[go: up one dir, main page]

JP2007234259A - Organic EL display device - Google Patents

Organic EL display device Download PDF

Info

Publication number
JP2007234259A
JP2007234259A JP2006051309A JP2006051309A JP2007234259A JP 2007234259 A JP2007234259 A JP 2007234259A JP 2006051309 A JP2006051309 A JP 2006051309A JP 2006051309 A JP2006051309 A JP 2006051309A JP 2007234259 A JP2007234259 A JP 2007234259A
Authority
JP
Japan
Prior art keywords
ito electrode
organic
oxygen
ito
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006051309A
Other languages
Japanese (ja)
Other versions
JP2007234259A5 (en
Inventor
Eiji Matsuzaki
永二 松崎
Masamichi Terakado
正倫 寺門
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Display Inc
Original Assignee
Hitachi Displays Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Displays Ltd filed Critical Hitachi Displays Ltd
Priority to JP2006051309A priority Critical patent/JP2007234259A/en
Publication of JP2007234259A publication Critical patent/JP2007234259A/en
Publication of JP2007234259A5 publication Critical patent/JP2007234259A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

【課題】ホール注入特性を改善し、発光効率の高い低消費電力の有機EL表示装置を提供する。
【解決手段】ITO電極上に有機膜と金属膜とを順次積層してなる有機EL素子をマトリクス状に配置した有機EL表示装置において、前記ITO電極の前記有機層との境界近傍において、前記ITO電極中の酸素含有量の深さ方向の分布が、ITO電極内部から有機膜に向かって増加する分布となっているITO電極を用いた構造とする。
【選択図】図2
A low power consumption organic EL display device with improved hole injection characteristics and high light emission efficiency is provided.
In an organic EL display device in which an organic EL element formed by sequentially laminating an organic film and a metal film on an ITO electrode is arranged in a matrix, the ITO electrode is disposed in the vicinity of the boundary between the ITO electrode and the organic layer. A structure using an ITO electrode in which the distribution of the oxygen content in the electrode in the depth direction increases from the inside of the ITO electrode toward the organic film is used.
[Selection] Figure 2

Description

本発明は、有機EL表示装置に関する。   The present invention relates to an organic EL display device.

有機EL表示装置のITO電極表面は平滑であることが求められるため、低温で形成されることが多い。低温で成膜されたITO電極内には酸素と未結合のIn、Snの他に有利酸素や水分が含まれている。また、バンク形成工程等の工程を経たITO電極の表面は、還元などにより酸素欠乏となりやすい。実際に発光欠陥部より遊離したInが観測されている。   Since the ITO electrode surface of the organic EL display device is required to be smooth, it is often formed at a low temperature. The ITO electrode formed at a low temperature contains advantageous oxygen and moisture in addition to oxygen and unbonded In and Sn. Further, the surface of the ITO electrode that has undergone the steps such as the bank formation step tends to be oxygen deficient due to reduction or the like. In fact, In released from the light emitting defect portion is observed.

そのため、ITO電極の表面処理(UV処理や酸素プラズマ処理など)が必須である。ITO表面の洗浄化と仕事関数増加が表面処理の効果として言われている。しかし、同じ条件で表面処理を行っても得られる結果にはばらつきがあり、また、これらの表面処理によってITO電極の待つ質をどのように変化させるべきか知られていなかった。これは、有機EL表示装置の長寿命化や量産ラインの構築での一つの問題になっている。   Therefore, surface treatment of the ITO electrode (UV treatment, oxygen plasma treatment, etc.) is essential. Cleaning the ITO surface and increasing the work function are said to be the effect of surface treatment. However, even if the surface treatment is performed under the same conditions, the results obtained vary, and it has not been known how these surface treatments should change the quality of the ITO electrode. This is a problem in extending the life of organic EL display devices and building mass production lines.

ボトムエミッション型の有機EL表示装置では、酸素空孔やSn4+をIn3+で置換したことによって発生する電子をキャリアとしたn形半導体であるITO電極をホール注入電極として用いている。本発明者は、仕事関数が大きくできるために、ホール注入が可能になっているとは考えられるが、多数キャリアである電子の悪影響があるのではないかと疑問を持っていた。 In the bottom emission type organic EL display device, an ITO electrode which is an n-type semiconductor using electrons generated by replacing oxygen vacancies or Sn 4+ with In 3+ is used as a hole injection electrode. The inventor is thought to be able to inject holes because the work function can be increased, but has wondered that there is an adverse effect of electrons which are majority carriers.

有機EL表示装置の特性を改善するために、ITO電極と有機層との間にp形半導体を挿入することが特許文献1に開示されている。また、酸素含有量の異なるITO電極を2層にするITO電極構造が特許文献2に開示されている。この構造は、酸素含有量を大きくし、抵抗を高くした外側のITO電極を保護膜として用いようとするものである。また、ITO電極の組成に関しては、InやSnに着目したものが特許文献3及び特許文献4に開示されている。さらに、ITO電極のクリーニング(清浄化)や仕事関数増大のため、酸化効果のある表面処理法(酸素プラズマ処理、UV/O3処理、オゾン処理等)を用いることが特許文献5、6に記載されている。
特開2002−352964号公報 特開2004−31242号公報 特開2002−170666号公報 特開2002−170431号公報 特開2000−311869号公報 特開2001−28296号公報
In order to improve the characteristics of the organic EL display device, Patent Document 1 discloses that a p-type semiconductor is inserted between the ITO electrode and the organic layer. Patent Document 2 discloses an ITO electrode structure in which two ITO electrodes having different oxygen contents are formed. This structure is intended to use an outer ITO electrode having a high oxygen content and a high resistance as a protective film. Further, with regard to the composition of the ITO electrode, Patent Document 3 and Patent Document 4 are disclosed in which attention is paid to In and Sn. Furthermore, Patent Documents 5 and 6 describe that surface treatment methods having an oxidizing effect (oxygen plasma treatment, UV / O 3 treatment, ozone treatment, etc.) are used to clean (clean) the ITO electrode and increase the work function. Has been.
JP 2002-352964 A JP 200431242 A JP 2002-170666 A JP 2002-170431 A JP 2000-311869 A JP 2001-28296 A

上記公知例では、有機膜の界面でのITO電極の状態には言及されておらず、表面処理によって増大させた仕事関数の経時劣化に伴う発光特性の劣化や駆動電圧上昇に対応できない。有機EL表示装置のITO電極表面は平滑であることが求められるため、低温で形成されることが多い。また、バンク形成工程等の工程を経たITO電極の表面は、還元などにより酸素欠乏となりやすい。実際に発光欠陥部より遊離したInが観測されている。このため、ITO電極の欠陥が増えるとともに、仕事関数が低下し、発光特性が劣化しやすいこれらの問題に対しても上記従来技術は考慮されていない。   In the above known example, the state of the ITO electrode at the interface of the organic film is not mentioned, and it is not possible to cope with the deterioration of the light emission characteristics and the increase of the driving voltage due to the deterioration of the work function with the lapse of time. Since the ITO electrode surface of the organic EL display device is required to be smooth, it is often formed at a low temperature. Further, the surface of the ITO electrode that has undergone the steps such as the bank formation step tends to be oxygen deficient due to reduction or the like. In fact, In released from the light emitting defect portion is observed. For this reason, the above prior art is not taken into consideration for these problems in which the defect of the ITO electrode increases, the work function is lowered, and the light emission characteristics are likely to deteriorate.

