[go: up one dir, main page]

JP2007232577A - Flaw inspection method and flaw inspection device - Google Patents

Flaw inspection method and flaw inspection device Download PDF

Info

Publication number
JP2007232577A
JP2007232577A JP2006054801A JP2006054801A JP2007232577A JP 2007232577 A JP2007232577 A JP 2007232577A JP 2006054801 A JP2006054801 A JP 2006054801A JP 2006054801 A JP2006054801 A JP 2006054801A JP 2007232577 A JP2007232577 A JP 2007232577A
Authority
JP
Japan
Prior art keywords
optical fiber
signal
inspected
light
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006054801A
Other languages
Japanese (ja)
Inventor
Ushio Suzuki
潮 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Opto Co Ltd
Original Assignee
Fuji Opto Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Opto Co Ltd filed Critical Fuji Opto Co Ltd
Priority to JP2006054801A priority Critical patent/JP2007232577A/en
Publication of JP2007232577A publication Critical patent/JP2007232577A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flaw inspection method capable of inspecting the wall surface or the like of a member to be inspected in a shorter time, and a flaw inspection device. <P>SOLUTION: A floodlight projection optical fiber and a light detecting optical fiber are used and the emitting surface of the floodlight projection optical fiber and the incident surface of the light detection optical fiber are arranged in opposed relationship so as to leave a definite distance while the member to be inspected, which permits the transmission of the detection light emitted from the floodlight projection optical fiber, is arranged between the emitting surface of the floodlight projection optical fiber and the incident surface of the light detection optical fiber, and the emitting surface of the floodlight projection optical fiber and the incident surface of the light detection optical fiber are relatively moved with respect to the member to be inspected along the surface of the member to be inspected. The flaw of the member to be inspected is judged on the basis of a change in the intensity of the detection light emitted from the emitting surface of the floodlight projection optical fiber and transmitted through the member to be inspected and thrown on the incident surface of the light detection optical fiber. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、例えば被検査部材の表面(例えばシリンダ、パイプや加工穴等の内周壁面)等の欠陥を検出する欠陥検査方法及び欠陥検査装置に関する。   The present invention relates to a defect inspection method and a defect inspection apparatus for detecting defects such as the surface of a member to be inspected (for example, inner peripheral wall surfaces such as cylinders, pipes, and machining holes).

従来、車両のエンジンのシリンダ等、内径が比較的大きな内周壁面の表面の鋳巣や加工傷等の検査を行う場合、一般的には小型CCDカメラ等を挿入して画像処理装置を用いて検査を行っている。
例えば特許文献1に記載した従来技術では、エンジンシリンダ等の被検査円筒物体の内面に残っている残留液を洗浄する洗浄部と、洗浄した内面の2次元画像を検出する光学系と、検出した2次元画像に基づいて欠陥の情報を取得する画像処理部と、取得した欠陥の情報を出力する出力部とを備えた欠陥検査装置が提案されている。
また特許文献2に記載した従来技術では、検査するワークのボアに撮像手段を挿入して内壁面を撮像し、画像処理を行って特徴パラメータを抽出し、抽出したパラメータ値を基準値と比較して欠陥の有無を判定し、特徴パラメータとしては、撮像された欠陥候補の実際の最大寸法とするボア内壁面欠陥検査装置が提案されている。
Conventionally, when inspecting a cast hole or a processing flaw on the surface of an inner peripheral wall having a relatively large inner diameter such as a cylinder of a vehicle engine, an image processing apparatus is generally used by inserting a small CCD camera or the like. We are inspecting.
For example, in the prior art described in Patent Document 1, a cleaning unit that cleans residual liquid remaining on the inner surface of a cylindrical object to be inspected such as an engine cylinder, and an optical system that detects a two-dimensional image of the cleaned inner surface are detected. There has been proposed a defect inspection apparatus including an image processing unit that acquires defect information based on a two-dimensional image and an output unit that outputs the acquired defect information.
In the prior art described in Patent Document 2, an imaging means is inserted into the bore of the workpiece to be inspected to image the inner wall surface, image processing is performed to extract a feature parameter, and the extracted parameter value is compared with a reference value. There has been proposed a bore inner wall surface defect inspection apparatus that determines the presence or absence of a defect and sets the actual maximum dimension of the imaged defect candidate as a feature parameter.

また、上記のような内周壁面を検査する装置としては、他にも、磁力線を用いる磁気探傷装置や、レーザー光を用いるレーザー光探傷装置等がある。
例えば特許文献3に記載した従来技術では、磁化器と磁気センサからなる磁気探傷器と、金属帯(ワーク)が走行するロールに磁気センサを近接させて配置し、ロール1回転を周期として磁気センサからの信号をデジタル信号に変換した出力データを区分けし、区分データと、次の周期の区分データとの差分データから金属帯の欠陥の有無を検出する、金属帯磁気探傷装置が提案されている。
特開2005−121450号公報 特開平9−311107号公報 特開平9−229906号公報
In addition, examples of the apparatus for inspecting the inner peripheral wall surface as described above include a magnetic flaw detection apparatus using magnetic field lines, a laser light flaw detection apparatus using laser light, and the like.
For example, in the prior art described in Patent Document 3, a magnetic flaw detector composed of a magnetizer and a magnetic sensor, and a magnetic sensor placed close to a roll on which a metal strip (workpiece) travels, and the rotation of one roll is a period of the magnetic sensor. A metal band magnetic flaw detector that classifies output data obtained by converting a signal from a digital signal into signals and detects the presence or absence of a metal band defect from the difference data between the section data and the next period section data has been proposed. .
JP-A-2005-121450 JP-A-9-311107 JP-A-9-229906

特許文献1及び特許文献2に記載した画像処理を用いる従来技術では、CCDカメラまたはミラーをシリンダ内部で回転させるが、撮像するために照明用の光が必要であり、CCDカメラ(またはミラー)と同様に照明もシリンダ内で回転させる必要があり、操作が困難であった。また、撮像画像から欠陥を検出するには、複雑な画像処理が必要であり、検査に要する時間が長く、検出精度を上げると更に長い時間が必要となっていた。また、エンジンシリンダの内径は比較的大きいのでCCDカメラと照明をシリンダ内部に挿入することはできるが、車両の各種のバルブのシリンダ、ブレーキシリンダ、燃料噴射ノズル等の場合は穴径が小さく、CCDカメラと撮像用の光をシリンダ内に挿入することが非常に困難である。
また特許文献3に記載した磁気探傷装置を用いる従来技術では、磁化器と磁気センサとを円筒の内壁側と外壁側に配置して磁気の変化を検出するため、円筒の肉厚が変化するエンジンシリンダ等では欠陥の検出が非常に困難である。
またレーザー光探傷装置を用いる従来技術では、レーザー光が当たるスポットの径が非常に小さいため、検査に要する時間が長くなる。
本発明は、このような点に鑑みて創案されたものであり、より短時間で被検査部材の壁面等の欠陥の検査が可能な欠陥検査方法及び欠陥検査装置を提供することを課題とする。
In the conventional technique using the image processing described in Patent Document 1 and Patent Document 2, a CCD camera or a mirror is rotated inside a cylinder. However, illumination light is necessary for imaging, and the CCD camera (or mirror) Similarly, it is necessary to rotate the illumination in the cylinder, and the operation is difficult. Moreover, in order to detect a defect from a captured image, complicated image processing is required, and the time required for inspection is long, and a longer time is required when the detection accuracy is increased. Also, since the internal diameter of the engine cylinder is relatively large, a CCD camera and illumination can be inserted into the cylinder, but in the case of various valve cylinders, brake cylinders, fuel injection nozzles, etc. of the vehicle, the hole diameter is small. It is very difficult to insert the camera and imaging light into the cylinder.
Further, in the prior art using the magnetic flaw detection apparatus described in Patent Document 3, the magnetizer and the magnetic sensor are arranged on the inner wall side and the outer wall side of the cylinder to detect the change in magnetism, so that the engine whose cylinder thickness changes It is very difficult to detect defects with a cylinder or the like.
Further, in the conventional technique using a laser beam flaw detector, the diameter of a spot hit by a laser beam is very small, so that the time required for inspection becomes long.
The present invention has been made in view of such points, and it is an object of the present invention to provide a defect inspection method and a defect inspection apparatus capable of inspecting defects such as a wall surface of a member to be inspected in a shorter time. .

上記課題を解決するための手段として、本発明の第1発明は、請求項1に記載されたとおりの欠陥検査方法である。
請求項1に記載の欠陥検査方法では、投光用光ファイバと受光用光ファイバとを用いる。
前記投光用光ファイバの出射面と前記受光用光ファイバの入射面が一定の距離を保つように対向させて配置するとともに、前記投光用光ファイバから出射する検出光を透過する被検査部材を前記投光用光ファイバの出射面と前記受光用光ファイバの入射面との間に配置し、前記投光用光ファイバの出射面及び前記受光用光ファイバの入射面を前記被検査部材の表面に沿って前記被検査部材に対して相対的に移動させ、前記投光用光ファイバの出射面から出射されて前記被検査部材を透過して前記受光用光ファイバの入射面に入射された検出光の強度の変化に基づいて前記被検査部材の欠陥を判定する。
As means for solving the above-mentioned problems, the first invention of the present invention is a defect inspection method as described in claim 1.
In the defect inspection method according to claim 1, a light projecting optical fiber and a light receiving optical fiber are used.
A member to be inspected that is arranged so that the emission surface of the light projecting optical fiber and the light incident surface of the light receiving optical fiber face each other so as to maintain a certain distance, and transmits the detection light emitted from the light projecting optical fiber Is disposed between the exit surface of the light projecting optical fiber and the entrance surface of the light receiving optical fiber, and the exit surface of the light projecting optical fiber and the entrance surface of the light receiving optical fiber are arranged on the member to be inspected. The light is moved relative to the member to be inspected along the surface, is emitted from the emission surface of the light projecting optical fiber, passes through the member to be inspected, and is incident on the incident surface of the light receiving optical fiber. The defect of the member to be inspected is determined based on the change in the intensity of the detection light.

また、本発明の第2発明は、請求項2に記載されたとおりの欠陥検査方法である。
請求項2に記載の欠陥検査方法では、投光用光ファイバと受光用光ファイバとを用いる。
前記投光用光ファイバから出射する検出光を反射する被検査部材を検査する場合、当該被検査部材の表面から一定の距離を保つように並設させた前記投光用光ファイバの出射面と前記受光用光ファイバの入射面とを前記被検査部材の表面に沿って前記被検査部材に対して相対的に移動させる。
前記投光用光ファイバから出射する検出光を透過する被検査部材を検査する場合、当該被検査部材を挟んで一定の距離を保つように対向させた前記投光用光ファイバの出射面と前記受光用光ファイバの入射面とを前記被検査部材の表面に沿って前記被検査部材に対して相対的に移動させる。
そして前記受光用光ファイバに入射された検出光を、当該検出光の強度に応じた電圧信号に変換する電圧変換ステップと、前記電圧変換ステップから出力される電圧信号を、予め設定した第1基準電圧にシフトするとともに前記電圧信号のうねり成分を除去する帰還部を有する帰還制御ステップと、前記帰還制御ステップから出力される電圧信号を、予め設定された第2基準電圧にシフトする電圧シフトステップと、前記電圧シフトステップから出力される電圧信号において、波高値が外部入力電圧以上となる電圧信号を増幅するとともに、波高値が前記外部入力電圧未満となる電圧信号をカットあるいは減衰させて欠陥信号が強調された判定用信号を得る欠陥強調ステップと、前記判定用信号において、波高値が第1所定電圧以上の信号を欠陥と判定する判定ステップとを有する。
また更に、前記電圧シフトステップから出力される電圧信号の波高値を平滑化する平滑化ステップを有し、当該平滑化ステップから出力される平滑化信号を前記外部入力電圧として前記欠陥強調ステップに用いる。
The second invention of the present invention is a defect inspection method as set forth in claim 2.
In the defect inspection method according to claim 2, a light projecting optical fiber and a light receiving optical fiber are used.
When inspecting a member to be inspected that reflects the detection light emitted from the light projecting optical fiber, the light emitting surface of the light projecting optical fiber arranged side by side so as to maintain a certain distance from the surface of the member to be inspected; The incident surface of the light receiving optical fiber is moved relative to the member to be inspected along the surface of the member to be inspected.
When inspecting a member to be inspected that transmits detection light emitted from the light projecting optical fiber, the light exiting surface of the light projecting optical fiber opposed to maintain a certain distance across the member to be inspected and the The incident surface of the light receiving optical fiber is moved relative to the member to be inspected along the surface of the member to be inspected.
A voltage conversion step for converting the detection light incident on the light receiving optical fiber into a voltage signal corresponding to the intensity of the detection light, and a voltage signal output from the voltage conversion step are set to a first reference set in advance. A feedback control step having a feedback unit that shifts to a voltage and removes a swell component of the voltage signal; and a voltage shift step that shifts a voltage signal output from the feedback control step to a preset second reference voltage; The voltage signal output from the voltage shift step amplifies a voltage signal whose peak value is greater than or equal to the external input voltage, and cuts or attenuates a voltage signal whose peak value is less than the external input voltage to generate a defective signal. A defect emphasizing step for obtaining an emphasized determination signal; and a signal having a peak value equal to or higher than a first predetermined voltage in the determination signal. Recessed and a determination step of determining a.
Furthermore, it has a smoothing step for smoothing the peak value of the voltage signal output from the voltage shift step, and uses the smoothed signal output from the smoothing step as the external input voltage for the defect emphasizing step. .

