20 日立Geニュークリア・エナジー株式会社 Ultrasonic flaw detection apparatus and ultrasonic flaw detection method
JP2015219020A (en) * 2014-05-14 2015-12-07 ミナモト通信株式会社 Steel pole diagnostic device and steel pole diagnostic method
JP2016510462A (en) * 2013-01-22 2016-04-07 ゼネラル・エレクトリック・カンパニイ Graphical filter of inspection data
US9849895B2 (en) 2015-01-19 2017-12-26 Tetra Tech, Inc. Sensor synchronization apparatus and method
US10349491B2 (en) 2015-01-19 2019-07-09 Tetra Tech, Inc. Light emission power control apparatus and method
US10362293B2 (en) 2015-02-20 2019-07-23 Tetra Tech, Inc. 3D track assessment system and method
US10625760B2 (en) 2018-06-01 2020-04-21 Tetra Tech, Inc. Apparatus and method for calculating wooden crosstie plate cut measurements and rail seat abrasion measurements based on rail head height
US10730538B2 (en) 2018-06-01 2020-08-04 Tetra Tech, Inc. Apparatus and method for calculating plate cut and rail seat abrasion based on measurements only of rail head elevation and crosstie surface elevation
US10807623B2 (en) 2018-06-01 2020-10-20 Tetra Tech, Inc. Apparatus and method for gathering data from sensors oriented at an oblique angle relative to a railway track
US10908291B2 (en) 2019-05-16 2021-02-02 Tetra Tech, Inc. System and method for generating and interpreting point clouds of a rail corridor along a survey path
CN114509019A (en) * 2020-11-17 2022-05-17 莱卡地球系统公开股份有限公司 Scanning device for scanning environment and capable of recognizing scanning moving object
US11377130B2 (en) 2018-06-01 2022-07-05 Tetra Tech, Inc. Autonomous track assessment system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005106654A (en) * 2003-09-30 2005-04-21 Hitachi Ltd Automatic inspection system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005106654A (en) * 2003-09-30 2005-04-21 Hitachi Ltd Automatic inspection system