本発明者は、ITO電極を表面処理(酸素プラズマ処理やUV/O3処理)で仕事関数は増加すると、ITO電極の酸化度が上昇し、キャリア(電子)密度が低下し、抵抗は増加する。ただし、イオン散乱中心が減少するので移動度は増大する。 When the work function is increased by surface treatment (oxygen plasma treatment or UV / O 3 treatment) of the ITO electrode, the inventor increases the oxidation degree of the ITO electrode, decreases the carrier (electron) density, and increases the resistance. . However, the mobility increases because the number of ion scattering centers decreases.

本発明の目的は、ホール注入特性を向上し、発光効率を向上させ、低消費電力の有機EL表示装置を提供することにある。   An object of the present invention is to provide an organic EL display device with improved hole injection characteristics, improved luminous efficiency, and low power consumption.

また、本発明の他の目的は、ITO表面の欠陥を低減し、面内分布の改善等を通じて歩留まり向上に寄与しようとするものである。   Another object of the present invention is to reduce the defects on the ITO surface and to contribute to the improvement of yield by improving the in-plane distribution.

本発明のまた他の目的は、仕事関数の高いITO電極と有機膜の界面の経時変化を抑制し、有機EL表示装置の長寿命化を実現することにある。   Another object of the present invention is to suppress the change over time of the interface between the ITO electrode having a high work function and the organic film and to realize a long life of the organic EL display device.

上記目的を達成するた、本発明の代表的手段の1つに、ITO電極上に有機膜と金属膜とを順次積層してなる有機EL素子をマトリクス状に配置した有機EL表示装置において、前記ITO電極の前記有機層との境界近傍における前記ITO電極中の酸素含有量の深さ方向の分布が、ITO電極内部から有機膜に向かって増加する分布となるITO電極を用いたものがある。   In order to achieve the above object, in one of the representative means of the present invention, in an organic EL display device in which organic EL elements formed by sequentially laminating an organic film and a metal film on an ITO electrode are arranged in a matrix, There is one using an ITO electrode in which the depth distribution of the oxygen content in the ITO electrode in the vicinity of the boundary between the ITO electrode and the organic layer increases from the inside of the ITO electrode toward the organic film.

本発明によれば、有機EL表示装置のホール注入特性、発光効率が向上させ、低消費電力が実現される。   According to the present invention, hole injection characteristics and light emission efficiency of an organic EL display device are improved, and low power consumption is realized.

本発明を適用した有機EL表示装置の一例を以下に示す。   An example of an organic EL display device to which the present invention is applied is shown below.

図1は、本発明の実施例1を説明するボトムエミッション型の有機EL表示装置(OLED)の断面図である。この有機EL表示装置は、ガラス基板110、ガラス基板110の上に形成されたTFT回路120、TFT回路120上に形成された絶縁膜と、絶縁膜上に形成されたTFT回路と接続されたITO電極2、ITO電極の上に形成され、バンクと呼ばれるITO電極2の上に開口を備えた絶縁隔壁である絶縁膜3、絶縁膜3の開口で露出しているITO電極2及び絶縁膜2の上に形成された有機層4(ホール注入層41、ホール輸送層42、発光層43、電子輸送層44)、有機層4の上に形成された上部電極で構成されている。   FIG. 1 is a cross-sectional view of a bottom emission type organic EL display device (OLED) illustrating Example 1 of the present invention. This organic EL display device includes a glass substrate 110, a TFT circuit 120 formed on the glass substrate 110, an insulating film formed on the TFT circuit 120, and an ITO connected to the TFT circuit formed on the insulating film. The insulating film 3 that is an insulating partition wall formed on the ITO electrode 2 called the bank and has an opening on the ITO electrode 2 called the bank, and the ITO electrode 2 and the insulating film 2 exposed through the opening of the insulating film 3 The organic layer 4 (hole injection layer 41, hole transport layer 42, light emitting layer 43, electron transport layer 44) formed on the upper layer is formed on the organic layer 4.

以下、絶縁層1とITO電極2の界面AからITO電極2と有機EL層4(ホール注入層41)の界面Bに向かって、ITO電極2の酸素含有量をどのように分布させるのが好ましいか、説明する。   Hereinafter, it is preferable to distribute the oxygen content of the ITO electrode 2 from the interface A between the insulating layer 1 and the ITO electrode 2 toward the interface B between the ITO electrode 2 and the organic EL layer 4 (hole injection layer 41). Or explain.

図2に、本発明の特徴であるITO電極2(ITO電極)内酸素濃度の深さ方向分布を示す。
ITO電極内のYの部分はキャリア(電子)密度が高く、抵抗の低い領域を示している。この領域では、酸素空孔やSn4+サイトをIn3+で置換したことによって発生する電子を多数キャリアとしており、n型半導体としての性質を有する。
FIG. 2 shows the depth direction distribution of the oxygen concentration in the ITO electrode 2 (ITO electrode), which is a feature of the present invention.
A portion Y in the ITO electrode indicates a region having a high carrier (electron) density and a low resistance. In this region, electrons generated by substituting oxygen vacancies or Sn 4+ sites with In 3+ are used as majority carriers, and have an n-type semiconductor property.

図2において、Xで示した場所はY領域より酸素濃度が高くなっている領域を示す。この領域では、キャリア密度が低くなるため、Y領域に比べて、抵抗が高くなる。しかし、ITO電極の移動度と仕事関数はむしろ増大する。望ましくは、界面BにおけるITO電極の酸素濃度を化学量論組成以上とすることが望ましい。なお、化学量論組成にある酸素濃度とは、ITO電極がすべてIn23とSnO2からなる場合の濃度をいう。 In FIG. 2, a location indicated by X indicates a region where the oxygen concentration is higher than that of the Y region. In this region, since the carrier density is low, the resistance is higher than that in the Y region. However, the mobility and work function of the ITO electrode are rather increased. Desirably, the oxygen concentration of the ITO electrode at the interface B should be greater than or equal to the stoichiometric composition. The oxygen concentration in the stoichiometric composition refers to the concentration when the ITO electrode is entirely composed of In 2 O 3 and SnO 2 .

深さdは、場所X界面B(ITO電極2と有機層4の界面を示す)からの深さを示している。   The depth d indicates the depth from the location X interface B (which indicates the interface between the ITO electrode 2 and the organic layer 4).

本発明の適用により、上記Xで示した場所では、界面Bに向かって酸素濃度が増加するようにしている。   By applying the present invention, the oxygen concentration increases toward the interface B at the location indicated by X above.

深さdは、界面Bから内部への酸素拡散やITO電極2と有機膜4の相互拡散の影響を小さくするため、1nm以上の厚みが必要である。   The depth d needs to be 1 nm or more in order to reduce the influence of oxygen diffusion from the interface B to the inside and the mutual diffusion between the ITO electrode 2 and the organic film 4.

