[go: up one dir, main page]

JP2007239008A - Material feeding device - Google Patents

Material feeding device Download PDF

Info

Publication number
JP2007239008A
JP2007239008A JP2006061971A JP2006061971A JP2007239008A JP 2007239008 A JP2007239008 A JP 2007239008A JP 2006061971 A JP2006061971 A JP 2006061971A JP 2006061971 A JP2006061971 A JP 2006061971A JP 2007239008 A JP2007239008 A JP 2007239008A
Authority
JP
Japan
Prior art keywords
valve
flow rate
carrier gas
sonic nozzle
target material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006061971A
Other languages
Japanese (ja)
Inventor
Kyoichi Ishikawa
亨一 石川
Takeshi Takahashi
高橋  健
Osamu Yahagi
理 矢作
Kikurou Takemoto
菊郎 竹本
Kazuo Ujiie
一夫 氏家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ACE Co Ltd
Soken Kogyo Co Ltd
Original Assignee
ACE Co Ltd
Soken Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ACE Co Ltd, Soken Kogyo Co Ltd filed Critical ACE Co Ltd
Priority to JP2006061971A priority Critical patent/JP2007239008A/en
Publication of JP2007239008A publication Critical patent/JP2007239008A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bubbler provided with a monitoring apparatus where the stability in the amount of the objective material to be fed by bubbling can be monitored. <P>SOLUTION: A mass flow rate controlling means 13 and a first stop valve 18 are connected in order from the upstream side between the introduction port of a bubbler and a carrier gas source, further, a second stop valve 19 and a sonic nozzle 1 are connected in order from the upstream side between the leading-out port of the bubbler and a consumption apparatus, further, the inflow side of the first stop valve 18 and the outflow side of the second stop valve 19 are connected by a third stop valve 20, and the pressure on the inflow side of the sonic nozzle 1 is monitored, thus the content of the objective material is detected. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、容器内に収容された液体、または固体にキャリアガスを作用させて液体を気化、または固体を昇華させるバブラーを使用した材料供給装置、より詳細には所定量の目的材料を供給、または所定量が供給されているか否かを監視する技術に関する。   The present invention provides a material supply device using a bubbler that causes a carrier gas to act on a liquid contained in a container or a solid to vaporize the liquid or sublimate the solid, and more specifically, supplies a predetermined amount of a target material. Alternatively, the present invention relates to a technique for monitoring whether or not a predetermined amount is supplied.

例えば、半導体工業においては半導体目的材料やMO目的材料の一定量を反応チャンバーに供給する目的で、特許文献1にみられるように、恒温状態に維持された容器内に半導体目的材料やMO目的材料を収容してキャリアガスを作用させて、半導体目的材料やMO目的材料の分圧に等しい濃度の混合ガスを発生させることが行われている。   For example, in the semiconductor industry, for the purpose of supplying a certain amount of semiconductor target material and MO target material to the reaction chamber, as shown in Patent Document 1, the semiconductor target material and MO target material are kept in a container maintained at a constant temperature. The mixed gas having a concentration equal to the partial pressure of the semiconductor target material and the MO target material is generated by allowing the carrier gas to act.

この混合ガスの濃度は、一般的には
(数1)
Pz/Pt=Qz/(Qz+Qc)
ただし、Pzは目的材料蒸気圧を、Ptは容器内の全圧を、Qzは目的材料の流量を、Qcはキャリアガスの流量を、Pzは、バブラー内で保持された目的材料の温度(T)に依存した蒸気圧をそれぞれ表す。
として表すことができる。
The concentration of this mixed gas is generally (Equation 1)
Pz / Pt = Qz / (Qz + Qc)
Where Pz is the target material vapor pressure, Pt is the total pressure in the container, Qz is the flow rate of the target material, Qc is the flow rate of the carrier gas, and Pz is the temperature of the target material held in the bubbler (T ) Represents the vapor pressure depending on each.
Can be expressed as

このように目的材料の分圧Pzは目的材料温度に依存するのでバブラー内での温度分布や気化熱による温度変化に対し充分な考慮をしなければならない。つまり、安定した目的材料供給を実現するには、バブラーの熱伝達や熱容量の検討を有する他、対象目的材料に対する物理的、化学的知見も必要になる。   Thus, since the partial pressure Pz of the target material depends on the target material temperature, sufficient consideration must be given to the temperature distribution in the bubbler and the temperature change due to the heat of vaporization. In other words, in order to realize a stable supply of the target material, in addition to examining the heat transfer and heat capacity of the bubbler, physical and chemical knowledge of the target target material is also required.

通常、分圧Pzは、一定値に保たれていることを前提にしているが、目的材料が固体の場合、キャリアガスに暴露される表面積の違いによって所定の濃度(蒸気圧)が得られず、供給量が時間的に変化しり、また液体の場合にはバブラー内の気液界面部での気化熱により温度下降が生じてやはり供給量が時間的に変化する。   Usually, it is assumed that the partial pressure Pz is maintained at a constant value. However, when the target material is solid, a predetermined concentration (vapor pressure) cannot be obtained due to the difference in surface area exposed to the carrier gas. The supply amount changes with time, and in the case of a liquid, the temperature decreases due to the heat of vaporization at the gas-liquid interface in the bubbler, and the supply amount also changes with time.

このため、バブラーを使用する際には、経験に基づく運用ノウハウに頼ったり、ダミーウエーハなどを用いて付着量を測定し、安定した状態となってから現実のウエーハに供給する手法を取っている。   For this reason, when using bubblers, we rely on operational know-how based on experience, or measure the amount of adhesion using a dummy wafer, etc. .

もとより、バブラーの下流側に濃度監視装置を接続することも考えられるが、高価であばかりでなく、性能面で完全とは言えず、種々の補正操作が必要となる。
特開平6−32695号公報
Of course, it is conceivable to connect a concentration monitoring device to the downstream side of the bubbler, but it is not only expensive but is not perfect in terms of performance, and various correction operations are required.
JP-A-6-32695

本発明はこのような問題に鑑みてなされたものであって、その目的とするところは音速ノズルを用いることにより比較的簡単な構成で、バブラーにより供給すべき目的材料の量の安定性をモニタリングできる監視機構を備えた材料供給装置、及びやモニタリング値から所定の目的材料の量を一定量に制御する機構を備えた材料供給装置を提供することである。   The present invention has been made in view of such problems, and the object thereof is to monitor the stability of the amount of a target material to be supplied by a bubbler with a relatively simple configuration by using a sonic nozzle. Another object is to provide a material supply apparatus including a monitoring mechanism that can be used, and a material supply apparatus including a mechanism that controls the amount of a predetermined target material to a constant amount based on a monitoring value.

このような課題を達成するために請求項1の発明は、目的材料を収納可能な容器と、キャリアガス源に接続される導入口と、前記目的材料を含む気体を消費機器に供給する導出口とを備えたバブラーを使用し、前記導入口とキャリアガス源との間に上流側から順番に質量流量制御手段と、第1の開閉弁とを接続し、また前記導出口と消費機器との間に上流側から順番に第2の開閉弁と、音速ノズルとを接続し、さらに第1の開閉弁の流入側と第2の開閉弁の流出側とを第3の開閉弁により接続し、前記第1、第2の開閉弁を閉弁し、また第3の開閉弁を開弁した状態で前記質量流量制御手段より、前記音速ノズルがチョーク状態となる所定流量のキャリアガスを前記音速ノズルに流入させ、ついで前記第1、第2の開閉弁を開弁し、また第3の開閉弁を閉弁して前記所定流量でキャリアガスを前記容器に供給して目的材料を含むキャリアガスを前記導出口から排出させ、前記音速ノズルの流入側の圧力を監視することにより前記目的材料の含有量を検出する監視装置を備える。   In order to achieve such a problem, the invention of claim 1 is characterized in that a container capable of storing a target material, an inlet connected to a carrier gas source, and an outlet for supplying a gas containing the target material to a consumer device. The mass flow rate control means and the first on-off valve are connected in order from the upstream side between the inlet and the carrier gas source, and the outlet and the consumption device are connected to each other. A second on-off valve and a sonic nozzle are connected in order from the upstream side, and an inflow side of the first on-off valve and an outflow side of the second on-off valve are connected by a third on-off valve, When the first and second on-off valves are closed and the third on-off valve is opened, the mass flow rate control means supplies a carrier gas having a predetermined flow rate at which the sonic nozzle is choked to the sonic nozzle. Then the first and second on-off valves are opened, and the third Closing the on-off valve, supplying the carrier gas to the container at the predetermined flow rate, discharging the carrier gas containing the target material from the outlet, and monitoring the pressure on the inflow side of the sonic nozzle; A monitoring device for detecting the content of