また、本発明の第3発明は、請求項3に記載されたとおりの欠陥検査方法である。
請求項3に記載の欠陥検査方法では、投光用光ファイバと受光用光ファイバとを用いる。
前記投光用光ファイバから出射する検出光を反射する被検査部材を検査する場合、当該被検査部材の表面から一定の距離を保つように並設させた前記投光用光ファイバの出射面と前記受光用光ファイバの入射面とを前記被検査部材の表面に沿って前記被検査部材に対して相対的に移動させる。
前記投光用光ファイバから出射する検出光を透過する被検査部材を検査する場合、当該被検査部材を挟んで一定の距離を保つように対向させた前記投光用光ファイバの出射面と前記受光用光ファイバの入射面とを前記被検査部材の表面に沿って前記被検査部材に対して相対的に移動させる。
また前記受光用光ファイバを一対で構成し、前記表面に沿って相対的に移動させる際、一方の受光用光ファイバの入射面に続いて他方の受光用光ファイバの入射面が前記表面上の同じ位置を通過するように移動させる。
そして一方の受光用ファイバに入射された第1検出光を、当該第1検出光の強度に応じた第1電圧信号に変換する第1電圧変換ステップと、他方の受光用ファイバに入射された第2検出光を、当該第2検出光の強度に応じた第2電圧信号に変換する第2電圧変換ステップと、前記第1電圧信号と前記第2電圧信号との差分を示す差分信号を得る差動演算ステップと、前記差分信号の波高値を平滑化した平滑化信号を得る平滑化ステップと、前記差分信号と前記平滑化信号から、前記差分信号において前記平滑化信号の波高値以上となる信号を増幅するとともに、前記差分信号において前記平滑化信号の波高値未満となる信号をカットあるいは減衰させて欠陥信号が強調された判定用信号を得る欠陥強調ステップと、前記判定用信号において、波高値が第2所定電圧以上の信号を欠陥と判定する判定ステップとを有する。
A third aspect of the present invention is a defect inspection method as set forth in the third aspect.
In the defect inspection method according to claim 3, a light projecting optical fiber and a light receiving optical fiber are used.
When inspecting a member to be inspected that reflects the detection light emitted from the light projecting optical fiber, the light emitting surface of the light projecting optical fiber arranged side by side so as to maintain a certain distance from the surface of the member to be inspected; The incident surface of the light receiving optical fiber is moved relative to the member to be inspected along the surface of the member to be inspected.
When inspecting a member to be inspected that transmits detection light emitted from the light projecting optical fiber, the light exiting surface of the light projecting optical fiber opposed to maintain a certain distance across the member to be inspected and the The incident surface of the light receiving optical fiber is moved relative to the member to be inspected along the surface of the member to be inspected.
Further, when the light receiving optical fiber is configured as a pair and is relatively moved along the surface, the light receiving optical fiber incident surface is followed by the light receiving optical fiber incident surface on the surface. Move to pass the same position.
Then, a first voltage conversion step for converting the first detection light incident on one light receiving fiber into a first voltage signal corresponding to the intensity of the first detection light, and a first voltage incident on the other light receiving fiber. A second voltage conversion step of converting the two detection lights into a second voltage signal corresponding to the intensity of the second detection light, and a difference for obtaining a difference signal indicating a difference between the first voltage signal and the second voltage signal And a smoothing step for obtaining a smoothed signal obtained by smoothing the peak value of the differential signal, and a signal that is equal to or higher than the peak value of the smoothed signal in the differential signal from the differential signal and the smoothed signal. In the defect emphasizing step for obtaining a determination signal in which the defect signal is emphasized by cutting or attenuating a signal that is less than the peak value of the smoothed signal in the difference signal, and the determination signal, Height value and a determination step of determining a defect a second predetermined voltage or more signals.

また、本発明の第4発明は、請求項4に記載されたとおりの欠陥検査装置である。
請求項4に記載の欠陥検査装置は、投光用光ファイバと受光用光ファイバと制御装置とを備える。
前記投光用光ファイバから出射する検出光を反射する被検査部材を検査する場合、当該被検査部材の表面から一定の距離を保つように並設させた前記投光用光ファイバの出射面と前記受光用光ファイバの入射面とを前記被検査部材の表面に沿って前記被検査部材に対して相対的に移動させる。
前記投光用光ファイバから出射する検出光を透過する被検査部材を検査する場合、当該被検査部材を挟んで一定の距離を保つように対向させた前記投光用光ファイバの出射面と前記受光用光ファイバの入射面とを前記被検査部材の表面に沿って前記被検査部材に対して相対的に移動させる。
そして前記制御装置は、前記受光用光ファイバに入射された検出光が入力されると、入力された検出光の強度に応じた電圧信号を出力する電圧変換手段と、前記電圧変換手段から出力される電圧信号を、予め設定した第1基準電圧にシフトするとともに前記電圧信号のうねり成分を除去する帰還部を有する帰還制御手段と、前記帰還制御手段から出力される電圧信号を、予め設定された第2基準電圧にシフトする電圧シフト手段と、前記電圧シフト手段から出力される電圧信号において、波高値が外部入力電圧以上となる電圧信号を増幅するとともに、波高値が前記外部入力電圧未満となる電圧信号をカットあるいは減衰させて欠陥信号が強調された判定用信号を出力する欠陥強調手段と、前記判定用信号が入力されると、入力された判定用信号において波高値が第1所定電圧以上の信号を欠陥と判定する判定手段とを備える。
また更に、前記電圧シフト手段から出力される電圧信号の波高値を平滑化する平滑化手段を備え、当該平滑化手段から出力される平滑化信号を前記外部入力電圧として前記欠陥強調手段に入力する。
A fourth aspect of the present invention is a defect inspection apparatus as set forth in the fourth aspect.
A defect inspection apparatus according to a fourth aspect includes a light projecting optical fiber, a light receiving optical fiber, and a control device.
When inspecting a member to be inspected that reflects the detection light emitted from the light projecting optical fiber, the light emitting surface of the light projecting optical fiber arranged side by side so as to maintain a certain distance from the surface of the member to be inspected; The incident surface of the light receiving optical fiber is moved relative to the member to be inspected along the surface of the member to be inspected.
When inspecting a member to be inspected that transmits detection light emitted from the light projecting optical fiber, the light exiting surface of the light projecting optical fiber opposed to maintain a certain distance across the member to be inspected and the The incident surface of the light receiving optical fiber is moved relative to the member to be inspected along the surface of the member to be inspected.
When the detection light incident on the light receiving optical fiber is input, the control device outputs a voltage signal corresponding to the intensity of the input detection light, and is output from the voltage conversion unit. A feedback control means having a feedback section for shifting the voltage signal to the first reference voltage set in advance and removing the undulation component of the voltage signal, and a voltage signal output from the feedback control means is set in advance. In the voltage shift means for shifting to the second reference voltage and the voltage signal output from the voltage shift means, the voltage signal whose peak value is equal to or greater than the external input voltage is amplified, and the peak value is less than the external input voltage. Defect emphasis means for outputting a determination signal in which the defect signal is emphasized by cutting or attenuating the voltage signal, and when the determination signal is input, the input for determination Peak value and a determination means and defect a first predetermined voltage or more signals in No..
Furthermore, a smoothing means for smoothing the peak value of the voltage signal output from the voltage shift means is provided, and the smoothed signal output from the smoothing means is input to the defect emphasis means as the external input voltage. .

また、本発明の第5発明は、請求項5に記載されたとおりの欠陥検査装置である。
請求項5に記載の欠陥検査装置は、投光用光ファイバと受光用光ファイバと制御装置とを備える。
前記投光用光ファイバから出射する検出光を反射する被検査部材を検査する場合、当該被検査部材の表面から一定の距離を保つように並設させた前記投光用光ファイバの出射面と前記受光用光ファイバの入射面とを前記被検査部材の表面に沿って前記被検査部材に対して相対的に移動させる。
前記投光用光ファイバから出射する検出光を透過する被検査部材を検査する場合、当該被検査部材を挟んで一定の距離を保つように対向させた前記投光用光ファイバの出射面と前記受光用光ファイバの入射面とを前記被検査部材の表面に沿って前記被検査部材に対して相対的に移動させる。
また前記受光用光ファイバは一対で構成されており、前記表面に沿って相対的に移動させる際、一方の受光用光ファイバの入射面に続いて他方の受光用光ファイバの入射面が前記表面上の同じ位置を通過するように移動させる。
そして前記制御装置は、一方の受光用ファイバに入射された第1検出光が入力されると、入力された第1検出光の強度に応じた第1電圧信号を出力する第1電圧変換手段と、
他方の受光用ファイバに入射された第2検出光が入力されると、入力された第2検出光の強度に応じた第2電圧信号を出力する第2電圧変換手段と、前記第1電圧信号と前記第2電圧信号が入力されると、入力された第1電圧信号と第2電圧信号との差分を示す差分信号を出力する差動演算手段と、前記差分信号の波高値を平滑化した平滑化信号を出力する平滑化手段と、前記差分信号と前記平滑化信号が入力されると、前記差分信号において前記平滑化信号の波高値以上となる信号を増幅するとともに、前記差分信号において前記平滑化信号の波高値未満となる信号をカットあるいは減衰させて欠陥信号が強調された判定用信号を出力する欠陥強調手段と、前記判定用信号が入力されると、入力された判定用信号において波高値が第2所定電圧以上の信号を欠陥と判定する判定手段とを備える。
A fifth aspect of the present invention is a defect inspection apparatus as set forth in the fifth aspect.
A defect inspection apparatus according to a fifth aspect includes a light projecting optical fiber, a light receiving optical fiber, and a control device.
When inspecting a member to be inspected that reflects the detection light emitted from the light projecting optical fiber, the light emitting surface of the light projecting optical fiber arranged side by side so as to maintain a certain distance from the surface of the member to be inspected; The incident surface of the light receiving optical fiber is moved relative to the member to be inspected along the surface of the member to be inspected.
When inspecting a member to be inspected that transmits detection light emitted from the light projecting optical fiber, the light exiting surface of the light projecting optical fiber opposed to maintain a certain distance across the member to be inspected and the The incident surface of the light receiving optical fiber is moved relative to the member to be inspected along the surface of the member to be inspected.
The light receiving optical fiber is configured as a pair, and when the light receiving optical fiber is relatively moved along the surface, the light receiving optical fiber incident surface is followed by the light receiving optical fiber incident surface of the other light receiving optical fiber. Move to pass the same position above.
When the first detection light incident on one of the light receiving fibers is input, the control device outputs a first voltage signal corresponding to the intensity of the input first detection light; ,
When the second detection light incident on the other light receiving fiber is input, second voltage conversion means for outputting a second voltage signal corresponding to the intensity of the input second detection light; and the first voltage signal When the second voltage signal is input, differential operation means for outputting a difference signal indicating a difference between the input first voltage signal and the second voltage signal, and a peak value of the difference signal are smoothed Smoothing means for outputting a smoothed signal; and when the difference signal and the smoothed signal are input, a signal that is equal to or higher than a peak value of the smoothed signal in the difference signal is amplified, and the difference signal Defect emphasizing means for outputting a determination signal in which a defect signal is emphasized by cutting or attenuating a signal that is less than the peak value of the smoothing signal, and when the determination signal is input, in the input determination signal Crest value is second predetermined The signal on the pressure or comprises a determining unit and defects.

請求項1に記載の欠陥検査方法を用いれば、検出光を透過する材質で形成された円筒状部材や板状部材等、検出光を透過する材質で形成された種々の形状の部材を被検査部材として、検出光を透過させて透過した検出光の強度の変化に基づいて欠陥を検出するため、被検査部材の表面及び内部についても傷等の欠陥を容易に判定することができる。   When the defect inspection method according to claim 1 is used, a member having various shapes formed of a material that transmits detection light, such as a cylindrical member or a plate member formed of a material that transmits detection light, is inspected. Since a defect is detected as a member based on a change in the intensity of the detected light that is transmitted through the detection light, defects such as scratches can be easily determined on the surface and inside of the member to be inspected.

また、請求項2に記載の欠陥検査方法を用いた場合、まず受光用光ファイバに入射された検出光が入力されると、入力された検出光を電圧変換ステップにて電圧信号に変換する。変換された電圧信号は、例えば被検査部材の表面の位置に応じて、熱処理や化学処理や加工処理等に起因する色合い及び光沢等の差によるうねり成分や出力電圧レベルの幅を有している。また被検査部材の表面と光ファイバとの距離の変化や振動等に起因するうねり成分や出力電圧レベルの幅を有している。
そこで検査毎に電圧信号の出力電圧レベルが異なっていても、また検査中に電圧信号がうねっていても、帰還制御ステップと電圧シフトステップにて、第2基準電圧を中心とした平坦化した信号に変換し(図6(C)参照)、更に平滑化ステップで得た平滑化信号と欠陥強調ステップにて、適切に欠陥信号を強調することで、被検査部材の微細な傷(欠陥ではない)等によるノイズ成分に埋もれた欠陥信号成分(鋳巣や加工傷等の欠陥に応じた信号成分)を適切に抽出することができる。
また、投光用光ファイバ及び受光用光ファイバを、被検査部材の表面に沿って、被検査部材に対して相対的に移動させて欠陥検査を行うため、より短時間で欠陥の検査を行うことが可能である。
Further, when the defect inspection method according to claim 2 is used, when the detection light incident on the light receiving optical fiber is input, the input detection light is converted into a voltage signal in a voltage conversion step. The converted voltage signal has, for example, a swell component due to a difference in hue and gloss caused by heat treatment, chemical treatment, processing, etc., or a width of an output voltage level, depending on the position of the surface of the member to be inspected. . Further, it has a range of swell components and output voltage levels due to a change in the distance between the surface of the member to be inspected and the optical fiber, vibration, and the like.
Therefore, even if the output voltage level of the voltage signal is different for each inspection or the voltage signal is wobbling during the inspection, a flattened signal centered on the second reference voltage in the feedback control step and the voltage shift step. (See FIG. 6C), and further, the defect signal is appropriately emphasized in the smoothing signal obtained in the smoothing step and the defect emphasizing step, so that a fine scratch (not a defect) of the member to be inspected is obtained. ) Or the like, a defect signal component buried in a noise component (a signal component corresponding to a defect such as a cast hole or a processing flaw) can be appropriately extracted.
In addition, the defect inspection is performed in a shorter time because the light projecting optical fiber and the light receiving optical fiber are moved relative to the member to be inspected along the surface of the member to be inspected. It is possible.

