JP2007237329A - Cutting throwaway tip made of surface coated cermet having hard coating layer exhibiting excellent chipping resistance in high-speed cutting of high hardened steel - Google Patents
Cutting throwaway tip made of surface coated cermet having hard coating layer exhibiting excellent chipping resistance in high-speed cutting of high hardened steel Download PDFInfo
- Publication number
- JP2007237329A JP2007237329A JP2006062810A JP2006062810A JP2007237329A JP 2007237329 A JP2007237329 A JP 2007237329A JP 2006062810 A JP2006062810 A JP 2006062810A JP 2006062810 A JP2006062810 A JP 2006062810A JP 2007237329 A JP2007237329 A JP 2007237329A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- hard coating
- coating layer
- cutting
- constituent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005520 cutting process Methods 0.000 title claims abstract description 113
- 239000011247 coating layer Substances 0.000 title claims abstract description 89
- 239000011195 cermet Substances 0.000 title claims description 10
- 229910000760 Hardened steel Inorganic materials 0.000 title abstract description 4
- 230000001747 exhibiting effect Effects 0.000 title abstract description 3
- 239000010410 layer Substances 0.000 claims abstract description 321
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 70
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 54
- 239000000470 constituent Substances 0.000 claims abstract description 49
- 238000009826 distribution Methods 0.000 claims abstract description 44
- 239000013078 crystal Substances 0.000 claims abstract description 43
- 238000005498 polishing Methods 0.000 claims abstract description 17
- 230000003746 surface roughness Effects 0.000 claims abstract description 14
- 238000010894 electron beam technology Methods 0.000 claims abstract description 6
- 239000010936 titanium Substances 0.000 claims description 79
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 27
- 239000000203 mixture Substances 0.000 claims description 24
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 22
- 238000005229 chemical vapour deposition Methods 0.000 claims description 17
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 16
- 239000010419 fine particle Substances 0.000 claims description 16
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 15
- 229910000831 Steel Inorganic materials 0.000 claims description 14
- 239000010959 steel Substances 0.000 claims description 14
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 13
- 238000005422 blasting Methods 0.000 claims description 13
- 229910052760 oxygen Inorganic materials 0.000 claims description 13
- 239000001301 oxygen Substances 0.000 claims description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 12
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 12
- 238000007740 vapor deposition Methods 0.000 claims description 11
- 238000005259 measurement Methods 0.000 claims description 9
- 229910052757 nitrogen Inorganic materials 0.000 claims description 8
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 8
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 claims description 7
- 239000007788 liquid Substances 0.000 claims description 7
- 239000011780 sodium chloride Substances 0.000 claims description 6
- 238000004026 adhesive bonding Methods 0.000 claims description 5
- 238000005728 strengthening Methods 0.000 claims description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 4
- 229910052799 carbon Inorganic materials 0.000 claims description 4
- 238000005507 spraying Methods 0.000 claims description 4
- 239000002131 composite material Substances 0.000 claims description 3
- 239000007921 spray Substances 0.000 claims description 2
- FOZHTJJTSSSURD-UHFFFAOYSA-J titanium(4+);dicarbonate Chemical compound [Ti+4].[O-]C([O-])=O.[O-]C([O-])=O FOZHTJJTSSSURD-UHFFFAOYSA-J 0.000 claims description 2
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 claims description 2
- 230000001678 irradiating effect Effects 0.000 abstract description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 33
- 239000000843 powder Substances 0.000 description 21
- 239000012298 atmosphere Substances 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- 239000012495 reaction gas Substances 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- 229910001315 Tool steel Inorganic materials 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 239000002994 raw material Substances 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 239000003082 abrasive agent Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 229910007926 ZrCl Inorganic materials 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 229910001018 Cast iron Inorganic materials 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000004453 electron probe microanalysis Methods 0.000 description 1
- 235000000396 iron Nutrition 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
Images
Landscapes
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
この発明は、特に合金工具鋼や軸受け鋼の焼入れ材などの高硬度鋼の高速切削加工に用いた場合に、硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削スローアウエイチップ(以下、被覆切削チップという)に関するものである。 The present invention is a surface-coated cermet cutting throwaway tip that exhibits excellent chipping resistance, especially when used for high-speed cutting of hardened steel such as hardened materials of alloy tool steel and bearing steel ( Hereinafter, it is related to a coated cutting tip).
従来、一般に、例えば図14に概略斜視図に例示される通り、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成され、かつ中心部に工具取り付け用ボルト貫通孔(取り付けがクランプ駒による挟み締めで行われる形式の場合には、前記ボルト貫通孔が存在しない形状となる)を有するサーメット基体(以下、これらを総称してチップ基体という)の切刃稜線部を含むすくい面および逃げ面の全面に、
(1)第1層として、化学蒸着形成された窒化チタン(以下、TiNで示す)層および炭窒化チタン(以下、TiCNで示す)層のうちのいずれか、または両層の積層からなり、かつ0.1〜1μmの平均層厚を有する第1密着接合層、
(2)第2層として、化学蒸着形成され、
組成式:(Ti1−AZrA)C1−BNB(ただし、原子比で、Aは0.02〜0.15、Bは0.3〜0.55)、
を満足するTiとZrの複合炭窒化物[以下、(Ti,Zr)CNで示す]層からなり、かつ2.5〜15μmの平均層厚を有する高温強化層、
(3)第3層として、化学蒸着形成された炭酸化チタン(以下、TiCOで示す)層および炭窒酸化チタン(以下、TiCNOで示す)層のうちのいずれか、または両層の積層からなり、かつ0.1〜1μmの平均層厚を有する第2密着接合層、
(4)第4層として、化学蒸着形成された酸化アルミニウム(以下、Al2O3で示す)層からなり、かつ1〜15μmの平均層厚を有する高温硬質層、
以上(1)〜(4)で構成された硬質被覆層を形成してなる被覆切削チップが知られており、この被覆切削チップが、例えば各種の鋼や鋳鉄などの連続切削や断続切削に用いられていることも知られている。
さらに、上記の被覆切削チップの硬質被覆層の第4層を構成するAl2O3層(高温硬質層)の表面を、切削性能を向上させる目的でウエットブラスト処理して、平滑化することも知られている。
(1) As the first layer, a chemical vapor deposition formed titanium nitride (hereinafter referred to as TiN) layer or titanium carbonitride (hereinafter referred to as TiCN) layer, or a laminate of both layers, and A first adhesive bonding layer having an average layer thickness of 0.1 to 1 μm;
(2) The second layer is formed by chemical vapor deposition,
Composition formula: (Ti 1-A Zr A ) C 1-B N B (wherein A is 0.02 to 0.15 and B is 0.3 to 0.55 in atomic ratio),
A high-temperature strengthening layer comprising a composite carbonitride of Ti and Zr satisfying the following [hereinafter referred to as (Ti, Zr) CN] layer and having an average layer thickness of 2.5 to 15 μm;
(3) As the third layer, either a titanium carbonate (hereinafter referred to as TiCO) layer formed by chemical vapor deposition or a titanium carbonitride oxide (hereinafter referred to as TiCNO) layer, or a laminate of both layers is formed. And a second adhesive bonding layer having an average layer thickness of 0.1 to 1 μm,
(4) As the fourth layer, a high-temperature hard layer comprising an aluminum oxide (hereinafter referred to as Al 2 O 3 ) layer formed by chemical vapor deposition and having an average layer thickness of 1 to 15 μm,
A coated cutting tip formed by forming a hard coating layer composed of the above (1) to (4) is known, and this coated cutting tip is used for continuous cutting and intermittent cutting of various steels and cast irons, for example. It is also known that
Furthermore, the surface of the Al 2 O 3 layer (high-temperature hard layer) constituting the fourth hard coating layer of the coated cutting chip may be smoothed by wet blasting for the purpose of improving cutting performance. Are known.
近年の切削装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は一段と高速化の傾向にあるが、上記の従来被覆切削チップにおいては、被削材が合金工具鋼や軸受け鋼の焼入れ材などの高硬度鋼である場合、切削速度が130m/min.前後である場合には、硬質被覆層にチッピング(微少欠け)の発生は起りづらいが、切削速度が250m/min.以上の高速で切削加工を行なった場合には、硬質被覆層にチッピング(微少欠け)が発生し易く、この結果比較的短時間で使用寿命に至るのが現状である。 In recent years, the performance of cutting machines has been remarkable. On the other hand, there is a strong demand for labor saving, energy saving, and cost reduction for cutting work, and along with this, cutting work tends to be further accelerated. In the coated cutting tip, when the work material is a high hardness steel such as a hardened material of alloy tool steel or bearing steel, the cutting speed is 130 m / min. In the case of before and after, chipping (small chipping) hardly occurs in the hard coating layer, but the cutting speed is 250 m / min. When cutting is performed at the above high speed, chipping (slight chipping) is likely to occur in the hard coating layer, and as a result, the service life is reached in a relatively short time.
そこで、本発明者等は、上述のような観点から、上記の高硬度鋼の被削材を切削速度が250m/min.以上の高速で切削加工を行なった場合にも、硬質被覆層にチッピングの発生がない被覆切削チップを開発すべく、特に硬質被覆層の第2層の高温強化層である(Ti,Zr)CN層、すなわちZr成分含有による耐熱性と、Ti成分含有による相対的に高い高温強度を有し、かつ図1(a)に模式図で示される通り、格子点にTi、Zr、炭素、および窒素からなる構成原子がそれぞれ存在するNaCl型面心立方晶の結晶構造(なお、図1(b)は(011)面で切断した状態を示す)を有する(Ti,Zr)CN層に着目し、研究を行った結果、
(a−1)従来被覆切削チップの硬質被覆層を構成する第2層の高温強化層(以下、従来高温強化層という)である(Ti,Zr)CN層(以下、従来(Ti,Zr)CN層という)は、例えば、通常の化学蒸着装置にて、
反応ガス組成:容量%で、TiCl4:1〜5%、ZrCl4:0.1〜1%、CH3CN:0.6〜5%、N2:25〜45%、H2:残り、
反応雰囲気温度:750〜980℃、
反応雰囲気圧力:2.7〜13.5kPa、
の条件(通常条件という)で蒸着形成されるが、これを、
反応ガス組成:容量%で、TiCl4:15〜20%、ZrCl4:0.5〜3%、CH3CN:5〜10%、CH4:0.5〜5%、N2:20〜35%、H2:残り、
反応雰囲気温度:1000〜1050℃、
反応雰囲気圧力:6〜20kPa、
の条件、すなわち上記の通常条件に比して、反応ガス組成では、TiCl4およびCH3CNを相対的に高く、かつ新たにCH4ガスを添加し、さらに雰囲気温度を相対的に高くした条件(反応ガス組成調整高温条件)で蒸着形成すると、この結果の反応ガス組成調整高温条件で形成した(Ti,Zr)CN層(以下、改質(Ti,Zr)CN層という)は、高温強度が一段と向上し、硬質被覆層の耐チッピング性向上に一段と寄与すること。
In view of the above, the inventors of the present invention have a cutting speed of 250 m / min. (Ti, Zr) CN, which is a second high-temperature strengthening layer of the hard coating layer, in order to develop a coated cutting chip in which no chipping occurs in the hard coating layer even when cutting is performed at the above high speed. Layer, that is, heat resistance due to the inclusion of the Zr component and relatively high high-temperature strength due to the inclusion of the Ti component, and as shown schematically in FIG. 1 (a), Ti, Zr, carbon, and nitrogen at the lattice points Paying attention to the (Ti, Zr) CN layer having a crystal structure of NaCl type face centered cubic crystal (where FIG. 1 (b) shows a state cut by the (011) plane) in which each of the constituent atoms consisting of As a result of research,
(A-1) (Ti, Zr) CN layer (hereinafter referred to as conventional (Ti, Zr)) which is a second high-temperature strengthened layer (hereinafter referred to as conventional high-temperature strengthened layer) constituting the hard coating layer of the conventional coated cutting tip CN layer) is, for example, a normal chemical vapor deposition apparatus,
Reaction gas composition: by volume%, TiCl 4: 1~5%, ZrCl 4: 0.1~1%, CH 3 CN: 0.6~5%, N 2: 25~45%, H 2: remainder,
Reaction atmosphere temperature: 750-980 ° C.