また、ITO電極2は配線や電極として用いるため、Yで示した低抵抗領域を設ける必要がある。従って、ITO電極の厚み(50〜200nm)やその低効率、酸素濃度が高いX領域の形成方法からみて深さdを10nm以内とすることが好ましい。   Further, since the ITO electrode 2 is used as a wiring or an electrode, it is necessary to provide a low resistance region indicated by Y. Therefore, it is preferable to set the depth d to 10 nm or less in view of the thickness (50 to 200 nm) of the ITO electrode, its low efficiency, and the formation method of the X region having a high oxygen concentration.

図2(A)は、製造工程で受けた損傷などによりITO電極の酸素濃度が界面Bで低下する傾向がある膜に対して、酸素を拡散させることによりX領域を設け、該X領域での酸素濃度分布を界面Bの向かって増大させたものである。これは、その上に還元性雰囲気においてSi系絶縁膜が形成されたITO電極に本発明を適用した場合に見られる。   In FIG. 2A, an X region is provided by diffusing oxygen in a film in which the oxygen concentration of the ITO electrode tends to decrease at the interface B due to damage or the like received in the manufacturing process. The oxygen concentration distribution is increased toward the interface B. This is seen when the present invention is applied to an ITO electrode on which a Si-based insulating film is formed in a reducing atmosphere.

図2(B)は、製造工程で受ける損傷を少なくした場合のITO電極に対して本発明を適用したものである。これが望ましい。OLED素子の従来の製造プロセスでは、ITO表面の清浄化や仕事関数増大を目的に、酸素プラズマ処理やUV処理を行っている。しかし、本発明のようにITO電極の内部まで酸素過剰にし、高抵抗で仕事関数の高い層を形成することは行われていない。そのため、仕事関数の高い部分は表面(界面B)に限られ、また、(A)のようにダメージを受けたITO電極の場合には、酸素が遊離したInやSnが表面に存在しており、前記表面処理効果も面内ばらつきを示すことが多くなる。これらは、OLED素子の特性や寿命の劣化原因となる。   FIG. 2B shows the case where the present invention is applied to an ITO electrode in a case where the damage received in the manufacturing process is reduced. This is desirable. In the conventional manufacturing process of OLED elements, oxygen plasma treatment and UV treatment are performed for the purpose of cleaning the ITO surface and increasing the work function. However, it is not performed to form a layer having a high resistance and a high work function by increasing oxygen to the inside of the ITO electrode as in the present invention. Therefore, the part with high work function is limited to the surface (interface B), and in the case of the damaged ITO electrode as shown in (A), In and Sn free from oxygen exist on the surface. The surface treatment effect often shows in-plane variation. These cause deterioration of characteristics and lifetime of the OLED element.

以上のことから、本発明によれば図3、図4に示した効果が得られ、その結果、本発明は電流効率などのOLED特性の改善や長寿命化に貢献することになる。   From the above, according to the present invention, the effects shown in FIG. 3 and FIG. 4 can be obtained, and as a result, the present invention contributes to improvement of OLED characteristics such as current efficiency and longer life.

図3は、本発明を適用したITO電極と従来のITO電極の仕事関数の経時劣化を示したグラフを記載した図である。いずれも、UV処理を施し、処理後の経過時間による仕事関数を示した。従来のITO電極の仕事関数は時間とともに減少し、30分もたてばUV処理前とほぼ変わらなくなった。それに対し、本発明によるITO電極の場合、仕事関数の減少は少ない。図示していないが、発明者らは約1ヶ月経過後も約5.4eVの値を示すことを確認している。   FIG. 3 is a diagram showing a graph showing the deterioration with time of the work function of the ITO electrode to which the present invention is applied and the conventional ITO electrode. In any case, the UV treatment was performed and the work function according to the elapsed time after the treatment was shown. The work function of the conventional ITO electrode decreased with time, and after 30 minutes, became almost the same as before UV treatment. On the other hand, in the case of the ITO electrode according to the present invention, the decrease in work function is small. Although not shown, the inventors have confirmed that a value of about 5.4 eV is exhibited even after about one month.

仕事関数が時間経過とともに減少する理由として、表面汚染や酸素の内部への拡散が考えられるが、正しくは分かっていない。いずれの理由にせよ、本発明によるITO電極では仕事関数の減少速度が小さい。また、本発明によるITO電極が従来のITO電極より高い仕事関数を示している。これは、酸化度を高くしているためと考えられる。   Possible reasons for the work function to decrease over time are surface contamination and oxygen diffusion into the interior, but this is not well understood. For any reason, the ITO electrode according to the present invention has a low work function decrease rate. In addition, the ITO electrode according to the present invention exhibits a higher work function than the conventional ITO electrode. This is probably because the degree of oxidation is increased.

低分子OLEDではホール注入層41に用いられる有機膜は5.2eV程度のイオン化ポテンシャル(仕事関数)を有する。そのため、この値より低い仕事関数の電極ではホール注入特性が悪くなり、発光効率の低下、駆動電圧上昇の原因の1つとなってしまう。   In the low molecular OLED, the organic film used for the hole injection layer 41 has an ionization potential (work function) of about 5.2 eV. For this reason, an electrode having a work function lower than this value has a poor hole injection characteristic, which is one of the causes of a decrease in luminous efficiency and an increase in driving voltage.

以上のことから、本発明によるITO電極は、発光効率等のOLED特性の改善や長寿命化に寄与できる。   From the above, the ITO electrode according to the present invention can contribute to the improvement of OLED characteristics such as luminous efficiency and the extension of the lifetime.

大気下光電子分光装置(理研計器製、型式:AC−2)により測定した光電子スペクトル。
縦軸(Y軸)には光電子収量Y(飛び出してくる光電子の数)のn乗値を、横軸(X軸)には照射光のエネルギ(励起エネルギ)を示す。光電子スペクトルが直線近似できるnの値は、金属の場合で0.5である。光電子収量の閾値エネルギにより金属試料の仕事関数を求めることができる。
Photoelectron spectrum measured by an atmospheric photoelectron spectrometer (manufactured by Riken Keiki, model: AC-2).
The vertical axis (Y axis) shows the nth power of the photoelectron yield Y (number of photoelectrons popping out), and the horizontal axis (X axis) shows the energy (excitation energy) of the irradiation light. The value of n with which the photoelectron spectrum can be linearly approximated is 0.5 in the case of metal. The work function of the metal sample can be obtained from the threshold energy of the photoelectron yield.