また、請求項3に記載の欠陥検査方法を用いた場合、受光用光ファイバを一対で構成し、一方の受光用光ファイバが通過した被検査部材の位置を他方の受光用光ファイバも通過させる。そして一方の受光用光ファイバからの検出光の強度に応じた第1電圧信号と、他方の受光用光ファイバからの検出光の強度に応じた第2電圧信号との差分から差分信号を得る。同じ位置を通過させても同時に同じ位置を通過することはないため、第1電圧信号と第2電圧信号では、ほぼ同じ形状の波形であり且つ微小時間のずれが生じており、欠陥信号が検出されている位置も微小時間のずれが発生しているため、差分を求めた場合、欠陥信号が消失することなく、比較的長い時間で変化するうねり成分等を適切に除去することができる。
そして平滑化ステップで得た平滑化信号と欠陥強調ステップにて、適切に欠陥信号を強調することで、被検査部材の微細な傷(欠陥ではない)等によるノイズ成分に埋もれた欠陥信号成分(鋳巣や加工傷等の欠陥に応じた信号成分)を適切に抽出することができる。
また平滑化ステップで得た平滑化信号と欠陥強調ステップにて、適切に欠陥信号を強調することで、被検査部材の微細な傷(欠陥ではない)等によるノイズ成分に埋もれた欠陥信号成分(鋳巣や加工傷等の欠陥に応じた信号成分)を、より適切に抽出することができる。
When the defect inspection method according to claim 3 is used, a pair of light receiving optical fibers is configured, and the other light receiving optical fiber also passes through the position of the member to be inspected through which one light receiving optical fiber has passed. . Then, a difference signal is obtained from the difference between the first voltage signal corresponding to the intensity of the detection light from one light receiving optical fiber and the second voltage signal corresponding to the intensity of the detection light from the other light receiving optical fiber. Even if the same position is passed, it does not pass the same position at the same time. Therefore, the first voltage signal and the second voltage signal have substantially the same waveform and a slight time shift, and a defect signal is detected. Since a slight time lag has occurred at the position where it is located, when a difference is obtained, a swell component that changes in a relatively long time can be appropriately removed without losing a defect signal.
Then, the defect signal component (which is buried in the noise component due to fine scratches (not defects), etc., of the member to be inspected by appropriately enhancing the defect signal in the smoothing signal obtained in the smoothing step and the defect emphasizing step ( It is possible to appropriately extract a signal component corresponding to a defect such as a cast hole or a processing flaw.
In addition, the defect signal component buried in the noise component due to fine scratches (not defects) or the like of the member to be inspected by appropriately enhancing the defect signal in the smoothing signal obtained in the smoothing step and the defect emphasizing step ( The signal component corresponding to the defect such as a casting hole or a processing flaw) can be extracted more appropriately.

また、請求項4及び5に記載の欠陥検査装置では、請求項2及び3に記載した各々の欠陥検査方法を用いた各々の欠陥検査装置を、容易に実現することができる。   Moreover, in the defect inspection apparatus of Claim 4 and 5, each defect inspection apparatus using each defect inspection method of Claim 2 and 3 can be implement | achieved easily.

以下に本発明を実施するための最良の形態を図面を用いて説明する。
図1〜図5の例にて説明する第1の実施の形態における欠陥検査装置1は、検出光を反射する材質の壁面を有するシリンダ、パイプや加工穴等の種々の内壁面の欠陥(鋳巣、加工傷等)の検出に適用することが可能であり、シリンダSの内壁面の欠陥検出に適用した場合の例で説明する。
●●[第1の実施の形態(図1〜図5)]
●[検出パイプの構造(図1(A))と欠陥検査装置1の全体構造(図1(B))]
図1(A)は、本発明の欠陥検査装置1の第1の実施の形態における検出パイプ10の一実施の形態の外観図の例を示しており、図1(B)は本発明の欠陥検査装置1の第1の実施の形態における全体構造の例を示している。
なお第1の実施の形態では、検査対象となる被検査部材Sは、検出光を反射する材質である。
図1(A)に示すように、検出パイプ10は、検出部13、挿入部11、支持部12、フレキシブルチューブ14、取付部15等にて構成されている。
検出部13には、投光用光ファイバ13aの出射面、受光用光ファイバ13bの入射面が所定方向に配置されている(図2(A)、図3(A)参照)。検出部13は挿入部11の先端に設けられており、挿入部11は、検査対象となる略円柱状空間の軸方向に沿って挿入される。また挿入部11内には、投光用光ファイバ13a及び受光用光ファイバ13bの束が収容されており、投光用光ファイバ13a及び受光用光ファイバ13bの束は、フレキシブルチューブ14にて外部に引き出されている。
The best mode for carrying out the present invention will be described below with reference to the drawings.
The defect inspection apparatus 1 according to the first embodiment described with reference to the examples of FIGS. 1 to 5 includes defects (casting) on various inner wall surfaces such as cylinders, pipes, and machining holes having wall surfaces made of a material that reflects detection light. The present invention can be applied to detection of nests, processing flaws, and the like, and will be described with reference to an example in which the present invention is applied to detection of defects on the inner wall surface of the cylinder S.
●● [First embodiment (FIGS. 1 to 5)]
● [Detection pipe structure (FIG. 1A) and overall structure of defect inspection apparatus 1 (FIG. 1B)]
FIG. 1 (A) shows an example of an external view of an embodiment of the detection pipe 10 in the first embodiment of the defect inspection apparatus 1 of the present invention, and FIG. 1 (B) is a defect of the present invention. The example of the whole structure in 1st Embodiment of the inspection apparatus 1 is shown.
In the first embodiment, the member S to be inspected is a material that reflects detection light.
As shown in FIG. 1A, the detection pipe 10 includes a detection unit 13, an insertion unit 11, a support unit 12, a flexible tube 14, an attachment unit 15, and the like.
In the detection unit 13, the emission surface of the light projecting optical fiber 13a and the incident surface of the light receiving optical fiber 13b are arranged in a predetermined direction (see FIGS. 2A and 3A). The detection unit 13 is provided at the distal end of the insertion unit 11, and the insertion unit 11 is inserted along the axial direction of a substantially cylindrical space to be inspected. The insertion section 11 accommodates a bundle of light projecting optical fibers 13a and light receiving optical fibers 13b. The bundle of light projecting optical fibers 13a and light receiving optical fibers 13b is externally connected by a flexible tube 14. Has been drawn to.

支持部12には取付部15(取付ネジ等)が固定されている。図1(B)に示すように、取付部15は工具Tに固定され、工具Tは、シリンダSの内部で検出パイプ10をシリンダSの軸ZSに沿って相対的に往復移動、またはシリンダSの内周壁面の円周方向に沿って相対的に回転移動させる。従って、検出パイプ10を移動させてもよいし、シリンダSを移動させてもよい。
挿入部11の長手方向の長さLHは、検査対象の円柱状空間の内周壁面の長さに応じて設定され、挿入部11の径φは、検査対象の円柱状空間の内周壁面の径に応じて設定される。投光用光ファイバ13a、受光用光ファイバ13bの径は例えば0.25[mm]〜0.5[mm]程度であり、複数本を束にしても数[mm]程度であり、挿入部11の径φは充分に数[mm]程度に収まる。従って、CCDカメラ等の挿入が困難な、数[mm]程度の比較的径が小さな穴であっても、挿入部11を挿入することができる。
なお、検出部13のZ軸方向の長さLZは適宜設定される。
An attachment portion 15 (attachment screw or the like) is fixed to the support portion 12. As shown in FIG. 1B, the mounting portion 15 is fixed to the tool T, and the tool T moves the detection pipe 10 relatively reciprocally along the axis ZS of the cylinder S inside the cylinder S, or the cylinder S Is relatively rotated along the circumferential direction of the inner peripheral wall surface. Therefore, the detection pipe 10 may be moved, or the cylinder S may be moved.
The length LH in the longitudinal direction of the insertion portion 11 is set according to the length of the inner peripheral wall surface of the cylindrical space to be inspected, and the diameter φ of the insertion portion 11 is set to the inner peripheral wall surface of the cylindrical space to be inspected. It is set according to the diameter. The diameters of the projecting optical fiber 13a and the receiving optical fiber 13b are, for example, about 0.25 [mm] to 0.5 [mm]. The diameter φ of 11 is sufficiently within a few [mm]. Therefore, the insertion portion 11 can be inserted even with a hole having a relatively small diameter of about several mm, which is difficult to insert a CCD camera or the like.
The length LZ of the detection unit 13 in the Z-axis direction is set as appropriate.

図1(B)に示すように、本発明の欠陥検査装置1の第1の実施の形態では、検出パイプ10と制御装置30とで構成される。制御装置30は、例えばパーソナルコンピュータ23(以下、パソコン23と記載する)、信号処理手段21、駆動手段22等で構成されている。
信号処理手段21は、検出パイプ10とフレキシブルチューブ14にて接続されており、パソコン23からの制御信号に基づいて検出部13の投光用光ファイバ13aの出射面から照射する光を供給し、検出部13の受光用光ファイバ13bの入射面に入射された検出光を受光し、信号処理した検出信号をパソコン23に伝送する。そしてパソコン23は、信号処理手段21から入力された検出信号に基づいて欠陥の計数及び異常判定を行い警報信号(音声、表示等)を出力する。
駆動手段22は、パソコン23からの制御信号に基づいて工具Tを回転またはスライド(往復)させる。なお、シリンダSを回転またはスライドさせてもよい。
As shown in FIG. 1B, the first embodiment of the defect inspection apparatus 1 according to the present invention includes a detection pipe 10 and a control apparatus 30. The control device 30 includes, for example, a personal computer 23 (hereinafter referred to as a personal computer 23), a signal processing unit 21, a driving unit 22, and the like.
The signal processing means 21 is connected to the detection pipe 10 and the flexible tube 14, and supplies light irradiated from the emission surface of the light projecting optical fiber 13 a of the detection unit 13 based on a control signal from the personal computer 23. The detection light incident on the incident surface of the light receiving optical fiber 13 b of the detection unit 13 is received, and the detected detection signal is transmitted to the personal computer 23. Then, the personal computer 23 counts defects and determines abnormality based on the detection signal input from the signal processing means 21 and outputs an alarm signal (sound, display, etc.).
The driving means 22 rotates or slides (reciprocates) the tool T based on a control signal from the personal computer 23. Note that the cylinder S may be rotated or slid.

●[検出パイプ10の形状と内周壁面での移動方法(図2、図3)]
次に図2(A)〜(C)、及び図3(A)〜(C)を用いて検出パイプ10の形状と内周壁面での移動方法について説明する。
検出パイプ10の挿入部11には、複数の受光用光ファイバ13bと複数の投光用光ファイバ13aが収容されている。
● [The shape of the detection pipe 10 and the movement method on the inner wall surface (FIGS. 2 and 3)]
Next, the shape of the detection pipe 10 and the moving method on the inner peripheral wall surface will be described with reference to FIGS. 2 (A) to 2 (C) and FIGS. 3 (A) to 3 (C).
The insertion portion 11 of the detection pipe 10 accommodates a plurality of light receiving optical fibers 13b and a plurality of light projecting optical fibers 13a.

[第1の形状と移動方法]
図2(A)に示すように、[第1の形状と移動方法]では、検出部13に配置された受光用光ファイバ13bの入射面が、シリンダSの軸ZSに平行な方向に沿って列状に配置されている。また受光用光ファイバ13bの入射面は、円柱状空間の内周壁面に対向するように向けられており、各入射面は同一方向に向けられている。
また投光用光ファイバ13aの出射面は、列状に配置した受光用光ファイバ13bの入射面の隣に並列するように配置されており、各出射面は受光用光ファイバ13bの入射面と同一方向に向けられている。なお、図2(A)に示す例では、受光用光ファイバ13bの入射面を1列、投光用光ファイバ13aの出射面を2列としているが、この列の数に限定されるものではない。
[First shape and moving method]
As shown in FIG. 2A, in [First shape and moving method], the incident surface of the light receiving optical fiber 13b arranged in the detection unit 13 is along a direction parallel to the axis ZS of the cylinder S. Arranged in rows. The incident surface of the light receiving optical fiber 13b is directed so as to face the inner peripheral wall surface of the cylindrical space, and the respective incident surfaces are directed in the same direction.
Further, the emission surface of the light projecting optical fiber 13a is arranged in parallel with the incident surface of the light receiving optical fiber 13b arranged in a row, and each light emitting surface is connected to the incident surface of the light receiving optical fiber 13b. They are oriented in the same direction. In the example shown in FIG. 2A, the incident surface of the light receiving optical fiber 13b has one row and the exit surface of the light projecting optical fiber 13a has two rows. However, the number is not limited to this number. Absent.

次に図2(B)を用いて、シリンダSの内周壁面の欠陥の検出を行う手順について説明する。
シリンダSの内周壁面の欠陥の検出を行う場合、まずシリンダSの軸ZSに沿ってシリンダS内に挿入部11を挿入する。挿入した位置では、投光用光ファイバ13aの各出射面、及び受光用光ファイバ13bの各入射面の各々から、対向するシリンダSの内周壁面との距離GAを所定距離(例えば0.5[mm]〜3.5[mm]の範囲内の適切な値)となるように設定する(図2(B)参照)。
Next, a procedure for detecting a defect on the inner peripheral wall surface of the cylinder S will be described with reference to FIG.
When detecting a defect on the inner peripheral wall surface of the cylinder S, the insertion portion 11 is first inserted into the cylinder S along the axis ZS of the cylinder S. At the inserted position, a distance GA between each of the light exiting surfaces of the light projecting optical fiber 13a and each light incident surface of the light receiving optical fiber 13b and the inner peripheral wall surface of the opposing cylinder S is set to a predetermined distance (for example, 0.5). (Mm) to an appropriate value within the range of 3.5 [mm] (see FIG. 2B).

更に制御装置30は、駆動手段22を用いて距離GAを一定に保つように、シリンダSの内周壁面の円周方向に沿って挿入部11を相対的に回転させる(図2(B)参照)。なお、挿入部11からはフレキシブルチューブ14が引き出されているため、時計方向に1回転させた次は反時計方向に1回転させる等、回転方向を交互とすることが好ましい。
そして制御装置30は、挿入部11を相対的に回転させながら受光用光ファイバ13bの出射面から出力される検出光に基づいて、シリンダSの内周壁面の欠陥を検出する。
このため、シリンダ内周壁面の円周方向に沿って検出部13を1回転させるだけでシリンダ内周壁面の全周を検出することが可能であり、検査時間の大幅な削減、及び目視に頼らない安定した自動検査が可能となる。
なお、シリンダ内周壁面の長手方向の長さが検出部13の長さLZよりも長い場合、まず検出部13を1回転させて検出部13の長さLZの幅の内周壁面の検査を行い、検出部13を未検出部分まで長手方向にスライドさせ、逆方向に1回転させる、という検査をシリンダ内周壁面の長手方向の長さに達するまで繰り返す。
なお、図2(C)の例に示すように検出部13を複数個設ければ、検査時間の更なる短縮が可能である(図2(C)の例では、360°回転させる必要がなく、180°の回転でよい)。
Further, the control device 30 relatively rotates the insertion portion 11 along the circumferential direction of the inner peripheral wall surface of the cylinder S so as to keep the distance GA constant by using the driving means 22 (see FIG. 2B). ). In addition, since the flexible tube 14 is pulled out from the insertion part 11, it is preferable to make the rotation direction alternate, for example, to make one rotation in the counterclockwise direction after making one rotation in the clockwise direction.
And the control apparatus 30 detects the defect of the inner peripheral wall surface of the cylinder S based on the detection light output from the output surface of the optical fiber 13b for light reception, rotating the insertion part 11 relatively.
For this reason, it is possible to detect the entire circumference of the cylinder inner peripheral wall surface only by rotating the detection unit 13 once along the circumferential direction of the cylinder inner peripheral wall surface. No stable automatic inspection is possible.
When the length of the cylinder inner peripheral wall surface in the longitudinal direction is longer than the length LZ of the detection unit 13, first, the detection unit 13 is rotated once to inspect the inner peripheral wall surface with the width of the detection unit 13 length LZ. This is repeated until the length of the inner circumferential wall surface of the cylinder reaches the length in the longitudinal direction.
Note that if a plurality of detection units 13 are provided as shown in the example of FIG. 2C, the inspection time can be further shortened (in the example of FIG. 2C, there is no need to rotate 360 °). , 180 ° rotation is sufficient).