Reaction atmosphere pressure: 2.7 to 13.5 kPa,
It is formed by vapor deposition under the conditions (called normal conditions).
Reaction gas composition: by volume%, TiCl 4: 15~20%, ZrCl 4: 0.5~3%, CH 3 CN: 5~10%, CH 4: 0.5~5%, N 2: 20~ 35%, H 2 : remaining,
Reaction atmosphere temperature: 1000 to 1050 ° C.
Reaction atmosphere pressure: 6-20 kPa,
In other words, in the reaction gas composition, TiCl 4 and CH 3 CN are relatively high and CH 4 gas is newly added to further increase the ambient temperature. When vapor deposition is performed under (reactive gas composition adjustment high temperature conditions), the (Ti, Zr) CN layer (hereinafter referred to as a modified (Ti, Zr) CN layer) formed under the resultant reaction gas composition adjustment high temperature conditions has a high temperature strength. Will further improve and contribute to the chipping resistance improvement of the hard coating layer.
(a−2)上記の被覆切削チップの硬質被覆層の第2層を構成する従来(Ti,Zr)CN層と上記(a)の改質(Ti,Zr)CN層について、
電界放出型走査電子顕微鏡を用い、図2(a),(b)に概略説明図で例示される通り、表面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(001)面および(011)面の法線がなす傾斜角(図2(a)には前記結晶面のうち(001)面の傾斜角が0度、(011)面の傾斜角が45度の場合、同(b)には(001)面の傾斜角が45度、(011)面の傾斜角が0度の場合を示しているが、これらの角度を含めて前記結晶粒個々のすべての傾斜角)を測定し、この場合前記結晶粒は、上記の通り格子点にTi、Zr、炭素、および窒素からなる構成原子がそれぞれ存在するNaCl型面心立方晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(NはNaCl型面心立方晶の結晶構造上2以上の偶数となる)存在する構成原子共有格子点形態をΣN+1で現し、個々のΣN+1がΣN+1全体(ただし、頻度の関係で上限値を28とする)に占める分布割合を示す構成原子共有格子点分布グラフを作成した場合、いずれの(Ti,Zr)CN層もΣ3に最高ピークが存在するが、前記従来(Ti,Zr)CN層は、図4に例示される通り、Σ3の分布割合が30%以下の相対的に低い構成原子共有格子点分布グラフを示すのに対して、前記改質(Ti,Zr)CN層は、図3に例示される通り、Σ3の分布割合が60%以上のきわめて高い構成原子共有格子点分布グラフを示し、この高いΣ3の分布割合は、反応ガスを構成するTiCl4およびCH3CNと、CH4の含有量、さらに雰囲気反応温度によって変化すること。
(A-2) About the conventional (Ti, Zr) CN layer and the modified (Ti, Zr) CN layer of (a) that constitute the second layer of the hard coating layer of the coated cutting tip,
Using a field emission scanning electron microscope, as illustrated in the schematic explanatory diagrams in FIGS. 2A and 2B, each crystal grain existing within the measurement range of the surface polished surface is irradiated with an electron beam, The inclination angle formed by the normal lines of the (001) plane and the (011) plane, which are the crystal planes of the crystal grains, with respect to the normal line of the surface polished surface (FIG. 2A shows (001) of the crystal planes. When the tilt angle of the surface is 0 degree and the tilt angle of the (011) plane is 45 degrees, the tilt angle of the (001) plane is 45 degrees and the tilt angle of the (011) plane is 0 degree. In this case, the crystal grains are composed of Ti, Zr, carbon, and nitrogen at lattice points as described above. It has a NaCl-type face-centered cubic crystal structure in which each atom exists, and based on the measured tilt angle obtained as a result. A distribution of lattice points (constituent atom shared lattice points) in which each of the constituent atoms shares one constituent atom between the crystal grains at an interface between adjacent crystal grains is calculated, and the constituent atomic shared lattice points are calculated. A constitutive atom shared lattice point form in which there are N lattice points that do not share constituent atoms in between (N is an even number of 2 or more in the crystal structure of the NaCl type face centered cubic crystal) is represented by ΣN + 1, and each ΣN + 1 is represented by ΣN + 1 When a constituent atomic shared lattice point distribution graph showing the distribution ratio occupying the whole (however, the upper limit is set to 28 in relation to the frequency) is created, the highest peak exists in Σ3 in any (Ti, Zr) CN layer However, the conventional (Ti, Zr) CN layer, as illustrated in FIG. 4, shows a relatively low constituent atom shared lattice point distribution graph in which the distribution ratio of Σ3 is 30% or less. Quality (Ti, Zr) CN layer , As illustrated in FIG. 3, shows an extremely high atom sharing lattice point distribution graph of the distribution ratio is 60% or more of the [sum] 3, the distribution ratio of the high [sum] 3 is a TiCl 4 and CH 3 CN constituting the reaction gas , Change depending on CH 4 content and atmospheric reaction temperature.
(b−1)上記の被覆切削チップにおける硬質被覆層の第4層の高温硬質層を構成するAl2O3層の蒸着表面の平滑性は十分満足するものでなく、また、前記蒸着表面に、ウエットブラストにて、噴射研磨材として、水との合量に占める割合で15〜60質量%の酸化アルミニウム微粒(以下、Al2O3微粒で示す)を配合した研磨液を噴射して、研磨すると、前記Al2O3層は、準拠規格JIS・B0601−1994に基いた測定(以下の表面粗さは全てかかる準拠規格に基いた測定値を示す)で、Ra:0.3〜0.6μmの表面粗さを示すようになるが、この結果の前記Al2O3層の平滑化表面が、Ra:0.3〜0.6μm程度の表面粗さでは、硬質被覆層の耐チッピング性向上に顕著な効果は現れないこと。 (B-1) The smoothness of the vapor deposition surface of the Al 2 O 3 layer constituting the fourth high-temperature hard layer of the hard coating layer in the above-mentioned coated cutting tip is not sufficiently satisfied, and In the wet blasting, as a spraying abrasive, a polishing liquid containing 15 to 60% by mass of aluminum oxide fine particles (hereinafter referred to as Al 2 O 3 fine particles) in a ratio to the total amount with water is sprayed, When polished, the Al 2 O 3 layer is measured based on the compliant standard JIS B0601-1994 (the following surface roughness is all measured based on the compliant standard), Ra: 0.3-0 The surface roughness of 6 μm is shown, but when the smoothed surface of the Al 2 O 3 layer as a result has a surface roughness of Ra: 0.3 to 0.6 μm, chipping resistance of the hard coating layer There should be no noticeable effect on improving the performance.
(b−2)一方、図12に概略斜視図で例示される通り、硬質被覆層の第4層を構成するAl2O3層の切刃稜線部を含むすくい面および逃げ面の全面に、
(b−2−1)まず、下側層として、反応ガス組成を、体積%で、
TiCl4:0.2〜10%、
CO2:0.1〜10%、
Ar:5〜60%、
H2:残り、
とし、かつ、
反応雰囲気温度:800〜1100℃、
反応雰囲気圧力:4〜70kPa(30〜525torr)、
とした条件で、0.1〜3μmの平均層厚を有し、かつ、オージェ分光分析装置で測定して、Tiに対する酸素の割合が原子比で1.25〜1.90、即ち、
組成式:TiOW 、
で表わした場合、
W:原子比で1.25〜1.90、
を満足する酸化チタン層を形成し、
(b−2−2)ついで、上記酸化チタン層(下側層)の上に、上側層として、通常の条件、即ち、反応ガス組成を、体積%で、
TiCl4:0.2〜10%、
N2:4〜60%、
H2:残り、
とし、かつ、
反応雰囲気温度:800〜1100℃、
反応雰囲気圧力:4〜90kPa(30〜675torr)、
とした条件で、0.05〜2μmの平均層厚を有するTiN層を形成すると、
(b−2−3)上記TiN層(上側層)形成時に、上記下側層を構成する酸化チタン層の酸素が拡散してきて前記上側層(TiN層)が、窒酸化チタン層で構成されるようになるが、この場合上記上側層(前記窒酸化チタン層)形成後の上記下側層である酸化チタン層は、厚さ方向中央部をオージェ分光分析装置で測定して、酸素の割合がTiに対する原子比で1.2〜1.7、即ち、
組成式:TiOX 、
で表わした場合、
X:原子比で1.2〜1.7、
を満足する酸化チタン層となり、
(b−2−4)また、上記窒酸化チタン層で構成された上側層は、同じく厚さ方向中央部をオージェ分光分析装置で測定して、拡散酸素の割合が窒素(N)に対する原子比で0.01〜0.4、即ち、
組成式:TiN1-Y(O)Y、
で表わした場合(ただし、(O)は上記下側研磨材層からの拡散酸素を示す)、
Y:原子比で0.01〜0.4、
を満足する窒酸化チタン層となること。
(B-2) On the other hand, as illustrated in the schematic perspective view of FIG. 12, on the entire rake face and flank face including the cutting edge ridge line portion of the Al 2 O 3 layer constituting the fourth layer of the hard coating layer,
(B-2-1) First, as a lower layer, the reaction gas composition is in volume%,
TiCl 4 : 0.2 to 10%,
CO 2 : 0.1 to 10%,
Ar: 5 to 60%,
H 2 : Remaining
And
Reaction atmosphere temperature: 800-1100 ° C.
Reaction atmosphere pressure: 4 to 70 kPa (30 to 525 torr),
And having an average layer thickness of 0.1 to 3 μm and a ratio of oxygen to Ti of 1.25 to 1.90 as measured by an Auger spectrometer,
Composition formula: TiO W ,
In the case of
W: 1.25 to 1.90 in atomic ratio,
Forming a titanium oxide layer that satisfies
(B-2-2) Next, on the titanium oxide layer (lower layer), as an upper layer, the normal conditions, that is, the reaction gas composition in volume%,
TiCl 4 : 0.2 to 10%,
N 2 : 4-60%,
H 2 : Remaining
And
Reaction atmosphere temperature: 800-1100 ° C.