請求項2の発明は、目的材料を収納可能な容器と、キャリアガス源に接続される導入口と、前記目的材料を含む気体を消費機器に供給する導出口とを備えたバブラーを使用し、前記導入口とキャリアガス源との間に上流側から順番に質量流量制御手段と、第1の開閉弁とを接続し、また前記導出口と消費機器との間に上流側から順番に第2の開閉弁と、音速ノズルとを接続し、さらに第1の開閉弁の流入側と第2の開閉弁の流出側とを第3の開閉弁により接続し、前記音速ノズルの流入側に、質量流量制御手段を介して希釈用ガス源を接続し、前記第1、第2の開閉弁を閉弁し、また第3の開閉弁を開弁した状態で前記キャリアガスと前記希釈用ガス源からの希釈用ガスとにより前記音速ノズルがチョーク状態となるよう前記キャリアガス及び希釈用ガスをそれぞれ所定流量で前記音速ノズルに流入させ、ついで前記第1、第2の開閉弁を開弁し、また第3の開閉弁を閉弁して前記所定流量で前記キャリアガスを前記容器に供給して前記目的材料を含むキャリアガスを前記導出口から排出させ、前記音速ノズルの流入側の圧力を監視することにより前記目的材料の含有量を検出する監視装置を備える。   The invention of claim 2 uses a bubbler comprising a container capable of storing a target material, an inlet connected to a carrier gas source, and an outlet for supplying a gas containing the target material to a consumer device. The mass flow control means and the first on-off valve are connected in order from the upstream side between the inlet and the carrier gas source, and the second in turn from the upstream side between the outlet and the consumer device. The on-off valve and the sonic nozzle are connected, and the inflow side of the first on-off valve and the outflow side of the second on-off valve are connected by a third on-off valve. A dilution gas source is connected via the flow rate control means, the first and second on-off valves are closed, and the third on-off valve is opened from the carrier gas and the dilution gas source. The carrier gas and the diluting gas so that the sonic nozzle is choked. The diluting gas is caused to flow into the sonic nozzle at a predetermined flow rate, then the first and second on-off valves are opened, and the third on-off valve is closed to supply the carrier gas at the predetermined flow rate. A monitoring device is provided that detects the content of the target material by supplying the container to discharge the carrier gas containing the target material from the outlet and monitoring the pressure on the inflow side of the sonic nozzle.

請求項3の発明は、目的材料を収納可能な容器と、キャリアガス源に接続される導入口と、前記目的材料を含む気体を消費機器に供給する導出口とを備えたバブラーを使用し、前記導入口とキャリアガス源との間に上流側から順番に質量流量制御手段と、第1の開閉弁とを接続し、また前記導出口と消費機器との間に上流側から順番に第2の開閉弁と、音速ノズルとを接続し、さらに第1の開閉弁の流入側と第2の開閉弁の流出側とを第3の開閉弁により接続し、前記音速ノズルの流入側に、上流側から質量流量計測手段と、圧力調整弁を介して希釈用ガス源を接続し、前記第1、第2の開閉弁を閉弁し、また第3の開閉弁を開弁した状態で前記音速ノズルがチョーク状態となるよう前記圧力調整弁により前記音速ノズルの流入側の圧力を制御するとともに、前記キャリアガスを所定流量で前記音速ノズルに流入させ、ついで前記第1、第2の開閉弁を開弁し、また第3の開閉弁を閉弁して前記所定流量で前記キャリアガスを前記容器に供給して前記目的材料を含むキャリアガスを前記導出口から排出させ、前記質量流量計測手段の流量を監視することにより前記目的材料の含有量を検出する監視装置を備える。   The invention of claim 3 uses a bubbler comprising a container capable of storing a target material, an inlet connected to a carrier gas source, and an outlet for supplying a gas containing the target material to a consumer device. The mass flow control means and the first on-off valve are connected in order from the upstream side between the inlet and the carrier gas source, and the second in turn from the upstream side between the outlet and the consumer device. An on-off valve and a sonic nozzle, and an inflow side of the first on-off valve and an outflow side of the second on-off valve are connected by a third on-off valve. The sonic velocity is measured with a mass flow rate measuring means and a dilution gas source connected from the side through a pressure regulating valve, the first and second on-off valves are closed, and the third on-off valve is opened. The pressure regulating valve controls the pressure on the inflow side of the sonic nozzle so that the nozzle is choked. In addition, the carrier gas is allowed to flow into the sonic nozzle at a predetermined flow rate, the first and second on-off valves are then opened, and the third on-off valve is closed to attain the carrier gas at the predetermined flow rate. Is supplied to the container, the carrier gas containing the target material is discharged from the outlet, and the monitoring device detects the content of the target material by monitoring the flow rate of the mass flow rate measuring means.

請求項4の発明は、目的材料を収納可能な容器と、キャリアガス源に接続される導入口と、前記目的材料を含む気体を消費機器に供給する導出口とを備えたバブラーを使用し、前記導入口とキャリアガス源との間に上流側から順番に質量流量制御手段と、第1の開閉弁とを接続し、また前記導出口と消費機器との間に上流側から順番に第2の開閉弁と、音速ノズルとを接続し、さらに第1の開閉弁の流入側と第2の開閉弁の流出側とを第3の開閉弁により接続し、前記音速ノズルの流入側に、上流側から質量流量計測手段と、圧力調整弁を介して希釈用ガス源を接続し、前記第1、第2の開閉弁を閉弁し、また第3の開閉弁を開弁した状態で前記音速ノズルがチョーク状態となるよう前記圧力調整弁により前記音速ノズルの流入側の圧力を制御するとともに、前記キャリアガスを所定流量で前記音速ノズルに流入させ、ついで前記第1、第2の開閉弁を開弁し、また第3の開閉弁を閉弁して前記質量流量計測手段による希釈用ガス流量およびキャリアガス流量の和が所定流量になるよう前記質量流量制御手段によりキャリアガス流量を制御して所望の前記目的材料の含有量を得る。   The invention of claim 4 uses a bubbler comprising a container capable of storing a target material, an inlet connected to a carrier gas source, and an outlet for supplying a gas containing the target material to a consumer device. The mass flow control means and the first on-off valve are connected in order from the upstream side between the inlet and the carrier gas source, and the second in turn from the upstream side between the outlet and the consumer device. The on-off valve of the first on-off valve and the outflow side of the second on-off valve are connected by a third on-off valve to the upstream side of the sonic nozzle. The sonic velocity is measured with a mass flow rate measuring means and a dilution gas source connected from the side through a pressure regulating valve, the first and second on-off valves are closed, and the third on-off valve is opened. The pressure regulating valve controls the pressure on the inflow side of the sonic nozzle so that the nozzle is choked. In addition, the carrier gas is allowed to flow into the sonic nozzle at a predetermined flow rate, then the first and second on-off valves are opened, and the third on-off valve is closed to dilute the mass flow rate measuring means. The carrier gas flow rate is controlled by the mass flow rate control means so that the sum of the working gas flow rate and the carrier gas flow rate becomes a predetermined flow rate to obtain a desired content of the target material.

請求項5の発明は、目的材料を収納可能な容器と、キャリアガス源に接続される導入口と、前記目的材料を含む気体を消費機器に供給する導出口とを備えたバブラーを使用し、前記導入口とキャリアガス源との間に上流側から順番に質量流量計測手段と、圧力調整弁と、第1の開閉弁とを接続し、また前記導出口と消費機器との間に上流側から順番に第2の開閉弁と、音速ノズルとを接続し、さらに第1の開閉弁の流入側と第2の開閉弁の流出側とを第3の開閉弁により接続し、前記第1、第2の開閉弁を閉弁し、また第3の開閉弁を開弁した状態で前記圧力調整弁より、前記音速ノズルがチョーク状態となる所定圧力で前記キャリアガスを前記音速ノズルに流入させ、ついで前記第1、第2の開閉弁を開弁し、また第3の開閉弁を閉弁して前記所定圧力でキャリアガスを前記容器に供給して目的材料を含むキャリアガスを前記導出口から排出させ、前記質量流量計測手段の流量を監視することにより前記目的材料の含有量を検出する監視装置を備える。   The invention of claim 5 uses a bubbler comprising a container capable of storing a target material, an inlet connected to a carrier gas source, and an outlet for supplying a gas containing the target material to a consumer device. Mass flow measuring means, a pressure regulating valve, and a first on-off valve are connected in order from the upstream side between the inlet and the carrier gas source, and the upstream side between the outlet and the consumer device. The second on-off valve and the sonic nozzle are connected in order, and the inflow side of the first on-off valve and the outflow side of the second on-off valve are connected by a third on-off valve, With the second on-off valve closed and the third on-off valve open, the carrier gas is caused to flow into the sonic nozzle from the pressure adjusting valve at a predetermined pressure at which the sonic nozzle is choked, Next, the first and second on-off valves are opened, and the third on-off valve is closed. A monitoring device for detecting the content of the target material by supplying a carrier gas to the container at a predetermined pressure, discharging the carrier gas containing the target material from the outlet, and monitoring the flow rate of the mass flow rate measuring means Is provided.