[第2の形状と移動方法]
[第2の形状と移動方法]は、[第1の形状と移動方法]に対して検出部13における複数の受光用光ファイバ13bの入射面と、複数の投光用光ファイバ13aの出射面の配置方向が異なる点と、シリンダS内に挿入部11を挿入した後の挿入部11の移動方向が異なる。以下、[第1の形状と移動方法]からの相違点について説明する。
[Second shape and moving method]
[Second shape and moving method] is different from [First shape and moving method] in the incident surface of the plurality of light receiving optical fibers 13b and the emitting surface of the plurality of light projecting optical fibers 13a in the detection unit 13. Are different from each other in the arrangement direction of the insertion portion 11 after the insertion portion 11 is inserted into the cylinder S. Hereinafter, differences from [First shape and moving method] will be described.

図3(A)に示すように、[第2の形状と移動方法]では、検出部13に配置された受光用光ファイバ13bの入射面が、シリンダSの軸ZSに垂直な方向に沿って列状に配置されている。また受光用光ファイバ13bの入射面は、円柱状空間の内周壁面に対向するように向けられており、各入射面は同一方向に向けられている。
また投光用光ファイバ13aの出射面は、列状に配置した受光用光ファイバ13bの入射面の隣に並列するように配置されており、各出射面は受光用光ファイバ13bの入射面と同一方向に向けられている。なお、図3(A)に示す例では、受光用光ファイバ13bの入射面を1列、投光用光ファイバ13aの出射面を2列としているが、この列の数に限定されるものではない。
As shown in FIG. 3A, in [Second shape and moving method], the incident surface of the light receiving optical fiber 13b arranged in the detection unit 13 is along a direction perpendicular to the axis ZS of the cylinder S. Arranged in rows. The incident surface of the light receiving optical fiber 13b is directed so as to face the inner peripheral wall surface of the cylindrical space, and the respective incident surfaces are directed in the same direction.
Further, the emission surface of the light projecting optical fiber 13a is arranged in parallel with the incident surface of the light receiving optical fiber 13b arranged in a row, and each light emitting surface is connected to the incident surface of the light receiving optical fiber 13b. They are oriented in the same direction. In the example shown in FIG. 3A, the incident surface of the light receiving optical fiber 13b has one row and the exit surface of the light projecting optical fiber 13a has two rows. However, the number is not limited to this number. Absent.

次に図3(B)を用いて、シリンダSの内周壁面の欠陥の検出を行う手順について説明する。
シリンダSの内周壁面の欠陥の検出を行う場合、まずシリンダSの軸ZSに沿ってシリンダS内に挿入部11を挿入する。挿入した位置では、投光用光ファイバ13aの各出射面、及び受光用光ファイバ13bの各入射面の各々から、対向するシリンダSの内周壁面との距離GBを所定距離(例えば0.5[mm]〜3.5[mm]の範囲内の適切な値)となるように設定する(図3(B)参照)。
更に制御装置30は、駆動手段22を用いて距離GBを一定に保つように、シリンダSの内周壁面の軸方向(軸ZSの方向)に沿って挿入部11を相対的にスライド(往復)させる(図3(B)参照)。
そして制御装置30は、挿入部11を相対的にスライド(往復)させながら受光用光ファイバ13bの出射面から出力される検出光に基づいて、シリンダSの内周壁面の欠陥を検出する。
[第2の形状と移動方法]では、幅LYの検出幅でシリンダの長手方向にスライド(往路)させ、未検出の周部分まで回転させて長手方向にスライド(復路)させる、という検査を内周壁面の全周に達するまで繰り返す。
このように、検査時間の大幅な削減、及び目視に頼らない安定した自動検査が可能となる。
なお、図3(C)の例に示すように検出部13を複数個設ければ、検査時間の更なる短縮が可能である。
Next, a procedure for detecting a defect on the inner peripheral wall surface of the cylinder S will be described with reference to FIG.
When detecting a defect on the inner peripheral wall surface of the cylinder S, the insertion portion 11 is first inserted into the cylinder S along the axis ZS of the cylinder S. At the inserted position, a distance GB between each of the emission surfaces of the light projecting optical fiber 13a and each of the incident surfaces of the light receiving optical fiber 13b and the inner peripheral wall surface of the opposing cylinder S is a predetermined distance (for example, 0.5 It is set to be an appropriate value within the range of [mm] to 3.5 [mm] (see FIG. 3B).
Further, the control device 30 relatively slides (reciprocates) the insertion portion 11 along the axial direction (the direction of the axis ZS) of the inner peripheral wall surface of the cylinder S so as to keep the distance GB constant by using the driving means 22. (See FIG. 3B).
And the control apparatus 30 detects the defect of the inner peripheral wall surface of the cylinder S based on the detection light output from the output surface of the optical fiber 13b for light reception, sliding the insertion part 11 relatively (reciprocating).
In [Second shape and movement method], an inspection is performed in which the cylinder is slid in the longitudinal direction of the cylinder with the detection width of LY (forward path), rotated to the undetected peripheral portion and slid in the longitudinal direction (return path). Repeat until the entire circumference of the wall is reached.
In this way, it is possible to greatly reduce the inspection time and perform stable automatic inspection without relying on visual observation.
If a plurality of detection units 13 are provided as shown in the example of FIG. 3C, the inspection time can be further shortened.

●[欠陥を判定する制御装置の概略構成と検出信号の概略波形(図4〜図6)]
図4に制御装置30における信号処理手段21の概略構成を示し、図5に詳細構成を示し、図6には図5の各部の波形(信号)の例を示す。なお、図6に示す波形の例は、オシロスコープによる計測波形であり、横軸が時間[S]、縦軸が電圧[V]を示している。
図4に示すように、制御装置30における信号処理手段21は、光源31、電圧変換手段32、帰還制御手段38、電圧シフト手段39、平滑化手段34、欠陥強調手段36、判定手段37を備えている。
また、投光用光ファイバ13aの出射面と受光用光ファイバ13bの入射面は、被検査部材Sの表面(壁面M)から一定の距離GAまたはGBを保つように並設されている。
● [Schematic configuration of control device for determining defect and schematic waveform of detection signal (FIGS. 4 to 6)]
FIG. 4 shows a schematic configuration of the signal processing means 21 in the control device 30, FIG. 5 shows a detailed configuration, and FIG. 6 shows an example of waveforms (signals) of each part of FIG. The waveform example shown in FIG. 6 is a waveform measured by an oscilloscope, with the horizontal axis indicating time [S] and the vertical axis indicating voltage [V].
As shown in FIG. 4, the signal processing unit 21 in the control device 30 includes a light source 31, a voltage conversion unit 32, a feedback control unit 38, a voltage shift unit 39, a smoothing unit 34, a defect enhancement unit 36, and a determination unit 37. ing.
Further, the emission surface of the light projecting optical fiber 13a and the incident surface of the light receiving optical fiber 13b are arranged side by side so as to maintain a certain distance GA or GB from the surface (wall surface M) of the member S to be inspected.

信号処理手段21は、光源31を用いて、投光用光ファイバ13aの入射面に光を入射する。例えば光源31にはLEDを用い、可視赤色光を投光用光ファイバ13aの入射面に入射する。
検査対象となる壁面Mに欠陥が無い場合は、図4中の一点鎖線の円に示すように、投光用光ファイバ13aの出射面13aoutから出射されて壁面Mから反射される光の一部が受光用光ファイバ13bの入射面13binに入射され、その光の強度はほぼ一定となる。しかし、欠陥(鋳巣や加工傷等)が有る場合、欠陥部分の壁面Mで乱反射が発生するため、入射面13binに入射される光の強度が低減する。この低減した光を検出することで欠陥を検出する。
The signal processing means 21 uses the light source 31 to make light incident on the incident surface of the light projecting optical fiber 13a. For example, an LED is used as the light source 31, and visible red light is incident on the incident surface of the light projecting optical fiber 13a.
When the wall surface M to be inspected has no defect, a part of the light that is emitted from the emission surface 13aout of the light projecting optical fiber 13a and reflected from the wall surface M, as indicated by the one-dot chain circle in FIG. Is incident on the incident surface 13bin of the light receiving optical fiber 13b, and the intensity of the light becomes substantially constant. However, when there is a defect (such as a casting hole or a processing flaw), irregular reflection occurs on the wall surface M of the defective portion, so that the intensity of light incident on the incident surface 13bin is reduced. A defect is detected by detecting the reduced light.

図4及び図5に示すように、受光用光ファイバ13bの出射面から出力される検出光は電圧変換手段32に入力され、電圧変換手段32は、入力された検出光の強度に応じた電気信号(電圧信号)を出力する(電圧変換ステップに相当し、波形は図6(A)「S1の波形」を参照)。図5に示す例では、フォトダイオードD1にて検出光を電気信号に変換し、更に増幅器32aにて増幅して電圧信号S1(図6(A)「S1の波形」を参照)を得る。この場合、電圧信号S1では検出光の強度が低下した部分が欠陥信号となるため、負側にわずかに突出したパルスが欠陥信号となる。
なお、変換された電圧信号S1は、検査対象の壁面Mの位置に応じて、熱処理や化学処理や加工処理等に起因する色合い及び光沢等の差による、種々のうねり成分(図6(A)「S1の波形」中のΔVを参照)や、種々の出力電圧レベル(図6(A)「S1の波形」中のV1を参照)を有している。
また投光用光ファイバ13aの出射面13aout及び受光用光ファイバ13bの入射面13binから壁面Mとの距離GAまたはGBを一定に保つように回転または往復させた際、壁面Mと光ファイバとの距離GAまたはGBの変化や振動等に起因するうねり成分や出力電圧レベルの幅も有している。
As shown in FIGS. 4 and 5, the detection light output from the emission surface of the light-receiving optical fiber 13b is input to the voltage conversion means 32, and the voltage conversion means 32 performs an electrical operation according to the intensity of the input detection light. A signal (voltage signal) is output (corresponding to a voltage conversion step, see FIG. 6A “Waveform of S1” for the waveform). In the example shown in FIG. 5, the detection light is converted into an electric signal by the photodiode D1, and further amplified by the amplifier 32a to obtain a voltage signal S1 (see “waveform of S1” in FIG. 6A). In this case, in the voltage signal S1, the portion where the intensity of the detection light is reduced becomes a defect signal, and thus a pulse slightly protruding to the negative side becomes the defect signal.
Note that the converted voltage signal S1 has various swell components (FIG. 6A) due to differences in hue and gloss caused by heat treatment, chemical treatment, processing, etc., depending on the position of the wall surface M to be inspected. It has ΔV in “S1 waveform”) and various output voltage levels (see V1 in “S1 waveform” in FIG. 6A).
Further, when the distance M or GB between the emission surface 13aout of the light projecting optical fiber 13a and the incident surface 13bin of the light receiving optical fiber 13b and the wall surface M is rotated or reciprocated so as to be kept constant, It also has a swell component or output voltage level width caused by a change in the distance GA or GB, vibration, or the like.

電圧変換手段32から出力された電圧信号S1は、帰還制御手段38に入力される。
帰還制御手段38は、例えば増幅器38a、ローパスフィルタ38b、帰還量調整器38c増幅率設定器38dにて構成されている。
図5に示すように、電圧信号S1が増幅器38aに入力され、増幅器38aから出力される信号は、ローパスフィルタ38bと帰還量調整器38c(増幅率設定器38dにて帰還量を調整可能)にてフィードバックされている。
ここで、検査対象物の製造ロット、配合、熱、化学処理、加工等の差によって内壁面Mの色合い、光沢等の光学的特性の変動や、検査における振動によって、検出光(反射光)の強度が変動する場合がある。この変動は一般的には緩やかで大きな時間スケールにて比較的大きく変動する。このため、ローパスフィルタ38bにより欠陥信号を保存した状態で、大きく変動する正常面に対応する正常面レベル信号S2a(ローパスフィルタ38bの出力、図5参照)を取り出す。そして外部の増幅率設定器38dで設定可能な基準電圧S2c(基準増幅率であり、図6の「S2の波形」中の基準電圧LVに相当)と、前記信号S2aとを比較増幅する帰還量調整器38cから出力される信号S2bを増幅器38aにフィードバックし、増幅率設定器38dによる基準電圧S2c(基準電圧LV)になるように制御する(帰還制御ステップに相当する)。この基準電圧LVが第1基準電圧に相当する。
例えば帰還制御手段38の出力の電圧信号S2の波形は、図6(B)「S2の波形」の例に示す波形となる。
図6(B)「S2の波形」に示す波形は、図6(A)「S1の波形」に示す波形が増幅率設定器38dで設定した基準電圧LV(第1基準電圧)に対し、増幅器38aによってフィードバック制御されていることを示している。
The voltage signal S1 output from the voltage conversion unit 32 is input to the feedback control unit 38.
The feedback control means 38 includes, for example, an amplifier 38a, a low-pass filter 38b, a feedback amount adjuster 38c, and an amplification factor setting unit 38d.
As shown in FIG. 5, the voltage signal S1 is input to the amplifier 38a, and the signal output from the amplifier 38a is supplied to the low-pass filter 38b and the feedback amount adjuster 38c (the amount of feedback can be adjusted by the amplification factor setting unit 38d). Feedback.
Here, the detection light (reflected light) is affected by fluctuations in the optical properties such as the hue and gloss of the inner wall surface M due to differences in the production lot, composition, heat, chemical treatment, processing, etc. of the inspection object, and vibrations in the inspection. Intensity may vary. This variation is generally gentle and relatively large on a large time scale. For this reason, the normal surface level signal S2a (the output of the low-pass filter 38b, see FIG. 5) corresponding to the normal surface that fluctuates greatly is taken out with the defect signal stored by the low-pass filter 38b. A feedback amount for comparing and amplifying the reference voltage S2c (which is a reference amplification factor, which corresponds to the reference voltage LV in “S2 waveform” in FIG. 6) and the signal S2a, which can be set by the external gain setting device 38d. The signal S2b output from the adjuster 38c is fed back to the amplifier 38a and controlled so as to become the reference voltage S2c (reference voltage LV) by the amplification factor setting unit 38d (corresponding to a feedback control step). This reference voltage LV corresponds to the first reference voltage.
For example, the waveform of the voltage signal S2 output from the feedback control means 38 is the waveform shown in the example of “waveform S2” in FIG.
The waveform shown in FIG. 6 (B) “S2 waveform” is an amplifier with respect to the reference voltage LV (first reference voltage) set by the amplification factor setting unit 38d in the waveform shown in FIG. 6 (A) “S1 waveform”. It is shown that feedback control is performed by 38a.