Reaction atmosphere pressure: 4 to 90 kPa (30 to 675 torr),
When a TiN layer having an average layer thickness of 0.05 to 2 μm is formed under the conditions described above,
(B-2-3) At the time of forming the TiN layer (upper layer), oxygen in the titanium oxide layer constituting the lower layer diffuses and the upper layer (TiN layer) is constituted by a titanium oxynitride layer. However, in this case, the titanium oxide layer, which is the lower layer after the formation of the upper layer (the titanium oxynitride layer), has a ratio of oxygen measured by an Auger spectrometer at the center in the thickness direction. 1.2-1.7 atomic ratio to Ti,
Composition formula: TiO x ,
In the case of
X: 1.2 to 1.7 in atomic ratio,
Titanium oxide layer that satisfies
(B-2-4) In addition, the upper layer composed of the titanium oxynitride layer was also measured at the center in the thickness direction with an Auger spectroscopic analyzer, and the ratio of diffused oxygen was the atomic ratio with respect to nitrogen (N). 0.01-0.4, i.e.
Composition formula: TiN 1-Y (O) Y ,
(Where (O) represents diffused oxygen from the lower abrasive layer),
Y: 0.01 to 0.4 in atomic ratio
Titanium nitride oxide layer that satisfies
(b−3)上記窒酸化チタン層(上側層)および酸化チタン層(下側層)を蒸着形成した状態で、
上記(b−1)におけると同じくウエットブラストにて、噴射研磨材として、水との合量に占める割合で15〜60質量%のAl2O3微粒を配合した研磨液を噴射すると、前記窒酸化チタン層および酸化チタン層は、前記Al2O3微粒によって粉砕微粒化し、窒酸化チタン微粒および酸化チタン微粒となって前記Al2O3微粒の共存下で研磨材として作用し、図13に概略斜視図で例示される通り、硬質被覆層の第4層を構成するAl2O3層の表面を研磨することになり、この結果研磨後の前記Al2O3層の表面は、Ra:0.2μm以下の表面粗さにまで平滑化されるようになり、前記Al2O3層の表面がRa:0.2μm以下の表面粗さに平滑化されると、耐チッピング性に顕著な向上効果が現れるようになること。
(B-3) With the titanium nitride oxide layer (upper layer) and the titanium oxide layer (lower layer) deposited and formed,
When a polishing liquid containing 15 to 60% by mass of Al 2 O 3 fine particles as a spraying abrasive in a ratio to the total amount of water is sprayed by wet blasting as in (b-1) above, the nitrogen The titanium oxide layer and the titanium oxide layer were pulverized and atomized by the Al 2 O 3 fine particles, and became titanium nitride oxide fine particles and titanium oxide fine particles, which acted as an abrasive in the presence of the Al 2 O 3 fine particles. As illustrated in the schematic perspective view, the surface of the Al 2 O 3 layer constituting the fourth layer of the hard coating layer is polished, and as a result, the surface of the Al 2 O 3 layer after polishing is Ra: When the surface roughness of the Al 2 O 3 layer is smoothed to a surface roughness of Ra: 0.2 μm or less, the chipping resistance is remarkable. The improvement effect comes to appear.
(c−1)一方、上記の硬質被覆層は、化学蒸着装置で、約1000℃前後の反応温度でチップ基体表面に蒸着され、常温に冷却されることにより形成されるが、常温への冷却過程で、前記チップ基体の熱膨張係数に比して前記硬質被覆層の熱膨張係数の方が相対的に大きいので、前記硬質被覆層には引張の応力が残留するようになり、この硬質被覆層中の残留引張応力は高速切削加工ではチッピング発生を促進するように作用すること。 (C-1) On the other hand, the hard coating layer is formed by being deposited on the surface of the chip substrate at a reaction temperature of about 1000 ° C. and cooled to room temperature by a chemical vapor deposition apparatus. In the process, since the thermal expansion coefficient of the hard coating layer is relatively larger than the thermal expansion coefficient of the chip substrate, tensile stress remains in the hard coating layer. Residual tensile stress in the layer acts to promote chipping in high-speed cutting.
(c−2)これに対して、単一基本形状マーク、例えば円形や三角形および四角形、さらにこれらの類似形などの単一基本形状マークを、上記の被覆切削チップのすくい面および逃げ面のいずれか、またはこれら両面の全面に亘って、レーザービームを用いて、例えば図5〜11に前記単一基本形状マークを円形とした場合の実施例が概略斜視図で示される通り、前記単一基本形状マークおよび前記単一基本形状マークの集合マークのいずれか、または両方が分散分布し(この場合、図5〜7に例示のものは硬質被覆層の層厚が相対的に薄く、図8,9および図10,11に例示されるに従って層厚が厚くなる場合の分布態様を示す)、かつ前記単一基本形状マークを、上記硬質被覆層の構成層のうちのいずれかの層が露出した掘下げ面とした条件(この場合の前記単一基本形状マークの露出面の掘下げ深さは前記硬質被覆層の層厚に対応して個々に調整されるが、残留応力の効率的低減を図るには層厚の5〜20%に相当する深さが目安とされる)でレーザービーム照射模様を形成すると、前記硬質被覆層の残留応力が著しく低減するようになり、この硬質被覆層残留応力低減模様の形成によって、特に高硬度鋼の高速切削加工に際しての硬質被覆層のチッピング発生が著しく抑制されるようになること。 (C-2) On the other hand, a single basic shape mark, for example, a single basic shape mark such as a circle, a triangle and a quadrangle, or a similar shape thereof, is used for either the rake face or the flank face of the coated cutting tip. As shown in a schematic perspective view of an embodiment in which the single basic shape mark is circular, for example, as shown in FIGS. Either or both of the shape mark and the collective mark of the single basic shape mark are distributed (in this case, the examples shown in FIGS. 5 to 7 have a relatively thin hard coating layer, 9 and FIGS. 10 and 11 show the distribution mode when the layer thickness increases, and any one of the constituent layers of the hard coating layer is exposed to the single basic shape mark. As a digging surface The conditions (in this case, the depth of the exposed surface of the single basic shape mark is individually adjusted according to the layer thickness of the hard coating layer, but in order to reduce the residual stress efficiently, the layer thickness When a laser beam irradiation pattern is formed at a depth corresponding to 5 to 20%), the residual stress of the hard coating layer is remarkably reduced. By the formation of the hard coating layer residual stress reduction pattern, In particular, the occurrence of chipping of the hard coating layer during high-speed cutting of high-hardness steel is significantly suppressed.
(d)上記の硬質被覆層の第2層を構成する改質(Ti,Zr)CN層は、(Ti,Zr)CN自体が具備する高温強度と耐熱性に加えて、上記従来(Ti,Zr)CN層に比して一段と高い高温強度を有し、かつ硬質被覆層の第4層を構成するAl2O3層の表面をRa:0.2μm以下の表面粗さに平滑化すると共に、硬質被覆層残留応力低減模様の形成によって、硬質被覆層の耐チッピング性が著しく向上するようになることから、かかる構成の硬質被覆層を蒸着形成してなる被覆切削チップは、切削速度が250m/min.以上の高速で、高硬度鋼の切削加工を行なっても、硬質被覆層にチッピングの発生はなくなり、長期に亘ってすぐれた耐摩耗性を発揮するようになること。
以上(a)〜(d)に示される研究結果を得たのである。
(D) The modified (Ti, Zr) CN layer constituting the second layer of the hard coating layer has the above-mentioned conventional (Ti, Zr) CN in addition to the high temperature strength and heat resistance of (Ti, Zr) CN itself. Zr) The surface of the Al 2 O 3 layer constituting the fourth layer of the hard coating layer is smoothed to a surface roughness of Ra: 0.2 μm or less, having a higher high-temperature strength than the CN layer. Since the chipping resistance of the hard coating layer is remarkably improved by forming the hard coating layer residual stress reduction pattern, the coated cutting tip formed by vapor-depositing the hard coating layer having such a configuration has a cutting speed of 250 m. / Min. Even when high-hardness steel is machined at high speeds as described above, chipping does not occur in the hard coating layer, and excellent wear resistance is exhibited over a long period of time.
The research results shown in (a) to (d) above were obtained.
この発明は、上記の研究結果に基づいてなされたものであって、WC基超硬合金またはTiCN基サーメットで構成されたチップ基体の切刃稜線部を含むすくい面および逃げ面の全面に、
(1)第1層として、いずれも化学蒸着形成された、TiN層およびTiCN層のうちのいずれか、または両層の積層からなり、かつ0.1〜1μmの平均層厚を有する第1密着接合層
(2)第2層として、化学蒸着形成され、
組成式:(Ti1−AZrA)C1−BNB(ただし、原子比で、Aは0.02〜0.15、Bは0.3〜0.55)、
を満足する(Ti,Zr)CN層からなり、かつ2.5〜15μmの平均層厚を有する高温強化層、
(3)第3層として、化学蒸着形成されたTiCO層およびTiCNO層のうちのいずれか、または両層の積層からなり、かつ0.1〜1μmの平均層厚を有する第2密着接合層、
(4)第4層として、化学蒸着形成されたAl2O3層からなり、かつ1〜15μmの平均層厚を有する高温硬質層、
以上(1)〜(4)で構成された硬質被覆層を形成してなる被覆切削チップにおいて、
(a)上記硬質被覆層のうちの第2層である高温強化層を、同じく化学蒸着形成され、組成式(Ti1−AZrA)C1−BNB(ただし、原子比で、Aは0.02〜0.15、Bは0.3〜0.55)、を満足し、さらに、2.5〜15μmの平均層厚を有するが、
電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(001)面および(011)面の法線がなす傾斜角を測定し、この場合前記結晶粒は、格子点にTi、Zr、炭素、および窒素からなる構成原子がそれぞれ存在するNaCl型面心立方晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(NはNaCl型面心立方晶の結晶構造上2以上の偶数となる)存在する構成原子共有格子点形態をΣN+1で現した場合、個々のΣN+1がΣN+1全体(ただし、頻度の関係で上限値を28とする)に占める分布割合を示す構成原子共有格子点分布グラフにおいて、Σ3に最高ピークが存在し、かつ前記Σ3のΣN+1全体に占める分布割合が60%以上である構成原子共有格子点分布グラフを示す改質(Ti,Zr)CN層からなる改質高温強化層、
で構成し、
(b)上記硬質被覆層の第4層の高温硬質層であるAl2O3層の全面に、
(b−1)下側層として、0.1〜3μmの平均層厚を有し、かつ、
組成式:TiOX 、
で表わした場合、厚さ方向中央部をオージェ分光分析装置で測定して、
X:原子比で1.2〜1.7、
を満足する酸化チタン層、
(b−2)上側層として、0.05〜2μmの平均層厚を有し、かつ、
組成式:TiN1-Y(O)Y、
で表わした場合(ただし、(O)は上記Ti酸化物層からの拡散酸素を示す)、同じく厚さ方向中央部をオージェ分光分析装置で測定して、
Y:原子比で0.01〜0.4、
を満足する窒酸化チタン層、
以上(b−1)および(b−2)で構成された研磨材層を蒸着形成した状態で、
(b−3)ウエットブラストにて、噴射研磨材として、水との合量に占める割合で15〜60質量%のAl2O3微粒を配合した研磨液を噴射し、
上記の下側層の粉砕化酸化チタン微粒、上側層の粉砕化窒酸化チタン微粒、および噴射研磨材としてのAl2O3微粒の共存下で、上記硬質被覆層の第4層を構成するAl2O3層の少なくとも切刃稜線部を含むすくい面部分および逃げ面部分を研磨して、これら研磨面の表面粗さをRa:0.2μm以下とし、
(c)さらに、上記研磨面のすくい面および逃げ面のいずれか、またはこれら両面の全面に亘って、単一基本形状マークおよび前記単一基本形状マークの集合マークのいずれか、または両方が分散分布してなると共に、前記単一基本形状マークを、上記硬質被覆層の構成層のうちのいずれかの層が露出した掘下げ面とした硬質被覆層残留応力低減模様をレーザービーム照射形成してなる、
高硬度鋼の高速切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する被覆切削チップに特徴を有するものである。
The present invention has been made based on the above research results, and the entire rake face and flank face including the cutting edge ridge line portion of the chip base composed of the WC-based cemented carbide or TiCN-based cermet,
(1) As the first layer, a first adhesion formed by chemical vapor deposition, either a TiN layer or a TiCN layer, or a laminate of both layers, and having an average layer thickness of 0.1 to 1 μm. The bonding layer (2) is formed by chemical vapor deposition as the second layer,
Composition formula: (Ti 1-A Zr A ) C 1-B N B (wherein A is 0.02 to 0.15 and B is 0.3 to 0.55 in atomic ratio),
A high-temperature strengthening layer comprising a (Ti, Zr) CN layer satisfying the following conditions and having an average layer thickness of 2.5 to 15 μm:
(3) As a third layer, a second adhesion bonding layer comprising either a TiCO layer and a TiCNO layer formed by chemical vapor deposition, or a laminate of both layers, and having an average layer thickness of 0.1 to 1 μm,
(4) As the fourth layer, a high-temperature hard layer comprising an Al 2 O 3 layer formed by chemical vapor deposition and having an average layer thickness of 1 to 15 μm,
In the coated cutting tip formed by forming the hard coating layer composed of (1) to (4) above,
( A ) A high-temperature strengthening layer, which is the second layer of the hard coating layer, is also formed by chemical vapor deposition, and has a composition formula (Ti 1-A Zr A ) C 1-B N B (however, in terms of atomic ratio, A Is 0.02 to 0.15, B is 0.3 to 0.55), and further has an average layer thickness of 2.5 to 15 μm.