請求項6の発明は、目的材料を収納可能な容器と、キャリアガス源に接続される導入口と、前記目的材料を含む気体を消費機器に供給する導出口とを備えたバブラーを使用し、前記導入口とキャリアガス源との間に上流側から順番に質量流量計測手段と、圧力調整弁と、第1の開閉弁とを接続し、また前記導出口と消費機器との間に上流側から順番に第2の開閉弁と、音速ノズルとを接続し、さらに第1の開閉弁の流入側と第2の開閉弁の流出側とを第3の開閉弁により接続し、前記音速ノズルの流入側に、質量流量制御手段を介して希釈用ガス源を接続し、前記第1、第2の開閉弁を閉弁し、また第3の開閉弁を開弁した状態で前記音速ノズルがチョーク状態となるよう前記圧力調整弁により前記希釈用ガスの前記音速ノズルの流入側の圧力を制御し、また前記キャリアガスを所定圧力で前記音速ノズルに流入させ、ついで前記第1、第2の開閉弁を開弁し、また第3の開閉弁を閉弁して前記所定流量でキャリアガスを前記容器に供給して目的材料を含むキャリアガスを前記導出口から排出させ、前記質量流量計測手段によるキャリアガスの流量および希釈用ガス流量の和が所定流量になるよう前記質量流量制御手段で希釈用ガス流量を制御することにより、所望の前記目的材料の含有量を得る。   The invention of claim 6 uses a bubbler comprising a container capable of storing a target material, an inlet connected to a carrier gas source, and an outlet for supplying a gas containing the target material to a consumer device. Mass flow measuring means, a pressure regulating valve, and a first on-off valve are connected in order from the upstream side between the inlet and the carrier gas source, and the upstream side between the outlet and the consumer device. The second on-off valve and the sonic nozzle are connected in order, and the inflow side of the first on-off valve and the outflow side of the second on-off valve are connected by a third on-off valve, A gas source for dilution is connected to the inflow side via a mass flow control means, the first and second on-off valves are closed, and the sonic nozzle is choked with the third on-off valve opened. Pressure of the dilution gas on the inflow side of the sonic nozzle by the pressure regulating valve so as to be in a state The carrier gas is allowed to flow into the sonic nozzle at a predetermined pressure, then the first and second on-off valves are opened, and the third on-off valve is closed to carry the carrier at the predetermined flow rate. The mass flow rate control means for supplying the gas to the container and discharging the carrier gas containing the target material from the outlet, so that the sum of the flow rate of the carrier gas and the dilution gas flow rate by the mass flow rate measurement means becomes a predetermined flow rate. The desired content of the target material is obtained by controlling the flow rate of the gas for dilution in step (b).

請求項7の発明は、前記音速ノズルが流路切換手段を介して複数、選択可能に接続され、前記複数のそれぞれの音速ノズルの特性が相違する。   According to a seventh aspect of the present invention, a plurality of sonic nozzles are selectably connected via the flow path switching means, and the characteristics of the plurality of sonic nozzles are different.

請求項1の発明によれば、バブラーの導出口に音速ノズルが接続されているため、音速ノズルの流入側の圧力(背圧)を検出するという簡単な構成で、キャリアガスに含有されている目的材料の量や、安定性を監視することができる。また、音速ノズルを経由して消費機器に供給するため、消費機器側の圧力変動による供給量を皆無とすることができる。
また、バブラーをバイパスさせて音速ノズルにキャリアガスを供給する流路を有するため、キャリアガス自体の流量を監視することもできる。
According to the invention of claim 1, since the sonic nozzle is connected to the outlet of the bubbler, it is contained in the carrier gas with a simple configuration of detecting the pressure (back pressure) on the inflow side of the sonic nozzle. The amount and stability of the target material can be monitored. Further, since the supply is made to the consumer device via the sonic nozzle, the supply amount due to the pressure fluctuation on the consumer device side can be eliminated.
Moreover, since it has a flow path which bypasses a bubbler and supplies carrier gas to a sonic nozzle, the flow volume of carrier gas itself can also be monitored.

請求項2の発明によれば、希釈用ガスを用いることで、請求項1の発明の効果に加えて希釈率を容易に、かつ広範囲に変更することができる。   According to the invention of claim 2, by using the dilution gas, in addition to the effect of the invention of claim 1, the dilution rate can be easily changed over a wide range.

請求項3の発明によれば、請求項2の発明の効果に加えて、音速ノズルへの流入圧を所望圧で一定に保つため、バブラーの内圧が所望圧で一定に保たれることになり、目的材料の絶対量を一定に保つことができる。   According to the invention of claim 3, in addition to the effect of the invention of claim 2, in order to keep the inflow pressure to the sonic nozzle constant at the desired pressure, the internal pressure of the bubbler is kept constant at the desired pressure. The absolute amount of the target material can be kept constant.

請求項4の発明によれば、請求項3の発明効果に加えて、目的材料の表面積変化や気化熱に伴う温度下降等のバブラーの状態が変化した場合にも、キャリアガス流量を調整し、希釈用ガス流量とキャリアガス流量の和を一定に保つことで、目的材料の供給量を一定に維持することができる。   According to the invention of claim 4, in addition to the effect of the invention of claim 3, the carrier gas flow rate is adjusted even when the state of the bubbler such as a change in surface area of the target material or a temperature drop due to heat of vaporization changes, By keeping the sum of the dilution gas flow rate and the carrier gas flow rate constant, the supply amount of the target material can be kept constant.

請求項5の発明によれば、キャリアガスに含有される目的材料の量は、キャリアガスの流量を監視することで求めることができる。また、バブラーをバイパスさせて音速ノズルにキャリアガスを供給する流路により、音速ノズルが汚染された場合、付着物等の影響による音速ノズルの状態変化も監視することができる。また、音速ノズルを経由して消費機器に供給するため、消費機器側の圧力変動による供給量への影響を皆無とすることができる。   According to the invention of claim 5, the amount of the target material contained in the carrier gas can be determined by monitoring the flow rate of the carrier gas. Further, when the sonic nozzle is contaminated by the flow path for bypassing the bubbler and supplying the carrier gas to the sonic nozzle, the state change of the sonic nozzle due to the influence of the deposits or the like can be monitored. Further, since the supply is made to the consumer device via the sonic nozzle, the influence on the supply amount due to the pressure fluctuation on the consumer device side can be eliminated.

請求項6の発明によれば、請求項5の発明効果に加えて、目的材料の表面積変化や気化熱に伴う温度下降等のバブラーの状態が変化した場合にも、希釈用ガス流量を調整し、希釈用ガス流量とキャリアガス流量との和を一定に保つことにより、目的材料の供給量を一定に維持することができる。   According to the invention of claim 6, in addition to the effect of the invention of claim 5, the dilution gas flow rate is adjusted even when the state of the bubbler such as a change in the surface area of the target material or a temperature drop due to heat of vaporization changes. By keeping the sum of the dilution gas flow rate and the carrier gas flow rate constant, the supply amount of the target material can be kept constant.

請求項7の発明によれば、音速ノズルを流路から取り外すことなく、キャリアガスや希釈ガスの圧力、流量を広範囲に変更することができる。   According to the seventh aspect of the present invention, the pressure and flow rate of the carrier gas and dilution gas can be changed over a wide range without removing the sonic nozzle from the flow path.

まず、本発明の構成要件である音速ノズルについて説明する。
音速ノズル1は、図1に示したように狭く絞られたスロート部1aを有し、かつスロート部1aを挟む上流側と下流側との圧力差を大きく、つまり上下流の圧力比(下流/上流)が或る値(臨界圧力比)以下になるように設定すると、スロート部1aを通過する気体の流速が音速に等しくなるノズルである。
この機能により、スロート部1aの流速がいったん音速になると、スロート部1aの流速は、ノズル1の下流状態に依存しなくなり、臨界圧力比以下であれば、下流側の流れの状態の如何にかかわらず常に一定流量の流体を下流側に供給できる。
First, the sonic nozzle that is a constituent of the present invention will be described.
The sonic nozzle 1 has a throat portion 1a that is narrowed as shown in FIG. 1, and has a large pressure difference between the upstream side and the downstream side across the throat portion 1a, that is, the upstream / downstream pressure ratio (downstream / downstream / If it is set so that (upstream) is equal to or less than a certain value (critical pressure ratio), this is a nozzle in which the flow velocity of the gas passing through the throat portion 1a becomes equal to the sound velocity.
With this function, once the flow velocity of the throat portion 1a becomes the sonic velocity, the flow velocity of the throat portion 1a does not depend on the downstream state of the nozzle 1, and if it is below the critical pressure ratio, it depends on the state of the downstream flow. Therefore, a constant flow rate of fluid can always be supplied downstream.