図4(A)は本発明によるITO電極に対するデータ、(B)は酸素プラズマ処理やUV処理を施した従来のITO電極に対するデータである。従来のITO電極の場合、図4(B)に示すように、直線近似できる領域が2つ(B1,B2)見られることが多い。図4(B)に示したデータが得られる1つのケースは、表面層と内部で性質が異なる場合である。すなわち、酸素プラズマ処理やUV処理を施した表面層の仕事関数が高く、ITO内部の仕事関数が小さくなっている場合である。このITO電極上に有機膜41(OLED層)を積層してOLED素子を形成すると、OLED特性は劣化し、駆動電圧が増加してしまう。この原因としては、バルク内部への酸素拡散等による界面BにおけるITO電極酸素濃度の低下、あるいは、ITO電極2と有機膜4の間の相互拡散によりB2に相当する部分、すなわち、ITOの仕事関数の大きな表面層の消失が考えられ、これにより有機膜と接するITO電極面の仕事関数の低下する。   FIG. 4A shows data for an ITO electrode according to the present invention, and FIG. 4B shows data for a conventional ITO electrode subjected to oxygen plasma treatment or UV treatment. In the case of a conventional ITO electrode, as shown in FIG. 4B, two regions (B1, B2) that can be linearly approximated are often seen. One case where the data shown in FIG. 4B is obtained is when the properties are different between the surface layer and the inside. That is, this is a case where the work function of the surface layer subjected to oxygen plasma treatment or UV treatment is high and the work function inside the ITO is small. When the organic film 41 (OLED layer) is laminated on the ITO electrode to form an OLED element, the OLED characteristics deteriorate and the driving voltage increases. This may be caused by a decrease in the oxygen concentration of the ITO electrode at the interface B due to oxygen diffusion into the bulk or the like, or a portion corresponding to B2 due to mutual diffusion between the ITO electrode 2 and the organic film 4, ie, the work function of ITO. It is conceivable that the large surface layer disappears, and this lowers the work function of the ITO electrode surface in contact with the organic film.

図4(B)に示したデータが得られる他のケースは、ITO電極表面が仕事関数の高い部分と低い部分から構成されている場合である。すなわち、酸素濃度の高く仕事関数が大きい部分と酸素濃度が低く仕事関数が小さい部分がITO電極表面に分布している場合である。ITO電極2がダメージを受け、酸素欠損が生じた場合に発生しやすい。この場合にも、この上に有機膜41(OLED層)を積層してOLED素子を形成すると、仕事関数が小さい部分の存在のため、OLED特性は劣化し、駆動電圧が高くなる。   Another case in which the data shown in FIG. 4B is obtained is a case where the ITO electrode surface is composed of a high work function portion and a low work function portion. That is, this is a case where a portion having a high oxygen concentration and a high work function and a portion having a low oxygen concentration and a low work function are distributed on the surface of the ITO electrode. This is likely to occur when the ITO electrode 2 is damaged and oxygen deficiency occurs. Also in this case, when the OLED element is formed by laminating the organic film 41 (OLED layer) thereon, the OLED characteristic is deteriorated and the driving voltage is increased due to the existence of a portion having a small work function.

それに対し、本発明のITO電極によれば、表面から深いところまで、仕事関数の高い膜としているため、この上に有機膜41(OLED層)を形成した場合でも、酸素拡散による界面Bにおける酸素濃度低下や相互拡散による仕事関数の高いITOの表面層の消失が発生しにくい。また、ITO電極の表面から内部まで酸素濃度を高くするため、有機膜4との界面におけるITO電極表面においても酸素欠損部の存在を防止できる。このため、OLED素子の特性劣化(輝度低下等)や駆動電圧上昇を抑制できる。   On the other hand, according to the ITO electrode of the present invention, since the film has a high work function from the surface to the deep part, even when the organic film 41 (OLED layer) is formed thereon, oxygen at the interface B due to oxygen diffusion is used. The disappearance of the surface layer of ITO having a high work function due to concentration reduction and mutual diffusion hardly occurs. In addition, since the oxygen concentration is increased from the surface of the ITO electrode to the inside, it is possible to prevent the presence of oxygen deficient portions on the surface of the ITO electrode at the interface with the organic film 4. For this reason, it is possible to suppress deterioration in characteristics (such as a decrease in luminance) of the OLED element and increase in driving voltage.

以上述べてきたように、本発明によれば、従来に比較して、OLED特性の優れた長寿命のOLED素子を得ることができる。   As described above, according to the present invention, it is possible to obtain a long-life OLED element having excellent OLED characteristics as compared with the conventional art.

本発明によるITO電極を用いたOLED素子の製造方法の一例の工程フロー図を図5に示す。   FIG. 5 shows a process flow chart of an example of a method for manufacturing an OLED element using an ITO electrode according to the present invention.

(5A)TFT回路基板上100へのITO電極の成膜
駆動回路を形成したTFT回路基板上に周知のスパッタリング法によりITO電極を形成する。膜厚は設計に従って定めればよいが、50〜200nmの間に設定することが多い。この場合、表面が平坦になるように成膜条件を調整するとともに、未反応の酸素や水分を急増させる。この未反応の酸素や水分を吸蔵させることがポイントの1つとなる。
(5A) Formation of ITO electrode on TFT circuit substrate 100 An ITO electrode is formed on the TFT circuit substrate on which the drive circuit is formed by a known sputtering method. The film thickness may be determined according to the design, but is often set between 50 and 200 nm. In this case, the film forming conditions are adjusted so that the surface becomes flat, and unreacted oxygen and moisture are rapidly increased. One of the points is to occlude the unreacted oxygen and moisture.

(5B)ITO電極パターン2の形成
周知のフォトエッチング法を用いてITO電極を加工し、ITO電極パターン2を形成する。表面が平坦であるITO電極は非晶質であることが多く、耐薬品性に乏しく、ダメージを受けやすいので、できるだけダメージが少ないように条件を定める。
(5B) Formation of ITO electrode pattern 2 The ITO electrode pattern 2 is formed by processing the ITO electrode using a known photoetching method. An ITO electrode having a flat surface is often amorphous, has poor chemical resistance, and is susceptible to damage. Therefore, conditions are determined so that damage is minimized.

(5C)ITO電極パターン2の熱処理
ITOパターン2を形成した基板の熱処理を行う。これにより、ITO電極は低抵抗化する。熱処理温度と抵抗値の関係を第6図に示す。200〜250℃の温度で最も低い抵抗値を示すことがわかる。これは、ITO電極内で反応が起こり、キャリア密度(電子)が増大したことを反映している。ITO内の反応には未反応の酸素や水と低酸化インジウム、低酸化スズの反応も含まれ、ITO電極の酸化度が上昇する。これに対応して仕事関数も増大する。
(5C) Heat treatment of ITO electrode pattern 2 The substrate on which the ITO pattern 2 is formed is subjected to heat treatment. This reduces the resistance of the ITO electrode. FIG. 6 shows the relationship between the heat treatment temperature and the resistance value. It can be seen that the lowest resistance value is exhibited at a temperature of 200 to 250 ° C. This reflects a reaction occurring in the ITO electrode and an increase in carrier density (electrons). The reaction in the ITO includes a reaction of unreacted oxygen or water with low indium oxide or low tin oxide, and the degree of oxidation of the ITO electrode increases. Correspondingly, the work function increases.

熱処理温度と仕事関数の関係を図7に示す。この熱処理条件を調整することにより、ITO電極内に存在した酸素欠損などを補償できる。また、ITO電極の緻密化も達成される。(5A)のITO成膜工程で未反応の酸素や水を含む非晶質ITO電極を形成することにより、この効果を有効的なものにすることができる。
第6図と第7図に示した抵抗値と仕事関数から熱処理温度の適正範囲を求めると、200〜300℃となる。
FIG. 7 shows the relationship between the heat treatment temperature and the work function. By adjusting the heat treatment conditions, oxygen vacancies existing in the ITO electrode can be compensated. Moreover, densification of the ITO electrode is also achieved. By forming an amorphous ITO electrode containing unreacted oxygen and water in the ITO film forming step (5A), this effect can be made effective.
When an appropriate range of the heat treatment temperature is obtained from the resistance value and work function shown in FIGS. 6 and 7, it is 200 to 300 ° C.