Using a field emission scanning electron microscope, each crystal grain existing within the measurement range of the surface polished surface is irradiated with an electron beam, and the crystal plane of the crystal grain is normal to the surface polished surface ( The inclination angle formed by the normal lines of the (001) plane and the (011) plane is measured. In this case, the crystal grains are NaCl-type face-centered cubes each having a constituent atom composed of Ti, Zr, carbon, and nitrogen at lattice points. A lattice in which each of the constituent atoms shares one constituent atom between the crystal grains at the interface between adjacent crystal grains based on the measured tilt angle obtained as a result of the crystal structure The distribution of the points (constituent atom shared lattice points) is calculated, and there are N lattice points that do not share the constituent atoms between the constituent atom shared lattice points (N is an even number of 2 or more in the crystal structure of the NaCl type face centered cubic crystal). ΣN is the existing configuration of atomic atom lattice points. In the constituent atom sharing lattice distribution graph showing the distribution ratio of each ΣN + 1 in the entire ΣN + 1 (however, the upper limit value is 28 due to the frequency), the highest peak exists in Σ3, A modified high-temperature strengthened layer comprising a modified (Ti, Zr) CN layer showing a constituent atom shared lattice point distribution graph in which the distribution ratio of Σ3 to the entire ΣN + 1 is 60% or more;
Consisting of
(B) On the entire surface of the Al 2 O 3 layer which is the fourth high-temperature hard layer of the hard coating layer,
(B-1) The lower layer has an average layer thickness of 0.1 to 3 μm, and
Composition formula: TiO x ,
, Measure the central part in the thickness direction with an Auger spectrometer,
X: 1.2 to 1.7 in atomic ratio,
Satisfying titanium oxide layer,
(B-2) The upper layer has an average layer thickness of 0.05 to 2 μm, and
Composition formula: TiN 1-Y (O) Y ,
(However, (O) indicates the diffused oxygen from the Ti oxide layer), the central portion in the thickness direction is also measured with an Auger spectrometer,
Y: 0.01 to 0.4 in atomic ratio
Satisfying titanium oxynitride layer,
In a state where the abrasive layer constituted by (b-1) and (b-2) is formed by vapor deposition,
(B-3) In wet blasting, a polishing liquid containing 15 to 60% by mass of Al 2 O 3 fine particles as a spraying abrasive in a proportion of the total amount with water is sprayed.
Al constituting the fourth layer of the hard coating layer in the presence of the ground titanium oxide particles in the lower layer, the ground titanium nitride oxide particles in the upper layer, and the Al 2 O 3 particles as the spray abrasive. The rake face portion and the flank face portion including at least the cutting edge ridge line portion of the 2 O 3 layer are polished, and the surface roughness of these polished surfaces is set to Ra: 0.2 μm or less,
(C) Furthermore, either one or both of the rake face and the flank face of the polished surface, or the single basic shape mark and the collective mark of the single basic shape mark are distributed over the entire surface of both surfaces. A hard coating layer residual stress reduction pattern is formed by irradiating a laser beam with the single basic shape mark as a dug surface where any one of the constituent layers of the hard coating layer is exposed. ,
It is characterized by a coated cutting tip that exhibits excellent chipping resistance in a hard coating layer in high-speed cutting of high hardness steel.
以下に、この発明の被覆切削チップの硬質被覆層および研磨材層、さらにウエットブラストで用いられる研磨液のAl2O3微粒に関して、上記の通りに数値限定した理由を説明する。
(a)硬質被覆層
(a−1)第1密着接合層
第1密着接合層を構成するTiN層およびTiCN層は、チップ基体および第2層である改質(Ti,Zr)CN層のいずれにも強固に密着接合し、よって硬質被覆層のチップ基体に対する密着接合性向上に寄与する作用をもつが、その平均層厚が0.1μm未満では、所望のすぐれた密着接合性を確保することができず、一方密着接合性は1μmの平均層厚で十分に確保することができることから、その平均層厚を0.1〜1μmと定めた。
The reason why the hard coating layer and the abrasive layer of the coated cutting chip of the present invention and the Al 2 O 3 fine particles of the polishing liquid used in wet blasting are limited numerically as described above will be described below.
(A) Hard coating layer (a-1) First adhesion bonding layer The TiN layer and the TiCN layer constituting the first adhesion bonding layer are either a chip base or a modified (Ti, Zr) CN layer which is a second layer. In addition, it has the effect of improving the tight bondability of the hard coating layer to the chip substrate, but if the average layer thickness is less than 0.1 μm, the desired excellent close bondability should be ensured. On the other hand, since the tight adhesion can be sufficiently secured with an average layer thickness of 1 μm, the average layer thickness was determined to be 0.1 to 1 μm.
(a−2)改質高温強化層
硬質被覆層の第2層である改質高温強化層を構成する改質(Ti,Zr)CN層の構成原子共有格子点分布グラフにおけるΣ3の分布割合は、上記の通り反応ガスを構成するTiCl4およびCH3CNと、CH4の含有量、さらに雰囲気反応温度を調整することによって60%以上とすることができるが、この場合Σ3の分布割合が60%未満では、高硬度鋼の250m/min.以上の切削速度での高速切削加工で、硬質被覆層にチッピングが発生しない、すぐれた高温強度向上効果を確保することができないことから、Σ3の分布割合を60%以上と定めた。このように前記改質(Ti,Zr)CN層は、上記の通り(Ti,Zr)CN自体のもつ高温強度と耐熱性に加えて、さらに一段とすぐれた高温強度を有するようになるが、その平均層厚が2.5μm未満では所望のすぐれた高温強度向上効果を硬質被覆層に十分に具備せしめることができず、一方その平均層厚が15μmを越えると、偏摩耗の原因となる熱塑性変形が発生し易くなり、摩耗が加速するようになることから、その平均層厚を2.5〜15μmと定めた。
また、上記改質(Ti,Zr)CN層におけるZr成分には、上記の通り、耐熱性を向上させ、切削時の高温雰囲気での軟化を抑制する作用があるが、その含有割合を示すA値が、Tiとの合量に占める原子比で、0.02未満では所望の耐熱性向上効果が得られず、一方そのA値が、同じく0.15を越えると高温強度に低下傾向が現れるようになることから、Zrの含有割合を示すA値を、0.02〜0.15と定めた。
さらに、改質(Ti,Zr)CN層におけるC成分には層の硬さを向上させ、一方N成分には強度を向上させる作用があり、これら両成分を共存含有することにより高い硬さとすぐれた強度を具備するようになるものであり、したがって、層中のN成分の含有割合(B値)がC成分との合量に占める原子比で0.3未満では所望の強度を確保することができず、一方その含有割合(B値)が同じく0.55を越えると、相対的にC成分の含有割合が少なくなり過ぎて、所望の高硬度が得られなくなることから、B値を原子比で0.3〜0.55と定めた。
(A-2) Modified high-temperature strengthened layer The distribution ratio of Σ3 in the constituent atomic shared lattice distribution graph of the modified (Ti, Zr) CN layer constituting the modified high-temperature strengthened layer that is the second layer of the hard coating layer is As described above, the content of TiCl 4 and CH 3 CN constituting the reaction gas, the content of CH 4 , and the atmospheric reaction temperature can be adjusted to 60% or more. In this case, the distribution ratio of Σ3 is 60%. % Is less than 250 m / min. Since high-speed cutting at the above cutting speed does not cause chipping in the hard coating layer and an excellent effect of improving high-temperature strength cannot be ensured, the distribution ratio of Σ3 is set to 60% or more. As described above, the modified (Ti, Zr) CN layer has an even higher temperature strength in addition to the high temperature strength and heat resistance of (Ti, Zr) CN itself as described above. If the average layer thickness is less than 2.5 μm, the desired excellent high-temperature strength improvement effect cannot be sufficiently imparted to the hard coating layer, whereas if the average layer thickness exceeds 15 μm, the thermoplastic deformation causing uneven wear will occur. Therefore, the average layer thickness was determined to be 2.5 to 15 μm.
Further, as described above, the Zr component in the modified (Ti, Zr) CN layer has an effect of improving heat resistance and suppressing softening in a high-temperature atmosphere during cutting. If the value is an atomic ratio occupying the total amount with Ti, if less than 0.02, the desired heat resistance improvement effect cannot be obtained, while if the A value exceeds 0.15, the high temperature strength tends to decrease. Therefore, the A value indicating the content ratio of Zr was determined to be 0.02 to 0.15.
Furthermore, the C component in the modified (Ti, Zr) CN layer improves the hardness of the layer, while the N component has the effect of improving the strength. Therefore, if the content ratio (B value) of the N component in the layer is less than 0.3 in terms of the atomic ratio to the total amount with the C component, the desired strength should be ensured. On the other hand, if the content ratio (B value) similarly exceeds 0.55, the content ratio of the C component becomes relatively small and the desired high hardness cannot be obtained. The ratio was determined to be 0.3 to 0.55.