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010032339A (en) * 2008-07-29 2010-02-12 Kawasaki Heavy Ind Ltd Position measuring method and position measuring device
JP2012145512A (en) * 2011-01-14 2012-08-02 Hitachi Ltd Ultrasonic flaw detection device and ultrasonic flaw detection method
JP2014013174A (en) * 2012-07-04 2014-01-23 Hitachi-Ge Nuclear Energy Ltd Three-dimensional ultrasonic flaw detection method
JP2016510462A (en) * 2013-01-22 2016-04-07 ゼネラル・エレクトリック・カンパニイ Graphical filter of inspection data
JP2015075415A (en) * 2013-10-10 2015-04-20 日立Geニュークリア・エナジー株式会社 Ultrasonic flaw detection apparatus and ultrasonic flaw detection method
JP2015219020A (en) * 2014-05-14 2015-12-07 ミナモト通信株式会社 Steel pole diagnostic device and steel pole diagnostic method
US9849895B2 (en) 2015-01-19 2017-12-26 Tetra Tech, Inc. Sensor synchronization apparatus and method
US10322734B2 (en) 2015-01-19 2019-06-18 Tetra Tech, Inc. Sensor synchronization apparatus and method
US10349491B2 (en) 2015-01-19 2019-07-09 Tetra Tech, Inc. Light emission power control apparatus and method
US10728988B2 (en) 2015-01-19 2020-07-28 Tetra Tech, Inc. Light emission power control apparatus and method
US10362293B2 (en) 2015-02-20 2019-07-23 Tetra Tech, Inc. 3D track assessment system and method
US11399172B2 (en) 2015-02-20 2022-07-26 Tetra Tech, Inc. 3D track assessment apparatus and method
US11259007B2 (en) 2015-02-20 2022-02-22 Tetra Tech, Inc. 3D track assessment method
US11196981B2 (en) 2015-02-20 2021-12-07 Tetra Tech, Inc. 3D track assessment apparatus and method
US10870441B2 (en) 2018-06-01 2020-12-22 Tetra Tech, Inc. Apparatus and method for gathering data from sensors oriented at an oblique angle relative to a railway track
US11377130B2 (en) 2018-06-01 2022-07-05 Tetra Tech, Inc. Autonomous track assessment system
US11919551B2 (en) 2018-06-01 2024-03-05 Tetra Tech, Inc. Apparatus and method for gathering data from sensors oriented at an oblique angle relative to a railway track
US10807623B2 (en) 2018-06-01 2020-10-20 Tetra Tech, Inc. Apparatus and method for gathering data from sensors oriented at an oblique angle relative to a railway track
US10730538B2 (en) 2018-06-01 2020-08-04 Tetra Tech, Inc. Apparatus and method for calculating plate cut and rail seat abrasion based on measurements only of rail head elevation and crosstie surface elevation
US11305799B2 (en) 2018-06-01 2022-04-19 Tetra Tech, Inc. Debris deflection and removal method for an apparatus and method for gathering data from sensors oriented at an oblique angle relative to a railway track
US11560165B2 (en) 2018-06-01 2023-01-24 Tetra Tech, Inc. Apparatus and method for gathering data from sensors oriented at an oblique angle relative to a railway track
US10625760B2 (en) 2018-06-01 2020-04-21 Tetra Tech, Inc. Apparatus and method for calculating wooden crosstie plate cut measurements and rail seat abrasion measurements based on rail head height
US10908291B2 (en) 2019-05-16 2021-02-02 Tetra Tech, Inc. System and method for generating and interpreting point clouds of a rail corridor along a survey path
US11782160B2 (en) 2019-05-16 2023-10-10 Tetra Tech, Inc. System and method for generating and interpreting point clouds of a rail corridor along a survey path
US11169269B2 (en) 2019-05-16 2021-11-09 Tetra Tech, Inc. System and method for generating and interpreting point clouds of a rail corridor along a survey path
CN114509019A (en) * 2020-11-17 2022-05-17 莱卡地球系统公开股份有限公司 Scanning device for scanning environment and capable of recognizing scanning moving object
CN114509019B (en) * 2020-11-17 2024-06-04 莱卡地球系统公开股份有限公司 Scanning device for scanning environment and identifying scanned moving object
US12205307B2 (en) 2020-11-17 2025-01-21 Leica Geosystems Ag Scanning device for scanning an environment and enabling an identification of scanned moving objects

Similar Documents

Publication Publication Date Title
JP2007240342A (en) Flaw detection apparatus and method
US20190091811A1 (en) Method and apparatus for measuring a pipe weld joint
JP5129727B2 (en) Boiler furnace evaporator tube inspection device and inspection method
US8485038B2 (en) System and method for augmented reality inspection and data visualization
JP5155692B2 (en) Ultrasonic inspection equipment
WO2009107746A1 (en) Ultrasonic inspection device
JP2009150883A6 (en) Augmented reality inspection and data visualization system and method
EP2846158A2 (en) A system and method of non-destructive inspection with a visual scanning guide
JP2005031085A (en) System and method for analyzing and identifying flaws in manufactured component
US11410298B2 (en) System and method for determining part damage
JP6347215B2 (en) Shape inspection apparatus, shape inspection method and program
JP5622597B2 (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method
CN113302650A (en) Method and device for inspecting parts that are difficult to access
JP5840909B2 (en) Inspection apparatus and method
JP2013156104A (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method for welded part
JP2007071660A (en) Working position measuring method in remote inspection, and instrument therefor
JP6356579B2 (en) Eddy current flaw detector and eddy current flaw detection method
US20150300991A1 (en) Manually operated small envelope scanner system
JP2019152681A (en) Device and method for inspecting cracks
JP2010066169A (en) Three-dimensional shape measurement system and strength evaluation system
KR101110848B1 (en) Method and apparatus for edge position measurement of a curved surface using Laser Vision System
JP6596221B2 (en) Crack inspection apparatus and crack inspection method
JP6602688B2 (en) Orbit data generation apparatus and orbit data generation method
JP7129243B2 (en) Measurement method
JP2017090210A (en) Measurement device and measurement method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110816