帰還制御手段38から出力された電圧信号S2は、電圧シフト手段39に入力される。
電圧シフト手段39は、例えばローパスフィルタ39a、減算器39b、加算器39c、0V調整幅設定器39d、増幅率設定器38dにて構成されている。
電圧信号S2は、ローパスフィルタ39aを通って欠陥信号よりも充分に高い高周波ノイズ成分が除去される。
ローパスフィルタ39aから出力された信号は、減算器39bに入力される。なお、減算器39bの入力には、0V調整幅設定器39dと増幅率設定器38dが接続された加算器39cの出力も接続されており、ローパスフィルタ39aから入力された信号を、基準電位(0[V])近傍にシフトさせる。例えば減算器39bの出力の電圧信号S3の波形をオシロスコープ等で計測すると、図6(C)「S3の波形」の例に示す波形となる(なお、図6(C)「S3の波形」は、欠陥信号が正側(+側)に突出するように、正負を反転させて出力した結果を示している)。
ローパスフィルタ39aから出力される信号に対して増幅率設定器38dで設定した基準電圧S2c(図5参照)を0V調整幅設定器39dにて微調整し、加算器39cを通した電圧信号S3bの分、減算器39bでレベルシフトさせれば、正常面レベル信号を0[V]位置(第2基準電圧に相当)に重ねることができる。この場合、欠陥信号はマイナス側の信号となり、更にその電圧信号の正負を反転させれば、図6(C)「S3の波形」に示す波形となる(反転回路は図示省略)。
図6(C)「S3の波形」に示す波形は、図6(B)「S2の波形」に示す波形に対し、増幅率設定器38dで設定した基準電圧LV(第1基準電圧)分、自動的にレベルシフトされ(0[V]位置(第2基準電圧)にシフトされ、電圧シフトステップに相当する)、更に反転されていることを示している。なお、以降の平滑化手段34、欠陥強調手段36、判定手段37を負側の信号で行えば、反転しなくてもよい。
The voltage signal S2 output from the feedback control unit 38 is input to the voltage shift unit 39.
The voltage shift means 39 includes, for example, a low-pass filter 39a, a subtractor 39b, an adder 39c, a 0V adjustment width setting device 39d, and an amplification factor setting device 38d.
The voltage signal S2 passes through the low-pass filter 39a and a high-frequency noise component sufficiently higher than the defect signal is removed.
The signal output from the low pass filter 39a is input to the subtractor 39b. Note that the input of the subtractor 39b is also connected to the output of an adder 39c to which a 0V adjustment width setting unit 39d and an amplification factor setting unit 38d are connected, and the signal input from the low-pass filter 39a is converted to a reference potential ( 0 [V]). For example, when the waveform of the voltage signal S3 output from the subtractor 39b is measured with an oscilloscope or the like, the waveform shown in the example of “S3 waveform” in FIG. 6C is obtained (in FIG. 6C, “S3 waveform” is , The result of inverting the positive and negative so that the defect signal protrudes to the positive side (+ side) is shown.
The reference voltage S2c (see FIG. 5) set by the amplification factor setting unit 38d with respect to the signal output from the low-pass filter 39a is finely adjusted by the 0V adjustment width setting unit 39d, and the voltage signal S3b passing through the adder 39c is adjusted. If the level is shifted by the subtractor 39b, the normal surface level signal can be superimposed on the 0 [V] position (corresponding to the second reference voltage). In this case, the defect signal becomes a negative signal, and if the voltage signal is inverted, the waveform shown in FIG. 6C “waveform of S3” is obtained (the inverting circuit is not shown).
The waveform shown in FIG. 6 (C) “S3 waveform” is equal to the waveform shown in FIG. 6 (B) “S2 waveform” by the reference voltage LV (first reference voltage) set by the amplification factor setting unit 38d. It is shown that the level is automatically shifted (shifted to the 0 [V] position (second reference voltage), which corresponds to a voltage shift step) and further inverted. Note that if the subsequent smoothing means 34, defect emphasis means 36, and determination means 37 are performed with a negative signal, they need not be inverted.

そして電圧シフト手段39から出力される電圧信号S3(図6(C)「S3の波形」を参照)は平滑化手段34及び欠陥強調手段36に入力される。
平滑化手段34は、入力された電圧信号S3の波高値を平滑化した(各波形のピーク値を滑らかに接続した)平滑化信号S4(図6(D)「S4の波形」を参照)を出力する(平滑化ステップに相当する)。
欠陥強調手段36は、例えば折れ線状の増幅手段であり、平滑化手段34から入力される平滑化信号S4の波高値Vp以上の電圧信号S2を増幅するとともに当該波高値Vp未満となる電圧信号S2をカットあるいは減衰させる(欠陥強調ステップに相当する)。折れ線状の変曲点の電圧Vpの位置を可変に、かつ外部から入力可能に構成し、当該Vpを平滑化手段34から与える。
これにより、欠陥強調手段36は、周囲のノイズ成分よりもわずかに高い波高値の欠陥信号を有する電圧信号S3から、欠陥信号を強調した判定用信号S5(図6(E)「S5の波形」を参照)を出力する。なお、折れ線状の増幅手段における波高値Vp以上のゲインの傾きは1.0より大きくなるように設定することで、周囲のノイズ成分よりも欠陥信号を強調できる(波高値をより高くできる)。
The voltage signal S3 output from the voltage shift means 39 (see FIG. 6C, “S3 waveform”) is input to the smoothing means 34 and the defect enhancement means 36.
The smoothing means 34 smoothes the peak value of the input voltage signal S3 (see the “S4 waveform” in FIG. 6D) in which the peak values of each waveform are smoothly connected. Output (corresponds to the smoothing step).
The defect emphasizing means 36 is, for example, a polygonal line amplifying means, and amplifies the voltage signal S2 greater than or equal to the peak value Vp of the smoothed signal S4 input from the smoothing means 34 and the voltage signal S2 that is less than the peak value Vp. Is cut or attenuated (corresponding to a defect enhancement step). The position of the voltage Vp at the polygonal inflection point is variable and can be input from the outside, and the Vp is given from the smoothing means 34.
As a result, the defect emphasizing means 36 uses the determination signal S5 in which the defect signal is emphasized from the voltage signal S3 having the defect signal having a peak value slightly higher than the surrounding noise component (FIG. 6E, “S5 waveform”). Output). Note that the defect signal can be emphasized more than the surrounding noise component (the peak value can be made higher) by setting the slope of the gain equal to or higher than the peak value Vp in the polygonal line amplification means to be larger than 1.0.

判定手段37は、例えば電圧比較器37Aと比較電圧設定器37dにて構成され、比較電圧設定器37dにて設定された閾値電圧S6a以上の判定用信号S5を検出すると欠陥検出パルスS6を出力する。なお、図5の例では電圧比較器37Aの後段にパルス発生器37cを備えており、電圧比較器37Aから短い幅のパルスが入力されると、所定時間幅T6を有する欠陥検出パルスを出力する(判定ステップに相当)。この欠陥検出パルスS6の有無で欠陥が検出されたか否かを認識することができる。
以上に説明した電圧変換手段32、帰還制御手段38、電圧シフト手段39、平滑化手段34、欠陥強調手段36、判定手段37を受光用光ファイバ13bの1本ずつに設けてもよいが、各受光用光ファイバ13bのカバーできる領域(検出可能領域)及び受光用光ファイバ11から出力される検出光の強度を確保するために、複数の受光用光ファイバ13bを束ねたグループ毎に設けるようにしてもよい。
The determination means 37 is constituted by, for example, a voltage comparator 37A and a comparison voltage setter 37d, and outputs a defect detection pulse S6 when detecting a determination signal S5 that is equal to or higher than the threshold voltage S6a set by the comparison voltage setter 37d. . In the example of FIG. 5, a pulse generator 37c is provided at the subsequent stage of the voltage comparator 37A, and when a pulse having a short width is input from the voltage comparator 37A, a defect detection pulse having a predetermined time width T6 is output. (Corresponds to the judgment step). It is possible to recognize whether or not a defect is detected based on the presence or absence of the defect detection pulse S6.
The voltage conversion means 32, feedback control means 38, voltage shift means 39, smoothing means 34, defect emphasis means 36, and determination means 37 described above may be provided for each of the light receiving optical fibers 13b. In order to ensure the area (detectable area) that can be covered by the light receiving optical fiber 13b and the intensity of the detection light output from the light receiving optical fiber 11, a plurality of light receiving optical fibers 13b are provided for each bundled group. May be.

●●[第2の実施の形態(図7、図8)]
第2の実施の形態では、図2(A)及び図3(A)に示した第1の実施の形態における投光用光ファイバの出射面及び受光用光ファイバの入射面の配置状態とは異なり、図7のWに示すように、受光用光ファイバを一対(13b1、13b2)で構成する(図7のWの「P」部を参照)点と、信号処理手段21の構成が、第1の実施の形態とは異なる。
なお、被検査部材Sが検出光を反射する材質である点は、第1の実施の形態と同様である。
そして壁面Mから一定の距離GAまたはGBを保つように投光用光ファイバの出射面と受光用光ファイバの入射面とを壁面Mに対して相対的に移動させる際、一方の受光用光ファイバ13b1の入射面に続いて他方の受光用光ファイバ13b2の入射面が、壁面M上の同じ位置を通過するように移動させる。
●● [Second Embodiment (FIGS. 7 and 8)]
In the second embodiment, the arrangement state of the emission surface of the light projecting optical fiber and the incident surface of the light receiving optical fiber in the first embodiment shown in FIG. 2A and FIG. In contrast, as shown by W in FIG. 7, the light receiving optical fiber is configured by a pair (13b1, 13b2) (see the “P” portion of W in FIG. 7) and the configuration of the signal processing means 21 is the first. This is different from the first embodiment.
In addition, the point to which the to-be-inspected member S is a material which reflects detection light is the same as that of 1st Embodiment.
When the emission surface of the light projecting optical fiber and the incident surface of the light receiving optical fiber are moved relative to the wall surface M so as to maintain a certain distance GA or GB from the wall surface M, one of the light receiving optical fibers The incident surface of the other light receiving optical fiber 13b2 is moved so as to pass through the same position on the wall surface M following the incident surface of 13b1.

●[欠陥を判定する制御装置の概略構成と検出信号の概略波形(図7、図8)]
図7に制御装置30における信号処理手段21の概略構成を示し、図8に詳細構成及び波形(信号)の例を示す。なお、図8に示す波形の例は、第1の実施の形態と同様、オシロスコープによる計測波形であり、横軸が時間[S]、縦軸が電圧[V]を示している。
図7に示すように、制御装置30における信号処理手段21は、光源31、第1電圧変換手段32A、第2電圧変換手段32B、差動演算手段33、平滑化手段34、欠陥強調手段36、判定手段37を備えている。
また、投光用光ファイバ13aの出射面と受光用光ファイバ13b1、13b2の入射面は、被検査部材Sの表面(壁面M)から一定の距離GAまたはGBを保つように並設されている。
● [Schematic structure of control device for determining defects and schematic waveform of detection signal (FIGS. 7 and 8)]
FIG. 7 shows a schematic configuration of the signal processing means 21 in the control device 30, and FIG. 8 shows a detailed configuration and an example of a waveform (signal). The waveform example shown in FIG. 8 is a waveform measured by an oscilloscope as in the first embodiment, and the horizontal axis indicates time [S] and the vertical axis indicates voltage [V].
As shown in FIG. 7, the signal processing means 21 in the control device 30 includes a light source 31, a first voltage conversion means 32A, a second voltage conversion means 32B, a differential calculation means 33, a smoothing means 34, a defect enhancement means 36, Determination means 37 is provided.
Further, the emission surface of the light projecting optical fiber 13a and the light incident surfaces of the light receiving optical fibers 13b1 and 13b2 are arranged in parallel so as to maintain a constant distance GA or GB from the surface (wall surface M) of the member S to be inspected. .