(a−3)第2密着接合層
第2密着接合層を構成するTiCO層およびTiCNO層は、第2層である改質(Ti,Zr)CN層および高温硬質層であるAl2O3層のいずれにも強固に密着接合し、よって硬質被覆層のチップ基体に対する密着接合性向上に寄与する作用をもつが、その平均層厚が0.1μm未満では、所望のすぐれた密着接合性を確保することができず、一方密着接合性は1μmの平均層厚で十分に確保することができることから、その平均層厚を0.1〜1μmと定めた。
(A-3) Second adhesion bonding layer The TiCO layer and the TiCNO layer constituting the second adhesion bonding layer are a modified (Ti, Zr) CN layer as a second layer and an Al 2 O 3 layer as a high-temperature hard layer. Both of them have a strong adhesive bond, and thus contribute to improving the tight bondability of the hard coating layer to the chip substrate. However, if the average layer thickness is less than 0.1 μm, the desired excellent close bondability is ensured. On the other hand, since the tight adhesion can be sufficiently secured with an average layer thickness of 1 μm, the average layer thickness was determined to be 0.1 to 1 μm.
(a−4)高温硬質層
高温硬質層を構成するAl2O3層は、すぐれた高温硬さと耐熱性を有し、硬質被覆層の耐摩耗性向上に寄与するが、その平均層厚が1μm未満では、硬質被覆層に十分な耐摩耗性を発揮せしめることができず、一方その平均層厚が15μmを越えて厚くなりすぎると、チッピングが発生し易くなることから、その平均層厚を1〜15μmと定めた。
(A-4) High-temperature hard layer The Al 2 O 3 layer constituting the high-temperature hard layer has excellent high-temperature hardness and heat resistance, and contributes to the improvement of the wear resistance of the hard coating layer. If the thickness is less than 1 μm, the hard coating layer cannot exhibit sufficient wear resistance. On the other hand, if the average layer thickness exceeds 15 μm, the chipping tends to occur. It was determined to be 1 to 15 μm.
(b)研磨材層
上側層を構成する窒酸化チタン層は、上記の通り、まず、酸素の割合をTiに対する原子比で1.25〜1.90(W値)とした酸化チタン層を形成し、ついで、前記酸化チタン層の上に通常の条件でTiN層を蒸着することにより形成されるものであり、したがって前記TiN層形成時における前記酸化チタン層からの酸素の拡散が不可欠となるが、前記酸化チタン層のW値が1.25未満であると、前記TiN層への酸素の拡散反応が急激に低下し、上側層における拡散酸素の割合(Y値)を原子比で0.01以上にすることができず、一方同W値が1.90を越えると、前記上側層における拡散酸素の割合(Y値)が原子比で0.40を越えて多くなってしまうことから、W値を1.25〜1.90と定めたものであり、この場合上側層形成後の下側層(酸化チタン層)における酸素の割合(X値)は原子比で1.2〜1.7の範囲内の値をとるようになる、言い換えれば上側層形成後の下側層のX値が1.2〜1.7を満足する場合に、前記上側層のY値は0.01〜0.40を満足するものとなる。
また、この場合、下側層のX値および上側層のY値をそれぞれ1.2〜1.7および0.01〜0.40と定めたのは、前記X値およびY値が前記の値をとった場合に、これら研磨材層のウエットブラスト時における粉砕微粒化が好適な状態で行なわれ、すぐれた研磨機能を十分に発揮することが多くの試験結果から得られ、これらの試験結果に基いて定めたものである。したがって、前記X値およびY値がそれぞれ1.2〜1.7および0.01〜0.40の範囲から外れると、前記研磨材層のウエットブラスト時における粉砕微粒化が満足に行なわれず、すぐれた研磨機能を期待することができない。
さらに、上側層および下側層の平均層厚を、それぞれ0.05〜2μmおよび0.1〜3μmとしたのは、その平均層厚が0.05μm未満および0.1μm未満では、ウエットブラスト時における下側層の粉砕化酸化チタン微粒、上側層の粉砕化窒酸化チタン微粒の割合が少な過ぎて、研磨機能を十分に発揮することができず、一方、その平均層厚がそれぞれ2μmおよび3μmを越えても、研磨機能が急激に低下するようになり、いずれの場合もAl2O3層の表面をRa:0.2μm以下の表面粗さに研磨することができなくなるという理由にもとづくものである。
(B) Abrasive material layer As described above, the titanium oxynitride layer constituting the upper layer first forms a titanium oxide layer in which the oxygen ratio is 1.25 to 1.90 (W value) in terms of atomic ratio to Ti. Then, it is formed by depositing a TiN layer on the titanium oxide layer under normal conditions. Therefore, diffusion of oxygen from the titanium oxide layer during the formation of the TiN layer is indispensable. When the W value of the titanium oxide layer is less than 1.25, the diffusion reaction of oxygen into the TiN layer is drastically reduced, and the ratio of diffused oxygen (Y value) in the upper layer is 0.01 by atomic ratio. On the other hand, if the same W value exceeds 1.90, the ratio of diffused oxygen (Y value) in the upper layer will increase beyond 0.40 in terms of atomic ratio. The value is defined as 1.25 to 1.90 In this case, the oxygen ratio (X value) in the lower layer (titanium oxide layer) after forming the upper layer takes a value in the range of 1.2 to 1.7 in terms of atomic ratio, in other words, the upper layer. When the X value of the lower layer after formation satisfies 1.2 to 1.7, the Y value of the upper layer satisfies 0.01 to 0.40.
In this case, the X value of the lower layer and the Y value of the upper layer are set to 1.2 to 1.7 and 0.01 to 0.40, respectively. It is obtained from many test results that these abrasive layers are pulverized and atomized in a suitable state at the time of wet blasting, and exhibit an excellent polishing function sufficiently. Based on this. Therefore, if the X value and Y value are out of the range of 1.2 to 1.7 and 0.01 to 0.40, respectively, the pulverization and atomization at the time of wet blasting of the abrasive layer is not satisfactorily performed, which is excellent. The polishing function cannot be expected.
Further, the average layer thicknesses of the upper layer and the lower layer were set to 0.05 to 2 μm and 0.1 to 3 μm, respectively, when the average layer thickness was less than 0.05 μm and less than 0.1 μm. The ratio of the pulverized titanium oxide fine particles in the lower layer and the fine pulverized titanium oxynitride fine particles in the upper layer is too small to perform the polishing function sufficiently, while the average layer thickness is 2 μm and 3 μm, respectively. Even if it exceeds the range, the polishing function will rapidly decrease, and in any case, the surface of the Al 2 O 3 layer cannot be polished to a surface roughness of Ra: 0.2 μm or less. It is.
(c)研磨液のAl2O3微粒の割合
研磨液のAl2O3微粒には、ウエットブラスト時に研磨材層を構成する下側層の粉砕化酸化チタン微粒および上側層の粉砕化窒酸化チタン微粒と共存した状態で、Al2O3層の表面を研磨する作用があるが、その割合が水との合量に占める割合で15質量%未満でも、また60質量%を越えても研磨機能が急激に低下するようになることから、その割合を15〜60質量%と定めた。
(C) The Al 2 O 3 fine of Al 2 O 3 fine fraction polishing liquid of the polishing liquid, pulverization oxynitride of pulverized titanium oxide fine and the upper layer of the lower layer of the abrasive layer during wet blasting Although it acts to polish the surface of the Al 2 O 3 layer in the state of coexisting with the titanium fine particles, it is polished even if the ratio is less than 15% by mass or more than 60% by mass with respect to the total amount with water. Since the function suddenly decreases, the ratio is determined to be 15 to 60% by mass.
この発明の被覆切削チップは、硬質被覆層の第2層を構成する改質(Ti,Zr)CN層が、(Ti,Zr)CN層自体が具備する高温強度と耐熱性に加えて、上記従来(Ti,Zr)CN層に比して一段と高い高温強度を有し、さらに硬質被覆層の第4層を構成するAl2O3層の少なくとも切刃稜線部を含むすくい面部分および逃げ面部分が、Ra:0.2μm以下の表面粗さに研磨されると共に、前記研磨面のすくい面および逃げ面のいずれか、またはこれら両面の全面に亘って、レーザービーム照射形成された硬質被覆層残留応力低減模様によって、硬質被覆層の耐チッピング性が著しく向上し、特に合金工具鋼や軸受け鋼の焼入れ材などの高硬度鋼の切削加工を、切削速度が250m/min.以上の高速で行うのに用いた場合にも、硬質被覆層にチッピングが発生することなく、長期に亘ってすぐれた切削性能を発揮し、使用寿命の一層の延命化を可能とするものである。 In the coated cutting tip of the present invention, the modified (Ti, Zr) CN layer constituting the second layer of the hard coating layer has the above-described high temperature strength and heat resistance provided by the (Ti, Zr) CN layer itself. Rake face part and flank face including at least cutting edge ridge line part of Al 2 O 3 layer which has higher high temperature strength than conventional (Ti, Zr) CN layer and further constitutes fourth layer of hard coating layer The hard coating layer in which the portion is polished to a surface roughness of Ra: 0.2 μm or less and is irradiated with a laser beam over one of the rake face and the flank face of the polished face, or the entire surface of both faces. The residual stress reduction pattern significantly improves the chipping resistance of the hard coating layer, and particularly when cutting hardened steel such as a hardened material of alloy tool steel or bearing steel, the cutting speed is 250 m / min. Even when used for the above high speed, chipping does not occur in the hard coating layer, it exhibits excellent cutting performance over a long period of time, and it is possible to further extend the service life. .
つぎに、この発明の被覆切削チップを実施例により具体的に説明する。 Next, the coated cutting tip of the present invention will be specifically described with reference to examples.
原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr3C2粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で30時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO・SNMG120408に規定するスローアウエイチップ形状をもったWC基超硬合金製のチップ基体A〜Fをそれぞれ製造した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders are blended into the composition shown in Table 1, added with wax, ball mill mixed in acetone for 30 hours, dried under reduced pressure, and then pressed into a green compact of a predetermined shape at a pressure of 98 MPa. The green compact was vacuum sintered at a predetermined temperature in the range of 1370 to 1470 ° C. for 1 hour in a vacuum of 5 Pa. After sintering, the cutting edge portion was R: 0.07 mm honing By processing, chip bases A to F made of a WC-based cemented carbide having a throwaway tip shape defined in ISO · SNMG120408 were manufactured.
また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで30時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.07mmのホーニング加工を施すことによりISO規格・SNMG120412のチップ形状をもったTiCN基サーメット製のチップ基体a〜fを形成した。 In addition, as raw material powders, TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder, all having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder were prepared, and these raw material powders were blended into the blending composition shown in Table 2, wet mixed by a ball mill for 30 hours, dried, and then pressed into a compact at a pressure of 98 MPa. The green compact was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour, and after the sintering, the cutting edge portion was subjected to a honing process of R: 0.07 mm. TiCN-based cermet chip bases a to f having a standard / SNMG12041 chip shape were formed.