この原理を利用することにより、可動部を持たない高精度な質量流量計を構成することができる。
理論的には、音速ノズル1を流れる気体の質量流量は、気体のスロート部1aの音速、密度、そしてスロート部1aの断面積によって決定されるが、現実には、スロート部1aに発生する境界層によって有効断面積が減少し、さらには主流部分の流れが加速されるために、流速分布にひずみが生じる。
このため、現実の質量流量は、理論的に求められる質量流量よりも小さくなるため、補正係数(音速ノズルの流出係数)を乗じる必要があり、補正計数は、スロート部1aでの流れの状態を表すレイノルズ数の関数であるため流出係数とレイノルズ数との関係を実験で求める。
換言すれば、音速ノズルの流出係数を校正により求めておけば、音速ノズルの上流側の圧力、温度を測定することにより、簡単な構成により質量流量を高い精度で求めることが可能となる。
By utilizing this principle, a highly accurate mass flow meter having no moving parts can be configured.
Theoretically, the mass flow rate of the gas flowing through the sonic nozzle 1 is determined by the sound velocity and density of the gas throat portion 1a, and the cross-sectional area of the throat portion 1a, but in reality, the boundary generated in the throat portion 1a. The effective cross-sectional area is reduced by the layer, and further, the flow in the main flow portion is accelerated, so that the flow velocity distribution is distorted.
For this reason, since the actual mass flow rate is smaller than the theoretically required mass flow rate, it is necessary to multiply the correction coefficient (outflow coefficient of the sonic nozzle), and the correction count indicates the state of the flow at the throat portion 1a. Since this is a function of the Reynolds number, the relationship between the outflow coefficient and the Reynolds number is obtained through experiments.
In other words, if the outflow coefficient of the sonic nozzle is obtained by calibration, the mass flow rate can be obtained with high accuracy with a simple configuration by measuring the pressure and temperature upstream of the sonic nozzle.

すなわち、音速ノズル1での質量流量換算式は、
(数2)
Q=Cd×A×Pt×√(k×Mw/(R×Tc))
ただし、Cdは流出係数、Aはスロート部1aの断面積、kは比熱比から求める数値、Mwはモル質量、Rは気体普遍定数、Ptはスロート部1aの圧力、Tcはスロート部1aの温度をそれぞれ表す。
となる。
That is, the mass flow rate conversion formula at the sonic nozzle 1 is
(Equation 2)
Q = Cd × A × Pt × √ (k × Mw / (R × Tc))
Where Cd is the outflow coefficient, A is the cross-sectional area of the throat part 1a, k is a numerical value obtained from the specific heat ratio, Mw is the molar mass, R is the gas universal constant, Pt is the pressure of the throat part 1a, and Tc is the temperature of the throat part 1a. Respectively.
It becomes.

図2は、本発明の一実施例を示すものであって、バブラー10は、周知のように目的材料11を収容したタンク12と、流量制御手段13、この実施例では質量流量制御装置(MFC)により流量が制御されたキャリアガスを目的材料の液面よりも底部に噴出させる噴出管14と、タンク12の空間15に連通して目的材料11を含有したキャリアガスを取り出す排出管16とにより構成され、必要に応じて分流管17が接続される。なお、図中符号18乃至20は止弁を、また符号21は温度検出手段をそれぞれ示す。   FIG. 2 shows an embodiment of the present invention. As is well known, a bubbler 10 includes a tank 12 containing a target material 11 and a flow rate control means 13, which in this embodiment is a mass flow rate control device (MFC). ) By a jet pipe 14 for jetting the carrier gas whose flow rate is controlled to the bottom of the liquid surface of the target material, and a discharge pipe 16 that communicates with the space 15 of the tank 12 and extracts the carrier gas containing the target material 11. It is comprised, and the shunt pipe 17 is connected as needed. In the figure, reference numerals 18 to 20 denote stop valves, and reference numeral 21 denotes a temperature detecting means.

排出管16には止弁19を介して本発明が特徴とする監視装置30が接続されている。
監視装置30は、音速ノズル1を収容した管体31と、音速ノズル1の上流側に接続された圧力検出手段32、及び管体31の上流側のガス温度を検出する温度検出手段33とにより構成され、音速ノズル1の下流側(図中、右側)が消費機器に接続される。
A monitoring device 30 characterized by the present invention is connected to the discharge pipe 16 via a stop valve 19.
The monitoring device 30 includes a tube body 31 that accommodates the sonic nozzle 1, a pressure detection unit 32 connected to the upstream side of the sonic nozzle 1, and a temperature detection unit 33 that detects a gas temperature upstream of the tube body 31. The downstream side (right side in the figure) of the sonic nozzle 1 is connected to the consumer device.

止弁18、19を閉弁し、また止弁20を開弁して音速ノズル1のスロート部1aがチョーク状態となるように直接、キャリアガスを導入すると、導入したキャリアガスの質量流量Qcとスロート部1aの圧力Ptは、
(数3)
Qc=B×Pt×√Mwc
(ただし、Qcはキャリアガスの質量流量、Mwcは導入したキャリアガスのモル質量をそれぞれ表す。なお、温度条件は一定とする。)
なる相関関係を示す。
When the carrier gas is directly introduced so that the stop valves 18 and 19 are closed and the stop valve 20 is opened and the throat portion 1a of the sonic nozzle 1 is in the choked state, the mass flow rate Qc of the introduced carrier gas and The pressure Pt of the throat portion 1a is
(Equation 3)
Qc = B × Pt × √Mwc
(However, Qc represents the mass flow rate of the carrier gas, and Mwc represents the molar mass of the introduced carrier gas. The temperature conditions are constant.)
Shows the correlation.

次に止弁18、19をそれぞれ開弁し、また止弁20を閉弁して上記数3の関係を維持する流量、つまり上述の工程で音速ノズル1に通過させたと同一質量流量のキャリアガスをバブラー10に導入すると、前述のバブラー10の目的材料供給量を示す一般式(数1)で表されたように目的材料の蒸気圧に依存した目的材料自体のガスの質量流量Qzが前述のキャリアガスの質量流量Qcに加って音速ノズル1を流れ、
(数4)
Qc+Qz=B1×Px×√((Qc×Mwc+Qz×Mwz)/(Qc+Qz))
(ただし、Qzは目的材料ガス流量、Mwzは目的材料のモル質量、Pxはスロート部の圧力をそれぞれ表す。なお、温度条件は数3と同一とする。)
となる。
なお、キャリアガス流量に対して目的材料ガス流量が少ない場合にはB1とBとほぼ同等となる。
Next, the stop valves 18 and 19 are opened, and the stop valve 20 is closed and the flow rate for maintaining the relationship of the above formula 3, that is, the carrier gas having the same mass flow rate as that passed through the sonic nozzle 1 in the above-described process. Is introduced into the bubbler 10, the mass flow rate Qz of the gas of the target material itself depending on the vapor pressure of the target material, as expressed by the general formula (Expression 1) indicating the target material supply amount of the bubbler 10, is as described above. In addition to the mass flow rate Qc of the carrier gas, it flows through the sonic nozzle 1,
(Equation 4)
Qc + Qz = B1 × Px × √ ((Qc × Mwc + Qz × Mwz) / (Qc + Qz))
(However, Qz represents the target material gas flow rate, Mwz represents the molar mass of the target material, and Px represents the pressure in the throat part. Note that the temperature condition is the same as Equation 3.)
It becomes.
It should be noted that when the target material gas flow rate is smaller than the carrier gas flow rate, B1 and B are almost the same.

またスロート部1aの圧力Ptに対しバブラー10から音速ノズル1までの配管等による圧力損失は極めて少ないのでスロート部1aの圧力Pxとバブラー10の内圧(全圧)とは同一とみなすことができる。
(数5)
Pz/Px=Qz/(Qz+Qc)
Further, since the pressure loss due to the piping from the bubbler 10 to the sonic nozzle 1 is very small with respect to the pressure Pt of the throat portion 1a, the pressure Px of the throat portion 1a and the internal pressure (total pressure) of the bubbler 10 can be regarded as the same.
(Equation 5)
Pz / Px = Qz / (Qz + Qc)

数3で求めたBを用いて数4及び数5との関係よりスロート部1aの圧力Px、及び目的材料の質量流量Qzを、
Px
Qz
として求めることができる。
Using the B obtained in Equation 3, the pressure Px of the throat portion 1a and the mass flow rate Qz of the target material from the relationship with Equations 4 and 5 are as follows:
Px
Qz
Can be obtained as

したがって、スロート部1aの圧力Pxを監視するだけで目的材料11の質量流量Qzの安定性や目的材料が所定流量となっているかを容易に判断できる。   Therefore, it is possible to easily determine the stability of the mass flow rate Qz of the target material 11 and whether the target material has a predetermined flow rate simply by monitoring the pressure Px of the throat portion 1a.

また、流量制御手段13から分岐管17を経由させて監視装置30の音速ノズル1にキャリアガスだけを定期的に直接導入し、音速ノズル1による高い精度の測定値に基づいて流量制御手段13の経時変化を検査することができる。   Further, only the carrier gas is periodically introduced directly from the flow rate control means 13 via the branch pipe 17 into the sonic nozzle 1 of the monitoring device 30, and the flow rate control means 13 of the flow rate control means 13 is based on a highly accurate measurement value by the sonic speed nozzle 1. Changes over time can be examined.