さらに、この熱処理を酸化性雰囲気で行うと、ITO表面から内部に向かって酸化が進み、図2に示した本発明に特徴的な酸素濃度分布を得ることができる。   Further, when this heat treatment is performed in an oxidizing atmosphere, the oxidation proceeds from the ITO surface toward the inside, and the oxygen concentration distribution characteristic of the present invention shown in FIG. 2 can be obtained.

この効果を高めるためには、酸化雰囲気での熱処理とともにUV照射したり、オゾン処理を行うことが有効である。   In order to enhance this effect, it is effective to perform UV irradiation or ozone treatment together with heat treatment in an oxidizing atmosphere.

なお、本工程に設けることにより、成膜工程で生じたITO電極の酸素欠損に起因した欠陥(インジウムやスズの低級酸化物)を補償できる。   By providing in this step, it is possible to compensate for defects (lower oxides of indium and tin) caused by oxygen deficiency in the ITO electrode generated in the film forming step.

(5D)絶縁層3の形成
周知のプラズマCVD法等を用いてSiNx膜やSiNxOy膜からなる絶縁膜を形成する。周知のフォトエッチングやドライエッチングを用いて上記絶縁膜を加工し、有機膜4を形成する領域に開口部を設ける。SiNx膜やSiNxOy膜の形成は還元性雰囲気で行われるため、ITO電極が還元され、酸素が欠損した欠陥が発生しやすい。これが発生すると、ITO幕の仕事関数は低いものとなる。
(5D) Formation of Insulating Layer 3 An insulating film made of a SiNx film or a SiNxOy film is formed using a known plasma CVD method or the like. The insulating film is processed using known photoetching or dry etching, and an opening is provided in a region where the organic film 4 is to be formed. Since the formation of the SiNx film and the SiNxOy film is performed in a reducing atmosphere, the ITO electrode is reduced and a defect in which oxygen is lost tends to occur. When this occurs, the work function of the ITO curtain becomes low.

(5E)TFT回路基板の洗浄
周知の洗浄方法(UV照射+ブラシ洗浄、アルカリ洗浄、中性洗剤洗浄など)を用いて絶縁層3を形成したTFT基板を洗浄し、表面を清浄にする。
(5E) Cleaning of TFT circuit substrate The TFT substrate on which the insulating layer 3 is formed is cleaned using a known cleaning method (UV irradiation + brush cleaning, alkali cleaning, neutral detergent cleaning, etc.) to clean the surface.

(5F)ITO電極パターン2の表面処理
酸素を含む気体を用いたプラズマ処理、UV/O3処理、オゾン処理などを用いて表面処理を行い、ITO表面を清浄にするとともに、仕事関数を増大させる。この場合、処理条件を調整することにより、ITO表面から内部に向かって酸化が進むようにする。これにより、図2に示すような本発明に特徴的な酸素濃度分布とする。従来技術では、このことが考慮されていない。
(5F) Surface treatment of ITO electrode pattern 2 Surface treatment is performed using plasma treatment using a gas containing oxygen, UV / O3 treatment, ozone treatment, etc. to clean the ITO surface and increase the work function. In this case, the oxidation is advanced from the ITO surface toward the inside by adjusting the processing conditions. Thus, the oxygen concentration distribution characteristic of the present invention as shown in FIG. 2 is obtained. The prior art does not take this into account.

図8に、酸素プラズマ処理を用いた場合の処理条件と仕事関数の関係を示す。本実施例の場合には処理によって5.6eV以上と従来と比べても高い値となっている。ITO電極の酸化度が高いためと考えられる。この原理は、工程(5C)の場合と同じである。   FIG. 8 shows the relationship between processing conditions and work function when oxygen plasma processing is used. In the case of the present embodiment, the processing is 5.6 eV or higher, which is a higher value than the conventional value. This is probably because the oxidation degree of the ITO electrode is high. This principle is the same as in the case of the step (5C).

本工程により、(5E)までの工程で発生した酸素欠損に起因した欠陥を補修し、第2図に示すような本発明に特徴的な酸素濃度分布が得られる。   By this step, defects due to oxygen deficiency generated in the steps up to (5E) are repaired, and an oxygen concentration distribution characteristic of the present invention as shown in FIG. 2 is obtained.

なお、本発明に特徴的な第2図に示すITO電極内の酸素濃度分布を工程(5C)で得ている場合には、本工程はITO表面の清浄化を主目的に行う。   In addition, when the oxygen concentration distribution in the ITO electrode shown in FIG. 2 which is characteristic of the present invention is obtained in the step (5C), the main purpose of this step is to clean the ITO surface.

(5G)有機EL層4の成膜
周知の真空蒸着法(マスク蒸着)を用いてホール注入層41、ホール輸送層42、発光層43、電子輸送層44とする有機膜を順次成膜し、有機EL層4とする。
(5G) Formation of organic EL layer 4 Using a well-known vacuum evaporation method (mask evaporation), an organic film as a hole injection layer 41, a hole transport layer 42, a light emitting layer 43, and an electron transport layer 44 is sequentially formed, The organic EL layer 4 is used.

(5H)上部電極5の形成
周知の真空蒸着法(マスク蒸着)を用いて、LiF膜とAl膜を順次成膜し、上部電極5を形成する。
(5H) Formation of Upper Electrode 5 Using a well-known vacuum vapor deposition method (mask vapor deposition), an LiF film and an Al film are sequentially formed to form the upper electrode 5.

以上で、本発明を適用した図1に示したOLED素子が形成される。この後に封止工程などを経てOLEDパネルが製造されるが、省略する。   Thus, the OLED element shown in FIG. 1 to which the present invention is applied is formed. After this, an OLED panel is manufactured through a sealing process or the like, which is omitted.

本実施例では、本発明のITO電極を、工程(5A)のITO成膜条件、工程(5C)の熱処理条件、工程(5F)の表面処理条件、の組み合わせで得ている。しかし、図11に示すように、ITO成膜工程を工程(11A1)と工程(11A2)に分け、工程(11A1)で低抵抗の部部とするITO電極21を形成し、工程(11A2)で酸素含有量の多いITO電極22を形成しても良い。ただし、本実施例と同様の効果を得るためには、非晶質膜とし、工程(5A)と同じように、未反応の酸素や水分を含ませることが好ましい。熱処理によって酸素欠損に起因した欠陥を補償し、緻密な膜にでき、かつ、表面の平坦なITO電極が形成できるからである。   In this example, the ITO electrode of the present invention is obtained by a combination of the ITO film forming conditions in the step (5A), the heat treatment conditions in the step (5C), and the surface treatment conditions in the step (5F). However, as shown in FIG. 11, the ITO film-forming process is divided into a process (11A1) and a process (11A2), and an ITO electrode 21 is formed as a low-resistance part in the process (11A1), and the process (11A2). An ITO electrode 22 having a high oxygen content may be formed. However, in order to obtain the same effect as in this embodiment, it is preferable to use an amorphous film and to include unreacted oxygen and moisture as in the step (5A). This is because defects caused by oxygen deficiency can be compensated by heat treatment, so that a dense film can be formed and an ITO electrode having a flat surface can be formed.

図9は、従来のボトムエミッション型OLEDで用いられている典型的なITO電極のITO電極内酸素の深さ方向分布を示したものである。Aが下地基板側との界面を、Bが有機膜層41(OLED層4)との界面を示している。有機EL素子の基本的構造は第1図と同じである。   FIG. 9 shows the depth direction distribution of oxygen in an ITO electrode of a typical ITO electrode used in a conventional bottom emission type OLED. A shows the interface with the base substrate side, and B shows the interface with the organic film layer 41 (OLED layer 4). The basic structure of the organic EL element is the same as in FIG.

図9(A)は未処理ITO電極の酸素濃度分布を示す。ITO電極は、抵抗を低くするため、酸素空孔を有する酸素欠乏型の膜となっているが、更に、電極パターン形成などの工程でのダメージにより、ITO表面では、更に酸素欠乏となりやすい。従って、従来のITO電極の表面には酸素濃度の高い領域と低い領域が混在しやすい。このようなITO電極をOLED素子のホール注入側の電極に用いた場合、仕事関数は4.5〜4.8eVと低いためにホール注入障壁が高く、所望のOLED特性を得ることができない。   FIG. 9A shows the oxygen concentration distribution of the untreated ITO electrode. The ITO electrode is an oxygen-deficient film having oxygen vacancies in order to reduce the resistance, but further, the ITO surface is more likely to be oxygen-deficient due to damage in a process such as electrode pattern formation. Therefore, a region having a high oxygen concentration and a region having a low oxygen concentration are likely to be mixed on the surface of the conventional ITO electrode. When such an ITO electrode is used as an electrode on the hole injection side of the OLED element, the work function is as low as 4.5 to 4.8 eV, so that the hole injection barrier is high and desired OLED characteristics cannot be obtained.

図9(B)は上記(A)の欠点を補うため、酸素プラズマ処理、UV/O3処理などを施したものである。この表面処理により、ITO電極表面の酸素濃度が高くなり、仕事関数は5.2eV以上の値を示す。この上に、OLED層(ホール注入層41)を形成することにより、特性が改善されたOLED素子が得られるようになる。 In FIG. 9B, oxygen plasma treatment, UV / O 3 treatment, or the like is performed in order to compensate for the drawback of the above (A). This surface treatment increases the oxygen concentration on the surface of the ITO electrode, and the work function shows a value of 5.2 eV or more. By forming an OLED layer (hole injection layer 41) thereon, an OLED element with improved characteristics can be obtained.

ここで示した図9(B)のITO電極に典型的な光電子スペクトルは図4(B)のようになる。光電子スペクトルでは、直線近似できる領域が2つ存在することが多く、ITO電極は仕事関数高い部分と低い部分から構成されていることが多い。仕事関数高い部分と低い部分の分布は膜圧方向で存在するが、面内でも生ずることがある。   FIG. 4B shows a typical photoelectron spectrum of the ITO electrode shown in FIG. 9B. In the photoelectron spectrum, there are often two regions that can be linearly approximated, and the ITO electrode is often composed of a portion having a high work function and a portion having a low work function. The distribution of the high work function portion and the low work function portion exists in the film pressure direction, but may also occur in the plane.

このようなITO電極では、表面処理(酸素プラズマ処理、UV/O3処理など)後の仕事関数の経時劣化が生じやすい。この例を図3(B)に示す。このような仕事関数の経時劣化は、ITO電極の仕事関数高い部分の厚みが薄かったり、表面での存在比率が少ない場合に顕著になるものと考える。 In such an ITO electrode, the work function is likely to deteriorate with time after the surface treatment (oxygen plasma treatment, UV / O 3 treatment, etc.). An example of this is shown in FIG. Such deterioration of the work function with time is considered to be remarkable when the thickness of the ITO electrode having a high work function is thin or the existence ratio on the surface is small.

このようなITO電極をOLED素子に用いると、OLEDの特性改善は難しく、また、寿命特性改善(輝度半減時間の短縮や駆動電圧上昇抑制)も困難になる。   When such an ITO electrode is used for an OLED element, it is difficult to improve the characteristics of the OLED, and it is also difficult to improve the life characteristics (shortening the luminance half time and suppressing the drive voltage rise).

上記従来技術の課題は、ITO表面の清浄化と仕事関数増大には着目しているものの、ITO電極の膜質や、仕事関数を高い値に保持するための方法まで踏み込んでいないために発生していると考えられる。   Although the above-mentioned problems of the prior art are focused on cleaning the ITO surface and increasing the work function, they have occurred because the film quality of the ITO electrode and the method for maintaining the work function at a high value have not been stepped on. It is thought that there is.

図10は、ITO電極電極2の有機層4(ホール注入層41)との界面Bに厚みaで酸素高濃度層を作成した場合の酸素濃度プロファイルを示した図である。この酸素高濃度層では、ITO電極の化学量論組成と同等以上の酸素濃度を示す。該酸素高濃度層では、仕事関数が高いので、界面Bにおいて、良好なホール注入特性が得られる。ITO電極2と有機層4の相互拡散などによる特性劣化を考えると、厚みaは1nm程度あればよい。また、この酸素高濃度層はキャリア(電子)密度が低く、高い抵抗を示すため、厚みは厚くしすぎることは良くない。第2図と組み合わせて考えると、d≧aとせざる得ない。   FIG. 10 is a diagram showing an oxygen concentration profile when an oxygen high concentration layer is formed with a thickness a at the interface B of the ITO electrode electrode 2 with the organic layer 4 (hole injection layer 41). This oxygen high concentration layer exhibits an oxygen concentration equal to or higher than the stoichiometric composition of the ITO electrode. Since the high oxygen concentration layer has a high work function, good hole injection characteristics can be obtained at the interface B. Considering characteristic deterioration due to mutual diffusion between the ITO electrode 2 and the organic layer 4, the thickness a may be about 1 nm. Further, since this high oxygen concentration layer has a low carrier (electron) density and exhibits a high resistance, it is not good to make the thickness too thick. When considered in combination with FIG. 2, d ≧ a must be satisfied.

本実施の形態のITO電極を有するOLED素子の製造方法の一例を図11に示す。ITO電極を成膜する工程を、ITO電極の低抵抗な部分を構成するITO電極を成膜する工程と、化学量論組成と同等以上の酸素を含み高抵抗で仕事関数の高いITO電極(酸素高濃度層)を成膜する工程に分ければよい。該酸素高濃度層を形成する1つの方法は、成膜雰囲気の酸素や水分の割合を多くすることである。   An example of the manufacturing method of the OLED element which has the ITO electrode of this Embodiment is shown in FIG. The process of forming the ITO electrode is the same as the process of forming the ITO electrode that constitutes the low-resistance part of the ITO electrode, and the ITO electrode having a high resistance and high work function containing oxygen equal to or higher than the stoichiometric composition (oxygen) What is necessary is just to divide into the process which forms a high concentration layer. One method for forming the oxygen high concentration layer is to increase the ratio of oxygen and moisture in the film formation atmosphere.

本実施例によれば、化学量論組成と同等以上の酸素を含み高抵抗で仕事関数の高いITO電極(酸素高濃度層)を確実に形成できる。このため、第5図に示した工程(5C)の熱処理や(5F)の表面処理で、ITO電極の酸素プロファイル調整は行う必要はなく、(5C)はITO電極の低抵抗化、(5F)はITO電極表面の清浄化を主眼に行えばよい。また、製造工程に還元雰囲気があって、酸素欠乏が生じても、ITO電極表面の酸素濃度が高いため、工程(5F)での酸化による補修が簡単である。   According to the present embodiment, it is possible to reliably form an ITO electrode (oxygen high concentration layer) containing oxygen equal to or higher than the stoichiometric composition and having a high resistance and a high work function. For this reason, it is not necessary to adjust the oxygen profile of the ITO electrode by the heat treatment in the step (5C) shown in FIG. 5 or the surface treatment of (5F). (5C) is a reduction in resistance of the ITO electrode, and (5F) The main purpose is to clean the surface of the ITO electrode. Even if there is a reducing atmosphere in the manufacturing process and oxygen deficiency occurs, the oxygen concentration on the surface of the ITO electrode is high, so that repair by oxidation in the process (5F) is easy.

図11は、図10に示した酸素濃度プロファイルを有するITO電極を用いたOLED素子の製造方法の一例を示す工程フロー図である。図5に示した工程と異なる点は、(5A)のITO電極の成膜工程を(11A1)と(11A2)の2つの工程に分けた所である。工程(11A1)では工程(11C)の熱処理で低抵抗化できる膜質とし、工程(11A2)では酸素高濃度層に対応するITO電極を形成する。すなわち、工程(11A1)では最適酸素(+水)分圧で成膜するが、工程(11A2)では最適酸素(+水)分圧に更に酸素や水分を加えて成膜する。   FIG. 11 is a process flow diagram showing an example of a method for manufacturing an OLED element using the ITO electrode having the oxygen concentration profile shown in FIG. The difference from the process shown in FIG. 5 is that the ITO electrode film forming process (5A) is divided into two processes (11A1) and (11A2). In the step (11A1), the film quality can be lowered by the heat treatment in the step (11C), and in the step (11A2), an ITO electrode corresponding to the oxygen high concentration layer is formed. That is, in step (11A1), the film is formed at the optimum oxygen (+ water) partial pressure, but in step (11A2), the film is formed by further adding oxygen or moisture to the optimum oxygen (+ water) partial pressure.

本実施例の場合、工程(11C)の熱処理や(11F)表面処理で、ITO電極の酸素プロファイル調整を行う必要はない。工程(11C)はITO電極(工程(11A1)で成膜したITO電極)の低抵抗化、工程(11F)はITO電極(工程(11A2)で成膜したITO電極)表面の清浄化を主眼に行えばよい。   In the case of this example, it is not necessary to adjust the oxygen profile of the ITO electrode by the heat treatment in the step (11C) or the (11F) surface treatment. Step (11C) focuses on reducing the resistance of the ITO electrode (ITO electrode formed in step (11A1)), and step (11F) focuses on cleaning the surface of the ITO electrode (ITO electrode formed in step (11A2)). Just do it.

第1の実施の形態を示すボトムエミッション型のOLEDの断面図である。It is sectional drawing of bottom emission type OLED which shows 1st Embodiment. 本発明の特徴を示すITO電極2内の酸素濃度分布を示す図である。It is a figure which shows oxygen concentration distribution in the ITO electrode 2 which shows the characteristics of this invention. 本発明の効果の1つを示すグラフを記載した図である。It is the figure which described the graph which shows one of the effects of this invention. 本発明の効果の1つを示す光電子スペクトルを記載した図である。It is the figure which described the photoelectron spectrum which shows one of the effects of this invention. 本発明によるOLED素子の製造方法の1つを示す製造工程フロー図を示す図である。It is a figure which shows the manufacturing process flowchart which shows one of the manufacturing methods of the OLED element by this invention. 第5図に示した工程(5C)によるITO電極2(ITO電極)の抵抗変化を示すグラフを記載した図である。It is the figure which described the graph which shows the resistance change of the ITO electrode 2 (ITO electrode) by the process (5C) shown in FIG. 第5図に示した工程(5C)によるITO電極2(ITO電極)の仕事関数を示すグラフを記載した図である。It is the figure which described the graph which shows the work function of the ITO electrode 2 (ITO electrode) by the process (5C) shown in FIG. 第5図に示した工程(5F)によるITO電極2(ITO電極)の仕事関数を示すグラフを記載した図である。It is the figure which described the graph which shows the work function of the ITO electrode 2 (ITO electrode) by the process (5F) shown in FIG. 従来のボトムエミッション型OLEDで用いられている典型的なITO電極のITO電極内酸素の深さ方向分布を示した図である。It is the figure which showed the depth direction distribution of the oxygen in the ITO electrode of the typical ITO electrode used with the conventional bottom emission type | mold OLED. ITO電極電極2の有機層4(ホール注入層41)との界面Bに厚みaで酸素高濃度層を作成した場合の酸素濃度プロファイルを示した図である。It is the figure which showed the oxygen concentration profile at the time of producing an oxygen high concentration layer with thickness a in the interface B with the organic layer 4 (hole injection layer 41) of the ITO electrode electrode 2. FIG. 第10図に示した酸素濃度プロファイルを有するITO電極を用いたOLED素子の製造方法の一例を示す工程フロー図である。。FIG. 11 is a process flow diagram showing an example of a method for manufacturing an OLED element using the ITO electrode having the oxygen concentration profile shown in FIG. .

符号の説明Explanation of symbols

1,3・・・絶縁層、2・・・ITO電極、4・・・有機EL層、41・・・ホール注入層、42・・・ホール輸送層、43・・・発光層、44・・・電子輸送層、5・・・上部電極、100・・・TFT回路基板、110・・・ガラス基板、120・・・TFT回路、A・・・絶縁層1とITO電極2の界面、B・・・ITO電極2と有機EL層4(ホール注入層41)の界面。

DESCRIPTION OF SYMBOLS 1,3 ... Insulating layer, 2 ... ITO electrode, 4 ... Organic electroluminescent layer, 41 ... Hole injection layer, 42 ... Hole transport layer, 43 ... Light emitting layer, 44 ... Electron transport layer, 5 ... upper electrode, 100 ... TFT circuit substrate, 110 ... glass substrate, 120 ... TFT circuit, A ... interface between insulating layer 1 and ITO electrode 2, B ..Interface between the ITO electrode 2 and the organic EL layer 4 (hole injection layer 41).

Claims (7)

ITO電極上に有機膜と金属膜とを順次積層してなる有機EL素子をマトリクス状に配置した有機EL表示装置において、
前記ITO電極の前記有機層との境界近傍において、前記ITO電極中の酸素含有量の深さ方向の分布が、ITO電極内部から有機膜に向かって増加する分布となっていることを特徴とする有機EL表示装置。
In an organic EL display device in which organic EL elements formed by sequentially laminating an organic film and a metal film on an ITO electrode are arranged in a matrix,
In the vicinity of the boundary of the ITO electrode with the organic layer, the distribution of the oxygen content in the ITO electrode in the depth direction is a distribution increasing from the inside of the ITO electrode toward the organic film. Organic EL display device.
請求項1において、
前記ITO電極と有機膜との界面におけるITO電極の酸素含有量を、該ITOの化学量論組成以上とすることを特徴とする有機EL表示装置。
In claim 1,
An organic EL display device characterized in that the oxygen content of the ITO electrode at the interface between the ITO electrode and the organic film is equal to or higher than the stoichiometric composition of the ITO.
請求項1又は2において、
前記酸素含有量は、前記ITO電極と前記有機膜との界面から1nm以上10nm以下の範囲における酸素含有量であることを特徴とする有機EL表示装置。
In claim 1 or 2,
The organic EL display device, wherein the oxygen content is an oxygen content in a range of 1 nm to 10 nm from an interface between the ITO electrode and the organic film.
有機膜と金属膜とを順次ITO電極上に積層してなる有機EL素子をマトリクス状に配置した有機EL表示装置において、
前記ITOと前記有機層との界面に、酸素濃度がITOの化学量論組成以上となる層が存在することを特徴とする有機EL表示装置。
In an organic EL display device in which organic EL elements formed by sequentially laminating an organic film and a metal film on an ITO electrode are arranged in a matrix,
An organic EL display device comprising a layer having an oxygen concentration equal to or higher than the stoichiometric composition of ITO at an interface between the ITO and the organic layer.
請求項4において、
前記層は、1nm以上の厚みを備えていることを特徴とする有機EL表示装置。
In claim 4,
The organic EL display device, wherein the layer has a thickness of 1 nm or more.
請求項1乃至5において、   In claims 1 to 5, 請求項6において、
前記有機EL素子は、アクティブマトリクス基板上に形成されていることを特徴とする有機EL表示装置。

In claim 6,
The organic EL display device, wherein the organic EL element is formed on an active matrix substrate.

JP2006051309A 2006-02-27 2006-02-27 Organic EL display device Pending JP2007234259A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006051309A JP2007234259A (en) 2006-02-27 2006-02-27 Organic EL display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006051309A JP2007234259A (en) 2006-02-27 2006-02-27 Organic EL display device

Publications (2)

Publication Number Publication Date
JP2007234259A true JP2007234259A (en) 2007-09-13
JP2007234259A5 JP2007234259A5 (en) 2009-04-16

Family

ID=38554665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006051309A Pending JP2007234259A (en) 2006-02-27 2006-02-27 Organic EL display device

Country Status (1)

Country Link
JP (1) JP2007234259A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012084238A (en) * 2010-10-06 2012-04-26 Ulvac Japan Ltd Plasma processing apparatus and pretreatment method
JP2012510705A (en) * 2008-12-01 2012-05-10 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Anode for organic electronic devices
US8551624B2 (en) 2008-12-01 2013-10-08 E I Du Pont De Nemours And Company Electroactive materials
JP2013229186A (en) * 2012-04-25 2013-11-07 Asahi Glass Co Ltd Organic led element, translucent substrate, and translucent substrate manufacturing method
WO2014021177A1 (en) * 2012-08-02 2014-02-06 ソニー株式会社 Semiconductor element, method for manufacturing semiconductor element, solid-state imaging device, and electronic device
JP2015111707A (en) * 2009-12-04 2015-06-18 株式会社半導体エネルギー研究所 Method for producing semiconductor device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000077190A (en) * 1998-08-28 2000-03-14 Futaba Corp Organic electroluminescent element and manufacture thereof
JP2000091084A (en) * 1998-09-16 2000-03-31 Trustees Of Princeton Univ Ball injection improved electrode
JP2001035667A (en) * 1999-07-27 2001-02-09 Tdk Corp Organic el element
JP2004311418A (en) * 2003-03-25 2004-11-04 Semiconductor Energy Lab Co Ltd Display device and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000077190A (en) * 1998-08-28 2000-03-14 Futaba Corp Organic electroluminescent element and manufacture thereof
JP2000091084A (en) * 1998-09-16 2000-03-31 Trustees Of Princeton Univ Ball injection improved electrode
JP2001035667A (en) * 1999-07-27 2001-02-09 Tdk Corp Organic el element
JP2004311418A (en) * 2003-03-25 2004-11-04 Semiconductor Energy Lab Co Ltd Display device and its manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012510705A (en) * 2008-12-01 2012-05-10 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Anode for organic electronic devices
US8551624B2 (en) 2008-12-01 2013-10-08 E I Du Pont De Nemours And Company Electroactive materials
JP2015111707A (en) * 2009-12-04 2015-06-18 株式会社半導体エネルギー研究所 Method for producing semiconductor device
JP2012084238A (en) * 2010-10-06 2012-04-26 Ulvac Japan Ltd Plasma processing apparatus and pretreatment method
JP2013229186A (en) * 2012-04-25 2013-11-07 Asahi Glass Co Ltd Organic led element, translucent substrate, and translucent substrate manufacturing method
WO2014021177A1 (en) * 2012-08-02 2014-02-06 ソニー株式会社 Semiconductor element, method for manufacturing semiconductor element, solid-state imaging device, and electronic device

Similar Documents

Publication Publication Date Title
JP5584960B2 (en) Thin film transistor and display device
JP5197058B2 (en) Light emitting device and manufacturing method thereof
JP5099740B2 (en) Thin film transistor
JP4699098B2 (en) ORGANIC EL ELEMENT AND ORGANIC EL DISPLAY DEVICE USING THE SAME
KR100865445B1 (en) Fabrication method for organic electronic device and organic electronic device fabricated by the same method
KR100858617B1 (en) Thin film transistor and organic light emitting display device using same
JP2007533104A (en) OLED device with reduced short circuit
KR100669688B1 (en) Thin film transistor and flat panel display device having same
JP2007234259A (en) Organic EL display device
JP2004327414A (en) Organic EL element and method of manufacturing the same
KR100844788B1 (en) Fabrication method for organic light emitting device and organic light emitting device fabricated by the same method
KR102818817B1 (en) Optoelectronic device including auxiliary electrode and partition
WO2014196107A1 (en) Thin film transistor element, production method for same, and display device
JP2000068073A (en) Organic electroluminescence device and method of manufacturing the same
KR20030074186A (en) Electro luminescence panel and method of manufacturing the same
JPWO2013128504A1 (en) Organic EL device and method for producing the same, and method for forming metal oxide film
JP4310843B2 (en) Method for manufacturing organic electroluminescent device
JP4617749B2 (en) Manufacturing method of display device
KR20050073233A (en) Manufacturing method of indium tin oxide thin film
KR102400258B1 (en) Etchant composition for etching metal layer and manufacturing method of forming conductive pattern using the same
US7009749B2 (en) Optical element and manufacturing method therefor
US8877548B2 (en) Planarized TCO-based anode for OLED devices, and/or methods of making the same
KR100829760B1 (en) Method for manufacturing an organic light emitting device and an organic light emitting device manufactured using the same
JP4817609B2 (en) Method for manufacturing organic electroluminescence element and method for manufacturing display device
KR100565587B1 (en) Organic electroluminescent device and manufacturing method thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090226

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110218

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120110