(a)つぎに、これらのチップ基体A〜Fおよびチップ基体a〜fの表面に、通常の化学蒸着装置を用い、まず、TiN層およびTiCN層のいずれか、または両方の積層からなる第1密着接合層を表3に示される条件で、表7に示される目標層厚で蒸着形成した後、改質(Ti,Zr)CN層(改質高温強化層)を表4に示される条件で、表7に示される目標層厚で蒸着形成し、ついで、TiCO層およびTiCNO層のいずれか、または両方の積層からなる第2密着接合層を表3に示される条件で、表7に示される目標層厚で蒸着形成し、引き続いてAl2O3層(高温硬質層)を同じく表3に示される条件で、表7に示される目標層厚で蒸着形成し、
(b)ついで、上記硬質被覆層を構成するAl2O3層の全面に、研磨材層の下側層形成用酸化チタン層[TiOW(1)〜(6)のいずれか]を表5に示される条件で形成した後、上側層形成用窒化チタン層(TiN層)を同じく表5に示される条件で、表8に示される目標層厚で蒸着形成して、同じく表8に示される組成、すなわち厚さ方向中央部をオージェ分光分析装置で測定して、それぞれ表8に示されるX値およびY値の下側層および上側層からなる研磨材層を形成し(図12参照)、
(c)引き続いて、上記の下側層および上側層からなる研磨材層形成の被覆切削チップに、表6に示されるブラスト条件で、かつ表8に示される組み合わせでウエットブラストを施して、工具取り付け孔周辺部に研磨材層を存在させた状態で、前記Al2O3層(高温硬質層)の切刃稜線部を含むすくい面部分および逃げ面部分を、同じく表8に示される表面粗さに研磨し(図13参照)、
(d)さらに、レーザービーム照射装置を用い、上記表面研磨の硬質被覆層に、
レーザービーム出力:10W、
単一基本形状マークの形状:直径が0.8mmの円形、
硬質被覆層残留応力低減模様:図5〜11に示される実施模様のうちのいずれかを表8に示される組み合わせで適用、
単一基本形状マークの露出面の掘下げ深さ:表8に硬質被覆層の全目標層厚に対する割合で示される深さ、
の条件で硬質被覆層残留応力低減模様を形成することにより本発明被覆切削チップ1〜13をそれぞれ製造した。
(A) Next, a normal chemical vapor deposition apparatus is used on the surfaces of the chip bases A to F and the chip bases a to f, and first, a first layer composed of either a TiN layer or a TiCN layer, or a laminate of both. After the adhesion bonding layer is formed by vapor deposition with the target layer thickness shown in Table 7 under the conditions shown in Table 3, the modified (Ti, Zr) CN layer (modified high-temperature strengthened layer) is formed under the conditions shown in Table 4. The second adhesive bonding layer formed by vapor deposition with a target layer thickness shown in Table 7 and then a laminate of either or both of the TiCO layer and the TiCNO layer is shown in Table 7 under the conditions shown in Table 3. Vapor deposition with a target layer thickness, followed by vapor deposition with the target layer thickness shown in Table 7 under the same conditions as shown in Table 3, Al 2 O 3 layer (high temperature hard layer),
(B) Next, a lower layer forming titanium oxide layer [any one of TiO W (1) to (6)] is formed on the entire surface of the Al 2 O 3 layer constituting the hard coating layer. Then, an upper layer forming titanium nitride layer (TiN layer) is vapor-deposited with the target layer thickness shown in Table 8 under the conditions shown in Table 5 and also shown in Table 8. The composition, that is, the central portion in the thickness direction is measured with an Auger spectroscopic analyzer, and an abrasive layer composed of a lower layer and an upper layer of the X value and Y value shown in Table 8 is formed (see FIG. 12).
(C) Subsequently, the coated cutting chip formed with the lower layer and the upper layer is subjected to wet blasting under the blasting conditions shown in Table 6 and in the combinations shown in Table 8, In the state where the abrasive layer is present around the mounting hole, the rake face portion and the flank face portion including the cutting edge ridge line portion of the Al 2 O 3 layer (high temperature hard layer) are also shown in Table 8 (See Fig. 13)
(D) Furthermore, using a laser beam irradiation device, the hard coating layer for surface polishing,
Laser beam output: 10W
The shape of a single basic shape mark: a circle with a diameter of 0.8 mm,
Hard coating layer residual stress reduction pattern: any one of the implementation patterns shown in FIGS.
Depth of digging on the exposed surface of a single basic shape mark: the depth shown in Table 8 as a percentage of the total target layer thickness of the hard coating layer,
The coated cutting chips 1 to 13 of the present invention were manufactured by forming a hard coating layer residual stress reduction pattern under the conditions described above.
(a)また、比較の目的で、表9に示される通り、硬質被覆層の第2層を、表4に示される条件で、かつ表9に示される目標層厚で蒸着形成した従来(Ti,Zr)CN層とし、第1密着接合層および第2密着接合層、さらにAl2O3層(高温硬質層)は、上記本発明被覆切削チップ1〜13のそれぞれと同じ条件で蒸着形成し(図14参照)、
(b)引き続いて、上記研磨材層の形成を行なうことなく、表6に示されるブラスト条件で、かつ表9に示される組み合わせでウエットブラストを施して、前記Al2O3層(高温硬質層)の切刃稜線部を含むすくい面および逃げ面を、同じく表9に示される表面粗さに研磨することにより従来被覆切削チップ1〜13をそれぞれ製造した。
(A) For comparison purposes, as shown in Table 9, the second hard coating layer was formed by vapor deposition under the conditions shown in Table 4 and with the target layer thickness shown in Table 9 (Ti , Zr) CN layer, the first and second adhesive bonding layers, and the Al 2 O 3 layer (high-temperature hard layer) are formed by vapor deposition under the same conditions as those of the coated cutting chips 1 to 13 of the present invention. (See FIG. 14),
(B) Subsequently, the Al 2 O 3 layer (high-temperature hard layer) was formed by performing wet blasting under the blasting conditions shown in Table 6 and the combinations shown in Table 9 without forming the abrasive layer. The conventional coated cutting chips 1 to 13 were manufactured by polishing the rake face and the flank face including the cutting edge ridge line portion of (1) to the surface roughness similarly shown in Table 9.
ついで、上記の本発明被覆切削チップと従来被覆切削チップの硬質被覆層を構成する改質(Ti,Zr)CN層および従来(Ti,Zr)CN層について、電界放出型走査電子顕微鏡を用いて、構成原子共有格子点分布グラフをそれぞれ作成した。
すなわち、上記構成原子共有格子点分布グラフは、上記の改質(Ti,Zr)CN層および従来(Ti,Zr)CN層の表面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、前記表面研磨面の測定範囲内に存在する結晶粒個々に照射して、電子後方散乱回折像装置を用い、30×50μmの領域を0.1μm/stepの間隔で、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(001)面および(011)面の法線がなす傾斜角を測定し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(NはNaCl型面心立方晶の結晶構造上2以上の偶数となる)存在する構成原子共有格子点形態をΣN+1で現した場合、個々のΣN+1がΣN+1全体(ただし、頻度の関係で上限値を28とする)に占める分布割合を求めることにより作成した。
Next, a modified (Ti, Zr) CN layer and a conventional (Ti, Zr) CN layer constituting the hard coating layer of the present invention-coated cutting tip and the conventional coated cutting tip are used by using a field emission scanning electron microscope. Each component atom shared lattice distribution graph was created.
That is, the constituent atomic shared lattice point distribution graph shows a mirror of a field emission scanning electron microscope in a state where the surfaces of the modified (Ti, Zr) CN layer and the conventional (Ti, Zr) CN layer are polished surfaces. An electron beam with an acceleration voltage of 15 kV at an incident angle of 70 degrees is applied to the polished surface with an irradiation current of 1 nA to each crystal grain existing within the measurement range of the surface polished surface. Using a backscatter diffraction image apparatus, a (001) plane and a (011) plane that are crystal planes of the crystal grains with respect to the normal line of the surface-polished surface in a 30 × 50 μm region at an interval of 0.1 μm / step The inclination angle formed by the normal of the surface is measured, and based on the measurement inclination angle obtained as a result, each of the constituent atoms is one constituent atom between the crystal grains at the interface between adjacent crystal grains. Shared lattice points (constituent atom shared lattice points The constituent atomic shared lattice in which there are N lattice points that do not share constituent atoms between the constituent atomic shared lattice points (N is an even number of 2 or more in the crystal structure of the NaCl type face centered cubic crystal) When the point form is expressed as ΣN + 1, it is created by calculating the distribution ratio of each ΣN + 1 to the entire ΣN + 1 (however, the upper limit value is 28 due to the frequency).
この結果得られた各種の改質(Ti,Zr)CN層および従来(Ti,Zr)CNの構成原子共有格子点分布グラフにおいて、ΣN+1全体(Nは2〜28の範囲内のすべての偶数)に占めるΣ3の分布割合をそれぞれ表7,9にそれぞれ示した。 As a result, in the constituent atomic shared lattice distribution graph of various modified (Ti, Zr) CN layers and conventional (Ti, Zr) CN obtained as a result, the entire ΣN + 1 (N is an even number in the range of 2 to 28) Tables 7 and 9 show the distribution ratio of Σ3 in the table.
上記の各種の構成原子共有格子点分布グラフにおいて、表7,9にそれぞれ示される通り、本発明被覆切削チップの改質(Ti,Zr)CN層は、いずれもΣ3の占める分布割合が60%以上である構成原子共有格子点分布グラフを示すのに対して、従来被覆切削チップの従来(Ti,Zr)CN層は、いずれもΣ3の分布割合が30%以下の構成原子共有格子点分布グラフを示すものであった。
なお、図3は、本発明被覆切削チップ1の改質(Ti,Zr)CN層の構成原子共有格子点分布グラフ、図4は、従来被覆切削チップ1の従来(Ti,Zr)CN層の構成原子共有格子点分布グラフをそれぞれ示すものである。
In the above-mentioned various constituent atomic share lattice point distribution graphs, as shown in Tables 7 and 9, respectively, the modified (Ti, Zr) CN layer of the coated cutting tip of the present invention has a distribution ratio of Σ3 of 60%. In contrast to the constituent atom shared lattice point distribution graph described above, the conventional (Ti, Zr) CN layer of the conventional coated cutting tip has a Σ3 distribution ratio of 30% or less in the constituent atomic shared lattice point distribution graph. Was shown.
FIG. 3 is a graph showing the distribution of constituent atomic shared lattice points of the modified (Ti, Zr) CN layer of the coated cutting tip 1 of the present invention, and FIG. 4 is a graph of the conventional (Ti, Zr) CN layer of the conventional coated cutting tip 1. The constituent atom shared lattice point distribution graphs are respectively shown.
さらに、上記の本発明被覆切削チップ1〜13および従来被覆切削チップ1〜13について、これの硬質被覆層の構成層を電子線マイクロアナライザー(EPMA)およびオージェ分光分析装置を用いて観察(層の縦断面を観察)したところ、前者および後者とも目標組成と実質的に同じ組成を有することが確認された。また、これらの被覆切削チップの硬質被覆層の構成層の厚さを、走査型電子顕微鏡を用いて測定(同じく縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。 Further, for the above-described coated cutting chips 1 to 13 of the present invention and the conventional coated cutting chips 1 to 13, the constituent layers of the hard coating layer were observed using an electron beam microanalyzer (EPMA) and an Auger spectroscopic analysis device (layer When the longitudinal section was observed), it was confirmed that both the former and the latter had substantially the same composition as the target composition. Moreover, when the thickness of the constituent layer of the hard coating layer of these coated cutting tips was measured using a scanning electron microscope (same longitudinal section measurement), the average layer thickness (which is substantially the same as the target layer thickness) Average value of 5-point measurement) was shown.