図3は、本発明の第2の実施例を示すものであって、この実施例においては音速ノズル1の流入側に、キャリアガス源だけではなく、第2の質量流量制御手段13’を接続して希釈用ガス源が追加して接続されている。   FIG. 3 shows a second embodiment of the present invention. In this embodiment, not only the carrier gas source but also the second mass flow rate control means 13 ′ is connected to the inflow side of the sonic nozzle 1. And an additional gas source for dilution is connected.

この実施例において、止弁18、19を閉弁し、また止弁20を開弁して音速ノズル1がチョーク状態となるようにキャリアガス及び希釈用ガスをそれぞれ所定流量で音速ノズル1に流入させ、止弁18、19をそれぞれ開弁し、また止弁20を閉弁して、所定流量でキャリアガスを容器12に供給して目的材料を含むキャリアガスを16導出口から排出させ、音速ノズル1の流入側の圧力を圧力検出手段32により監視することにより目的材料の含有量を検出することができる。   In this embodiment, the stop valves 18 and 19 are closed, and the stop valve 20 is opened so that the carrier gas and the dilution gas flow into the sonic nozzle 1 at a predetermined flow rate so that the sonic nozzle 1 is in a choked state. The stop valves 18 and 19 are opened, the stop valve 20 is closed, the carrier gas is supplied to the container 12 at a predetermined flow rate, and the carrier gas containing the target material is discharged from the 16 outlets. By monitoring the pressure on the inflow side of the nozzle 1 by the pressure detecting means 32, the content of the target material can be detected.

この実施例によれば、希釈用ガスにより希釈が可能となるため、希釈率を広い範囲で変更することができる。   According to this embodiment, since dilution can be performed with the dilution gas, the dilution rate can be changed in a wide range.

図4は、本発明の第3の実施例を示すものであって、この実施例においては高価な流量制御手段13に代えて流量調整弁35を介してキャリアガスを供給するように構成したものである。
すなわち、音速ノズル1の流入側の圧力を検出する圧力検出手段32からの信号により流量調整弁35の質量流量を制御するようにしたものである。なお、図中符号34は、流量調整弁35を制御するための駆動手段を、また符号36は、質量流量測定装置(MFM)をそれぞれ示す。
FIG. 4 shows a third embodiment of the present invention. In this embodiment, a carrier gas is supplied via a flow rate adjusting valve 35 instead of the expensive flow rate control means 13. It is.
That is, the mass flow rate of the flow rate adjustment valve 35 is controlled by a signal from the pressure detection means 32 that detects the pressure on the inflow side of the sonic nozzle 1. In the figure, reference numeral 34 denotes a driving means for controlling the flow rate adjusting valve 35, and reference numeral 36 denotes a mass flow rate measuring device (MFM).

スロート部1aの圧力PtとPxとが等しく(数3、数4)になるよう流量調整弁35により質量流量を調整した場合、数4におけるキャリアガスそのものの質量流量Qcは、目的材料を含有したガスの質量流量が加わった分だけ減少する。その減少した質量流量ΔQを質量流量測定装置36によりモニタリングすることにより、目的材料自体の質量流量の安定性や目的材料の含有量が目標値に維持されているか否かなどの判断が可能になる。   When the mass flow rate is adjusted by the flow rate adjustment valve 35 so that the pressures Pt and Px of the throat portion 1a are equal (Equation 3 and Equation 4), the mass flow rate Qc of the carrier gas itself in Equation 4 contains the target material. Decreases by the amount of gas mass flow added. By monitoring the reduced mass flow ΔQ by the mass flow measurement device 36, it becomes possible to determine whether the mass flow stability of the target material itself and the content of the target material are maintained at the target value. .

すなわち、音速ノズル1に流入するキャリアガスの流量をQc1とすると、
(数6)
Qc1+Qz=B×Pt×√((Qc1×Mwc+Qz×Mwz)/(Qc1+Qz))
(数7)
Pz/Pt=Qz/(Qz+Qc1)
なる関係が成立するから、数6のB、Ptは数3で得られた既知値になり、数7との関係により、
Qc1
Qz
としてそれぞれ求めることができる。
That is, if the flow rate of the carrier gas flowing into the sonic nozzle 1 is Qc1,
(Equation 6)
Qc1 + Qz = B * Pt * √ ((Qc1 * Mwc + Qz * Mwz) / (Qc1 + Qz))
(Equation 7)
Pz / Pt = Qz / (Qz + Qc1)
Therefore, B and Pt in Equation 6 are known values obtained in Equation 3, and according to the relationship with Equation 7,
Qc1
Qz
Respectively.

なお、上述の図2、図3に示した第1の実施例においては、目的材料の質量流量を任意に変更する場合には、音速ノズル1の流入側の圧力(背圧)を変更したり、また図4に示した第2の実施例においては流量調整弁35によるキャリアガスの流量を調整することにより対応できるが、音速ノズル1の2次側、つまり消費機器側の圧力により変更可能な流量範囲が支配されてしまう。   In the first embodiment shown in FIG. 2 and FIG. 3, when the mass flow rate of the target material is arbitrarily changed, the pressure (back pressure) on the inflow side of the sonic nozzle 1 is changed. Further, in the second embodiment shown in FIG. 4, this can be dealt with by adjusting the flow rate of the carrier gas by the flow rate adjusting valve 35, but it can be changed by the pressure on the secondary side of the sonic nozzle 1, that is, the consumer device side. The flow range is controlled.

すなわち、音速ノズル1の2次側が真空条件であれば、バブラー10の全圧が低くても音速ノズル1を容易にチョーク状態に維持できるが、音速ノズル1の2次側が大気圧等のように真空よりも非常高い場合には、音速ノズル1をチョークさせるためにはバブラー10の圧力を大気圧の約2倍以上に上昇させる必要があり、音速ノズル1の2次側の圧力によりバブラー10の下限圧が制限を受ける。   That is, if the secondary side of the sonic nozzle 1 is in a vacuum condition, the sonic nozzle 1 can be easily maintained in the choked state even if the total pressure of the bubbler 10 is low, but the secondary side of the sonic nozzle 1 is at atmospheric pressure or the like. When the pressure is higher than the vacuum, in order to choke the sonic nozzle 1, it is necessary to increase the pressure of the bubbler 10 to about twice or more of the atmospheric pressure. Lower pressure is limited.

このような場合には、バブラー10の温度を上昇させて目的材料の蒸気圧Pを調整して目的材料の供給量を変更することも考えられるが、バブラー10が目的の温度に安定するまでに長時間を要するため、消費機器への目的材料の供給を中断せざるをえなくなるなどの新たな問題が発生する。   In such a case, it is conceivable to change the supply amount of the target material by increasing the temperature of the bubbler 10 to adjust the vapor pressure P of the target material, but until the bubbler 10 is stabilized at the target temperature. Since it takes a long time, new problems such as the necessity of interrupting the supply of the target material to the consumer device occur.

図5は、このような不都合を解消するための本発明の第4の実施例を示すものであって、この実施例では、バブラー10の導出口16に希釈用ガスを注入する希釈用ガス導入ライン40の一端を接続し、また希釈用ガス導入ライン40の他端には第3の実施例と同様に、質量流量計測装置41、流量調整弁42を介して希釈用ガス源に接続し、音速ノズル1の流入側の圧力を検出する圧力検出手段32からの信号により流量調整弁42を制御するようにしたものである。なお、図中符号43は、流量調整弁42を制御するための駆動手段を示す。   FIG. 5 shows a fourth embodiment of the present invention for solving such inconvenience. In this embodiment, a dilution gas introduction for injecting a dilution gas into the outlet 16 of the bubbler 10 is shown. One end of the line 40 is connected, and the other end of the dilution gas introduction line 40 is connected to the dilution gas source via the mass flow rate measuring device 41 and the flow rate adjusting valve 42 as in the third embodiment. The flow rate adjustment valve 42 is controlled by a signal from the pressure detection means 32 that detects the pressure on the inflow side of the sonic nozzle 1. In the figure, reference numeral 43 indicates a driving means for controlling the flow rate adjusting valve 42.

これによれば、音速ノズル1の1次側の圧力(バブラー内圧)を流量制御装置13により制御し、希釈用ガスの流量を圧力検出手段32により監視することで目的材料の供給量や、その安定性を確認することができる。   According to this, the pressure on the primary side (bubbler internal pressure) of the sonic nozzle 1 is controlled by the flow control device 13, and the flow rate of the dilution gas is monitored by the pressure detection means 32, so that Stability can be confirmed.

すなわち、止弁18、19を閉弁し、また止弁20を開弁してキャリアガスを、また希釈用ガス導入ライン40を流量調整弁42を介して音速ノズル1に導入した場合には、
(数8)
Qd+Qc=B×Pt×√((Qd×Mwd+Qc×Mwc)/(Qd+Qc))
(ただし、Qd、Mwdは、それぞれ希釈用ガス導入ラインから導入される希釈用ガスの質量流量、モル質量を表す)
となる。
That is, when the stop valves 18 and 19 are closed, the stop valve 20 is opened and the carrier gas is introduced, and the dilution gas introduction line 40 is introduced into the sonic nozzle 1 via the flow rate adjustment valve 42,
(Equation 8)
Qd + Qc = B × Pt × √ ((Qd × Mwd + Qc × Mwc) / (Qd + Qc))
(However, Qd and Mwd represent the mass flow rate and molar mass of the dilution gas introduced from the dilution gas introduction line, respectively)
It becomes.

つぎに、次に止弁18、19をそれぞれ開弁し、また止弁20を閉弁して上記数8の関係を維持してバブラー10にキャリアガスを導入すると、
(数9)
Qd1+Qc+Qz=B×Pt×√((Qd1×Mwd+Qc×Mwc+Qz×Mwz)/(Qd1+Qc+Qz))
(ただし、Qd1は、バブラー10が機能した後の希釈用ガス導入ラインから導入される希釈用ガスの流量)
を表すことができる。
Next, when the stop valves 18 and 19 are opened, and the stop valve 20 is closed to maintain the relationship of the above formula 8, the carrier gas is introduced into the bubbler 10.
(Equation 9)
Qd 1 + Qc + Qz = B × Pt × √ ((Qd 1 × Mwd + Qc × Mwc + Qz × Mwz) / (Qd 1 + Qc + Qz))
(However, Qd1 is the flow rate of the dilution gas introduced from the dilution gas introduction line after the bubbler 10 functions)
Can be expressed.

前述の数1の関係より目的材料の質量流量は、キャリアガスの流量に依存するため、任意流量にするためにはキャリアガス流量を変更するだけでよい。   Since the mass flow rate of the target material depends on the flow rate of the carrier gas based on the relationship of Equation 1, it is only necessary to change the carrier gas flow rate to obtain an arbitrary flow rate.

なお、上述の第4の実施例では、希釈用ガスの質量流量を制御しているが、図6に示した第5の実施例では、キャリアガスの流量を音速ノズル1の流入側の圧力により制御して、目的材料の表面積変化や気化熱に伴う温度下降等のバブラーの状態が変化した場合にも、希釈用ガス流量を調整して希釈用ガス流量とキャリアガス流量との和を一定に保つことにより、目的材料の供給量を一定に維持することができる。   In the fourth embodiment described above, the mass flow rate of the dilution gas is controlled. In the fifth embodiment shown in FIG. 6, the flow rate of the carrier gas is controlled by the pressure on the inflow side of the sonic nozzle 1. Control and adjust the dilution gas flow rate to keep the sum of the dilution gas flow rate and the carrier gas flow rate constant even when the state of the bubbler changes, such as a change in surface area of the target material or a temperature drop due to heat of vaporization. By keeping it, the supply amount of the target material can be kept constant.

すなわち、音速ノズル1の流入側に、質量流量制御手段13’を介して希釈用ガスを供給し、またバブラーには質量流量計測手段41’及び音速ノズル1の流入側の圧力により制御を受ける圧力調整弁42’を接続し、音速ノズル1がチョーク状態となるよう圧力調整弁42’により音速ノズル1の流入側の圧力を制御するように構成されている。   That is, dilution gas is supplied to the inflow side of the sonic nozzle 1 via the mass flow rate control means 13 ′, and the pressure controlled by the pressure on the inflow side of the mass flow rate measurement means 41 ′ and the sonic nozzle 1 is applied to the bubbler. An adjustment valve 42 'is connected, and the pressure on the inflow side of the sonic nozzle 1 is controlled by the pressure adjustment valve 42' so that the sonic nozzle 1 is choked.

この実施例において、止弁18、19を閉弁し、また止弁20を開弁してキャリアガスを所定圧力で音速ノズル1に流入させ、ついで止弁18、19を開弁し、また止弁20を閉弁して所定流量でキャリアガスをばぶらーに供給して目的材料を含むキャリアガスを導出口16から排出させる。   In this embodiment, the stop valves 18 and 19 are closed, and the stop valve 20 is opened to allow the carrier gas to flow into the sonic nozzle 1 at a predetermined pressure, and then the stop valves 18 and 19 are opened. The valve 20 is closed and the carrier gas is supplied to the bubbler at a predetermined flow rate, and the carrier gas containing the target material is discharged from the outlet 16.

質量流量計測手段41’によるキャリアガス流量および希釈用ガス流量の和が所定流量になるよう質量流量制御手段13’で希釈用ガス流量を制御すればよい。   The dilution gas flow rate may be controlled by the mass flow rate control means 13 'so that the sum of the carrier gas flow rate and the dilution gas flow rate by the mass flow rate measurement means 41' becomes a predetermined flow rate.

なお、希釈用ガスは、キャリアガスと同一でもよく、また異なる種類のガスでもよいことは明らかである。
一方、希釈用ガスとキャリアガスとを同一種のガスとした場合には、キャリアガスの質量流量Qcと希釈用ガス導入ライン40からの希釈用ガスの質量流量Qd1との合計(Qc+Qd1)が一定となるように、流量制御装置13を制御することにより、希釈用ガスとキャリアガスとの混合ガスに含まれる目的材料の量Qzを一定に維持することができる。
It is obvious that the dilution gas may be the same as the carrier gas or may be a different type of gas.
On the other hand, when the dilution gas and the carrier gas are the same type of gas, the total (Qc + Qd1) of the carrier gas mass flow rate Qc and the dilution gas mass flow rate Qd1 from the dilution gas introduction line 40 is constant. Thus, by controlling the flow rate control device 13, the amount Qz of the target material contained in the mixed gas of the dilution gas and the carrier gas can be maintained constant.

さらには、上述の実施例においては、音速ノズルを単一としているが、例えば図2に示した実施例を例に採って説明すると、図7に示したように切換弁50を介してスロート部の径が異なる複数の音速ノズル1、1’を備えた監視装置30、30’を切換弁50を介してバブラー10からの目的材料排出口に接続し、また監視装置30、30’の排出口を消費機器に連通させた流路構成とする。   Furthermore, in the above-described embodiment, a single sonic nozzle is used. For example, when the embodiment shown in FIG. 2 is taken as an example, the throat portion is connected via the switching valve 50 as shown in FIG. Are connected to the target material outlet from the bubbler 10 via the switching valve 50, and the outlets of the monitoring devices 30, 30 'are connected. Is a flow path configuration communicating with the consumer device.

この実施例によれば、切換弁50の切換え操作により特性の異なる2つの音速ノズルのうちの適当な一方を選択することにより、
1)キャリアガスや希釈ガスのガス種を変更した場合、音速ノズルが単一であると、その音速ノズルの条件で流量、圧力条件が決定されてしまうが、複数の音速ノズルを選択、切り換えることにより所定流量で音速ノズルの流入側(1次側)の圧力を所定圧に設定できる、
2)また、ガスの種類が同一であっても流量と圧力の関係を変更したい場合、特性が異なる音速ノズルに切り換えることにより、音速ノズルを流路から取り外すことなく圧力や流量を変更できる、
などの効果を得ることができる。
According to this embodiment, by selecting an appropriate one of the two sonic nozzles having different characteristics by the switching operation of the switching valve 50,
1) If the gas type of the carrier gas or dilution gas is changed, if there is a single sonic nozzle, the flow rate and pressure conditions are determined by the conditions of the sonic nozzle, but multiple sonic nozzles must be selected and switched. The pressure on the inflow side (primary side) of the sonic nozzle can be set to a predetermined pressure at a predetermined flow rate.
2) Also, even if the gas type is the same, if you want to change the relationship between flow rate and pressure, you can change the pressure and flow rate without switching the sonic nozzle from the flow path by switching to a sonic nozzle with different characteristics.
Such effects can be obtained.

なお、図3乃至図6に示した他の実施例においても複数の監視装置を切換弁を介して選択可能に接続して、特性の異なる音速ノズルを介して消費機器に目的材料を供給できるように構成することは当業者には容易に実施できる事項である。   In other embodiments shown in FIGS. 3 to 6, a plurality of monitoring devices can be selectively connected via a switching valve so that a target material can be supplied to a consumer device via a sonic nozzle having different characteristics. It is a matter that can be easily implemented by those skilled in the art.

音速ノズルの一例を示す断面図である。It is sectional drawing which shows an example of a sonic nozzle. 本発明の第1の実施例を示す構成図である。It is a block diagram which shows the 1st Example of this invention. 本発明の第2の実施例を示す構成図である。It is a block diagram which shows the 2nd Example of this invention. 本発明の第3の実施例を示す構成図である。It is a block diagram which shows the 3rd Example of this invention. 本発明の第4の実施例を示す構成図である。It is a block diagram which shows the 4th Example of this invention. 本発明の第5の実施例を示す構成図である。It is a block diagram which shows the 5th Example of this invention. 本発明の第6の実施例を示す構成図である。It is a block diagram which shows the 6th Example of this invention.

符号の説明Explanation of symbols

1、1’ 音速ノズル 1a スロート部 10 バブラー 18〜20 止弁 30、30’ 監視装置 35、42 流量調整弁   DESCRIPTION OF SYMBOLS 1, 1 'Sonic nozzle 1a Throat part 10 Bubbler 18-20 Stop valve 30, 30' Monitoring apparatus 35, 42 Flow control valve

Claims (7)

目的材料を収納可能な容器と、キャリアガス源に接続される導入口と、前記目的材料を含む気体を消費機器に供給する導出口とを備えたバブラーを使用し、前記導入口とキャリアガス源との間に上流側から順番に質量流量制御手段と、第1の開閉弁とを接続し、また前記導出口と消費機器との間に上流側から順番に第2の開閉弁と、音速ノズルとを接続し、さらに第1の開閉弁の流入側と第2の開閉弁の流出側とを第3の開閉弁により接続し、
前記第1、第2の開閉弁を閉弁し、また第3の開閉弁を開弁した状態で前記質量流量制御手段より、前記音速ノズルがチョーク状態となる所定流量のキャリアガスを前記音速ノズルに流入させ、ついで前記第1、第2の開閉弁を開弁し、また第3の開閉弁を閉弁して前記所定流量でキャリアガスを前記容器に供給して目的材料を含むキャリアガスを前記導出口から排出させ、前記音速ノズルの流入側の圧力を監視することにより前記目的材料の含有量を検出する監視装置を備えた材料供給装置。
Using a bubbler comprising a container capable of storing a target material, an inlet connected to a carrier gas source, and an outlet for supplying a gas containing the target material to a consumer device, the inlet and the carrier gas source The mass flow control means and the first on-off valve are connected in order from the upstream side between the second on-off valve and the sonic nozzle in order from the upstream side between the outlet and the consumer device. And connecting the inflow side of the first on-off valve and the outflow side of the second on-off valve with a third on-off valve,
When the first and second on-off valves are closed and the third on-off valve is opened, the mass flow rate control means supplies a carrier gas having a predetermined flow rate at which the sonic nozzle is choked to the sonic nozzle. Then, the first and second on-off valves are opened, the third on-off valve is closed, and the carrier gas is supplied to the container at the predetermined flow rate. A material supply apparatus comprising a monitoring device that detects the content of the target material by monitoring the pressure on the inflow side of the sonic nozzle by discharging from the outlet.
目的材料を収納可能な容器と、キャリアガス源に接続される導入口と、前記目的材料を含む気体を消費機器に供給する導出口とを備えたバブラーを使用し、前記導入口とキャリアガス源との間に上流側から順番に質量流量制御手段と、第1の開閉弁とを接続し、また前記導出口と消費機器との間に上流側から順番に第2の開閉弁と、音速ノズルとを接続し、さらに第1の開閉弁の流入側と第2の開閉弁の流出側とを第3の開閉弁により接続し、前記音速ノズルの流入側に、質量流量制御手段を介して希釈用ガス源を接続し、
前記第1、第2の開閉弁を閉弁し、また第3の開閉弁を開弁した状態で前記キャリアガスと前記希釈用ガス源からの希釈用ガスとにより前記音速ノズルがチョーク状態となるよう前記キャリアガス及び希釈用ガスをそれぞれ所定流量で前記音速ノズルに流入させ、ついで前記第1、第2の開閉弁を開弁し、また第3の開閉弁を閉弁して前記所定流量で前記キャリアガスを前記容器に供給して前記目的材料を含むキャリアガスを前記導出口から排出させ、前記音速ノズルの流入側の圧力を監視することにより前記目的材料の含有量を検出する監視装置を備えた材料供給装置。
Using a bubbler comprising a container capable of storing a target material, an inlet connected to a carrier gas source, and an outlet for supplying a gas containing the target material to a consumer device, the inlet and the carrier gas source The mass flow control means and the first on-off valve are connected in order from the upstream side between the second on-off valve and the sonic nozzle in order from the upstream side between the outlet and the consumer device. And the inflow side of the first on-off valve and the outflow side of the second on-off valve are connected by a third on-off valve, and the inflow side of the sonic nozzle is diluted via mass flow control means. Connect the gas source,
With the first and second on-off valves closed and the third on-off valve opened, the sonic nozzle is choked by the carrier gas and the dilution gas from the dilution gas source. The carrier gas and the diluting gas are respectively flowed into the sonic nozzle at a predetermined flow rate, then the first and second on-off valves are opened, and the third on-off valve is closed to at the predetermined flow rate. A monitoring device that detects the content of the target material by supplying the carrier gas to the container, discharging the carrier gas containing the target material from the outlet, and monitoring the pressure on the inflow side of the sonic nozzle. Equipped material supply device.
目的材料を収納可能な容器と、キャリアガス源に接続される導入口と、前記目的材料を含む気体を消費機器に供給する導出口とを備えたバブラーを使用し、前記導入口とキャリアガス源との間に上流側から順番に質量流量制御手段と、第1の開閉弁とを接続し、また前記導出口と消費機器との間に上流側から順番に第2の開閉弁と、音速ノズルとを接続し、さらに第1の開閉弁の流入側と第2の開閉弁の流出側とを第3の開閉弁により接続し、前記音速ノズルの流入側に、上流側から質量流量計測手段と、圧力調整弁を介して希釈用ガス源を接続し、
前記第1、第2の開閉弁を閉弁し、また第3の開閉弁を開弁した状態で前記音速ノズルがチョーク状態となるよう前記圧力調整弁により前記音速ノズルの流入側の圧力を制御するとともに、前記キャリアガスを所定流量で前記音速ノズルに流入させ、ついで前記第1、第2の開閉弁を開弁し、また第3の開閉弁を閉弁して前記所定流量で前記キャリアガスを前記容器に供給して前記目的材料を含むキャリアガスを前記導出口から排出させ、前記質量流量計測手段の流量を監視することにより前記目的材料の含有量を検出する監視装置を備えた材料供給装置。
Using a bubbler comprising a container capable of storing a target material, an inlet connected to a carrier gas source, and an outlet for supplying a gas containing the target material to a consumer device, the inlet and the carrier gas source The mass flow control means and the first on-off valve are connected in order from the upstream side between the second on-off valve and the sonic nozzle in order from the upstream side between the outlet and the consumer device. And an inflow side of the first on-off valve and an outflow side of the second on-off valve are connected by a third on-off valve, and the mass flow rate measuring means from the upstream side to the inflow side of the sonic nozzle Connect the dilution gas source through the pressure regulating valve,
The pressure regulating valve controls the pressure on the inflow side of the sonic nozzle so that the sonic nozzle is choked with the first and second on-off valves closed and the third on-off valve opened. In addition, the carrier gas is allowed to flow into the sonic nozzle at a predetermined flow rate, the first and second on-off valves are then opened, and the third on-off valve is closed to attain the carrier gas at the predetermined flow rate. Is supplied to the container, the carrier gas containing the target material is discharged from the outlet, and the material supply provided with a monitoring device for detecting the content of the target material by monitoring the flow rate of the mass flow rate measuring means apparatus.
目的材料を収納可能な容器と、キャリアガス源に接続される導入口と、前記目的材料を含む気体を消費機器に供給する導出口とを備えたバブラーを使用し、前記導入口とキャリアガス源との間に上流側から順番に質量流量制御手段と、第1の開閉弁とを接続し、また前記導出口と消費機器との間に上流側から順番に第2の開閉弁と、音速ノズルとを接続し、さらに第1の開閉弁の流入側と第2の開閉弁の流出側とを第3の開閉弁により接続し、前記音速ノズルの流入側に、上流側から質量流量計測手段と、圧力調整弁を介して希釈用ガス源を接続し、
前記第1、第2の開閉弁を閉弁し、また第3の開閉弁を開弁した状態で前記音速ノズルがチョーク状態となるよう前記圧力調整弁により前記音速ノズルの流入側の圧力を制御するとともに、前記キャリアガスを所定流量で前記音速ノズルに流入させ、ついで前記第1、第2の開閉弁を開弁し、また第3の開閉弁を閉弁して前記質量流量計測手段による希釈用ガス流量およびキャリアガス流量の和が所定流量になるよう前記質量流量制御手段によりキャリアガス流量を制御して所望の前記目的材料の含有量を得る材料供給装置。
Using a bubbler comprising a container capable of storing a target material, an inlet connected to a carrier gas source, and an outlet for supplying a gas containing the target material to a consumer device, the inlet and the carrier gas source The mass flow control means and the first on-off valve are connected in order from the upstream side between the second on-off valve and the sonic nozzle in order from the upstream side between the outlet and the consumer device. And an inflow side of the first on-off valve and an outflow side of the second on-off valve are connected by a third on-off valve, and the mass flow rate measuring means from the upstream side to the inflow side of the sonic nozzle Connect the dilution gas source through the pressure regulating valve,
The pressure regulating valve controls the pressure on the inflow side of the sonic nozzle so that the sonic nozzle is choked with the first and second on-off valves closed and the third on-off valve opened. In addition, the carrier gas is allowed to flow into the sonic nozzle at a predetermined flow rate, then the first and second on-off valves are opened, and the third on-off valve is closed to dilute the mass flow rate measuring means. A material supply apparatus for obtaining a desired content of the target material by controlling the carrier gas flow rate by the mass flow rate control means so that the sum of the gas flow rate and the carrier gas flow rate becomes a predetermined flow rate.
目的材料を収納可能な容器と、キャリアガス源に接続される導入口と、前記目的材料を含む気体を消費機器に供給する導出口とを備えたバブラーを使用し、前記導入口とキャリアガス源との間に上流側から順番に質量流量計測手段と、圧力調整弁と、第1の開閉弁とを接続し、また前記導出口と消費機器との間に上流側から順番に第2の開閉弁と、音速ノズルとを接続し、さらに第1の開閉弁の流入側と第2の開閉弁の流出側とを第3の開閉弁により接続し、
前記第1、第2の開閉弁を閉弁し、また第3の開閉弁を開弁した状態で前記圧力調整弁より、前記音速ノズルがチョーク状態となる所定圧力で前記キャリアガスを前記音速ノズルに流入させ、ついで前記第1、第2の開閉弁を開弁し、また第3の開閉弁を閉弁して前記所定圧力でキャリアガスを前記容器に供給して目的材料を含むキャリアガスを前記導出口から排出させ、前記質量流量計測手段の流量を監視することにより前記目的材料の含有量を検出する監視装置を備えた材料供給装置。
Using a bubbler comprising a container capable of storing a target material, an inlet connected to a carrier gas source, and an outlet for supplying a gas containing the target material to a consumer device, the inlet and the carrier gas source The mass flow rate measuring means, the pressure regulating valve, and the first on-off valve are connected in order from the upstream side between them, and the second on-off in turn from the upstream side between the outlet and the consumer device A valve and a sonic nozzle, and further, an inflow side of the first on-off valve and an outflow side of the second on-off valve are connected by a third on-off valve,
When the first and second on-off valves are closed and the third on-off valve is opened, the carrier gas is supplied from the pressure adjusting valve to the carrier gas at a predetermined pressure at which the sonic nozzle is choked. Then, the first and second on-off valves are opened, the third on-off valve is closed, and the carrier gas is supplied to the container at the predetermined pressure, and the carrier gas containing the target material is supplied. A material supply device provided with a monitoring device that detects the content of the target material by discharging from the outlet and monitoring the flow rate of the mass flow rate measuring means.
目的材料を収納可能な容器と、キャリアガス源に接続される導入口と、前記目的材料を含む気体を消費機器に供給する導出口とを備えたバブラーを使用し、前記導入口とキャリアガス源との間に上流側から順番に質量流量計測手段と、圧力調整弁と、第1の開閉弁とを接続し、また前記導出口と消費機器との間に上流側から順番に第2の開閉弁と、音速ノズルとを接続し、さらに第1の開閉弁の流入側と第2の開閉弁の流出側とを第3の開閉弁により接続し、前記音速ノズルの流入側に、質量流量制御手段を介して希釈用ガス源を接続し、
前記第1、第2の開閉弁を閉弁し、また第3の開閉弁を開弁した状態で前記音速ノズルがチョーク状態となるよう前記圧力調整弁により前記希釈用ガスの前記音速ノズルの流入側の圧力を制御し、また前記キャリアガスを所定圧力で前記音速ノズルに流入させ、ついで前記第1、第2の開閉弁を開弁し、また第3の開閉弁を閉弁して前記所定流量でキャリアガスを前記容器に供給して目的材料を含むキャリアガスを前記導出口から排出させ、前記質量流量計測手段によるキャリアガスの流量および希釈用ガス流量の和が所定流量になるよう前記質量流量制御手段で希釈用ガス流量を制御することにより、所望の前記目的材料の含有量を得る材料供給装置。
Using a bubbler comprising a container capable of storing a target material, an inlet connected to a carrier gas source, and an outlet for supplying a gas containing the target material to a consumer device, the inlet and the carrier gas source The mass flow rate measuring means, the pressure regulating valve, and the first on-off valve are connected in order from the upstream side between them, and the second on-off in turn from the upstream side between the outlet and the consumer device The valve and the sonic nozzle are connected, and the inflow side of the first on-off valve and the outflow side of the second on-off valve are connected by a third on-off valve, and mass flow control is performed on the inflow side of the sonic nozzle. Connecting a dilution gas source via means,
When the first and second on-off valves are closed and the third on-off valve is opened, the pressure adjusting valve causes the dilution gas to flow into the sonic nozzle so that the sonic nozzle is in a choke state. Side pressure is controlled, the carrier gas is allowed to flow into the sonic nozzle at a predetermined pressure, the first and second on-off valves are then opened, and the third on-off valve is closed to provide the predetermined The carrier gas is supplied to the container at a flow rate, the carrier gas containing the target material is discharged from the outlet, and the mass so that the sum of the carrier gas flow rate and the dilution gas flow rate by the mass flow rate measuring means becomes a predetermined flow rate. A material supply device that obtains a desired content of the target material by controlling the flow rate of the dilution gas with a flow rate control means.
請求項1乃至請求項6のいずれかに記載の材料供給装置において、前記音速ノズルが流路切換手段を介して複数、選択可能に接続され、前記複数のそれぞれの音速ノズルの特性が相違する材料供給装置。   7. The material supply apparatus according to claim 1, wherein a plurality of the sonic nozzles are selectably connected via a flow path switching unit, and the characteristics of the sonic nozzles are different from each other. Feeding device.
JP2006061971A 2006-03-08 2006-03-08 Material feeding device Pending JP2007239008A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006061971A JP2007239008A (en) 2006-03-08 2006-03-08 Material feeding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006061971A JP2007239008A (en) 2006-03-08 2006-03-08 Material feeding device

Publications (1)

Publication Number Publication Date
JP2007239008A true JP2007239008A (en) 2007-09-20

Family

ID=38584832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006061971A Pending JP2007239008A (en) 2006-03-08 2006-03-08 Material feeding device

Country Status (1)

Country Link
JP (1) JP2007239008A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8348248B2 (en) 2009-03-11 2013-01-08 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Bubbling supply system for stable precursor supply
US9728473B2 (en) 2014-09-26 2017-08-08 Kabushiki Kaisha Toshiba Method of manufacturing semiconductor device and semiconductor manufacturing apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000122725A (en) * 1998-10-19 2000-04-28 Ckd Corp Gas supply controller
JP2004140328A (en) * 2002-08-23 2004-05-13 Tokyo Electron Ltd Gas supply system and treatment system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000122725A (en) * 1998-10-19 2000-04-28 Ckd Corp Gas supply controller
JP2004140328A (en) * 2002-08-23 2004-05-13 Tokyo Electron Ltd Gas supply system and treatment system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8348248B2 (en) 2009-03-11 2013-01-08 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Bubbling supply system for stable precursor supply
US9728473B2 (en) 2014-09-26 2017-08-08 Kabushiki Kaisha Toshiba Method of manufacturing semiconductor device and semiconductor manufacturing apparatus

Similar Documents

Publication Publication Date Title
JP5330709B2 (en) Method and apparatus for controlling gas flow to a processing chamber
JP5582684B2 (en) Apparatus for distributing gas to a semiconductor processing system and apparatus for distributing gas to a semiconductor processing chamber
US7775236B2 (en) Method and apparatus for controlling gas flow to a processing chamber
JP4585035B2 (en) Flow rate ratio controller
US5904170A (en) Pressure flow and concentration control of oxygen/ozone gas mixtures
CN102037423B (en) Discontinuous switching flow control method of fluid using pressure type flow controller
TWI855041B (en) Concentration control apparatus, source consumption quantity estimation method, and program recording medium
TWI259342B (en) Mass flow ratio system and method
TWI451220B (en) Method and apparatus for pressure and mix ratio control
TWI629429B (en) Cluster mass flow devices and multi-line mass flow devices incorporating the same
CN103797563A (en) Material vaporization supply device equipped with material concentration detection mechanism
JP2014206985A (en) Gas delivery method and system including flow ratio controller using antisymmetric optimal control
CN101724828A (en) Material gas concentration control system
WO2000063756A1 (en) Parallel bypass type fluid feeding device, and method and device for controlling fluid variable type pressure system flow rate used for the device
JP2005024421A (en) Differential pressure type flow meter and differential pressure type flow control system
CN101208641A (en) Variable flow range flow control device
TWI831777B (en) Methods and apparatus for multiple channel mass flow and ratio control systems
KR102773325B1 (en) Concentration control apparatus, zero point adjustment method, and program recording medium recorded with concentration control apparatus program
KR20190070867A (en) Concentration controller, gas control system, deposition apparatus, concentration control method, and program recording medium for concentration controller
US9146007B2 (en) Apparatus for liquid treatment of work pieces and flow control system for use in same
US10838437B2 (en) Apparatus for splitting flow of process gas and method of operating same
JP2007239008A (en) Material feeding device
JP7131561B2 (en) Mass flow control system and semiconductor manufacturing equipment and vaporizer including the system
US20160017489A1 (en) Method For Supplying A Process With An Enriched Carrier Gas
JP3701065B2 (en) Heterogeneous fluid mixing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101001

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110207