図7及び図8に示すように、一方の受光用光ファイバ13b1の出射面から出力される第1検出光は第1電圧変換手段32Aに入力され、第1電圧変換手段32Aは、入力された第1検出光の強度に応じた第1電気信号(第1電圧信号)S11を出力する(図8「S11、S12の波形」を参照)。図8に示す例では、フォトダイオードD1aにて第1検出光を電気信号に変換し、更に増幅器32aにて増幅して第1電圧信号S11を得る(第1電圧変換ステップに相当)。
また、他方の受光用光ファイバ13b2の出射面から出力される第2検出光は第2電圧変換手段32Bに入力され、第2電圧変換手段32Bは、入力された第2検出光の強度に応じた第2電気信号(第2電圧信号)S12を出力する(図8「S11、S12の波形」を参照)。図8に示す例では、フォトダイオードD1bにて第2検出光を電気信号に変換し、更に増幅器32bにて増幅して第2電圧信号S12を得る(第2電圧変換ステップに相当)。
第1電圧信号S11に対して第2電圧信号S12は、壁面M上の同じ位置からの反射光を電圧に変換しているので、一方の受光用光ファイバ13b1の入射面と他方の受光用光ファイバ13b2の入射面との間隔ΔL、及び壁面Mに沿って相対的に移動させる移動速度に応じた微小時間ΔTだけ遅れた波形となる。
As shown in FIGS. 7 and 8, the first detection light output from the emission surface of one of the light receiving optical fibers 13b1 is input to the first voltage conversion means 32A, and the first voltage conversion means 32A is input A first electric signal (first voltage signal) S11 corresponding to the intensity of the first detection light is output (see “waveforms of S11 and S12” in FIG. 8). In the example shown in FIG. 8, the first detection light is converted into an electric signal by the photodiode D1a, and further amplified by the amplifier 32a to obtain the first voltage signal S11 (corresponding to the first voltage conversion step).
In addition, the second detection light output from the emission surface of the other light receiving optical fiber 13b2 is input to the second voltage conversion means 32B, and the second voltage conversion means 32B corresponds to the intensity of the input second detection light. The second electrical signal (second voltage signal) S12 is output (see “waveforms of S11 and S12” in FIG. 8). In the example shown in FIG. 8, the second detection light is converted into an electric signal by the photodiode D1b, and further amplified by the amplifier 32b to obtain the second voltage signal S12 (corresponding to the second voltage conversion step).
Since the second voltage signal S12 converts the reflected light from the same position on the wall surface M into a voltage with respect to the first voltage signal S11, the incident surface of one light receiving optical fiber 13b1 and the other light receiving light. The waveform is delayed by a minute time ΔT corresponding to the distance ΔL from the incident surface of the fiber 13b2 and the moving speed of relative movement along the wall surface M.

そして第1電圧信号S11と第2電圧信号S12を差動演算手段33に入力し、差動演算手段33から第1電圧信号S11と第2電圧信号S12の差分を示す差分信号を出力する(差動演算ステップに相当)。例えば差動演算手段33は、差動増幅器である。なお、第1電圧信号S11に対して第2電圧信号S12は微小時間ΔTだけ遅れた波形であるため、差動演算手段33から出力される差分信号S13は、図8の「S13の波形」に示すような波形となる。(作動)
なお、第1電圧変換手段32Aと第2電圧変換手段32Bと差動演算手段33を、図8の32Cに示すように、互いに極性を逆にしたフォトダイオードD1a、D1b(検出光を電気信号に変換する信号変換手段)を差動演算手段33に接続した回路に置換してもよい。
そして差動演算手段33から出力される差分信号S13は平滑化手段34及び欠陥強調手段36に入力される。平滑化手段34は、例えば全波整流手段34A、平滑化回路34B、反転増幅器34Cにて構成される。差分信号S13は、ほぼゼロ[V]を中心に正側と負側に振幅を有する信号である。そこで全波整流手段34Aを通過させた信号を平滑化回路34Bに入力して、差分信号S13の波高値を平滑化した(各波形のピーク値を滑らかに接続した)平滑化信号を得る(平滑化ステップに相当する)。
そして平滑化回路34Bから出力される平滑化信号S14(正電位Vp)と、当該平滑化信号S14を反転増幅器34Cにて負側に反転した平滑化信号S15(負電位−Vp)とを欠陥強調手段36に入力する(図8の「S14、S15の波形」を参照)。
Then, the first voltage signal S11 and the second voltage signal S12 are input to the differential calculation means 33, and a differential signal indicating the difference between the first voltage signal S11 and the second voltage signal S12 is output from the differential calculation means 33 (difference). Equivalent to a dynamic calculation step). For example, the differential operation means 33 is a differential amplifier. Since the second voltage signal S12 has a waveform delayed by a minute time ΔT with respect to the first voltage signal S11, the differential signal S13 output from the differential operation means 33 is expressed as “S13 waveform” in FIG. The waveform is as shown. (Operation)
The first voltage conversion means 32A, the second voltage conversion means 32B, and the differential calculation means 33 are connected to the photodiodes D1a and D1b (with detection light converted into electric signals) with opposite polarities as shown in 32C of FIG. The signal conversion means) for conversion may be replaced with a circuit connected to the differential operation means 33.
The difference signal S13 output from the differential operation means 33 is input to the smoothing means 34 and the defect enhancement means 36. The smoothing unit 34 includes, for example, a full-wave rectifying unit 34A, a smoothing circuit 34B, and an inverting amplifier 34C. The difference signal S13 is a signal having an amplitude on the positive side and the negative side with a center of substantially zero [V]. Therefore, a signal that has passed through the full-wave rectifier 34A is input to the smoothing circuit 34B, and a smoothed signal is obtained (smoothly connected to the peak value of each waveform) by smoothing the peak value of the differential signal S13. Corresponds to the conversion step).
Then, the smoothing signal S14 (positive potential Vp) output from the smoothing circuit 34B and the smoothing signal S15 (negative potential −Vp) obtained by inverting the smoothing signal S14 to the negative side by the inverting amplifier 34C are defect-emphasized. The data is input to the means 36 (see “S14 and S15 waveforms” in FIG. 8).

欠陥強調手段36は、例えば折れ線状の増幅手段であり、平滑化手段34から入力される(正電位の)平滑化信号S14の波高値Vp以上の差分信号S13を増幅するとともに当該波高値Vp未満となる差分信号S13(ゼロ[V]からVp[V]までの正側の信号)をカットあるいは減衰させる(欠陥強調ステップに相当)。
また、欠陥強調手段36は、平滑化手段34から入力される(負電位の)平滑化信号S15の波高値|−Vp|以上の差分信号S13を増幅するとともに当該波高値|−Vp|未満となる差分信号S13(ゼロ[V]から−Vp[V]までの負側の信号)をカットあるいは減衰させる。
このように、折れ線状の変曲点の電圧Vp、−Vpの位置を可変に且つ外部から入力可能に構成し、当該Vp、−Vpを平滑化手段34から与える。
これにより、欠陥強調手段36は、周囲のノイズ成分よりもわずかに高い波高値の欠陥信号を有する差分信号S13から、欠陥信号を強調した判定用信号S16(図8「S16の波形」を参照)を出力する。なお、折れ線状の増幅手段における波高値Vp以上のゲインの傾きは1.0より大きくなるように設定することで、周囲のノイズ成分よりも欠陥信号を強調できる(波高値をより高くできる)。
The defect emphasizing means 36 is, for example, a polygonal line amplifying means, amplifies the difference signal S13 which is equal to or higher than the peak value Vp of the smoothed signal S14 (positive potential) input from the smoothing means 34 and is less than the peak value Vp The differential signal S13 (positive signal from zero [V] to Vp [V]) is cut or attenuated (corresponding to a defect enhancement step).
Further, the defect emphasizing means 36 amplifies the difference signal S13 equal to or larger than the peak value | −Vp | of the smoothed signal S15 (negative potential) input from the smoothing means 34 and is less than the peak value | −Vp |. The differential signal S13 (negative signal from zero [V] to -Vp [V]) is cut or attenuated.
Thus, the positions of the voltages Vp and −Vp at the polygonal inflection points are variably configured to be input from the outside, and the Vp and −Vp are given from the smoothing means 34.
Thereby, the defect emphasizing means 36 determines signal S16 in which the defect signal is emphasized from the differential signal S13 having the defect signal having a peak value slightly higher than the surrounding noise component (see “waveform of S16” in FIG. 8). Is output. Note that the defect signal can be emphasized more than the surrounding noise component (the peak value can be made higher) by setting the slope of the gain equal to or higher than the peak value Vp in the polygonal line amplification means to be larger than 1.0.

判定手段37は、例えば正側の電圧比較器37Aと負側の電圧比較器37Bと比較電圧設定器37dと論理和ゲート37Dにて構成される。
電圧比較器37Aは、比較電圧設定器37dにて設定された閾値電圧|S18|[V]以上の判定用信号S16を検出すると欠陥検出パルスを出力する。
電圧比較器37Bは、比較電圧設定器37dにて設定された閾値電圧−|S18|[V]以下の判定用信号S16を検出すると欠陥検出パルスを出力する。
なお、図8の例では電圧比較器37A及び37Bの後段にパルス発生器37c1及び37c2を備えており、電圧比較器37A及び37Bから短い幅のパルスが入力されると、所定時間幅T17(T17+ΔTであり、微小時間ΔTが無視できる場合はT17)を有する欠陥検出パルスを出力する。そして論理和ゲート37Dは、入力されたパルスの論理和を示す欠陥検出パルスS17を出力する。この欠陥検出パルスS17の有無で欠陥が検出されたか否かを認識することができる。
The determination unit 37 is constituted by, for example, a positive side voltage comparator 37A, a negative side voltage comparator 37B, a comparison voltage setting unit 37d, and an OR gate 37D.
When the voltage comparator 37A detects a determination signal S16 that is equal to or higher than the threshold voltage | S18 | [V] set by the comparison voltage setting unit 37d, it outputs a defect detection pulse.
When the voltage comparator 37B detects the determination signal S16 that is equal to or lower than the threshold voltage − | S18 | [V] set by the comparison voltage setting unit 37d, it outputs a defect detection pulse.
In the example of FIG. 8, pulse generators 37c1 and 37c2 are provided at the subsequent stage of the voltage comparators 37A and 37B. When a pulse having a short width is input from the voltage comparators 37A and 37B, a predetermined time width T17 (T17 + ΔT When the minute time ΔT can be ignored, a defect detection pulse having T17) is output. The OR gate 37D outputs a defect detection pulse S17 indicating the logical sum of the input pulses. It can be recognized whether or not a defect is detected based on the presence or absence of the defect detection pulse S17.

●●[第3の実施の形態(図9(A))]
図2(A)及び図3(A)に示す第1の実施の形態における投光用光ファイバ13aの出射面及び受光用光ファイバ13bの入射面に対して、第3の実施の形態では、投光用光ファイバ13aの出射面と受光用光ファイバ13bの入射面との間の距離Dが一定の距離を保つように対向させて配置されている(図9(C)参照)点と、検査対象となる被検査部材Sが検出光を反射せずに透過させる材質である点が異なる。
投光用光ファイバ13aの出射面を配置した検出部13Aは、第1支持部11Aの先端部に設けられており、受光用光ファイバ13bの入射面を配置した検出部13Bは、第2支持部11Bの先端部に設けられている。
●● [Third Embodiment (FIG. 9A)]
In the third embodiment, with respect to the emission surface of the light projecting optical fiber 13a and the light incident surface of the light receiving optical fiber 13b in the first embodiment shown in FIGS. 2 (A) and 3 (A), A point where the distance D between the light exit surface of the light projecting optical fiber 13a and the light incident surface of the light receiving optical fiber 13b is arranged so as to keep a constant distance (see FIG. 9C); The difference is that the member S to be inspected is a material that transmits the detection light without reflecting it.
The detection unit 13A on which the emission surface of the light projecting optical fiber 13a is arranged is provided at the tip of the first support unit 11A, and the detection unit 13B on which the incident surface of the light receiving optical fiber 13b is arranged is a second support. It is provided at the tip of the part 11B.

検出光を透過する材質の被検査部材Sの欠陥を検査する場合、まず投光用光ファイバ13aの出射面から出射されて被検査部材Sを透過した検出光を受光用光ファイバ13bの入射面に入射する。
そして投光用光ファイバ13aの出射面と受光用光ファイバ13bの入射面を、被検査部材Sの表面に沿って当該被検査部材Sに対して相対的に移動させて、受光用光ファイバ13bの入射面に入射された検出光の強度の変化に基づいて被検査部材Sの欠陥を判定する。図9(A)に示す例の場合、検出パイプ10を被検査部材Sの側面に沿って移動させてもよいし、検出パイプ10を移動させることなく被検査部材Sを移動させてもよい。
なお信号処理手段21は、図4〜図6に示す第1の実施の形態と同じであるため、説明を省略する。
When inspecting the defect of the inspection target member S made of a material that transmits the detection light, first, the detection light emitted from the emission surface of the light projecting optical fiber 13a and transmitted through the inspection target member S is incident on the incident surface of the light reception optical fiber 13b. Is incident on.
Then, the light exiting optical fiber 13a and the light receiving optical fiber 13b incident surface are moved relative to the member S to be inspected along the surface of the member S to be inspected. The defect of the member to be inspected S is determined based on the change in the intensity of the detection light incident on the incident surface. In the case of the example shown in FIG. 9A, the detection pipe 10 may be moved along the side surface of the member S to be inspected, or the member S to be inspected may be moved without moving the detection pipe 10.
The signal processing means 21 is the same as that of the first embodiment shown in FIGS.

●●[第4の実施の形態(図9(B))]
図7のWに示す第2の実施の形態における投光用光ファイバ13aの出射面及び受光用光ファイバ13b1、13b2の入射面に対して、第4の実施の形態では、投光用光ファイバ13aの出射面と受光用光ファイバ13b1、13b2の入射面との間の距離Dが一定の距離を保つように対向させて配置されている(図9(C)参照)点と、検査対象となる被検査部材Sが検出光を反射せずに透過させる材質である点が異なる。
投光用光ファイバ13aの出射面を配置した検出部13Aは、第1支持部11Aの先端部に設けられており、受光用光ファイバ13b1、13b2の入射面を配置した検出部13Bは、第2支持部11Bの先端部に設けられている。
●● [Fourth embodiment (FIG. 9B)]
With respect to the emission surface of the light projecting optical fiber 13a and the light incident surfaces of the light receiving optical fibers 13b1 and 13b2 in the second embodiment shown in FIG. The point D is arranged so that the distance D between the emission surface 13a and the incident surfaces of the light receiving optical fibers 13b1 and 13b2 is kept constant (see FIG. 9C), and the inspection object The difference is that the member to be inspected S is a material that transmits the detection light without reflecting it.
The detection unit 13A in which the emission surface of the light projecting optical fiber 13a is arranged is provided at the tip of the first support unit 11A, and the detection unit 13B in which the incident surfaces of the light receiving optical fibers 13b1 and 13b2 are arranged is 2 is provided at the tip of the support portion 11B.

検出光を透過する材質の被検査部材Sの欠陥を検査する場合、まず投光用光ファイバ13aの出射面から出射されて被検査部材Sを透過した検出光を受光用光ファイバ13b1、13b2の入射面に入射する。
そして投光用光ファイバ13aの出射面と受光用光ファイバ13b1、13b2の入射面を、被検査部材Sの表面に沿って当該被検査部材Sに対して相対的に移動させて、受光用光ファイバ13b1、13b2の入射面に入射された検出光の強度の変化に基づいて被検査部材Sの欠陥を判定する。図9(B)に示す例の場合、検出パイプ10を被検査部材Sの側面に沿って移動させてもよいし、検出パイプ10を移動させることなく被検査部材Sを移動させてもよい。
なお信号処理手段21は、図7及び図8に示す第2の実施の形態と同じであるため、説明を省略する。
When inspecting a defect in the inspection target member S made of a material that transmits the detection light, first, the detection light emitted from the emission surface of the light projecting optical fiber 13a and transmitted through the inspection target member S is received by the light receiving optical fibers 13b1 and 13b2. Incident on the incident surface.
Then, the emission surface of the light projecting optical fiber 13a and the light incident surfaces of the light receiving optical fibers 13b1 and 13b2 are moved relative to the member S to be inspected along the surface of the member S to be inspected. The defect of the member to be inspected S is determined based on the change in the intensity of the detection light incident on the incident surfaces of the fibers 13b1 and 13b2. In the example shown in FIG. 9B, the detection pipe 10 may be moved along the side surface of the member S to be inspected, or the member S to be inspected may be moved without moving the detection pipe 10.
The signal processing means 21 is the same as that of the second embodiment shown in FIGS.

本発明の欠陥検査装置1は、本実施の形態で説明した外観、構成、検査手順等に限定されず、本発明の要旨を変更しない範囲で種々の変更、追加、削除が可能である。
また、本実施の形態の説明に用いた数値は一例であり、この数値に限定されるものではない。
また、本実施の形態の説明では、被検査部材Sとして円柱状の空間を有するシリンダの例で説明したが、投光用光ファイバ13aの出射面、及び受光用光ファイバ13b(13b1、13b2)の入射面を被検査部材Sの表面から一定の距離を保つように並設して被検査部材Sの表面に沿って被検査部材Sに対して相対的に移動(被検査部材が検出光を反射する場合)、あるいは投光用光ファイバ13aの出射面、及び受光用光ファイバ13b(13b1、13b2)の入射面を被検査部材Sを挟んで一定の距離を保つように対向させて被検査部材Sの表面に沿って被検査部材Sに対して相対的に移動(被検査部材Sが検出光を透過する場合)させれば、被検査部材Sがどのような形状であっても構わない。例えば被検査部材Sが板状であってもよい。
また、信号処理手段21の詳細回路は、本実施の形態にて説明した回路に限定されるものではない。
また、以上(≧)、以下(≦)、より大きい(>)、未満(<)等は、等号を含んでも含まなくてもよい。
また、欠陥強調手段36の増幅特性は、徐々に増幅率を増加させる特性でなく、階段状に増幅率を増加させる特性であってもよい。
The defect inspection apparatus 1 of the present invention is not limited to the appearance, configuration, inspection procedure and the like described in the present embodiment, and various modifications, additions, and deletions can be made without changing the gist of the present invention.
The numerical values used in the description of the present embodiment are examples, and are not limited to these numerical values.
In the description of the present embodiment, an example of a cylinder having a cylindrical space as the member S to be inspected has been described. However, the emission surface of the light projecting optical fiber 13a and the light receiving optical fiber 13b (13b1, 13b2) are described. Are arranged in parallel so as to maintain a certain distance from the surface of the member S to be inspected, and move relative to the member S to be inspected along the surface of the member S to be inspected (the member to be inspected detects light). Or the incident surface of the light receiving optical fiber 13b (13b1, 13b2) are opposed to each other so as to maintain a certain distance across the member S to be inspected. As long as the member S is moved relative to the member S along the surface of the member S (when the member S transmits the detection light), the member S may have any shape. . For example, the member S to be inspected may be plate-shaped.
The detailed circuit of the signal processing means 21 is not limited to the circuit described in the present embodiment.
Further, the above (≧), the following (≦), the greater (>), the less (<), etc. may or may not include an equal sign.
Further, the amplification characteristic of the defect emphasizing means 36 may not be a characteristic that gradually increases the amplification factor, but may be a characteristic that increases the amplification factor stepwise.

本発明の欠陥検査方法及び欠陥検査装置1は、車両のエンジンシリンダ、ブレーキシリンダ等、本実施の形態にて説明したシリンダに限定されず、種々のシリンダ、パイプや加工穴等の内周壁面をはじめ、種々の形状の被検査部材、及び検出光を反射する材質、あるいは検出光を透過させる材質の被検査部材の欠陥の検出に適用することが可能である。   The defect inspection method and the defect inspection apparatus 1 according to the present invention are not limited to the cylinders described in the present embodiment, such as an engine cylinder and a brake cylinder of a vehicle, but include inner peripheral wall surfaces such as various cylinders, pipes, and machining holes. First, the present invention can be applied to detection of a defect in a member to be inspected of various shapes and a member to be inspected that is made of a material that reflects detection light or a material that transmits detection light.

本発明の欠陥検査装置1における第1の実施の形態の構成、及び欠陥検査装置1を構成する検出パイプ10の構造の一実施の形態を説明する図である。It is a figure explaining one Embodiment of the structure of 1st Embodiment in the defect inspection apparatus 1 of this invention, and the structure of the detection pipe 10 which comprises the defect inspection apparatus 1. FIG. 第1の実施の形態における検出部13の構造及び欠陥検査手順を説明する図である。It is a figure explaining the structure and defect inspection procedure of the detection part 13 in 1st Embodiment. 第1の実施の形態の検出部13における別の構造例及び欠陥検査手順を説明する図である。It is a figure explaining another structural example and defect inspection procedure in the detection part 13 of 1st Embodiment. 第1の実施の形態における信号処理手段21の概略構成、及び欠陥の判定方法の概要を説明する図である。It is a figure explaining the schematic structure of the signal processing means 21 in 1st Embodiment, and the outline | summary of the determination method of a defect. 第1の実施の形態における信号処理手段21の詳細構成、及び電圧波形の例を説明する図である。It is a figure explaining the detailed structure of the signal processing means 21 in 1st Embodiment, and the example of a voltage waveform. 第2の実施の形態における信号処理手段21の概略構成、及び欠陥の判定方法の概要を説明する図である。It is a figure explaining the schematic structure of the signal processing means 21 in 2nd Embodiment, and the outline | summary of the determination method of a defect. 第2の実施の形態における信号処理手段21の詳細構成の例を説明する図である。It is a figure explaining the example of a detailed structure of the signal processing means 21 in 2nd Embodiment. 第2の実施の形態における信号処理手段21の各部の電圧波形の例を説明する図である。It is a figure explaining the example of the voltage waveform of each part of the signal processing means 21 in 2nd Embodiment. 第3の実施の形態における投光用光ファイバ13aの入射面と受光用光ファイバ13b(13b1、13b2)の配置(図9(A)及び(C))と、第4の実施の形態における投光用光ファイバ13aの入射面と受光用光ファイバ13b(13b1、13b2)の配置(図9(B)及び(C))を説明する図である。The arrangement of the incident surface of the light projecting optical fiber 13a and the light receiving optical fibers 13b (13b1, 13b2) in the third embodiment (FIGS. 9A and 9C), and the light projecting in the fourth embodiment. It is a figure explaining the arrangement | positioning (FIG. 9 (B) and (C)) of the entrance plane of the optical fiber 13a for light, and the optical fiber 13b (13b1, 13b2) for light reception.

符号の説明Explanation of symbols

1 欠陥検査装置
10 検出パイプ
11 挿入部
12 支持部
13 検出部
13a 投光用光ファイバ
13b、13b1、13b2 受光用光ファイバ
14 フレキシブルチューブ
15 取付部
21 信号処理手段
22 駆動手段
23 パーソナルコンピュータ
30 制御装置
31 光源
32 電圧変換手段
33 差動演算手段
34 平滑化手段
36 欠陥強調手段
37 判定手段
38 帰還制御手段
39 電圧シフト手段
S シリンダ(被検査部材)
ZS 軸

DESCRIPTION OF SYMBOLS 1 Defect inspection apparatus 10 Detection pipe 11 Insertion part 12 Support part 13 Detection part 13a Optical fiber for light emission 13b, 13b1, 13b2 Optical fiber for light reception 14 Flexible tube 15 Mounting part 21 Signal processing means 22 Drive means 23 Personal computer 30 Control apparatus Reference Signs List 31 light source 32 voltage conversion means 33 differential operation means 34 smoothing means 36 defect emphasis means 37 determination means 38 feedback control means 39 voltage shift means S cylinder (member to be inspected)
ZS axis

Claims (5)

投光用光ファイバと受光用光ファイバとを用いて、
前記投光用光ファイバの出射面と前記受光用光ファイバの入射面が一定の距離を保つように対向させて配置するとともに、前記投光用光ファイバから出射する検出光を透過する被検査部材を前記投光用光ファイバの出射面と前記受光用光ファイバの入射面との間に配置し、
前記投光用光ファイバの出射面及び前記受光用光ファイバの入射面を前記被検査部材の表面に沿って前記被検査部材に対して相対的に移動させ、前記投光用光ファイバの出射面から出射されて前記被検査部材を透過して前記受光用光ファイバの入射面に入射された検出光の強度の変化に基づいて前記被検査部材の欠陥を判定する、
ことを特徴とする欠陥検査方法。
Using a projecting optical fiber and a receiving optical fiber,
A member to be inspected that is arranged so that the emission surface of the light projecting optical fiber and the light incident surface of the light receiving optical fiber face each other so as to maintain a certain distance, and transmits the detection light emitted from the light projecting optical fiber Is disposed between the emission surface of the light projecting optical fiber and the light incident surface of the light receiving optical fiber,
The emission surface of the light projecting optical fiber is moved relative to the member to be inspected along the surface of the member to be inspected, and the light emission surface of the light projecting optical fiber is moved. Determining a defect of the member to be inspected based on a change in intensity of detection light emitted from the member to be inspected and transmitted to the incident surface of the light receiving optical fiber;
A defect inspection method characterized by that.
投光用光ファイバと受光用光ファイバとを用いて、
前記投光用光ファイバから出射する検出光を反射する被検査部材を検査する場合、当該被検査部材の表面から一定の距離を保つように並設させた前記投光用光ファイバの出射面と前記受光用光ファイバの入射面とを前記被検査部材の表面に沿って前記被検査部材に対して相対的に移動させ、
前記投光用光ファイバから出射する検出光を透過する被検査部材を検査する場合、当該被検査部材を挟んで一定の距離を保つように対向させた前記投光用光ファイバの出射面と前記受光用光ファイバの入射面とを前記被検査部材の表面に沿って前記被検査部材に対して相対的に移動させ、
前記受光用光ファイバに入射された検出光を、当該検出光の強度に応じた電圧信号に変換する電圧変換ステップと、
前記電圧変換ステップから出力される電圧信号を、予め設定した第1基準電圧にシフトするとともに前記電圧信号のうねり成分を除去する帰還部を有する帰還制御ステップと、
前記帰還制御ステップから出力される電圧信号を、予め設定された第2基準電圧にシフトする電圧シフトステップと、
前記電圧シフトステップから出力される電圧信号において、波高値が外部入力電圧以上となる電圧信号を増幅するとともに、波高値が前記外部入力電圧未満となる電圧信号をカットあるいは減衰させて欠陥信号が強調された判定用信号を得る欠陥強調ステップと、
前記判定用信号において、波高値が第1所定電圧以上の信号を欠陥と判定する判定ステップとを有し、
更に、前記電圧シフトステップから出力される電圧信号の波高値を平滑化する平滑化ステップを有し、当該平滑化ステップから出力される平滑化信号を前記外部入力電圧として前記欠陥強調ステップに用いる、
ことを特徴とする欠陥検査方法。
Using a projecting optical fiber and a receiving optical fiber,
When inspecting a member to be inspected that reflects the detection light emitted from the light projecting optical fiber, the light emitting surface of the light projecting optical fiber arranged side by side so as to maintain a certain distance from the surface of the member to be inspected; Moving the incident surface of the light receiving optical fiber relative to the member to be inspected along the surface of the member to be inspected;
When inspecting a member to be inspected that transmits detection light emitted from the light projecting optical fiber, the light exiting surface of the light projecting optical fiber opposed to maintain a certain distance across the member to be inspected and the Move the incident surface of the light receiving optical fiber relative to the member to be inspected along the surface of the member to be inspected,
A voltage conversion step of converting the detection light incident on the light receiving optical fiber into a voltage signal corresponding to the intensity of the detection light;
A feedback control step including a feedback unit that shifts the voltage signal output from the voltage conversion step to a preset first reference voltage and removes the swell component of the voltage signal;
A voltage shift step for shifting the voltage signal output from the feedback control step to a preset second reference voltage;
The voltage signal output from the voltage shift step amplifies a voltage signal whose peak value is greater than or equal to the external input voltage, and cuts or attenuates a voltage signal whose peak value is less than the external input voltage to emphasize the defect signal. A defect emphasizing step for obtaining a determined determination signal;
A determination step of determining a signal having a peak value equal to or higher than a first predetermined voltage as a defect in the determination signal;
Furthermore, it has a smoothing step for smoothing the peak value of the voltage signal output from the voltage shift step, and uses the smoothed signal output from the smoothing step as the external input voltage in the defect emphasizing step.
A defect inspection method characterized by that.
投光用光ファイバと受光用光ファイバとを用いて、
前記投光用光ファイバから出射する検出光を反射する被検査部材を検査する場合、当該被検査部材の表面から一定の距離を保つように並設させた前記投光用光ファイバの出射面と前記受光用光ファイバの入射面とを前記被検査部材の表面に沿って前記被検査部材に対して相対的に移動させ、
前記投光用光ファイバから出射する検出光を透過する被検査部材を検査する場合、当該被検査部材を挟んで一定の距離を保つように対向させた前記投光用光ファイバの出射面と前記受光用光ファイバの入射面とを前記被検査部材の表面に沿って前記被検査部材に対して相対的に移動させ、
前記受光用光ファイバを一対で構成し、前記表面に沿って相対的に移動させる際、一方の受光用光ファイバの入射面に続いて他方の受光用光ファイバの入射面が前記表面上の同じ位置を通過するように移動させ、
一方の受光用ファイバに入射された第1検出光を、当該第1検出光の強度に応じた第1電圧信号に変換する第1電圧変換ステップと、
他方の受光用ファイバに入射された第2検出光を、当該第2検出光の強度に応じた第2電圧信号に変換する第2電圧変換ステップと、
前記第1電圧信号と前記第2電圧信号との差分を示す差分信号を得る差動演算ステップと、
前記差分信号の波高値を平滑化した平滑化信号を得る平滑化ステップと、
前記差分信号と前記平滑化信号から、前記差分信号において前記平滑化信号の波高値以上となる信号を増幅するとともに、前記差分信号において前記平滑化信号の波高値未満となる信号をカットあるいは減衰させて欠陥信号が強調された判定用信号を得る欠陥強調ステップと、
前記判定用信号において、波高値が第2所定電圧以上の信号を欠陥と判定する判定ステップとを有する、
ことを特徴とする欠陥検査方法。
Using a projecting optical fiber and a receiving optical fiber,
When inspecting a member to be inspected that reflects the detection light emitted from the light projecting optical fiber, the light emitting surface of the light projecting optical fiber arranged side by side so as to maintain a certain distance from the surface of the member to be inspected; Moving the incident surface of the light receiving optical fiber relative to the member to be inspected along the surface of the member to be inspected;
When inspecting a member to be inspected that transmits detection light emitted from the light projecting optical fiber, the light exiting surface of the light projecting optical fiber opposed to maintain a certain distance across the member to be inspected and the Move the incident surface of the light receiving optical fiber relative to the member to be inspected along the surface of the member to be inspected,
When the light receiving optical fiber is configured as a pair and relatively moved along the surface, the light receiving optical fiber incident surface of the other light receiving optical fiber is the same as the light receiving optical fiber on the surface. Move it past the position,
A first voltage conversion step of converting the first detection light incident on one of the light receiving fibers into a first voltage signal corresponding to the intensity of the first detection light;
A second voltage conversion step of converting the second detection light incident on the other light receiving fiber into a second voltage signal corresponding to the intensity of the second detection light;
A differential operation step of obtaining a difference signal indicating a difference between the first voltage signal and the second voltage signal;
A smoothing step of obtaining a smoothed signal obtained by smoothing the peak value of the differential signal;
From the difference signal and the smoothed signal, a signal that is equal to or higher than the peak value of the smoothed signal in the difference signal is amplified, and a signal that is less than the peak value of the smoothed signal in the difference signal is cut or attenuated. A defect enhancement step for obtaining a determination signal in which the defect signal is enhanced;
A determination step of determining a signal having a peak value equal to or higher than a second predetermined voltage as a defect in the determination signal;
A defect inspection method characterized by that.
投光用光ファイバと受光用光ファイバと制御装置とを備え、
前記投光用光ファイバから出射する検出光を反射する被検査部材を検査する場合、当該被検査部材の表面から一定の距離を保つように並設させた前記投光用光ファイバの出射面と前記受光用光ファイバの入射面とを前記被検査部材の表面に沿って前記被検査部材に対して相対的に移動させ、
前記投光用光ファイバから出射する検出光を透過する被検査部材を検査する場合、当該被検査部材を挟んで一定の距離を保つように対向させた前記投光用光ファイバの出射面と前記受光用光ファイバの入射面とを前記被検査部材の表面に沿って前記被検査部材に対して相対的に移動させ、
前記制御装置は、
前記受光用光ファイバに入射された検出光が入力されると、入力された検出光の強度に応じた電圧信号を出力する電圧変換手段と、
前記電圧変換手段から出力される電圧信号を、予め設定した第1基準電圧にシフトするとともに前記電圧信号のうねり成分を除去する帰還部を有する帰還制御手段と、
前記帰還制御手段から出力される電圧信号を、予め設定された第2基準電圧にシフトする電圧シフト手段と、
前記電圧シフト手段から出力される電圧信号において、波高値が外部入力電圧以上となる電圧信号を増幅するとともに、波高値が前記外部入力電圧未満となる電圧信号をカットあるいは減衰させて欠陥信号が強調された判定用信号を出力する欠陥強調手段と、
前記判定用信号が入力されると、入力された判定用信号において波高値が第1所定電圧以上の信号を欠陥と判定する判定手段とを備え、
更に、前記電圧シフト手段から出力される電圧信号の波高値を平滑化する平滑化手段を備え、当該平滑化手段から出力される平滑化信号を前記外部入力電圧として前記欠陥強調手段に入力する、
ことを特徴とする欠陥検査装置。
A light emitting optical fiber, a light receiving optical fiber, and a control device;
When inspecting a member to be inspected that reflects the detection light emitted from the light projecting optical fiber, the light emitting surface of the light projecting optical fiber arranged side by side so as to maintain a certain distance from the surface of the member to be inspected; Moving the incident surface of the light receiving optical fiber relative to the member to be inspected along the surface of the member to be inspected;
When inspecting a member to be inspected that transmits detection light emitted from the light projecting optical fiber, the light exiting surface of the light projecting optical fiber opposed to maintain a certain distance across the member to be inspected and the Move the incident surface of the light receiving optical fiber relative to the member to be inspected along the surface of the member to be inspected,
The controller is
When the detection light incident on the light receiving optical fiber is input, voltage conversion means for outputting a voltage signal according to the intensity of the input detection light;
A feedback control unit having a feedback unit that shifts the voltage signal output from the voltage conversion unit to a first reference voltage set in advance and removes the undulation component of the voltage signal;
Voltage shift means for shifting the voltage signal output from the feedback control means to a preset second reference voltage;
The voltage signal output from the voltage shift means amplifies a voltage signal whose peak value is greater than or equal to the external input voltage, and cuts or attenuates a voltage signal whose peak value is less than the external input voltage to emphasize the defect signal. Defect enhancement means for outputting the determined determination signal;
When the determination signal is input, a determination unit that determines a signal having a peak value equal to or higher than the first predetermined voltage in the input determination signal as a defect,
Furthermore, it comprises smoothing means for smoothing the peak value of the voltage signal output from the voltage shift means, and the smoothed signal output from the smoothing means is input to the defect emphasis means as the external input voltage.
A defect inspection apparatus characterized by that.
投光用光ファイバと受光用光ファイバと制御装置とを備え、
前記投光用光ファイバから出射する検出光を反射する被検査部材を検査する場合、当該被検査部材の表面から一定の距離を保つように並設させた前記投光用光ファイバの出射面と前記受光用光ファイバの入射面とを前記被検査部材の表面に沿って前記被検査部材に対して相対的に移動させ、
前記投光用光ファイバから出射する検出光を透過する被検査部材を検査する場合、当該被検査部材を挟んで一定の距離を保つように対向させた前記投光用光ファイバの出射面と前記受光用光ファイバの入射面とを前記被検査部材の表面に沿って前記被検査部材に対して相対的に移動させ、
前記受光用光ファイバは一対で構成されており、前記表面に沿って相対的に移動させる際、一方の受光用光ファイバの入射面に続いて他方の受光用光ファイバの入射面が前記表面上の同じ位置を通過するように移動させ、
前記制御装置は、
一方の受光用ファイバに入射された第1検出光が入力されると、入力された第1検出光の強度に応じた第1電圧信号を出力する第1電圧変換手段と、
他方の受光用ファイバに入射された第2検出光が入力されると、入力された第2検出光の強度に応じた第2電圧信号を出力する第2電圧変換手段と、
前記第1電圧信号と前記第2電圧信号が入力されると、入力された第1電圧信号と第2電圧信号との差分を示す差分信号を出力する差動演算手段と、
前記差分信号の波高値を平滑化した平滑化信号を出力する平滑化手段と、
前記差分信号と前記平滑化信号が入力されると、前記差分信号において前記平滑化信号の波高値以上となる信号を増幅するとともに、前記差分信号において前記平滑化信号の波高値未満となる信号をカットあるいは減衰させて欠陥信号が強調された判定用信号を出力する欠陥強調手段と、
前記判定用信号が入力されると、入力された判定用信号において波高値が第2所定電圧以上の信号を欠陥と判定する判定手段とを備える、
ことを特徴とする欠陥検査装置。

A light emitting optical fiber, a light receiving optical fiber, and a control device;
When inspecting a member to be inspected that reflects the detection light emitted from the light projecting optical fiber, the light emitting surface of the light projecting optical fiber arranged side by side so as to maintain a certain distance from the surface of the member to be inspected; Moving the incident surface of the light receiving optical fiber relative to the member to be inspected along the surface of the member to be inspected;
When inspecting a member to be inspected that transmits detection light emitted from the light projecting optical fiber, the light exiting surface of the light projecting optical fiber opposed to maintain a certain distance across the member to be inspected and the Move the incident surface of the light receiving optical fiber relative to the member to be inspected along the surface of the member to be inspected,
The light receiving optical fiber is configured as a pair, and when the light receiving optical fiber is relatively moved along the surface, the light receiving optical fiber incident surface is followed by the light receiving optical fiber incident surface on the surface. Move to pass the same position of
The controller is
A first voltage conversion means for outputting a first voltage signal corresponding to the intensity of the input first detection light when the first detection light incident on one of the light receiving fibers is input;
A second voltage conversion means for outputting a second voltage signal corresponding to the intensity of the input second detection light when the second detection light incident on the other light receiving fiber is input;
Differential operation means for outputting a difference signal indicating a difference between the input first voltage signal and the second voltage signal when the first voltage signal and the second voltage signal are input;
Smoothing means for outputting a smoothed signal obtained by smoothing the peak value of the differential signal;
When the differential signal and the smoothed signal are input, a signal that is equal to or higher than the peak value of the smoothed signal in the differential signal is amplified, and a signal that is less than the peak value of the smoothed signal in the differential signal is A defect emphasizing means for outputting a determination signal in which the defect signal is emphasized by cutting or attenuation; and
When the determination signal is input, a determination unit that determines a signal having a peak value equal to or higher than a second predetermined voltage in the input determination signal as a defect,
A defect inspection apparatus characterized by that.

JP2006054801A 2006-03-01 2006-03-01 Flaw inspection method and flaw inspection device Pending JP2007232577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006054801A JP2007232577A (en) 2006-03-01 2006-03-01 Flaw inspection method and flaw inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006054801A JP2007232577A (en) 2006-03-01 2006-03-01 Flaw inspection method and flaw inspection device

Publications (1)

Publication Number Publication Date
JP2007232577A true JP2007232577A (en) 2007-09-13

Family

ID=38553295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006054801A Pending JP2007232577A (en) 2006-03-01 2006-03-01 Flaw inspection method and flaw inspection device

Country Status (1)

Country Link
JP (1) JP2007232577A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011133385A (en) * 2009-12-25 2011-07-07 Diesel United:Kk Measurement method for inside diameter of cylinder bore, and measuring device thereof
WO2012173293A1 (en) * 2011-06-16 2012-12-20 부경엔지니어링 주식회사 Apparatus and method for inspection of section of magnetic conduit pipe using microprocessor
JP2014224700A (en) * 2013-05-15 2014-12-04 ウシオ電機株式会社 Light guide and light source unit
JP2015219069A (en) * 2014-05-15 2015-12-07 大同特殊鋼株式会社 Fluorescent magnetic powder flaw detector
EP3270145A1 (en) * 2016-07-14 2018-01-17 The Boeing Company System and method for internally inspecting a tubular composite part
CN113267452A (en) * 2021-06-11 2021-08-17 菲特(天津)检测技术有限公司 Engine cylinder surface defect detection method and system based on machine vision

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011133385A (en) * 2009-12-25 2011-07-07 Diesel United:Kk Measurement method for inside diameter of cylinder bore, and measuring device thereof
WO2012173293A1 (en) * 2011-06-16 2012-12-20 부경엔지니어링 주식회사 Apparatus and method for inspection of section of magnetic conduit pipe using microprocessor
JP2014224700A (en) * 2013-05-15 2014-12-04 ウシオ電機株式会社 Light guide and light source unit
JP2015219069A (en) * 2014-05-15 2015-12-07 大同特殊鋼株式会社 Fluorescent magnetic powder flaw detector
EP3270145A1 (en) * 2016-07-14 2018-01-17 The Boeing Company System and method for internally inspecting a tubular composite part
CN107621230A (en) * 2016-07-14 2018-01-23 波音公司 System and method for internally checking tubulose composite part
KR20180008271A (en) * 2016-07-14 2018-01-24 더 보잉 컴파니 System and method for internally inspecting a tubular composite part
KR102283446B1 (en) * 2016-07-14 2021-07-29 더 보잉 컴파니 System and method for internally inspecting a tubular composite part
US11215566B2 (en) 2016-07-14 2022-01-04 The Boeing Company System and method for internally inspecting a tubular composite part
CN113267452A (en) * 2021-06-11 2021-08-17 菲特(天津)检测技术有限公司 Engine cylinder surface defect detection method and system based on machine vision

Similar Documents

Publication Publication Date Title
EP3037808B1 (en) Device and method for optically detecting surface defect of round wire rod
KR101015457B1 (en) Apparatus and method for detecting surface defects on workpieces, such as rolled / drawn metal bars
JP2007232577A (en) Flaw inspection method and flaw inspection device
US20110128368A1 (en) Hole Inspection Method and Apparatus
EP2256487A3 (en) Methods for inspection of a specimen using different inspection parameters
JP2007315803A (en) Surface inspection device
JP2007256119A (en) Inspection apparatus, laminating apparatus, and inspection method
JP5043571B2 (en) Inner surface inspection device
JP6265613B2 (en) Inner surface inspection device
JP2003329606A (en) Inner surface inspection device
JP5728395B2 (en) Cylinder inner peripheral surface inspection optical system and cylinder inner peripheral surface inspection device
JPH06294749A (en) Flaw inspection method for plat glass
JP5564807B2 (en) Defect inspection apparatus and defect inspection method
WO2004072628A1 (en) Defect inspection device and method therefor
JP2007155384A (en) Flaw inspection device and flaw inspection method
JPH05149885A (en) In-pipe inspection device
JP2007163261A (en) Defect inspection device and defect inspection method
JP2004205218A (en) Device and method of inspecting appearance of inside diameter part
JP2010122155A (en) Method for detecting defect in plate-like body and defect detector
JP4339162B2 (en) Surface inspection device
JP3372850B2 (en) Inspection method of borehole of cylinder block
JP2007147323A (en) Surface inspection device
JPH10311799A (en) Surface flaw detection method for plugs for seamless steel pipe drilling
JP2007147324A (en) Surface inspection device
JP2007033327A (en) Flaw detecting method and flaw detector

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20081017

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20090310

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090707