つぎに、上記の本発明被覆切削チップ1〜13および従来被覆切削チップ1〜13の各種の被覆切削チップについて、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
被削材:JIS・SKD11の焼入れ材(硬さHRC:55)丸棒、
切削速度:280m/min、
切り込み:0.7mm、
送り:0.12mm/rev、
の条件(切削条件Aという)での合金工具鋼の湿式連続高速切削試験(通常の切削速度は130m/min)、
被削材:JIS・SUJ2の焼入れ材(硬さHRC:56)丸棒、
切削速度:260m/min、
切り込み:0.4mm、
送り:0.13mm/rev、
の条件(切削条件Bという)での軸受け鋼の湿式連続高速切削試験(通常の切削速度は120m/min)、さらに、
被削材:JIS・SKD61の焼入れ材(硬さHRC:54)丸棒、
切削速度:270m/min、
切り込み:0.55mm、
送り:0.12mm/rev、
の条件(切削条件Cという)での合金工具鋼の湿式連続高速切削試験(通常の切削速度は140m/min)を行い、いずれの切削試験でも切刃の逃げ面摩耗幅が、一般に切削工具の使用寿命の目安とされている0.3mmに至るまでの切削時間を測定した。この測定結果を表10に示した。
Next, for the various coated cutting chips of the present invention coated cutting chips 1 to 13 and the conventional coated cutting chips 1 to 13 described above, all of them are screwed to the tip of the tool steel tool with a fixing jig,
Workpiece: hardened material of JIS · SKD11 (hardness H R C: 55) round bar,
Cutting speed: 280 m / min,
Cutting depth: 0.7mm,
Feed: 0.12 mm / rev,
Wet continuous high-speed cutting test (normal cutting speed is 130 m / min) of alloy tool steel under the following conditions (referred to as cutting condition A),
Workpiece: hardened material of JIS · SUJ2 (hardness H R C: 56) round bar,
Cutting speed: 260 m / min,
Cutting depth: 0.4mm,
Feed: 0.13mm / rev,
Wet continuous high-speed cutting test (normal cutting speed is 120 m / min) of bearing steel under the conditions (referred to as cutting condition B),
Workpiece: hardened material of JIS · SKD61 (hardness H R C: 54) round bar,
Cutting speed: 270 m / min,
Cutting depth: 0.55 mm,
Feed: 0.12 mm / rev,
Wet continuous high-speed cutting test (normal cutting speed is 140 m / min) of alloy tool steel under the above conditions (referred to as cutting condition C), and the flank wear width of the cutting edge is generally determined by the cutting tool. The cutting time until reaching 0.3 mm, which is regarded as a standard for the service life, was measured. The measurement results are shown in Table 10.
表7〜10に示される結果から、本発明被覆切削チップ1〜13は、いずれも硬質被覆層の第2層が、Σ3の分布割合が60%以上の構成原子共有格子点分布グラフを示す改質(Ti,Zr)CN層で構成され、前記改質(Ti,Zr)CN層が一段とすぐれた高温強度を有し、さらに硬質被覆層の第4層を構成するAl2O3層の少なくとも切刃稜線部を含むすくい面部分および逃げ面部分が、Ra:0.2μm以下の表面粗さに研磨されると共に、前記研磨面全体に亘ってレーザービーム照射形成された硬質被覆層残留応力低減模様によって、前記硬質被覆層における残留引張応力が著しく低減されることと相俟って、各種高硬度鋼の切削加工を切削速度が250m/min以上の高速で行なっても、硬質被覆層にチッピングの発生なく、長期に亘ってすぐれた切削性能を発揮するのに対して、硬質被覆層の第2層が、Σ3の分布割合が30%以下の構成原子共有格子点分布グラフを示す従来(Ti,Zr)CN層で構成され、硬質被覆層の第4層を構成するAl2O3層の表面粗さが、Ra:0.3〜0.6μmを示し、かつ、硬質被覆層残留応力低減模様の形成がない従来被覆切削チップ1〜13においては、いずれも250m/min以上の高速での高硬度鋼の切削加工では、前記硬質被覆層にチッピングが発生し、比較的短時間で使用寿命に至ることが明らかである。 From the results shown in Tables 7 to 10, all of the coated cutting tips 1 to 13 of the present invention are modified to show the constituent atomic shared lattice point distribution graph in which the second hard coating layer has a Σ3 distribution ratio of 60% or more. The modified (Ti, Zr) CN layer has a high temperature strength which is superior to that of the modified (Ti, Zr) CN layer, and at least an Al 2 O 3 layer constituting the fourth layer of the hard coating layer. The rake face portion and the flank face portion including the cutting edge ridge line portion are polished to a surface roughness of Ra: 0.2 μm or less, and the hard coating layer residual stress is reduced by laser beam irradiation over the entire polished surface. Combined with the fact that the residual tensile stress in the hard coating layer is remarkably reduced depending on the pattern, even when various high hardness steels are cut at a high cutting speed of 250 m / min or more, chipping is performed on the hard coating layer. Without the occurrence of Conventional (Ti, Zr) CN in which the second layer of the hard coating layer exhibits a constituent atomic shared lattice point distribution graph in which the distribution ratio of Σ3 is 30% or less, while exhibiting excellent cutting performance over the period The surface roughness of the Al 2 O 3 layer that is composed of the layers and constitutes the fourth layer of the hard coating layer is Ra: 0.3 to 0.6 μm, and the hard coating layer residual stress reduction pattern is formed. None of the conventional coated cutting tips 1 to 13 may cause chipping in the hard coating layer in the cutting of high-hardness steel at a high speed of 250 m / min or more, leading to a service life in a relatively short time. it is obvious.
上述のように、この発明の被覆切削チップは、各種の一般鋼や普通鋳鉄などの高速切削加工は勿論のこと、特に高硬度鋼の切削加工を切削速度が250m/min以上の高速で行う場合にもすぐれた耐チッピング性を示し、長期に亘ってすぐれた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。 As described above, the coated cutting tip of the present invention is not only used for high-speed cutting of various general steels and ordinary cast iron, but particularly when high-hardness steel is cut at a high cutting speed of 250 m / min or higher. Excellent chipping resistance and excellent cutting performance over a long period of time, fully satisfying high performance of cutting equipment, labor saving and energy saving of cutting, and cost reduction It can respond.
Claims (1)
(1)第1層として、化学蒸着形成された窒化チタン層および炭窒化チタン層のうちのいずれか、または両層の積層からなり、かつ0.1〜1μmの平均層厚を有する第1密着接合層、
(2)第2層として、化学蒸着形成され、
組成式:(Ti1−AZrA)C1−BNB(ただし、原子比で、Aは0.02〜0.15、Bは0.3〜0.55)、
を満足するTiとZrの複合炭窒化物層からなり、かつ2.5〜15μmの平均層厚を有する高温強化層、
(3)第3層として、化学蒸着形成された炭酸化チタン層および炭窒酸化チタン層のうちのいずれか、または両層の積層からなり、かつ0.1〜1μmの平均層厚を有する第2密着接合層、
(4)第4層として、化学蒸着形成された酸化アルミニウム層からなり、かつ1〜15μmの平均層厚を有する高温硬質層、
以上(1)〜(4)で構成された硬質被覆層を形成してなる表面被覆サーメット製切削工具において、
(a)上記硬質被覆層のうちの第2層である高温強化層を、同じく化学蒸着形成され、組成式(Ti1−AZrA)C1−BNB(ただし、原子比で、Aは0.02〜0.15、Bは0.3〜0.55)、を満足し、さらに、2.5〜15μmの平均層厚を有するが、
電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(001)面および(011)面の法線がなす傾斜角を測定し、この場合前記結晶粒は、格子点にTi、Zr、炭素、および窒素からなる構成原子がそれぞれ存在するNaCl型面心立方晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(NはNaCl型面心立方晶の結晶構造上2以上の偶数となる)存在する構成原子共有格子点形態をΣN+1で現した場合、個々のΣN+1がΣN+1全体(ただし、頻度の関係で上限値を28とする)に占める分布割合を示す構成原子共有格子点分布グラフにおいて、Σ3に最高ピークが存在し、かつ前記Σ3のΣN+1全体に占める分布割合が60%以上である構成原子共有格子点分布グラフを示すTiとZrの複合炭窒化物層からなる改質高温強化層、
で構成し、
(b)上記硬質被覆層の第4層である酸化アルミニウム層の全面に、
(b−1)下側層として、0.1〜3μmの平均層厚を有し、かつ、
組成式:TiOX 、
で表わした場合、厚さ方向中央部をオージェ分光分析装置で測定して、原子比で、
X:1.2〜1.7、
を満足する酸化チタン層、
(b−2)上側層として、0.05〜2μmの平均層厚を有し、かつ、
組成式:TiN1-Y(O)Y、
で表わした場合(ただし、(O)は上記酸化チタン層からの拡散酸素を示す)、同じく厚さ方向中央部をオージェ分光分析装置で測定して、同じく原子比で、
Y:0.01〜0.4、
を満足する窒酸化チタン層、
以上(b−1)および(b−2)で構成された研磨材層を蒸着形成した状態で、
(b−3)ウエットブラストにて、噴射研磨材として、水との合量に占める割合で15〜60質量%の酸化アルミニウム微粒を配合した研磨液を噴射し、
上記の下側層の粉砕化酸化チタン微粒、上側層の粉砕化窒酸化チタン微粒、および噴射研磨材としての酸化アルミニウム微粒の共存下で、上記硬質被覆層の第4層を構成する酸化アルミニウム層の少なくとも切刃稜線部を含むすくい面部分および逃げ面部分を研磨して、これら研磨面の表面粗さを準拠規格JIS・B0601−1994に基いた測定で、Ra:0.2μm以下とし、
(c)さらに、上記酸化アルミニウム層研磨面のすくい面および逃げ面のいずれか、またはこれら両面の全面に亘って、単一基本形状マークおよび前記単一基本形状マークの集合マークのいずれか、または両方が分散分布してなると共に、前記単一基本形状マークを、上記硬質被覆層の構成層のうちのいずれかの層が露出した掘下げ面とした硬質被覆層残留応力低減模様をレーザービーム照射形成したこと、
を特徴とする、高硬度鋼の高速切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削スローアウエイチップ。 On the entire rake face and flank face including the cutting edge ridge line portion of the cermet base composed of tungsten carbide base cemented carbide or titanium carbonitride base cermet,
(1) As the first layer, a first adhesion formed of either a titanium nitride layer or a titanium carbonitride layer formed by chemical vapor deposition, or a laminate of both layers, and having an average layer thickness of 0.1 to 1 μm. Bonding layer,
(2) The second layer is formed by chemical vapor deposition,
Composition formula: (Ti 1-A Zr A ) C 1-B N B (wherein A is 0.02 to 0.15 and B is 0.3 to 0.55 in atomic ratio),
A high-temperature strengthened layer comprising a composite carbonitride layer of Ti and Zr that satisfies the following conditions and having an average layer thickness of 2.5 to 15 μm;
(3) As the third layer, the first layer is composed of either a titanium carbonate layer formed by chemical vapor deposition or a titanium carbonitride oxide layer, or a laminate of both layers, and has an average layer thickness of 0.1 to 1 μm. 2 adhesive bonding layers,
(4) As the fourth layer, a high-temperature hard layer comprising an aluminum oxide layer formed by chemical vapor deposition and having an average layer thickness of 1 to 15 μm,
In the surface-coated cermet cutting tool formed by forming the hard coating layer constituted by the above (1) to (4),
( A ) A high-temperature strengthening layer, which is the second layer of the hard coating layer, is also formed by chemical vapor deposition, and has a composition formula (Ti 1-A Zr A ) C 1-B N B (however, in terms of atomic ratio, A Is 0.02 to 0.15, B is 0.3 to 0.55), and further has an average layer thickness of 2.5 to 15 μm.
Using a field emission scanning electron microscope, each crystal grain existing within the measurement range of the surface polished surface is irradiated with an electron beam, and the crystal plane of the crystal grain is normal to the surface polished surface ( The inclination angle formed by the normal lines of the (001) plane and the (011) plane is measured. In this case, the crystal grains are NaCl-type face-centered cubes each having a constituent atom composed of Ti, Zr, carbon, and nitrogen at lattice points. A lattice in which each of the constituent atoms shares one constituent atom between the crystal grains at the interface between adjacent crystal grains based on the measured tilt angle obtained as a result of the crystal structure The distribution of the points (constituent atom shared lattice points) is calculated, and there are N lattice points that do not share the constituent atoms between the constituent atom shared lattice points (N is an even number of 2 or more in the crystal structure of the NaCl type face centered cubic crystal). ΣN is the existing configuration of atomic atom lattice points. In the constituent atom sharing lattice distribution graph showing the distribution ratio of each ΣN + 1 in the entire ΣN + 1 (however, the upper limit value is 28 due to the frequency), the highest peak exists in Σ3, A modified high-temperature strengthened layer composed of a composite carbonitride layer of Ti and Zr showing a constituent atom shared lattice point distribution graph in which the distribution ratio of Σ3 in the entire ΣN + 1 is 60% or more,
Consisting of
(B) on the entire surface of the aluminum oxide layer which is the fourth layer of the hard coating layer,
(B-1) The lower layer has an average layer thickness of 0.1 to 3 μm, and
Composition formula: TiO x ,
, The central part in the thickness direction is measured with an Auger spectrometer, and the atomic ratio is
X: 1.2 to 1.7,
Satisfying titanium oxide layer,
(B-2) The upper layer has an average layer thickness of 0.05 to 2 μm, and
Composition formula: TiN 1-Y (O) Y ,
(Where (O) indicates diffused oxygen from the titanium oxide layer), the central portion in the thickness direction is also measured with an Auger spectroscopic analyzer, and the atomic ratio is
Y: 0.01 to 0.4
Satisfying titanium oxynitride layer,
In a state where the abrasive layer constituted by (b-1) and (b-2) is formed by vapor deposition,
(B-3) In wet blasting, as a spraying abrasive, a polishing liquid containing 15 to 60% by mass of aluminum oxide fine particles in a proportion of the total amount with water is sprayed,
The aluminum oxide layer constituting the fourth layer of the hard coating layer in the presence of the pulverized titanium oxide fine particles in the lower layer, the pulverized titanium oxynitride fine particles in the upper layer, and the aluminum oxide fine particles as the spray abrasive The rake face portion and the flank face portion including at least the cutting edge ridge line portion are polished, and the surface roughness of these polished surfaces is measured on the basis of compliant standard JIS B0601-1994, Ra: 0.2 μm or less,
(C) Further, any one of the rake face and the flank face of the polished surface of the aluminum oxide layer, or any one of the single basic shape mark and the collective mark of the single basic shape mark, Both are distributed and distributed, and the hard basic layer residual stress reduction pattern is formed by laser beam irradiation with the single basic shape mark as a dug surface with any of the constituent layers of the hard coating layer exposed. What
A surface-coated cermet cutting throwaway tip that exhibits excellent chipping resistance in high-speed cutting of high-hardness steel with a hard coating layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006062810A JP4761138B2 (en) | 2006-03-08 | 2006-03-08 | Surface-coated cermet cutting throwaway tip that exhibits excellent chipping resistance due to high-speed cutting of hardened steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006062810A JP4761138B2 (en) | 2006-03-08 | 2006-03-08 | Surface-coated cermet cutting throwaway tip that exhibits excellent chipping resistance due to high-speed cutting of hardened steel |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007237329A true JP2007237329A (en) | 2007-09-20 |
JP4761138B2 JP4761138B2 (en) | 2011-08-31 |
Family
ID=38583354
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006062810A Expired - Fee Related JP4761138B2 (en) | 2006-03-08 | 2006-03-08 | Surface-coated cermet cutting throwaway tip that exhibits excellent chipping resistance due to high-speed cutting of hardened steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4761138B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010000570A (en) * | 2008-06-20 | 2010-01-07 | Mitsubishi Materials Corp | Surface-coated cutting tool having hard coating layer exhibiting excellent wear resistance |
CN116162918A (en) * | 2023-04-26 | 2023-05-26 | 赣州澳克泰工具技术有限公司 | Tool coating with high hardness and high toughness and preparation method thereof |
CN117265478A (en) * | 2023-11-21 | 2023-12-22 | 赣州澳克泰工具技术有限公司 | Composite coating cutter and preparation method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0852603A (en) * | 1994-07-20 | 1996-02-27 | Sandvik Ab | Cutting tool insert and manufacturing method thereof |
JPH11226805A (en) * | 1998-02-12 | 1999-08-24 | Sumitomo Electric Ind Ltd | Coated cemented carbide cutting tool |
JP2001009604A (en) * | 1999-06-28 | 2001-01-16 | Mitsubishi Materials Corp | Cutting tool made of surface coated tungsten carbide base cemented carbide in which hard coated layer has excellent abrasive resistance in high speed cutting |
JP2002144109A (en) * | 2000-09-04 | 2002-05-21 | Mitsubishi Materials Corp | Surface coat cemented carbide cutting tool having excellent chipping resistance |
JP2003117706A (en) * | 2001-10-04 | 2003-04-23 | Hitachi Tool Engineering Ltd | Covered tool |
-
2006
- 2006-03-08 JP JP2006062810A patent/JP4761138B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0852603A (en) * | 1994-07-20 | 1996-02-27 | Sandvik Ab | Cutting tool insert and manufacturing method thereof |
JPH11226805A (en) * | 1998-02-12 | 1999-08-24 | Sumitomo Electric Ind Ltd | Coated cemented carbide cutting tool |
JP2001009604A (en) * | 1999-06-28 | 2001-01-16 | Mitsubishi Materials Corp | Cutting tool made of surface coated tungsten carbide base cemented carbide in which hard coated layer has excellent abrasive resistance in high speed cutting |
JP2002144109A (en) * | 2000-09-04 | 2002-05-21 | Mitsubishi Materials Corp | Surface coat cemented carbide cutting tool having excellent chipping resistance |
JP2003117706A (en) * | 2001-10-04 | 2003-04-23 | Hitachi Tool Engineering Ltd | Covered tool |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010000570A (en) * | 2008-06-20 | 2010-01-07 | Mitsubishi Materials Corp | Surface-coated cutting tool having hard coating layer exhibiting excellent wear resistance |
CN116162918A (en) * | 2023-04-26 | 2023-05-26 | 赣州澳克泰工具技术有限公司 | Tool coating with high hardness and high toughness and preparation method thereof |
CN117265478A (en) * | 2023-11-21 | 2023-12-22 | 赣州澳克泰工具技术有限公司 | Composite coating cutter and preparation method thereof |
CN117265478B (en) * | 2023-11-21 | 2024-01-30 | 赣州澳克泰工具技术有限公司 | Composite coating cutter and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP4761138B2 (en) | 2011-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4518258B2 (en) | A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting | |
JP2009006426A (en) | Surface coated cutting tool with hard coating layer exerting superior wear resistance in high speed cutting | |
JP2019063899A (en) | Surface-coated cutting tool having excellent defect resistance | |
JP4518259B2 (en) | A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting | |
JP4761138B2 (en) | Surface-coated cermet cutting throwaway tip that exhibits excellent chipping resistance due to high-speed cutting of hardened steel | |
JP4863053B2 (en) | Manufacturing method of surface-coated cermet cutting tool that exhibits excellent chipping resistance in high-speed cutting of difficult-to-cut materials | |
JP4844873B2 (en) | Manufacturing method of cutting throwaway tip made of surface-covered cermet with excellent wear resistance of hard coating layer in high-speed cutting | |
JP4984513B2 (en) | Manufacturing method of surface-coated cermet cutting tool that exhibits excellent chipping resistance in high-speed cutting of difficult-to-cut materials | |
JP4716250B2 (en) | Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting | |
JP2009279693A (en) | Surface-coated cutting tool having hard coating layer exhibiting superior chipping resistance in high-speed heavy cutting | |
JP2009166193A (en) | Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed intermittent cutting | |
JP2008080476A (en) | Surface coated cutting tool with hard coated layer exerting excellent abrasion resistance in high speed cutting work | |
JP5023897B2 (en) | Surface coated cutting tool | |
JP4756471B2 (en) | Surface-coated cermet cutting throwaway tip that provides excellent chipping resistance in high-speed heavy cutting of hardened steel | |
JP5257184B2 (en) | Surface coated cutting tool | |
JP4844872B2 (en) | Method for manufacturing a cutting throwaway tip made of surface-coated cermet that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials | |
JP4753076B2 (en) | Surface-coated cermet cutting throwaway tip that provides excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials | |
JP4761140B2 (en) | Surface-coated cermet cutting throwaway tip that exhibits excellent chipping resistance due to high-speed cutting of hardened steel | |
JP4756469B2 (en) | Surface-coated cermet cutting throwaway tip that exhibits excellent chipping resistance due to high-speed cutting of hardened steel | |
JP5088477B2 (en) | Surface coated cutting tool | |
JP4849376B2 (en) | Manufacturing method of surface-coated cermet cutting tool that exhibits excellent chipping resistance in high-speed cutting of difficult-to-cut materials | |
JP4761141B2 (en) | Surface-coated cermet cutting throwaway tip that provides excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials | |
JP4730656B2 (en) | Surface coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high speed heavy cutting | |
JP2006341320A (en) | SURFACE COATED CERMET CUTTING TOOL WHOSE THICK FILM alpha-TYPE ALUMINUM OXIDE LAYER EXHIBITS EXCELLENT CHIPPING RESISTANCE | |
JP2009166195A (en) | Surface-coated cutting tool with hard coating layer for exhibiting excellent chipping resistance and abrasion resistance by high-speed intermittent cutting work |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080321 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110512 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110525 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140617 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4761138 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |