JP2007227367A - Lithium ion secondary battery - Google Patents
Lithium ion secondary battery Download PDFInfo
- Publication number
- JP2007227367A JP2007227367A JP2007016276A JP2007016276A JP2007227367A JP 2007227367 A JP2007227367 A JP 2007227367A JP 2007016276 A JP2007016276 A JP 2007016276A JP 2007016276 A JP2007016276 A JP 2007016276A JP 2007227367 A JP2007227367 A JP 2007227367A
- Authority
- JP
- Japan
- Prior art keywords
- electrode active
- negative electrode
- active material
- secondary battery
- lithium ion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims abstract description 65
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 65
- 239000007773 negative electrode material Substances 0.000 claims abstract description 138
- 239000011255 nonaqueous electrolyte Substances 0.000 claims abstract description 89
- -1 cyclic siloxane Chemical class 0.000 claims abstract description 61
- 150000001875 compounds Chemical class 0.000 claims abstract description 53
- 229910002651 NO3 Inorganic materials 0.000 claims abstract description 9
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 claims abstract description 9
- 239000002245 particle Substances 0.000 claims description 87
- 238000000034 method Methods 0.000 claims description 61
- 239000007774 positive electrode material Substances 0.000 claims description 53
- 229910052799 carbon Inorganic materials 0.000 claims description 25
- 229910021382 natural graphite Inorganic materials 0.000 claims description 18
- 239000003125 aqueous solvent Substances 0.000 claims description 17
- 125000004432 carbon atom Chemical group C* 0.000 claims description 17
- 229910003002 lithium salt Inorganic materials 0.000 claims description 15
- 159000000002 lithium salts Chemical class 0.000 claims description 15
- 125000000962 organic group Chemical group 0.000 claims description 14
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 claims description 11
- 229910052757 nitrogen Inorganic materials 0.000 claims description 11
- 229910052731 fluorine Inorganic materials 0.000 claims description 10
- 238000001237 Raman spectrum Methods 0.000 claims description 8
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 claims description 7
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 claims description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N argon Substances [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 7
- DGTVXEHQMSJRPE-UHFFFAOYSA-M difluorophosphinate Chemical compound [O-]P(F)(F)=O DGTVXEHQMSJRPE-UHFFFAOYSA-M 0.000 claims description 7
- 150000003839 salts Chemical class 0.000 claims description 7
- 229910052786 argon Inorganic materials 0.000 claims description 6
- 229940074371 monofluorophosphate Drugs 0.000 claims description 6
- 229910052717 sulfur Inorganic materials 0.000 claims description 5
- 229910052739 hydrogen Inorganic materials 0.000 claims description 3
- 229910052760 oxygen Inorganic materials 0.000 claims description 3
- 238000004736 wide-angle X-ray diffraction Methods 0.000 claims description 3
- 229910019142 PO4 Inorganic materials 0.000 claims 1
- PQIOSYKVBBWRRI-UHFFFAOYSA-N methylphosphonyl difluoride Chemical group CP(F)(F)=O PQIOSYKVBBWRRI-UHFFFAOYSA-N 0.000 claims 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims 1
- 239000010452 phosphate Substances 0.000 claims 1
- XPBBUZJBQWWFFJ-UHFFFAOYSA-N fluorosilane Chemical compound [SiH3]F XPBBUZJBQWWFFJ-UHFFFAOYSA-N 0.000 abstract description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 54
- 239000003575 carbonaceous material Substances 0.000 description 51
- 239000011149 active material Substances 0.000 description 39
- 239000010410 layer Substances 0.000 description 37
- 229910052751 metal Inorganic materials 0.000 description 36
- 239000002184 metal Substances 0.000 description 35
- 229910052744 lithium Inorganic materials 0.000 description 34
- 238000002360 preparation method Methods 0.000 description 32
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 30
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 29
- 229940021013 electrolyte solution Drugs 0.000 description 28
- 230000000694 effects Effects 0.000 description 27
- 229910002804 graphite Inorganic materials 0.000 description 27
- 239000010439 graphite Substances 0.000 description 27
- 239000011230 binding agent Substances 0.000 description 25
- 239000000843 powder Substances 0.000 description 25
- 239000002904 solvent Substances 0.000 description 24
- 230000007423 decrease Effects 0.000 description 23
- 239000000463 material Substances 0.000 description 22
- 238000011282 treatment Methods 0.000 description 21
- 239000010409 thin film Substances 0.000 description 20
- 238000004519 manufacturing process Methods 0.000 description 18
- 125000000217 alkyl group Chemical group 0.000 description 17
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 17
- 238000011156 evaluation Methods 0.000 description 17
- 230000002829 reductive effect Effects 0.000 description 17
- 239000002562 thickening agent Substances 0.000 description 17
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 16
- 238000009826 distribution Methods 0.000 description 16
- 238000005259 measurement Methods 0.000 description 16
- 229920005989 resin Polymers 0.000 description 16
- 239000011347 resin Substances 0.000 description 16
- 230000000052 comparative effect Effects 0.000 description 15
- 238000010438 heat treatment Methods 0.000 description 15
- 239000000126 substance Substances 0.000 description 15
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 14
- 150000005678 chain carbonates Chemical class 0.000 description 14
- 239000010949 copper Substances 0.000 description 14
- 239000011148 porous material Substances 0.000 description 14
- 238000012545 processing Methods 0.000 description 14
- 238000010298 pulverizing process Methods 0.000 description 14
- 238000002441 X-ray diffraction Methods 0.000 description 13
- 239000000203 mixture Substances 0.000 description 13
- 239000002002 slurry Substances 0.000 description 13
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 12
- 239000004020 conductor Substances 0.000 description 12
- 229910052802 copper Inorganic materials 0.000 description 12
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 12
- 238000010336 energy treatment Methods 0.000 description 12
- 238000002156 mixing Methods 0.000 description 12
- 229920000642 polymer Polymers 0.000 description 12
- 150000005676 cyclic carbonates Chemical class 0.000 description 11
- 230000008569 process Effects 0.000 description 11
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 10
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 10
- 239000007789 gas Substances 0.000 description 10
- 239000000047 product Substances 0.000 description 10
- 229910052723 transition metal Inorganic materials 0.000 description 10
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 9
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 9
- 239000011889 copper foil Substances 0.000 description 9
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 9
- 229910052753 mercury Inorganic materials 0.000 description 9
- 239000011164 primary particle Substances 0.000 description 9
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 9
- 238000007873 sieving Methods 0.000 description 9
- 239000000758 substrate Substances 0.000 description 9
- 150000003624 transition metals Chemical class 0.000 description 9
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 8
- 229910013870 LiPF 6 Inorganic materials 0.000 description 8
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 8
- 239000002033 PVDF binder Substances 0.000 description 8
- 229910052782 aluminium Inorganic materials 0.000 description 8
- 239000008151 electrolyte solution Substances 0.000 description 8
- 150000002148 esters Chemical class 0.000 description 8
- 238000000227 grinding Methods 0.000 description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- 229910052759 nickel Inorganic materials 0.000 description 8
- 230000000704 physical effect Effects 0.000 description 8
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 8
- 238000003860 storage Methods 0.000 description 8
- OBTWBSRJZRCYQV-UHFFFAOYSA-N sulfuryl difluoride Chemical class FS(F)(=O)=O OBTWBSRJZRCYQV-UHFFFAOYSA-N 0.000 description 8
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 7
- 238000001069 Raman spectroscopy Methods 0.000 description 7
- 239000002131 composite material Substances 0.000 description 7
- 238000007599 discharging Methods 0.000 description 7
- 238000011049 filling Methods 0.000 description 7
- 239000011737 fluorine Substances 0.000 description 7
- 239000011888 foil Substances 0.000 description 7
- 230000002427 irreversible effect Effects 0.000 description 7
- 238000004381 surface treatment Methods 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 6
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 6
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 6
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 6
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 125000003342 alkenyl group Chemical group 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 125000003118 aryl group Chemical group 0.000 description 6
- 210000004027 cell Anatomy 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 229920001971 elastomer Polymers 0.000 description 6
- 239000010408 film Substances 0.000 description 6
- 230000020169 heat generation Effects 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 239000002609 medium Substances 0.000 description 6
- 239000007769 metal material Substances 0.000 description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 6
- 239000003960 organic solvent Substances 0.000 description 6
- 239000002243 precursor Substances 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- 239000011163 secondary particle Substances 0.000 description 6
- YTZKOQUCBOVLHL-UHFFFAOYSA-N tert-butylbenzene Chemical compound CC(C)(C)C1=CC=CC=C1 YTZKOQUCBOVLHL-UHFFFAOYSA-N 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 239000010936 titanium Substances 0.000 description 6
- YJTKZCDBKVTVBY-UHFFFAOYSA-N 1,3-Diphenylbenzene Chemical group C1=CC=CC=C1C1=CC=CC(C=2C=CC=CC=2)=C1 YJTKZCDBKVTVBY-UHFFFAOYSA-N 0.000 description 5
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 5
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 5
- 239000005062 Polybutadiene Substances 0.000 description 5
- 230000009471 action Effects 0.000 description 5
- 239000012298 atmosphere Substances 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 230000008602 contraction Effects 0.000 description 5
- 239000007772 electrode material Substances 0.000 description 5
- 239000003792 electrolyte Substances 0.000 description 5
- GAEKPEKOJKCEMS-UHFFFAOYSA-N gamma-valerolactone Chemical compound CC1CCC(=O)O1 GAEKPEKOJKCEMS-UHFFFAOYSA-N 0.000 description 5
- 125000000623 heterocyclic group Chemical group 0.000 description 5
- 229910052742 iron Inorganic materials 0.000 description 5
- 229910052748 manganese Inorganic materials 0.000 description 5
- 239000011572 manganese Substances 0.000 description 5
- 150000002739 metals Chemical class 0.000 description 5
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 5
- 229920002857 polybutadiene Polymers 0.000 description 5
- 230000001681 protective effect Effects 0.000 description 5
- 230000003746 surface roughness Effects 0.000 description 5
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 5
- 229910052719 titanium Inorganic materials 0.000 description 5
- QPUYECUOLPXSFR-UHFFFAOYSA-N 1-methylnaphthalene Chemical compound C1=CC=C2C(C)=CC=CC2=C1 QPUYECUOLPXSFR-UHFFFAOYSA-N 0.000 description 4
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 4
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 4
- 239000005977 Ethylene Substances 0.000 description 4
- 229910013063 LiBF 4 Inorganic materials 0.000 description 4
- 239000004698 Polyethylene Substances 0.000 description 4
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 4
- 230000002159 abnormal effect Effects 0.000 description 4
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 125000000304 alkynyl group Chemical group 0.000 description 4
- 239000012300 argon atmosphere Substances 0.000 description 4
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 4
- 239000001768 carboxy methyl cellulose Substances 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 229910052804 chromium Inorganic materials 0.000 description 4
- 239000011651 chromium Substances 0.000 description 4
- 239000011362 coarse particle Substances 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000007906 compression Methods 0.000 description 4
- 230000006835 compression Effects 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 125000006165 cyclic alkyl group Chemical group 0.000 description 4
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 4
- 238000000354 decomposition reaction Methods 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- TXCDCPKCNAJMEE-UHFFFAOYSA-N dibenzofuran Chemical compound C1=CC=C2C3=CC=CC=C3OC2=C1 TXCDCPKCNAJMEE-UHFFFAOYSA-N 0.000 description 4
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 4
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical compound C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 238000009396 hybridization Methods 0.000 description 4
- 239000005001 laminate film Substances 0.000 description 4
- IGILRSKEFZLPKG-UHFFFAOYSA-M lithium;difluorophosphinate Chemical compound [Li+].[O-]P(F)(F)=O IGILRSKEFZLPKG-UHFFFAOYSA-M 0.000 description 4
- 230000007774 longterm Effects 0.000 description 4
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 4
- 239000012046 mixed solvent Substances 0.000 description 4
- 238000012856 packing Methods 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 4
- 229920000573 polyethylene Polymers 0.000 description 4
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 4
- 239000004810 polytetrafluoroethylene Substances 0.000 description 4
- 239000003223 protective agent Substances 0.000 description 4
- 229920006132 styrene block copolymer Polymers 0.000 description 4
- 125000004665 trialkylsilyl group Chemical group 0.000 description 4
- 229910052720 vanadium Inorganic materials 0.000 description 4
- QHTJSSMHBLGUHV-UHFFFAOYSA-N 2-methylbutan-2-ylbenzene Chemical compound CCC(C)(C)C1=CC=CC=C1 QHTJSSMHBLGUHV-UHFFFAOYSA-N 0.000 description 3
- 229910013553 LiNO Inorganic materials 0.000 description 3
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 3
- 229920000459 Nitrile rubber Polymers 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 150000001491 aromatic compounds Chemical class 0.000 description 3
- 229910021383 artificial graphite Inorganic materials 0.000 description 3
- 125000003710 aryl alkyl group Chemical group 0.000 description 3
- 238000009835 boiling Methods 0.000 description 3
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 3
- 235000011132 calcium sulphate Nutrition 0.000 description 3
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 3
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 3
- 229920002678 cellulose Polymers 0.000 description 3
- 239000001913 cellulose Substances 0.000 description 3
- HHNHBFLGXIUXCM-GFCCVEGCSA-N cyclohexylbenzene Chemical compound [CH]1CCCC[C@@H]1C1=CC=CC=C1 HHNHBFLGXIUXCM-GFCCVEGCSA-N 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- HQQADJVZYDDRJT-UHFFFAOYSA-N ethene;prop-1-ene Chemical group C=C.CC=C HQQADJVZYDDRJT-UHFFFAOYSA-N 0.000 description 3
- 229920001038 ethylene copolymer Polymers 0.000 description 3
- 150000004673 fluoride salts Chemical class 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 125000005843 halogen group Chemical group 0.000 description 3
- HTDJPCNNEPUOOQ-UHFFFAOYSA-N hexamethylcyclotrisiloxane Chemical compound C[Si]1(C)O[Si](C)(C)O[Si](C)(C)O1 HTDJPCNNEPUOOQ-UHFFFAOYSA-N 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 239000003112 inhibitor Substances 0.000 description 3
- 229910001506 inorganic fluoride Inorganic materials 0.000 description 3
- 229910010272 inorganic material Inorganic materials 0.000 description 3
- 239000002905 metal composite material Substances 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 238000002459 porosimetry Methods 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- 239000005060 rubber Substances 0.000 description 3
- 238000010008 shearing Methods 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 229920003048 styrene butadiene rubber Polymers 0.000 description 3
- 150000003459 sulfonic acid esters Chemical class 0.000 description 3
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 3
- 229910002001 transition metal nitrate Inorganic materials 0.000 description 3
- 229910000319 transition metal phosphate Inorganic materials 0.000 description 3
- 229910000385 transition metal sulfate Inorganic materials 0.000 description 3
- 125000005389 trialkylsiloxy group Chemical group 0.000 description 3
- 125000000026 trimethylsilyl group Chemical group [H]C([H])([H])[Si]([*])(C([H])([H])[H])C([H])([H])[H] 0.000 description 3
- NTJPIRDYMVYFNP-UHFFFAOYSA-M trimethylsilylmethanesulfonate Chemical group C[Si](C)(C)CS([O-])(=O)=O NTJPIRDYMVYFNP-UHFFFAOYSA-M 0.000 description 3
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 3
- WDXYVJKNSMILOQ-UHFFFAOYSA-N 1,3,2-dioxathiolane 2-oxide Chemical compound O=S1OCCO1 WDXYVJKNSMILOQ-UHFFFAOYSA-N 0.000 description 2
- FSSPGSAQUIYDCN-UHFFFAOYSA-N 1,3-Propane sultone Chemical compound O=S1(=O)CCCO1 FSSPGSAQUIYDCN-UHFFFAOYSA-N 0.000 description 2
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 description 2
- MBDUIEKYVPVZJH-UHFFFAOYSA-N 1-ethylsulfonylethane Chemical compound CCS(=O)(=O)CC MBDUIEKYVPVZJH-UHFFFAOYSA-N 0.000 description 2
- FALRKNHUBBKYCC-UHFFFAOYSA-N 2-(chloromethyl)pyridine-3-carbonitrile Chemical compound ClCC1=NC=CC=C1C#N FALRKNHUBBKYCC-UHFFFAOYSA-N 0.000 description 2
- BJWMSGRKJIOCNR-UHFFFAOYSA-N 4-ethenyl-1,3-dioxolan-2-one Chemical compound C=CC1COC(=O)O1 BJWMSGRKJIOCNR-UHFFFAOYSA-N 0.000 description 2
- SBLRHMKNNHXPHG-UHFFFAOYSA-N 4-fluoro-1,3-dioxolan-2-one Chemical compound FC1COC(=O)O1 SBLRHMKNNHXPHG-UHFFFAOYSA-N 0.000 description 2
- SJHAYVFVKRXMKG-UHFFFAOYSA-N 4-methyl-1,3,2-dioxathiolane 2-oxide Chemical compound CC1COS(=O)O1 SJHAYVFVKRXMKG-UHFFFAOYSA-N 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- COVZYZSDYWQREU-UHFFFAOYSA-N Busulfan Chemical compound CS(=O)(=O)OCCCCOS(C)(=O)=O COVZYZSDYWQREU-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 2
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 2
- XMSXQFUHVRWGNA-UHFFFAOYSA-N Decamethylcyclopentasiloxane Chemical compound C[Si]1(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O1 XMSXQFUHVRWGNA-UHFFFAOYSA-N 0.000 description 2
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 2
- GUUVPOWQJOLRAS-UHFFFAOYSA-N Diphenyl disulfide Chemical compound C=1C=CC=CC=1SSC1=CC=CC=C1 GUUVPOWQJOLRAS-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 239000001856 Ethyl cellulose Substances 0.000 description 2
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 2
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 2
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- RJUFJBKOKNCXHH-UHFFFAOYSA-N Methyl propionate Chemical compound CCC(=O)OC RJUFJBKOKNCXHH-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- 239000000020 Nitrocellulose Substances 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- 229920001213 Polysorbate 20 Polymers 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical class OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- UDWPONKAYSRBTJ-UHFFFAOYSA-N [He].[N] Chemical compound [He].[N] UDWPONKAYSRBTJ-UHFFFAOYSA-N 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 2
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 2
- 239000006230 acetylene black Substances 0.000 description 2
- 229910001413 alkali metal ion Inorganic materials 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 239000012736 aqueous medium Substances 0.000 description 2
- 239000004760 aramid Substances 0.000 description 2
- 229920003235 aromatic polyamide Polymers 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 2
- 235000010290 biphenyl Nutrition 0.000 description 2
- 239000004305 biphenyl Substances 0.000 description 2
- 229960002092 busulfan Drugs 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 2
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 2
- 239000005018 casein Substances 0.000 description 2
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 2
- 235000021240 caseins Nutrition 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 239000011162 core material Substances 0.000 description 2
- 125000000753 cycloalkyl group Chemical group 0.000 description 2
- 210000001787 dendrite Anatomy 0.000 description 2
- 150000001993 dienes Chemical class 0.000 description 2
- RWRIWBAIICGTTQ-UHFFFAOYSA-N difluoromethane Chemical compound FCF RWRIWBAIICGTTQ-UHFFFAOYSA-N 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 239000002612 dispersion medium Substances 0.000 description 2
- 238000003411 electrode reaction Methods 0.000 description 2
- GYWIDSZAIGIHMH-UHFFFAOYSA-N ethenyl-fluoro-dimethylsilane Chemical compound C[Si](C)(F)C=C GYWIDSZAIGIHMH-UHFFFAOYSA-N 0.000 description 2
- IHUPJHMXJIJPOM-UHFFFAOYSA-N ethenyl-fluoro-diphenylsilane Chemical compound C=1C=CC=CC=1[Si](C=C)(F)C1=CC=CC=C1 IHUPJHMXJIJPOM-UHFFFAOYSA-N 0.000 description 2
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 2
- 235000019325 ethyl cellulose Nutrition 0.000 description 2
- 229920001249 ethyl cellulose Polymers 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- CTIKAHQFRQTTAY-UHFFFAOYSA-N fluoro(trimethyl)silane Chemical compound C[Si](C)(C)F CTIKAHQFRQTTAY-UHFFFAOYSA-N 0.000 description 2
- OCKMVMKNCKNCMZ-UHFFFAOYSA-N fluoro-dimethyl-phenylsilane Chemical compound C[Si](C)(F)C1=CC=CC=C1 OCKMVMKNCKNCMZ-UHFFFAOYSA-N 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 239000000295 fuel oil Substances 0.000 description 2
- 238000005087 graphitization Methods 0.000 description 2
- UQEAIHBTYFGYIE-UHFFFAOYSA-N hexamethyldisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)C UQEAIHBTYFGYIE-UHFFFAOYSA-N 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 229920003063 hydroxymethyl cellulose Polymers 0.000 description 2
- 229940031574 hydroxymethyl cellulose Drugs 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 229920003049 isoprene rubber Polymers 0.000 description 2
- 239000004816 latex Substances 0.000 description 2
- 229920000126 latex Polymers 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 2
- KNWQLFOXPQZGPX-UHFFFAOYSA-N methanesulfonyl fluoride Chemical compound CS(F)(=O)=O KNWQLFOXPQZGPX-UHFFFAOYSA-N 0.000 description 2
- 229920000609 methyl cellulose Polymers 0.000 description 2
- MBXNQZHITVCSLJ-UHFFFAOYSA-N methyl fluorosulfonate Chemical compound COS(F)(=O)=O MBXNQZHITVCSLJ-UHFFFAOYSA-N 0.000 description 2
- MBABOKRGFJTBAE-UHFFFAOYSA-N methyl methanesulfonate Chemical compound COS(C)(=O)=O MBABOKRGFJTBAE-UHFFFAOYSA-N 0.000 description 2
- 239000001923 methylcellulose Substances 0.000 description 2
- 235000010981 methylcellulose Nutrition 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- SWVGZFQJXVPIKM-UHFFFAOYSA-N n,n-bis(methylamino)propan-1-amine Chemical compound CCCN(NC)NC SWVGZFQJXVPIKM-UHFFFAOYSA-N 0.000 description 2
- 229920001220 nitrocellulos Polymers 0.000 description 2
- 125000004433 nitrogen atom Chemical group N* 0.000 description 2
- 239000004745 nonwoven fabric Substances 0.000 description 2
- MHYFEEDKONKGEB-UHFFFAOYSA-N oxathiane 2,2-dioxide Chemical compound O=S1(=O)CCCCO1 MHYFEEDKONKGEB-UHFFFAOYSA-N 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000001254 oxidized starch Substances 0.000 description 2
- 235000013808 oxidized starch Nutrition 0.000 description 2
- 125000001820 oxy group Chemical group [*:1]O[*:2] 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- OJMIONKXNSYLSR-UHFFFAOYSA-N phosphorous acid Chemical class OP(O)O OJMIONKXNSYLSR-UHFFFAOYSA-N 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 229920002589 poly(vinylethylene) polymer Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 2
- 239000011118 polyvinyl acetate Substances 0.000 description 2
- 229920002689 polyvinyl acetate Polymers 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 2
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 2
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 2
- 150000003254 radicals Chemical class 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 238000010079 rubber tapping Methods 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 2
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 2
- 235000002639 sodium chloride Nutrition 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 229940014800 succinic anhydride Drugs 0.000 description 2
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 2
- HHVIBTZHLRERCL-UHFFFAOYSA-N sulfonyldimethane Chemical compound CS(C)(=O)=O HHVIBTZHLRERCL-UHFFFAOYSA-N 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 150000005687 symmetric chain carbonates Chemical class 0.000 description 2
- 229920001897 terpolymer Polymers 0.000 description 2
- 229920001169 thermoplastic Polymers 0.000 description 2
- 239000004416 thermosoftening plastic Substances 0.000 description 2
- 229910000314 transition metal oxide Inorganic materials 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- 239000004711 α-olefin Substances 0.000 description 2
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 1
- ZPFAVCIQZKRBGF-UHFFFAOYSA-N 1,3,2-dioxathiolane 2,2-dioxide Chemical compound O=S1(=O)OCCO1 ZPFAVCIQZKRBGF-UHFFFAOYSA-N 0.000 description 1
- IOBWAHRFIPQEQL-UHFFFAOYSA-N 1,3-difluoro-2-methoxybenzene Chemical compound COC1=C(F)C=CC=C1F IOBWAHRFIPQEQL-UHFFFAOYSA-N 0.000 description 1
- OTGQPYSISUUHAF-UHFFFAOYSA-N 1,3-difluoro-5-methoxybenzene Chemical compound COC1=CC(F)=CC(F)=C1 OTGQPYSISUUHAF-UHFFFAOYSA-N 0.000 description 1
- HUDMAQLYMUKZOZ-UHFFFAOYSA-N 1,4-difluoro-2-methoxybenzene Chemical compound COC1=CC(F)=CC=C1F HUDMAQLYMUKZOZ-UHFFFAOYSA-N 0.000 description 1
- YAOIFBJJGFYYFI-UHFFFAOYSA-N 1-cyclohexyl-4-fluorobenzene Chemical compound C1=CC(F)=CC=C1C1CCCCC1 YAOIFBJJGFYYFI-UHFFFAOYSA-N 0.000 description 1
- KLECYOQFQXJYBC-UHFFFAOYSA-N 1-fluoro-2-phenylbenzene Chemical group FC1=CC=CC=C1C1=CC=CC=C1 KLECYOQFQXJYBC-UHFFFAOYSA-N 0.000 description 1
- 125000006017 1-propenyl group Chemical group 0.000 description 1
- KMPBCFZCRNKXSA-UHFFFAOYSA-N 2,2,4,4,6,6-hexaethyl-1,3,5,2,4,6-trioxatrisilinane Chemical compound CC[Si]1(CC)O[Si](CC)(CC)O[Si](CC)(CC)O1 KMPBCFZCRNKXSA-UHFFFAOYSA-N 0.000 description 1
- VCYDUTCMKSROID-UHFFFAOYSA-N 2,2,4,4,6,6-hexakis-phenyl-1,3,5,2,4,6-trioxatrisilinane Chemical compound O1[Si](C=2C=CC=CC=2)(C=2C=CC=CC=2)O[Si](C=2C=CC=CC=2)(C=2C=CC=CC=2)O[Si]1(C=1C=CC=CC=1)C1=CC=CC=C1 VCYDUTCMKSROID-UHFFFAOYSA-N 0.000 description 1
- CRMJLJFDPNJIQA-UHFFFAOYSA-N 2,4-difluoro-1-methoxybenzene Chemical compound COC1=CC=C(F)C=C1F CRMJLJFDPNJIQA-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- VSKJLJHPAFKHBX-UHFFFAOYSA-N 2-methylbuta-1,3-diene;styrene Chemical compound CC(=C)C=C.C=CC1=CC=CC=C1.C=CC1=CC=CC=C1 VSKJLJHPAFKHBX-UHFFFAOYSA-N 0.000 description 1
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical compound CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 description 1
- HHCHLHOEAKKCAB-UHFFFAOYSA-N 2-oxaspiro[3.5]nonane-1,3-dione Chemical compound O=C1OC(=O)C11CCCCC1 HHCHLHOEAKKCAB-UHFFFAOYSA-N 0.000 description 1
- 125000006325 2-propenyl amino group Chemical group [H]C([H])=C([H])C([H])([H])N([H])* 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- SYIUWAVTBADRJG-UHFFFAOYSA-N 2H-pyran-2,6(3H)-dione Chemical compound O=C1CC=CC(=O)O1 SYIUWAVTBADRJG-UHFFFAOYSA-N 0.000 description 1
- CKRJGDYKYQUNIM-UHFFFAOYSA-N 3-fluoro-2,2-dimethylpropanoic acid Chemical compound FCC(C)(C)C(O)=O CKRJGDYKYQUNIM-UHFFFAOYSA-N 0.000 description 1
- AYKYXWQEBUNJCN-UHFFFAOYSA-N 3-methylfuran-2,5-dione Chemical compound CC1=CC(=O)OC1=O AYKYXWQEBUNJCN-UHFFFAOYSA-N 0.000 description 1
- OFNISBHGPNMTMS-UHFFFAOYSA-N 3-methylideneoxolane-2,5-dione Chemical compound C=C1CC(=O)OC1=O OFNISBHGPNMTMS-UHFFFAOYSA-N 0.000 description 1
- GKZFQPGIDVGTLZ-UHFFFAOYSA-N 4-(trifluoromethyl)-1,3-dioxolan-2-one Chemical compound FC(F)(F)C1COC(=O)O1 GKZFQPGIDVGTLZ-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 238000004438 BET method Methods 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 229910000906 Bronze Inorganic materials 0.000 description 1
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical compound C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229910017526 Cu-Cr-Zr Inorganic materials 0.000 description 1
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 1
- 229910017810 Cu—Cr—Zr Inorganic materials 0.000 description 1
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 1
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 1
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 1
- 229920000181 Ethylene propylene rubber Polymers 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 241000134253 Lanka Species 0.000 description 1
- 229910010238 LiAlCl 4 Inorganic materials 0.000 description 1
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910011281 LiCoPO 4 Inorganic materials 0.000 description 1
- 229910010701 LiFeP Inorganic materials 0.000 description 1
- 229910010707 LiFePO 4 Inorganic materials 0.000 description 1
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 1
- 229910016118 LiMn1.5Ni0.5O4 Inorganic materials 0.000 description 1
- 229910014297 LiMn1.8Al0.2O4 Inorganic materials 0.000 description 1
- 229910014689 LiMnO Inorganic materials 0.000 description 1
- 229910013825 LiNi0.33Co0.33Mn0.33O2 Inorganic materials 0.000 description 1
- 229910012752 LiNi0.5Mn0.5O2 Inorganic materials 0.000 description 1
- 229910015701 LiNi0.85Co0.10Al0.05O2 Inorganic materials 0.000 description 1
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 1
- 229910012258 LiPO Inorganic materials 0.000 description 1
- 229910012513 LiSbF 6 Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 229910000861 Mg alloy Inorganic materials 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- GTJVDQHHVRLVRU-UHFFFAOYSA-N P(O)(O)(O)=O.P(O[Si](C)(C)C)(O[Si](C)(C)C)O[Si](C)(C)C Chemical compound P(O)(O)(O)=O.P(O[Si](C)(C)C)(O[Si](C)(C)C)O[Si](C)(C)C GTJVDQHHVRLVRU-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 240000007320 Pinus strobus Species 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- 206010037660 Pyrexia Diseases 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- DHXVGJBLRPWPCS-UHFFFAOYSA-N Tetrahydropyran Chemical compound C1CCOCC1 DHXVGJBLRPWPCS-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 125000003668 acetyloxy group Chemical group [H]C([H])([H])C(=O)O[*] 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- 125000005336 allyloxy group Chemical group 0.000 description 1
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical class COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 1
- 229910000410 antimony oxide Inorganic materials 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- SAEJXKVPZXQIDD-UHFFFAOYSA-N bis(ethenyl)-difluorosilane Chemical compound C=C[Si](F)(F)C=C SAEJXKVPZXQIDD-UHFFFAOYSA-N 0.000 description 1
- KRUQDZRWZXUUAD-UHFFFAOYSA-N bis(trimethylsilyl) sulfate Chemical group C[Si](C)(C)OS(=O)(=O)O[Si](C)(C)C KRUQDZRWZXUUAD-UHFFFAOYSA-N 0.000 description 1
- 229910000416 bismuth oxide Inorganic materials 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052810 boron oxide Inorganic materials 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- LQCXRRHSCWMFDW-UHFFFAOYSA-N but-1-enyl(difluoro)silane Chemical compound F[SiH](C=CCC)F LQCXRRHSCWMFDW-UHFFFAOYSA-N 0.000 description 1
- RSYNHXZMASRGMC-UHFFFAOYSA-N butan-2-yl hydrogen carbonate Chemical compound CCC(C)OC(O)=O RSYNHXZMASRGMC-UHFFFAOYSA-N 0.000 description 1
- 125000004369 butenyl group Chemical group C(=CCC)* 0.000 description 1
- 125000004106 butoxy group Chemical group [*]OC([H])([H])C([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000000480 butynyl group Chemical group [*]C#CC([H])([H])C([H])([H])[H] 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 150000001733 carboxylic acid esters Chemical class 0.000 description 1
- 150000003841 chloride salts Chemical class 0.000 description 1
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical compound [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 description 1
- 239000011294 coal tar pitch Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- GIPIUENNGCQCIT-UHFFFAOYSA-K cobalt(3+) phosphate Chemical class [Co+3].[O-]P([O-])([O-])=O GIPIUENNGCQCIT-UHFFFAOYSA-K 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 238000007596 consolidation process Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 229910001431 copper ion Inorganic materials 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- IUYOGGFTLHZHEG-UHFFFAOYSA-N copper titanium Chemical compound [Ti].[Cu] IUYOGGFTLHZHEG-UHFFFAOYSA-N 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 150000004292 cyclic ethers Chemical class 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- DDJSWKLBKSLAAZ-UHFFFAOYSA-N cyclotetrasiloxane Chemical compound O1[SiH2]O[SiH2]O[SiH2]O[SiH2]1 DDJSWKLBKSLAAZ-UHFFFAOYSA-N 0.000 description 1
- JJRDHFIVAPVZJN-UHFFFAOYSA-N cyclotrisiloxane Chemical compound O1[SiH2]O[SiH2]O[SiH2]1 JJRDHFIVAPVZJN-UHFFFAOYSA-N 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- UREBDLICKHMUKA-CXSFZGCWSA-N dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- TYIXMATWDRGMPF-UHFFFAOYSA-N dibismuth;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Bi+3].[Bi+3] TYIXMATWDRGMPF-UHFFFAOYSA-N 0.000 description 1
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 description 1
- CCAFPWNGIUBUSD-UHFFFAOYSA-N diethyl sulfoxide Chemical compound CCS(=O)CC CCAFPWNGIUBUSD-UHFFFAOYSA-N 0.000 description 1
- OJBGGLLCYJYHPG-UHFFFAOYSA-N diethyl(difluoro)silane Chemical compound CC[Si](F)(F)CC OJBGGLLCYJYHPG-UHFFFAOYSA-N 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- XRRDNAZMVAXXQP-UHFFFAOYSA-N difluoro(dimethyl)silane Chemical compound C[Si](C)(F)F XRRDNAZMVAXXQP-UHFFFAOYSA-N 0.000 description 1
- PUUOOWSPWTVMDS-UHFFFAOYSA-N difluorosilane Chemical class F[SiH2]F PUUOOWSPWTVMDS-UHFFFAOYSA-N 0.000 description 1
- SXWUDUINABFBMK-UHFFFAOYSA-L dilithium;fluoro-dioxido-oxo-$l^{5}-phosphane Chemical compound [Li+].[Li+].[O-]P([O-])(F)=O SXWUDUINABFBMK-UHFFFAOYSA-L 0.000 description 1
- NKDDWNXOKDWJAK-UHFFFAOYSA-N dimethoxymethane Chemical compound COCOC NKDDWNXOKDWJAK-UHFFFAOYSA-N 0.000 description 1
- VAYGXNSJCAHWJZ-UHFFFAOYSA-N dimethyl sulfate Chemical compound COS(=O)(=O)OC VAYGXNSJCAHWJZ-UHFFFAOYSA-N 0.000 description 1
- BDUPRNVPXOHWIL-UHFFFAOYSA-N dimethyl sulfite Chemical compound COS(=O)OC BDUPRNVPXOHWIL-UHFFFAOYSA-N 0.000 description 1
- LTYMSROWYAPPGB-UHFFFAOYSA-N diphenyl sulfide Chemical compound C=1C=CC=CC=1SC1=CC=CC=C1 LTYMSROWYAPPGB-UHFFFAOYSA-N 0.000 description 1
- VUPKGFBOKBGHFZ-UHFFFAOYSA-N dipropyl carbonate Chemical compound CCCOC(=O)OCCC VUPKGFBOKBGHFZ-UHFFFAOYSA-N 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011067 equilibration Methods 0.000 description 1
- TUQRJUNPNIYMDR-UHFFFAOYSA-N ethane-1,2-disulfonyl fluoride Chemical compound FS(=O)(=O)CCS(F)(=O)=O TUQRJUNPNIYMDR-UHFFFAOYSA-N 0.000 description 1
- OIBMEBLCOQCFIT-UHFFFAOYSA-N ethanesulfonyl fluoride Chemical compound CCS(F)(=O)=O OIBMEBLCOQCFIT-UHFFFAOYSA-N 0.000 description 1
- PBUOZDJQEGMXGZ-UHFFFAOYSA-N ethenyl-diethyl-fluorosilane Chemical compound CC[Si](F)(CC)C=C PBUOZDJQEGMXGZ-UHFFFAOYSA-N 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 229940093499 ethyl acetate Drugs 0.000 description 1
- NHOREJPMXSLGGR-UHFFFAOYSA-N ethyl(trifluoro)silane Chemical compound CC[Si](F)(F)F NHOREJPMXSLGGR-UHFFFAOYSA-N 0.000 description 1
- XODWWDLLPURTOQ-UHFFFAOYSA-N ethyl-[ethyl(dimethyl)silyl]oxy-dimethylsilane Chemical compound CC[Si](C)(C)O[Si](C)(C)CC XODWWDLLPURTOQ-UHFFFAOYSA-N 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- DWYMPOCYEZONEA-UHFFFAOYSA-L fluoridophosphate Chemical compound [O-]P([O-])(F)=O DWYMPOCYEZONEA-UHFFFAOYSA-L 0.000 description 1
- JKGQTAALIDWBJK-UHFFFAOYSA-N fluoro(trimethoxy)silane Chemical compound CO[Si](F)(OC)OC JKGQTAALIDWBJK-UHFFFAOYSA-N 0.000 description 1
- UBGXLEFOIVWVRP-UHFFFAOYSA-N fluoro(triphenyl)silane Chemical compound C=1C=CC=CC=1[Si](C=1C=CC=CC=1)(F)C1=CC=CC=C1 UBGXLEFOIVWVRP-UHFFFAOYSA-N 0.000 description 1
- DMTSDXQHAYTVGH-UHFFFAOYSA-N fluoro(tripropyl)silane Chemical compound CCC[Si](F)(CCC)CCC DMTSDXQHAYTVGH-UHFFFAOYSA-N 0.000 description 1
- 125000003709 fluoroalkyl group Chemical group 0.000 description 1
- 229920002313 fluoropolymer Polymers 0.000 description 1
- UQSQSQZYBQSBJZ-UHFFFAOYSA-N fluorosulfonic acid Chemical class OS(F)(=O)=O UQSQSQZYBQSBJZ-UHFFFAOYSA-N 0.000 description 1
- KRRYGFCJUCTWMH-UHFFFAOYSA-N fluorosulfonyloxyethane Chemical compound CCOS(F)(=O)=O KRRYGFCJUCTWMH-UHFFFAOYSA-N 0.000 description 1
- 229910003472 fullerene Inorganic materials 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- VANNPISTIUFMLH-UHFFFAOYSA-N glutaric anhydride Chemical compound O=C1CCCC(=O)O1 VANNPISTIUFMLH-UHFFFAOYSA-N 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 150000002391 heterocyclic compounds Chemical class 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000002847 impedance measurement Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 229910001504 inorganic chloride Inorganic materials 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 239000010954 inorganic particle Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000010220 ion permeability Effects 0.000 description 1
- WBJZTOZJJYAKHQ-UHFFFAOYSA-K iron(3+) phosphate Chemical class [Fe+3].[O-]P([O-])([O-])=O WBJZTOZJJYAKHQ-UHFFFAOYSA-K 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 1
- 229910052808 lithium carbonate Inorganic materials 0.000 description 1
- INHCSSUBVCNVSK-UHFFFAOYSA-L lithium sulfate Inorganic materials [Li+].[Li+].[O-]S([O-])(=O)=O INHCSSUBVCNVSK-UHFFFAOYSA-L 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- AFVFQIVMOAPDHO-UHFFFAOYSA-N methanesulfonic acid Substances CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 1
- 229940098779 methanesulfonic acid Drugs 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- POPACFLNWGUDSR-UHFFFAOYSA-N methoxy(trimethyl)silane Chemical compound CO[Si](C)(C)C POPACFLNWGUDSR-UHFFFAOYSA-N 0.000 description 1
- VUQUOGPMUUJORT-UHFFFAOYSA-N methyl 4-methylbenzenesulfonate Chemical compound COS(=O)(=O)C1=CC=C(C)C=C1 VUQUOGPMUUJORT-UHFFFAOYSA-N 0.000 description 1
- CXHHBNMLPJOKQD-UHFFFAOYSA-M methyl carbonate Chemical compound COC([O-])=O CXHHBNMLPJOKQD-UHFFFAOYSA-M 0.000 description 1
- 229940017219 methyl propionate Drugs 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- YKYONYBAUNKHLG-UHFFFAOYSA-N n-Propyl acetate Natural products CCCOC(C)=O YKYONYBAUNKHLG-UHFFFAOYSA-N 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000011331 needle coke Substances 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 125000002868 norbornyl group Chemical group C12(CCC(CC1)C2)* 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- HMMGMWAXVFQUOA-UHFFFAOYSA-N octamethylcyclotetrasiloxane Chemical compound C[Si]1(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O1 HMMGMWAXVFQUOA-UHFFFAOYSA-N 0.000 description 1
- CXQXSVUQTKDNFP-UHFFFAOYSA-N octamethyltrisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)O[Si](C)(C)C CXQXSVUQTKDNFP-UHFFFAOYSA-N 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- VTRUBDSFZJNXHI-UHFFFAOYSA-N oxoantimony Chemical compound [Sb]=O VTRUBDSFZJNXHI-UHFFFAOYSA-N 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- YYSONLHJONEUMT-UHFFFAOYSA-N pentan-3-yl hydrogen carbonate Chemical compound CCC(CC)OC(O)=O YYSONLHJONEUMT-UHFFFAOYSA-N 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 125000000951 phenoxy group Chemical group [H]C1=C([H])C([H])=C(O*)C([H])=C1[H] 0.000 description 1
- 125000005328 phosphinyl group Chemical group [PH2](=O)* 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011295 pitch Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229920002587 poly(1,3-butadiene) polymer Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- OTYBMLCTZGSZBG-UHFFFAOYSA-L potassium sulfate Chemical compound [K+].[K+].[O-]S([O-])(=O)=O OTYBMLCTZGSZBG-UHFFFAOYSA-L 0.000 description 1
- 229910052939 potassium sulfate Inorganic materials 0.000 description 1
- 235000011151 potassium sulphates Nutrition 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 125000002572 propoxy group Chemical group [*]OC([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 1
- 229940090181 propyl acetate Drugs 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000002568 propynyl group Chemical group [*]C#CC([H])([H])[H] 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 125000001453 quaternary ammonium group Chemical group 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- GCLGEJMYGQKIIW-UHFFFAOYSA-H sodium hexametaphosphate Chemical compound [Na]OP1(=O)OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])O1 GCLGEJMYGQKIIW-UHFFFAOYSA-H 0.000 description 1
- 235000019982 sodium hexametaphosphate Nutrition 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 150000003871 sulfonates Chemical class 0.000 description 1
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- RBTVSNLYYIMMKS-UHFFFAOYSA-N tert-butyl 3-aminoazetidine-1-carboxylate;hydrochloride Chemical compound Cl.CC(C)(C)OC(=O)N1CC(N)C1 RBTVSNLYYIMMKS-UHFFFAOYSA-N 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- ISXOBTBCNRIIQO-UHFFFAOYSA-N tetrahydrothiophene 1-oxide Chemical compound O=S1CCCC1 ISXOBTBCNRIIQO-UHFFFAOYSA-N 0.000 description 1
- 239000001577 tetrasodium phosphonato phosphate Substances 0.000 description 1
- HNKJADCVZUBCPG-UHFFFAOYSA-N thioanisole Chemical compound CSC1=CC=CC=C1 HNKJADCVZUBCPG-UHFFFAOYSA-N 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- XVYIJOWQJOQFBG-UHFFFAOYSA-N triethoxy(fluoro)silane Chemical compound CCO[Si](F)(OCC)OCC XVYIJOWQJOQFBG-UHFFFAOYSA-N 0.000 description 1
- QVMRVWAOMIXFFW-UHFFFAOYSA-N triethyl(fluoro)silane Chemical compound CC[Si](F)(CC)CC QVMRVWAOMIXFFW-UHFFFAOYSA-N 0.000 description 1
- WILBTFWIBAOWLN-UHFFFAOYSA-N triethyl(triethylsilyloxy)silane Chemical compound CC[Si](CC)(CC)O[Si](CC)(CC)CC WILBTFWIBAOWLN-UHFFFAOYSA-N 0.000 description 1
- AAURKQPZJJMXER-UHFFFAOYSA-N triethylsilyl acetate Chemical compound CC[Si](CC)(CC)OC(C)=O AAURKQPZJJMXER-UHFFFAOYSA-N 0.000 description 1
- YFSQOQQWMKPPMF-UHFFFAOYSA-N triethylsilyl methanesulfonate Chemical compound CC[Si](CC)(CC)OS(C)(=O)=O YFSQOQQWMKPPMF-UHFFFAOYSA-N 0.000 description 1
- BHOCBLDBJFCBQS-UHFFFAOYSA-N trifluoro(methyl)silane Chemical compound C[Si](F)(F)F BHOCBLDBJFCBQS-UHFFFAOYSA-N 0.000 description 1
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 1
- WPPVEXTUHHUEIV-UHFFFAOYSA-N trifluorosilane Chemical class F[SiH](F)F WPPVEXTUHHUEIV-UHFFFAOYSA-N 0.000 description 1
- XPEMYYBBHOILIJ-UHFFFAOYSA-N trimethyl(trimethylsilylperoxy)silane Chemical compound C[Si](C)(C)OO[Si](C)(C)C XPEMYYBBHOILIJ-UHFFFAOYSA-N 0.000 description 1
- PQDJYEQOELDLCP-UHFFFAOYSA-N trimethylsilane Chemical compound C[SiH](C)C PQDJYEQOELDLCP-UHFFFAOYSA-N 0.000 description 1
- VIYXXANHGYSBLY-UHFFFAOYSA-N trimethylsilyl 2,2,2-trifluoroacetate Chemical compound C[Si](C)(C)OC(=O)C(F)(F)F VIYXXANHGYSBLY-UHFFFAOYSA-N 0.000 description 1
- PGQNYIRJCLTTOJ-UHFFFAOYSA-N trimethylsilyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)O[Si](C)(C)C PGQNYIRJCLTTOJ-UHFFFAOYSA-N 0.000 description 1
- QHUNJMXHQHHWQP-UHFFFAOYSA-N trimethylsilyl acetate Chemical compound CC(=O)O[Si](C)(C)C QHUNJMXHQHHWQP-UHFFFAOYSA-N 0.000 description 1
- KOKCIRSTRRIYCH-UHFFFAOYSA-N trimethylsilyl ethanesulfonate Chemical compound CCS(=O)(=O)O[Si](C)(C)C KOKCIRSTRRIYCH-UHFFFAOYSA-N 0.000 description 1
- HMBPRCCUFZTWRS-UHFFFAOYSA-N trimethylsilyl fluoromethanesulfonate Chemical compound C[Si](C)(C)OS(=O)(=O)CF HMBPRCCUFZTWRS-UHFFFAOYSA-N 0.000 description 1
- QVSRWXFOZLIWJS-UHFFFAOYSA-N trimethylsilyl propanoate Chemical compound CCC(=O)O[Si](C)(C)C QVSRWXFOZLIWJS-UHFFFAOYSA-N 0.000 description 1
- QJMMCGKXBZVAEI-UHFFFAOYSA-N tris(trimethylsilyl) phosphate Chemical compound C[Si](C)(C)OP(=O)(O[Si](C)(C)C)O[Si](C)(C)C QJMMCGKXBZVAEI-UHFFFAOYSA-N 0.000 description 1
- GIDJLYIIUWYVQG-UHFFFAOYSA-N tris(trimethylsilyloxy) borate Chemical class C[Si](C)(C)OOB(OO[Si](C)(C)C)OO[Si](C)(C)C GIDJLYIIUWYVQG-UHFFFAOYSA-N 0.000 description 1
- 238000001132 ultrasonic dispersion Methods 0.000 description 1
- 238000010977 unit operation Methods 0.000 description 1
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 239000000052 vinegar Substances 0.000 description 1
- 235000021419 vinegar Nutrition 0.000 description 1
- 229920006163 vinyl copolymer Polymers 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
【課題】サイクル特性と低温出力が共に良好であるリチウムイオン二次電池を提供する。
【解決手段】非水系電解液が(1)の環状シロキサン、(2)のフルオロシラン、(3)の化合物、S−F結合を有する化合物、硝酸塩等、を10ppm以上含有し、負極活物質が性質の異なる2種類以上の負極活物質を含有するものであるリチウムイオン二次電池。
【選択図】なしA lithium ion secondary battery having good cycle characteristics and low-temperature output is provided.
A non-aqueous electrolyte contains 10 ppm or more of (1) cyclic siloxane, (2) fluorosilane, (3) compound, SF-bonded compound, nitrate, etc. A lithium ion secondary battery containing two or more types of negative electrode active materials having different properties.
[Selection figure] None
Description
本発明は、リチウムイオン二次電池に関するものであり、更に詳細には、特定の非水系電解液と特定の負極活物質とを用いたリチウムイオン二次電池に関するものである。 The present invention relates to a lithium ion secondary battery, and more particularly, to a lithium ion secondary battery using a specific non-aqueous electrolyte and a specific negative electrode active material.
情報関連機器、通信機器の分野では、パソコン、ビデオカメラ、携帯電話等の小型化に伴い、これらの機器に用いる電源として、高エネルギー密度であるという点から、リチウムイオン二次電池が実用化され広く普及するに至っている。 In the field of information-related equipment and communication equipment, along with the downsizing of personal computers, video cameras, mobile phones, etc., lithium-ion secondary batteries have been put to practical use because of their high energy density as the power source used for these equipment. It has become widespread.
近年では、上記の分野に加えて、自動車の分野においても、特に、環境問題、資源問題を背景に開発が急がれている電気自動車用の電源としての利用を中心に、リチウムイオン二次電池が検討されている。 In recent years, in addition to the above fields, in the field of automobiles, lithium ion secondary batteries have been developed mainly for use as power sources for electric vehicles, which are urgently developed against the background of environmental and resource problems. Is being considered.
リチウム二次電池のうち、金属リチウムを負極とする二次電池は、高容量化を達成できる電池として古くから盛んに研究が行われている。しかし、これらの電池には、金属リチウムが充放電の繰り返しによりデンドライト状に成長し、最終的に正極に達して電池内部において短絡が生じてしまうという問題があり、この問題は金属リチウム二次電池を実用化する際の最大の技術的な課題となっている。 Among lithium secondary batteries, secondary batteries using metal lithium as a negative electrode have been actively studied since long ago as batteries capable of achieving high capacity. However, these batteries have a problem that metallic lithium grows in a dendrite shape by repeated charging and discharging, eventually reaches the positive electrode, and a short circuit occurs inside the battery, and this problem is a metallic lithium secondary battery. Has become the biggest technical challenge when putting to practical use.
そこで負極に、例えば、コークス、人造黒鉛、天然黒鉛等のリチウムイオンを吸蔵及び放出することが可能な炭素質材料を用いた非水系電解液二次電池が提案されている。このような非水系電解液二次電池では、リチウムが金属状態で存在しないためデンドライトの形成が抑制され、電池寿命と安全性を向上することができる。特に、人造黒鉛や天然黒鉛等の黒鉛系炭素質材料は、単位体積当たりのエネルギー密度を向上させることができる材料として期待されている。 Therefore, a nonaqueous electrolyte secondary battery using a carbonaceous material capable of occluding and releasing lithium ions such as coke, artificial graphite, and natural graphite has been proposed for the negative electrode. In such a non-aqueous electrolyte secondary battery, since lithium does not exist in a metal state, formation of dendrites is suppressed, and battery life and safety can be improved. In particular, graphite-based carbonaceous materials such as artificial graphite and natural graphite are expected as materials capable of improving the energy density per unit volume.
しかしながら、黒鉛系の種々の電極材料を単独で、あるいはリチウムを吸蔵及び放出することが可能な他の負極材料と混合して負極とした非水系電解液二次電池に、リチウム一次電池で一般に好んで使用されるプロピレンカーボネートを主溶媒とする非水系電解液を用いると、黒鉛電極表面で溶媒の分解反応が激しく進行し、黒鉛電極へのスムーズなリチウムの吸蔵及び放出が不可能になる。一方、エチレンカーボネートはこのような分解が少ないことから、非水系電解液二次電池の電解液の主溶媒として多用されているが、エチレンカーボネートを主溶媒としても、充放電過程において、電極表面で電解液が分解するために充放電効率やサイクル特性の低下を招くといった問題があった。 However, lithium primary batteries are generally preferred as non-aqueous electrolyte secondary batteries using various graphite-based electrode materials alone or mixed with other negative electrode materials capable of occluding and releasing lithium as negative electrodes. When a non-aqueous electrolyte containing propylene carbonate used as a main solvent is used, the decomposition reaction of the solvent proceeds vigorously on the surface of the graphite electrode, making it impossible to smoothly occlude and release lithium into the graphite electrode. On the other hand, ethylene carbonate is often used as the main solvent of the electrolyte of non-aqueous electrolyte secondary batteries because of such a small amount of decomposition. However, even when ethylene carbonate is used as the main solvent, the surface of the electrode is charged and discharged. There is a problem in that charge / discharge efficiency and cycle characteristics are degraded due to decomposition of the electrolytic solution.
更に、電気自動車用電源としてリチウムイオン二次電池を使用する場合、長期間の繰り返しの使用や、出入力特性、高温で保管された場合等の保存特性等、バランスよく性能を発揮する必要がある。 Furthermore, when using a lithium ion secondary battery as a power source for an electric vehicle, it is necessary to exhibit a balanced performance such as long-term repeated use, input / output characteristics, storage characteristics when stored at high temperature, etc. .
そこでこれまで、リチウムイオン二次電池の特性をバランスよく改善するための手段として、正極や負極の活物質を始めとする様々な電池の構成要素について、数多くの技術が検討されている。 Thus, as a means for improving the characteristics of the lithium ion secondary battery in a well-balanced manner, many techniques have been studied for various battery components including positive and negative active materials.
負極活物質に関する技術としては、特許文献1に、大径粉末と小径粉末が粒径比及び混合比が一定範囲内にある時に、特に充填密度が高く電極容量が高くなること、この中で、大径粉末は球形であるが、小径粉末は球形粉ではなくても、粉砕粉のように不定形粉末でも特に大きい利用率の向上が得られるという記載がある。しかし、この方法でも長期間のサイクル特性と低温出力のバランスは十分満足のいくものとはいえなかった。 As a technique relating to the negative electrode active material, in Patent Document 1, when the particle size ratio and the mixing ratio of the large diameter powder and the small diameter powder are within a certain range, the packing density is particularly high and the electrode capacity is increased. Although the large-diameter powder is spherical, there is a description that even if the small-diameter powder is not a spherical powder, an irregularly shaped powder such as a pulverized powder can achieve a particularly large improvement in utilization. However, even with this method, the balance between the long-term cycle characteristics and the low-temperature output was not sufficiently satisfactory.
非水系電解液に関する技術としては、特許文献2に、非水系電解液二次電池において、非水系電解液にモノフルオロリン酸リチウムやジフルオロリン酸リチウムを添加すると、電極界面に良質な被膜が形成されることにより電解液の分解が抑制されて、保存特性が向上した電池が得られることが記載されている。 As a technique related to the non-aqueous electrolyte solution, Patent Document 2 discloses that in a non-aqueous electrolyte secondary battery, when lithium monofluorophosphate or lithium difluorophosphate is added to the non-aqueous electrolyte solution, a good film is formed at the electrode interface. As a result, it is described that the decomposition of the electrolytic solution is suppressed and a battery having improved storage characteristics can be obtained.
しかしながら、この方法でも、長期間のサイクル特性と低温出力のバランスは十分とは言えなかった。
本発明は、かかる背景技術に鑑みてなされたものであり、その課題は、サイクル特性と低温出力が共に良好であるリチウムイオン二次電池を提供することにある。 This invention is made | formed in view of this background art, The subject is to provide the lithium ion secondary battery with which both cycling characteristics and a low-temperature output are favorable.
本発明者は、上記課題に鑑み鋭意研究した結果、サイクル特性と低温出力が共に良好である性能については、負極内にそれぞれの機能をバランスよくもった負極活物質を配置することが重要であると考えられ、いくつかの異なった物性を有する負極活物質を混合することがよいという結果を導いた。更に、同時に非水系電解液中に特定の化合物を含有させることにより、サイクル特性と低温出力の何れもが良好となることを見出して本発明を完成した。 As a result of diligent research in view of the above problems, the present inventor has found it important to dispose a negative electrode active material having a good balance between the functions in the negative electrode for performance with good cycle characteristics and low-temperature output. It was considered that it was better to mix negative electrode active materials having several different physical properties. Furthermore, the present invention was completed by finding out that both the cycle characteristics and the low-temperature output were improved by containing a specific compound in the non-aqueous electrolyte at the same time.
すなわち、本発明は、少なくとも、非水溶媒とリチウム塩を含有する非水系電解液、正極活物質並びに負極活物質を有するリチウムイオン二次電池であって、該非水系電解液が、一般式(1)で表される環状シロキサン化合物、一般式(2)で表されるフルオロシラン化合物、一般式(3)で表される化合物、分子内にS−F結合を有する化合物、硝酸塩、亜硝酸塩、モノフルオロリン酸塩、ジフルオロリン酸塩、酢酸塩及びプロピオン酸塩からなる群より選ばれた少なくとも1種以上の化合物を、非水系電解液全体中に10ppm以上含有するものであり、かつ、該負極活物質が、性質の異なる2種類以上の負極活物質を含有するものであることを特徴とするリチウムイオン二次電池を提供するものである。
本発明によれば、サイクル特性と低温出力が何れも良好となるリチウムイオン二次電池を提供できる。 According to the present invention, it is possible to provide a lithium ion secondary battery in which both cycle characteristics and low-temperature output are good.
以下、本発明の実施の形態について詳細に説明するが、以下に記載する構成要件の説明は、本発明の実施態様の一例(代表例)であり、本発明はこれらの具体的内容に限定はされず、その要旨の範囲内で種々変形して実施することができる。 Hereinafter, embodiments of the present invention will be described in detail. However, the description of the constituent elements described below is an example (representative example) of an embodiment of the present invention, and the present invention is not limited to these specific contents. However, various modifications can be made within the scope of the gist.
<非水系電解液>
本発明のリチウムイオン二次電池に用いられる非水系電解液は、リチウム塩及びこれを溶解する非水溶媒を含有する。
[リチウム塩]
リチウム塩としては、リチウムイオン二次電池用非水系電解液の電解質として用い得ることが知られているリチウム塩であれば特に制限はないが、例えば次のものが挙げられる。
<Non-aqueous electrolyte>
The non-aqueous electrolyte used in the lithium ion secondary battery of the present invention contains a lithium salt and a non-aqueous solvent that dissolves the lithium salt.
[Lithium salt]
The lithium salt is not particularly limited as long as it is known to be used as an electrolyte of a non-aqueous electrolyte solution for a lithium ion secondary battery, and examples thereof include the following.
無機リチウム塩:
LiPF6、LiBF4、LiAsF6、LiSbF6等の無機フッ化物塩;LiClO4、LiBrO4、LiIO4等の過ハロゲン酸塩;LiAlCl4等の無機塩化物塩等。
含フッ素有機リチウム塩:
LiCF3SO3等のパーフルオロアルカンスルホン酸塩;LiN(CF3SO2)2、LiN(CF3CF2SO2)2、LiN(CF3SO2)(C4F9SO2)等のパーフルオロアルカンスルホニルイミド塩;LiC(CF3SO2)3等のパーフルオロアルカンスルホニルメチド塩;Li[PF5(CF2CF2CF3)]、Li[PF4(CF2CF2CF3)2]、Li[PF3(CF2CF2CF3)3]、Li[PF5(CF2CF2CF2CF3)]、Li[PF4(CF2CF2CF2CF3)2]、Li[PF3(CF2CF2CF2CF3)3]等のフルオロアルキルフッ化リン酸塩等。
オキサラトボレート塩:
リチウムジフルオロオキサラトボレート、リチウムビス(オキサラト)ボレート等。
Inorganic lithium salt:
Inorganic fluoride salts such as LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 ; perhalogenates such as LiClO 4 , LiBrO 4 , LiIO 4 ; inorganic chloride salts such as LiAlCl 4 .
Fluorine-containing organic lithium salt:
Perfluoroalkane sulfonates such as LiCF 3 SO 3 ; LiN (CF 3 SO 2 ) 2 , LiN (CF 3 CF 2 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), etc. Perfluoroalkanesulfonylimide salt; Perfluoroalkanesulfonylmethide salt such as LiC (CF 3 SO 2 ) 3 ; Li [PF 5 (CF 2 CF 2 CF 3 )], Li [PF 4 (CF 2 CF 2 CF 3) 2 ], Li [PF 3 (CF 2 CF 2 CF 3 ) 3 ], Li [PF 5 (CF 2 CF 2 CF 2 CF 3 )], Li [PF 4 (CF 2 CF 2 CF 2 CF 3 ) 2 ], Fluoroalkyl fluorophosphates such as Li [PF 3 (CF 2 CF 2 CF 2 CF 3 ) 3 ].
Oxalatoborate salt:
Lithium difluorooxalatoborate, lithium bis (oxalato) borate and the like.
これらは、1種を単独で使用しても、2種以上を任意の組み合わせ及び比率で併用しても良い。これらのなかでも、非水溶媒に対する溶解性、二次電池とした場合の充放電特性、出力特性、サイクル特性等を総合的に判断すると、LiPF6、LiBF4等が好ましく、LiPF6が特に好ましい。 These may be used individually by 1 type, or may use 2 or more types together by arbitrary combinations and ratios. Among these, LiPF 6 , LiBF 4 and the like are preferable, and LiPF 6 is particularly preferable when comprehensively judging the solubility in the non-aqueous solvent, the charge / discharge characteristics in the case of the secondary battery, the output characteristics, the cycle characteristics, and the like. .
非水系電解液中の上記リチウム塩の濃度は、特に制限はないが、通常0.3mol/L以上、好ましくは0.6mol/L以上、より好ましくは0.7mol/L以上である。また、その上限は、通常2mol/L以下、好ましくは1.8mol/L以下、より好ましくは1.7mol/L以下である。濃度が低すぎると、非水系電解液の電気伝導率が不十分の場合があり、一方、濃度が高すぎると、粘度上昇のため電気伝導度が低下する場合があり、リチウムイオン二次電池の性能が低下する場合がある。 The concentration of the lithium salt in the nonaqueous electrolytic solution is not particularly limited, but is usually 0.3 mol / L or more, preferably 0.6 mol / L or more, more preferably 0.7 mol / L or more. Moreover, the upper limit is 2 mol / L or less normally, Preferably it is 1.8 mol / L or less, More preferably, it is 1.7 mol / L or less. If the concentration is too low, the electrical conductivity of the non-aqueous electrolyte may be insufficient. On the other hand, if the concentration is too high, the electrical conductivity may decrease due to an increase in viscosity. Performance may be degraded.
非水系電解液中には、リチウム塩として、含フッ素リチウム塩を含有することが好ましく、非水系電解液中の含フッ素リチウム塩の濃度は、特に制限はないが、0.5mol/L以上が好ましく、特に好ましくは0.7mol/L以上である。また、その上限は、2mol/L以下が好ましく、1.7mol/L以下が特に好ましい。濃度が低すぎると、非水系電解液の電気伝導率が不十分となる場合があり、一方、濃度が高すぎると、粘度上昇のため電気伝導度が低下して、リチウムイオン二次電池の性能が低下する場合がある。 The non-aqueous electrolyte preferably contains a fluorine-containing lithium salt as the lithium salt, and the concentration of the fluorine-containing lithium salt in the non-aqueous electrolyte is not particularly limited, but is 0.5 mol / L or more. The amount is particularly preferably 0.7 mol / L or more. Moreover, the upper limit is preferably 2 mol / L or less, particularly preferably 1.7 mol / L or less. If the concentration is too low, the electrical conductivity of the non-aqueous electrolyte solution may be insufficient. On the other hand, if the concentration is too high, the electrical conductivity decreases due to an increase in viscosity, and the performance of the lithium ion secondary battery May decrease.
リチウム塩は、1種を単独で使用しても、2種以上を任意の組み合わせ及び比率で併用しても良いが、リチウム塩を2種以上併用する場合の好ましい一例は、LiPF6とLiBF4との併用であり、この場合には、両者の合計に占めるLiBF4の割合が、0.01質量%以上、20質量%以下であることが特に好ましく、0.1質量%以上、5質量%以下であるのが更に好ましい。また、他の好ましい一例は、無機フッ化物塩とパーフルオロアルカンスルホニルイミド塩との併用であり、この場合には、両者の合計に占める無機フッ化物塩の割合は、70質量%以上、99質量%以下であることが特に好ましく、80質量%以上、98質量%以下であることがより更に好ましい。この両者の併用は、高温保存による劣化を抑制する効果がある。 Lithium salts may be used singly or in combination of two or more in any combination and ratio. Preferred examples when two or more lithium salts are used are LiPF 6 and LiBF 4. In this case, the proportion of LiBF 4 in the total of both is particularly preferably 0.01% by mass or more and 20% by mass or less, more preferably 0.1% by mass or more and 5% by mass. More preferably, it is as follows. Another preferred example is the combined use of an inorganic fluoride salt and a perfluoroalkanesulfonylimide salt. In this case, the proportion of the inorganic fluoride salt in the total of both is 70% by mass or more and 99% by mass. % Or less, particularly preferably 80% by mass or more and 98% by mass or less. The combined use of both has the effect of suppressing deterioration due to high temperature storage.
[非水溶媒]
非水溶媒としても従来から非水系電解液の溶媒として提案されているものの中から、適宜選択して用いることができる。例えば、次のものが挙げられる。
(1)環状カーボネート:
環状カーボネートを構成するアルキレン基の炭素数は2〜6が好ましく、特に好ましくは2〜4である。具体的には例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等が挙げられる。中でも、エチレンカーボネート、プロピレンカーボネートが好ましい。
(2)鎖状カーボネート:
鎖状カーボネートとしては、ジアルキルカーボネートが好ましく、構成するアルキル基の炭素数は、それぞれ、1〜5が好ましく、特に好ましくは1〜4である。具体的には例えば、ジメチルカーボネート、ジエチルカーボネート、ジ−n−プロピルカーボネート等の対称鎖状カーボネート類;エチルメチルカーボネート、メチル−n−プロピルカーボネート、エチル−n−プロピルカーボネート等の非対称鎖状カーボネート類等のジアルキルカーボネートが挙げられる。中でも、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等が好ましい。
(3)環状エステル:
具体的には例えば、γ−ブチロラクトン、γ−バレロラクトン等が挙げられる。
(4)鎖状エステル:
具体的には例えば、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル等が挙げられる。
(5)環状エーテル:
具体的には例えば、テトラヒドロフラン、2−メチルテトラヒドロフラン、テトラヒドロピラン等が挙げられる。
(6)鎖状エーテル:
具体的には例えば、ジメトキシエタン、ジメトキシメタン等が挙げられる。
(7)含硫黄有機溶媒:
具体的には例えば、スルフォラン、ジエチルスルホン等が挙げられる。
[Nonaqueous solvent]
As the non-aqueous solvent, it can be appropriately selected from those conventionally proposed as solvents for non-aqueous electrolyte solutions. For example, the following are mentioned.
(1) Cyclic carbonate:
As for carbon number of the alkylene group which comprises a cyclic carbonate, 2-6 are preferable, Most preferably, it is 2-4. Specific examples include ethylene carbonate, propylene carbonate, butylene carbonate, and the like. Of these, ethylene carbonate and propylene carbonate are preferable.
(2) Chain carbonate:
As the chain carbonate, dialkyl carbonate is preferable, and the number of carbon atoms of the alkyl group is preferably 1 to 5, and particularly preferably 1 to 4, respectively. Specifically, for example, symmetric chain carbonates such as dimethyl carbonate, diethyl carbonate, and di-n-propyl carbonate; asymmetric chain carbonates such as ethyl methyl carbonate, methyl-n-propyl carbonate, and ethyl-n-propyl carbonate And dialkyl carbonates. Of these, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate and the like are preferable.
(3) Cyclic ester:
Specific examples include γ-butyrolactone and γ-valerolactone.
(4) Chain ester:
Specific examples include methyl acetate, ethyl acetate, propyl acetate, and methyl propionate.
(5) Cyclic ether:
Specific examples include tetrahydrofuran, 2-methyltetrahydrofuran, tetrahydropyran and the like.
(6) Chain ether:
Specific examples include dimethoxyethane and dimethoxymethane.
(7) Sulfur-containing organic solvent:
Specific examples include sulfolane and diethylsulfone.
これらは単独で用いても、2種以上を併用してもよいが、2種以上の化合物を併用することが好ましい。例えば、環状カーボネート類や環状エステル類等の高誘電率溶媒と、鎖状カーボネート類や鎖状エステル類等の低粘度溶媒とを併用することが好ましい。 These may be used alone or in combination of two or more, but it is preferable to use in combination of two or more. For example, it is preferable to use a high dielectric constant solvent such as cyclic carbonates or cyclic esters in combination with a low viscosity solvent such as chain carbonates or chain esters.
非水溶媒の好ましい組合せの一つは、環状カーボネート類と鎖状カーボネート類を主体とする組合せである。なかでも、非水溶媒に占める環状カーボネート類と鎖状カーボネート類との合計が、85容量%以上、好ましくは90容量%以上、より好ましくは95容量%以上である。また、環状カーボネート類と鎖状カーボネート類との合計に対する環状カーボネート類の容量が5%以上、好ましくは10%以上、より好ましくは15%以上であり、通常50%以下、好ましくは35%以下、より好ましくは30%以下のものである。非水溶媒全体に占めるカーボネート類の合計の上記好ましい容量範囲と、環状及び鎖状カーボネート類に対する環状カーボネート類の好ましい上記容量範囲は、組み合わされていることが特に好ましい。 One preferred combination of non-aqueous solvents is a combination mainly composed of cyclic carbonates and chain carbonates. Among them, the total of the cyclic carbonates and the chain carbonates in the nonaqueous solvent is 85% by volume or more, preferably 90% by volume or more, and more preferably 95% by volume or more. Further, the capacity of the cyclic carbonate with respect to the total of the cyclic carbonate and the chain carbonate is 5% or more, preferably 10% or more, more preferably 15% or more, usually 50% or less, preferably 35% or less, More preferably, it is 30% or less. It is particularly preferred that the above preferred volume range of the total amount of carbonates occupying the entire non-aqueous solvent is combined with the preferred above volume range of cyclic carbonates relative to cyclic and chain carbonates.
環状カーボネート類と鎖状カーボネート類の好ましい組み合わせの具体例としては、エチレンカーボネートとジメチルカーボネート、エチレンカーボネートとジエチルカーボネート、エチレンカーボネートとエチルメチルカーボネート、エチレンカーボネートとジメチルカーボネートとジエチルカーボネート、エチレンカーボネートとジメチルカーボネートとエチルメチルカーボネート、エチレンカーボネートとジエチルカーボネートとエチルメチルカーボネート、エチレンカーボネートとジメチルカーボネートとジエチルカーボネートとエチルメチルカーボネート等が挙げられる。これらのエチレンカーボネートと鎖状カーボネート類との組み合わせに、更にプロピレンカーボネートを加えた組み合わせも、好ましい組み合わせとして挙げられる。プロピレンカーボネートを含有する場合には、エチレンカーボネートとプロピレンカーボネートの容量比は、99:1〜40:60が好ましく、特に好ましくは95:5〜50:50である。 Specific examples of preferred combinations of cyclic carbonates and chain carbonates include ethylene carbonate and dimethyl carbonate, ethylene carbonate and diethyl carbonate, ethylene carbonate and ethyl methyl carbonate, ethylene carbonate and dimethyl carbonate and diethyl carbonate, ethylene carbonate and dimethyl carbonate And ethyl methyl carbonate, ethylene carbonate, diethyl carbonate, and ethyl methyl carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate. A combination in which propylene carbonate is further added to the combination of these ethylene carbonates and chain carbonates is also a preferable combination. In the case of containing propylene carbonate, the volume ratio of ethylene carbonate to propylene carbonate is preferably 99: 1 to 40:60, particularly preferably 95: 5 to 50:50.
これらの中で、非対称鎖状カーボネート類を含有するものが更に好ましく、特に、エチレンカーボネートとジメチルカーボネートとエチルメチルカーボネート、エチレンカーボネートとジエチルカーボネートとエチルメチルカーボネート、エチレンカーボネートとジメチルカーボネートとジエチルカーボネートとエチルメチルカーボネートといったエチレンカーボネートと対称鎖状カーボネート類と非対称鎖状カーボネート類を含有するものが、サイクル特性と大電流放電特性のバランスが良いので好ましい。中でも、非対称鎖状カーボネート類がエチルメチルカーボネートであるものが好ましく、また、ジアルキルカーボネートを構成するアルキル基の炭素数は1〜2が好ましい。 Among these, those containing asymmetric chain carbonates are more preferable, particularly ethylene carbonate, dimethyl carbonate and ethyl methyl carbonate, ethylene carbonate, diethyl carbonate and ethyl methyl carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate and ethyl. Those containing ethylene carbonate such as methyl carbonate, symmetric chain carbonates, and asymmetric chain carbonates are preferred because of a good balance between cycle characteristics and large current discharge characteristics. Among these, those in which the asymmetric chain carbonate is ethyl methyl carbonate are preferable, and the number of carbon atoms of the alkyl group constituting the dialkyl carbonate is preferably 1 or 2.
好ましい非水溶媒の他の例は、鎖状エステルを含有するものである。特に、上記、環状カーボネート類と鎖状カーボネート類の混合溶媒に、鎖状エステルを含有するものが、電池の低温特性向上の観点から好ましく、鎖状エステルとしては,酢酸メチル、酢酸エチルが、特に好ましい。非水溶媒に占める鎖状エステルの容量は、通常5%以上、好ましくは8%以上、より好ましくは15%以上であり、通常50%以下、好ましくは35%以下、より好ましくは30%以下、更に好ましくは25%以下である。 Other examples of preferred non-aqueous solvents are those containing chain esters. In particular, those containing a chain ester in the mixed solvent of cyclic carbonates and chain carbonates are preferable from the viewpoint of improving the low-temperature characteristics of the battery. Examples of the chain esters include methyl acetate and ethyl acetate. preferable. The capacity of the chain ester in the non-aqueous solvent is usually 5% or more, preferably 8% or more, more preferably 15% or more, usually 50% or less, preferably 35% or less, more preferably 30% or less, More preferably, it is 25% or less.
他の好ましい非水溶媒の例は、エチレンカーボネート、プロピレンカーボネート、γ−ブチロラクトン及びγ−バレロラクトンよりなる群から選ばれた1種の有機溶媒、又は該群から選ばれた2以上の有機溶媒からなる混合溶媒を全体の60容量%以上を占めるものである。こうした混合溶媒は、引火点が50℃以上であるものが好ましく、中でも70℃以上であるものが特に好ましい。この溶媒を用いた非水系電解液は、高温で使用しても溶媒の蒸発や液漏れが少なくなる。中でも、非水溶媒に占めるγ−ブチロラクトンの量が60容量%以上であるものや、非水溶媒に占めるエチレンカーボネートとγ−ブチロラクトンとの合計が、80容量%以上、好ましくは90容量%以上であり、かつエチレンカーボネートとγ−ブチロラクトンとの容量比が5:95〜45:55であるもの、又は非水溶媒に占めるエチレンカーボネートとプロピレンカーボネートとの合計が、80容量%以上、好ましくは90容量%以上であり、かつエチレンカーボネートとプロピレンカーボネートの容量比が30:70〜60:40であるものを用いると、一般にサイクル特性と大電流放電特性等のバランスがよくなる。 Examples of other preferable non-aqueous solvents include one organic solvent selected from the group consisting of ethylene carbonate, propylene carbonate, γ-butyrolactone and γ-valerolactone, or two or more organic solvents selected from the group. The mixed solvent becomes 60% by volume or more of the whole. Such a mixed solvent preferably has a flash point of 50 ° C. or higher, and particularly preferably has a flash point of 70 ° C. or higher. A non-aqueous electrolyte using this solvent reduces evaporation of the solvent and leakage even when used at high temperatures. Among them, the amount of γ-butyrolactone in the nonaqueous solvent is 60% by volume or more, and the total of ethylene carbonate and γ-butyrolactone in the nonaqueous solvent is 80% by volume or more, preferably 90% by volume or more. And the volume ratio of ethylene carbonate to γ-butyrolactone is 5:95 to 45:55, or the total of ethylene carbonate and propylene carbonate in the non-aqueous solvent is 80% by volume or more, preferably 90% When the ratio of ethylene carbonate to propylene carbonate is 30:70 to 60:40, the balance between cycle characteristics and large current discharge characteristics is generally improved.
[特定化合物]
本発明のリチウムイオン二次電池に用いられる非水系電解液は、一般式(1)で表される環状シロキサン化合物、一般式(2)で表されるフルオロシラン化合物、一般式(3)で表される化合物、分子内にS−F結合を有する化合物、硝酸塩、亜硝酸塩、モノフルオロリン酸塩、ジフルオロリン酸塩、酢酸塩及びプロピオン酸塩からなる群より選ばれた少なくとも1種以上の化合物(以下、これらを「特定化合物」と略記することがある)を、10ppm以上含有することが必須である。
[Specific compounds]
The non-aqueous electrolyte used for the lithium ion secondary battery of the present invention is represented by the cyclic siloxane compound represented by the general formula (1), the fluorosilane compound represented by the general formula (2), and the general formula (3). A compound having an SF bond in the molecule, at least one compound selected from the group consisting of nitrate, nitrite, monofluorophosphate, difluorophosphate, acetate, and propionate (Hereinafter, these may be abbreviated as “specific compounds”) 10 ppm or more is essential.
かかる特定化合物が含有された非水系電解液と、負極活物質として後述する特定の物性を有する負極活物質とを組み合わせることによって、サイクル特性と低温出力が共に良好であるリチウムイオン二次電池を提供することができる。 Providing a lithium ion secondary battery with good cycle characteristics and low-temperature output by combining a non-aqueous electrolyte containing such a specific compound and a negative electrode active material having specific properties described later as a negative electrode active material can do.
[[一般式(1)で表される環状シロキサン化合物]]
一般式(1)で表される環状シロキサン化合物におけるR1及びR2は互いに同一であっても異なっていてもよい炭素数1〜12の有機基であるが、R1及びR2としては、メチル基、エチル基、n−プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、t−ブチル基等の鎖状アルキル基;シクロヘキシル基、ノルボルニル基等の環状アルキル基;ビニル基、1−プロペニル基、アリル基、ブテニル基、1,3−ブタジエニル基等のアルケニル基;エチニル基、プロピニル基、ブチニル基等のアルキニル基;トリフルオロメチル基等のハロゲン化アルキル基;3−ピロリジノプロピル基等の飽和複素環基を有するアルキル基;アルキル置換基を有していてもよいフェニル基等のアリール基;フェニルメチル基、フェニルエチル基等のアラルキル基;トリメチルシリル基等のトリアルキルシリル基;トリメチルシロキシ基等のトリアルキルシロキシ基等が挙げられる。
[[Cyclic Siloxane Compound Represented by General Formula (1)]]
R 1 and although R 2 are identical there may be different even if an organic group having 1 to 12 carbon atoms with each other, as R 1 and R 2 in the general formula (1) cyclic siloxane compound represented by, Chain alkyl groups such as methyl group, ethyl group, n-propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group and t-butyl group; cyclic alkyl groups such as cyclohexyl group and norbornyl group; vinyl group, Alkenyl groups such as 1-propenyl group, allyl group, butenyl group, 1,3-butadienyl group; alkynyl groups such as ethynyl group, propynyl group, butynyl group; halogenated alkyl groups such as trifluoromethyl group; 3-pyrrolidino An alkyl group having a saturated heterocyclic group such as a propyl group; an aryl group such as a phenyl group optionally having an alkyl substituent; a phenylmethyl group; Examples thereof include aralkyl groups such as nylethyl group; trialkylsilyl groups such as trimethylsilyl group; trialkylsiloxy groups such as trimethylsiloxy group.
中でも、炭素数が少ないものの方が特性を発現しやすく、炭素数1〜6の有機基が好ましい。また、アルケニル基は非水系電解液や電極表面の被膜に作用して入出力特性を向上させ、アリール基は充放電時に電池内で発生するラジカルを捕捉して電池性能全般を向上させる作用を有するので好ましい。従って、R1及びR2としては、メチル基、ビニル基又はフェニル基が特に好ましい。 Among these, those having a small number of carbon atoms tend to exhibit characteristics, and organic groups having 1 to 6 carbon atoms are preferable. Alkenyl groups act on non-aqueous electrolytes and coatings on electrode surfaces to improve input / output characteristics, and aryl groups have the effect of capturing radicals generated in the battery during charge and discharge to improve overall battery performance. Therefore, it is preferable. Accordingly, R 1 and R 2 are particularly preferably a methyl group, a vinyl group, or a phenyl group.
一般式(1)中、nは3〜10の整数を表すが、3〜6の整数が好ましく、3又は4が特に好ましい。 In general formula (1), n represents an integer of 3 to 10, but an integer of 3 to 6 is preferable, and 3 or 4 is particularly preferable.
一般式(1)で表される環状シロキサン化合物の例としては、例えば、ヘキサメチルシクロトリシロキサン、ヘキサエチルシクロトリシロキサン、ヘキサフェニルシクロトリシロキサン、1,3,5−トリメチル−1,3,5−トリビニルシクロトリシロキサン等のシクロトリシロキサン、オクタメチルシクロテトラシロキサン等のシクロテトラシロキサン、デカメチルシクロペンタシロキサン等のシクロペンタシロキサン等が挙げられる。このうち、シクロトリシロキサンが特に好ましい。 Examples of the cyclic siloxane compound represented by the general formula (1) include, for example, hexamethylcyclotrisiloxane, hexaethylcyclotrisiloxane, hexaphenylcyclotrisiloxane, 1,3,5-trimethyl-1,3,5. -Cyclotrisiloxane such as trivinylcyclotrisiloxane, cyclotetrasiloxane such as octamethylcyclotetrasiloxane, cyclopentasiloxane such as decamethylcyclopentasiloxane, and the like. Of these, cyclotrisiloxane is particularly preferred.
[[一般式(2)で表されるフルオロシラン化合物]]
一般式(2)で表されるフルオロシラン化合物におけるR3〜R5は、互いに同一であっても異なっていてもよい炭素数1〜12の有機基であるが、一般式(1)におけるR1及びR2の例として挙げた鎖状アルキル基、環状アルキル基、アルケニル基、アルキニル基、ハロゲン化アルキル基、飽和複素環基を有するアルキル基、アルキル基を有していてもよいフェニル基等のアリール基、アラルキル基、トリアルキルシリル基、トリアルキルシロキシ基に加え、エトキシカルボニルエチル基等のカルボニル基;アセトキシ基、アセトキシメチル基、トリフルオロアセトキシ基等のカルボキシル基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、フェノキシ基、アリロキシ基等のオキシ基;アリルアミノ基等のアミノ基;ベンジル基等を挙げることができる。
[[Fluorosilane compound represented by general formula (2)]]
R 3 to R 5 in the fluorosilane compound represented by the general formula (2) are organic groups having 1 to 12 carbon atoms which may be the same as or different from each other, but R in the general formula (1) Examples of the chain alkyl group, cyclic alkyl group, alkenyl group, alkynyl group, halogenated alkyl group, alkyl group having a saturated heterocyclic group, phenyl group optionally having an alkyl group, etc. mentioned as examples of 1 and R 2 In addition to aryl groups, aralkyl groups, trialkylsilyl groups, trialkylsiloxy groups, carbonyl groups such as ethoxycarbonylethyl groups; carboxyl groups such as acetoxy groups, acetoxymethyl groups, trifluoroacetoxy groups; methoxy groups, ethoxy groups, Oxy group such as propoxy group, butoxy group, phenoxy group, allyloxy group; amino group such as allylamino group; Mention may be made of the group, and the like.
一般式(2)中、xは1〜3の整数を表し、p、q及びrはそれぞれ0〜3の整数を表し、1≦p+q+r≦3である。また必然的に、x+p+q+r=4である。 In general formula (2), x represents an integer of 1 to 3, p, q, and r each represents an integer of 0 to 3, and 1 ≦ p + q + r ≦ 3. Inevitably, x + p + q + r = 4.
一般式(2)で表されるフルオロシラン化合物の例としては、トリメチルフルオロシラン、トリエチルフルオロシラン、トリプロピルフルオロシラン、フェニルジメチルフルオロシラン、トリフェニルフルオロシラン、ビニルジメチルフルオロシラン、ビニルジエチルフルオロシラン、ビニルジフェニルフルオロシラン、トリメトキシフルオロシラン、トリエトキシフルオロシラン等のモノフルオロシラン類の他、ジメチルジフルオロシラン、ジエチルジフルオロシラン、ジビニルジフルオロシラン、エチルビニルジフルオロシラン等のジフルオロシラン類;メチルトリフルオロシラン、エチルトリフルオロシラン等のトリフルオロシラン類も挙げられる。 Examples of the fluorosilane compound represented by the general formula (2) include trimethylfluorosilane, triethylfluorosilane, tripropylfluorosilane, phenyldimethylfluorosilane, triphenylfluorosilane, vinyldimethylfluorosilane, vinyldiethylfluorosilane, In addition to monofluorosilanes such as vinyldiphenylfluorosilane, trimethoxyfluorosilane, and triethoxyfluorosilane, difluorosilanes such as dimethyldifluorosilane, diethyldifluorosilane, divinyldifluorosilane, and ethylvinyldifluorosilane; methyltrifluorosilane, Also included are trifluorosilanes such as ethyltrifluorosilane.
一般式(2)で表されるフルオロシラン化合物は、沸点が低いと、揮発してしまうため非水系電解液に所定量含有させるのが難しくなる場合がある。また、非水系電解液に含有させた後も、充放電による電池の発熱や外部環境が高温になる様な条件下で揮発してしまう可能性がある。よって、1気圧で、50℃以上の沸点を持つものが好ましく、中でも60℃以上の沸点を持つものが特に好ましい。 If the boiling point of the fluorosilane compound represented by the general formula (2) is low, it will volatilize, and therefore it may be difficult to contain a predetermined amount in the non-aqueous electrolyte. Moreover, even if it is made to contain in a non-aqueous electrolyte solution, there exists a possibility that it may volatilize on the conditions that the heat_generation | fever of a battery by charging / discharging or external environment becomes high temperature. Accordingly, those having a boiling point of 50 ° C. or higher at 1 atm are preferable, and those having a boiling point of 60 ° C. or higher are particularly preferable.
また、一般式(1)の化合物と同様に、有機基としては炭素数の少ないものの方が効果が発現しやすく、炭素数1〜6のアルケニル基は非水系電解液や電極表面の被膜に作用して入出力特性を向上させ、アリール基は充放電時に電池内で発生するラジカルを捕捉して電池性能全般を向上させる作用を有する。従って、この観点からは有機基としては、メチル基、ビニル基又はフェニル基が好ましく、化合物の例としては、トリメチルフルオロシラン、ビニルジメチルフルオロシラン、フェニルジメチルフルオロシラン、ビニルジフェニルフルオロシラン等が特に好ましい。 Further, like the compound of the general formula (1), the organic group having a smaller number of carbon atoms is more effective, and the alkenyl group having 1 to 6 carbon atoms acts on the non-aqueous electrolyte solution or the electrode surface coating. Thus, the input / output characteristics are improved, and the aryl group has the effect of capturing radicals generated in the battery during charge / discharge and improving the overall battery performance. Therefore, from this viewpoint, the organic group is preferably a methyl group, a vinyl group, or a phenyl group, and examples of the compound include trimethylfluorosilane, vinyldimethylfluorosilane, phenyldimethylfluorosilane, and vinyldiphenylfluorosilane. .
[[一般式(3)で表される化合物]]
一般式(3)で表される化合物におけるR6〜R8は、互いに同一であっても異なっていてもよい炭素数1〜12の有機基であるが、その例としては、一般式(2)のR3〜R5の例として挙げた鎖状アルキル基、環状アルキル基、アルケニル基、アルキニル基、ハロゲン化アルキル基、飽和複素環基を有するアルキル基、アルキル基を有していてもよいフェニル基等のアリール基、アラルキル基、トリアルキルシリル基、トリアルキルシロキシ基、カルボニル基、カルボキシル基、オキシ基、アミノ基、ベンジル基等を同様に挙げることができる。
[[Compound represented by formula (3)]]
R 6 to R 8 in the compound represented by the general formula (3) are organic groups having 1 to 12 carbon atoms which may be the same as or different from each other. A chain alkyl group, a cyclic alkyl group, an alkenyl group, an alkynyl group, a halogenated alkyl group, an alkyl group having a saturated heterocyclic group, or an alkyl group, which are mentioned as examples of R 3 to R 5 Aryl groups such as phenyl groups, aralkyl groups, trialkylsilyl groups, trialkylsiloxy groups, carbonyl groups, carboxyl groups, oxy groups, amino groups, benzyl groups, and the like can be similarly exemplified.
一般式(3)で表される化合物におけるAは、H、C、N、O、F、S、Si及び/又はPから構成される基であれば特に制限はないが、一般式(3)中の酸素原子に直接結合する元素としては、C、S、Si又はPが好ましい。これら原子の存在形態としては、例えば、鎖状アルキル基、環状アルキル基、アルケニル基、アルキニル基、ハロゲン化アルキル基、カルボニル基、スルホニル基、トリアルキルシリル基、ホスホリル基、ホスフィニル基等に含まれるものが好ましい。また、一般式(3)で表される化合物の分子量は、1000以下が好ましく、中でも800以下が特に好ましく、500以下が更に好ましい。 A in the compound represented by the general formula (3) is not particularly limited as long as A is a group composed of H, C, N, O, F, S, Si and / or P, but the general formula (3) C, S, Si or P is preferable as the element directly bonded to the oxygen atom therein. Examples of the existence form of these atoms include a chain alkyl group, a cyclic alkyl group, an alkenyl group, an alkynyl group, a halogenated alkyl group, a carbonyl group, a sulfonyl group, a trialkylsilyl group, a phosphoryl group, and a phosphinyl group. Those are preferred. The molecular weight of the compound represented by the general formula (3) is preferably 1000 or less, particularly preferably 800 or less, and more preferably 500 or less.
一般式(3)で表される化合物の例としては、ヘキサメチルジシロキサン、1,3−ジエチルテトラメチルジシロキサン、ヘキサエチルジシロキサン、オクタメチルトリシロキサン等のシロキサン化合物類;メトキシトリメチルシラン、エトキシトリメチルシラン等のアルコキシシラン類;ビス(トリメチルシリル)パーオキサイド等の過酸化物類;酢酸トリメチルシリル、酢酸トリエチルシリル、プロピオン酸トリメチルシリル、メタクリル酸トリメチルシリル、トリフルオロ酢酸トリメチルシリル等のカルボン酸エステル類;メタンスルホン酸トリメチルシリル、エタンスルホン酸トリメチルシリル、メタンスルホン酸トリエチルシリル、フルオロメタンスルホン酸トリメチルシリル等のスルホン酸エステル類;ビス(トリメチルシリル)スルフェート等の硫酸エステル類;トリス(トリメチルシロキシ)ボロン等のホウ酸エステル類;トリス(トリメチルシリル)ホスフェート、トリス(トリメチルシリル)ホスファイト等のリン酸若しくは亜リン酸エステル類等が挙げられる。 Examples of the compound represented by the general formula (3) include siloxane compounds such as hexamethyldisiloxane, 1,3-diethyltetramethyldisiloxane, hexaethyldisiloxane, and octamethyltrisiloxane; methoxytrimethylsilane, ethoxy Alkoxysilanes such as trimethylsilane; peroxides such as bis (trimethylsilyl) peroxide; carboxylic acid esters such as trimethylsilyl acetate, triethylsilyl acetate, trimethylsilyl propionate, trimethylsilyl methacrylate, trimethylsilyl trifluoroacetate; methanesulfonic acid Sulfonic acid esters such as trimethylsilyl, trimethylsilyl ethanesulfonate, triethylsilyl methanesulfonate, trimethylsilyl fluoromethanesulfonate; bis (trimethylsilyl) Sulfuric esters such as sulfates; tris (trimethylsiloxy) borate esters such as boron; tris (trimethylsilyl) phosphate, tris (trimethylsilyl) phosphite phosphoric acid or phosphorous acid esters such as phosphite and the like.
このうち、シロキサン化合物類、スルホン酸エステル類、硫酸エステル類が好ましく、スルホン酸エステル類が特に好ましい。シロキサン化合物類としては、ヘキサメチルジシロキサンが好ましく、スルホン酸エステル類としては、メタンスルホン酸トリメチルシリルが好ましく、硫酸エステル類としては、ビス(トリメチルシリル)スルフェートが好ましい。 Of these, siloxane compounds, sulfonic acid esters, and sulfuric acid esters are preferable, and sulfonic acid esters are particularly preferable. The siloxane compound is preferably hexamethyldisiloxane, the sulfonic acid ester is preferably trimethylsilyl methanesulfonate, and the sulfuric acid ester is preferably bis (trimethylsilyl) sulfate.
[[分子内にS−F結合を有する化合物]]
分子内にS−F結合を有する化合物としては特に限定はないが、スルホニルフルオライド類、フルオロスルホン酸エステル類が好ましい。例えば、メタンスルホニルフルオライド、エタンスルホニルフルオライド、メタンビス(スルホニルフルオライド)、エタン−1,2−ビス(スルホニルフルオライド)、プロパン−1,3−ビス(スルホニルフルオライド)、ブタン−1,4−ビス(スルホニルフルオライド)、ジフルオロメタンビス(スルホニルフルオライド)、1,1,2,2−テトラフルオロエタン−1,2−ビス(スルホニルフルオライド)、1,1,2,2,3,3−ヘキサフルオロプロパン−1,3−ビス(スルホニルフルオライド)、フルオロスルホン酸メチル、フルオロスルホン酸エチル等が挙げられる。中でも、メタンスルホニルフルオライド、メタンビス(スルホニルフルオライド)又はフルオロスルホン酸メチルが好ましい。
[[Compound with SF bond in molecule]]
The compound having an S—F bond in the molecule is not particularly limited, but sulfonyl fluorides and fluorosulfonic acid esters are preferred. For example, methanesulfonyl fluoride, ethanesulfonyl fluoride, methanebis (sulfonyl fluoride), ethane-1,2-bis (sulfonyl fluoride), propane-1,3-bis (sulfonyl fluoride), butane-1,4 -Bis (sulfonyl fluoride), difluoromethane bis (sulfonyl fluoride), 1,1,2,2-tetrafluoroethane-1,2-bis (sulfonyl fluoride), 1,1,2,2,3 Examples include 3-hexafluoropropane-1,3-bis (sulfonyl fluoride), methyl fluorosulfonate, ethyl fluorosulfonate, and the like. Of these, methanesulfonyl fluoride, methanebis (sulfonyl fluoride) or methyl fluorosulfonate is preferable.
[[硝酸塩、亜硝酸塩、モノフルオロリン酸塩、ジフルオロリン酸塩、酢酸塩、プロピオン酸塩]]
硝酸塩、亜硝酸塩、モノフルオロリン酸塩、ジフルオロリン酸塩、酢酸塩、プロピオン酸塩のカウンターカチオンとしては特に限定はないが、Li、Na、K、Mg、Ca、Fe、Cu等の金属元素の他、NR9R10R11R12(式中、R9〜R12は、各々独立に、水素原子又は炭素数1〜12の有機基を表わす。)で表現されるアンモニウム、4級アンモニウムが挙げられる。ここで、R9〜R12の炭素数1〜12の有機基としては、ハロゲン原子で置換されていてもよいアルキル基、ハロゲン原子で置換されていてもよいシクロアルキル基、ハロゲン原子で置換されていてもよいアリール基、窒素原子含有複素環基等が挙げられる。R9〜R12としては、それぞれ、水素原子、アルキル基、シクロアルキル基、窒素原子含有複素環基等が好ましい。これらのカウンターカチオン中でも、リチウムイオン二次電池に用いたときの電池特性の点から、リチウム、ナトリウム、カリウム、マグネシウム、カルシウム又はNR9R10R11R12が好ましく、リチウムが特に好ましい。また、中でも、硝酸塩又はジフルオロリン酸塩が、出力向上効果が大きい上、電池のサイクル、高温保存特性の点で好ましく、ジフルオロリン酸リチウムが特に好ましい。また、これらの化合物は非水溶媒中で合成されたものを実質的にそのまま用いてもよく、別途合成して実質的に単離されたものを非水溶媒中又は非水系電解液中に添加してもよい。
[[Nitrate, nitrite, monofluorophosphate, difluorophosphate, acetate, propionate]]
The counter cation of nitrate, nitrite, monofluorophosphate, difluorophosphate, acetate, propionate is not particularly limited, but metal elements such as Li, Na, K, Mg, Ca, Fe, Cu, etc. In addition, ammonium or quaternary ammonium represented by NR 9 R 10 R 11 R 12 (wherein R 9 to R 12 each independently represents a hydrogen atom or an organic group having 1 to 12 carbon atoms). Is mentioned. Here, the organic group having 1 to 12 carbon atoms of R 9 to R 12 is an alkyl group which may be substituted with a halogen atom, a cycloalkyl group which may be substituted with a halogen atom, or a halogen atom. An aryl group which may be present, a nitrogen atom-containing heterocyclic group, and the like. R 9 to R 12 are each preferably a hydrogen atom, an alkyl group, a cycloalkyl group, a nitrogen atom-containing heterocyclic group, or the like. Among these counter cations, lithium, sodium, potassium, magnesium, calcium, or NR 9 R 10 R 11 R 12 is preferable, and lithium is particularly preferable from the viewpoint of battery characteristics when used in a lithium ion secondary battery. Of these, nitrate or difluorophosphate is preferable in terms of the effect of improving output, battery cycle and high-temperature storage characteristics, and lithium difluorophosphate is particularly preferable. These compounds synthesized in a non-aqueous solvent may be used as they are, or those synthesized separately and substantially isolated are added in a non-aqueous solvent or a non-aqueous electrolyte. May be.
特定化合物、すなわち、一般式(1)で表される環状シロキサン化合物、一般式(2)で表されるフルオロシラン化合物、一般式(3)で表される化合物、分子内にS−F結合を有する化合物、硝酸塩、亜硝酸塩、モノフルオロリン酸塩、ジフルオロリン酸塩、酢酸塩又はプロピオン酸塩は、1種を単独で用いてもよく、2種以上の化合物を任意の組み合わせ及び比率で併用してもよい。また、特定化合物で、上記それぞれに分類される化合物の中であっても、1種を単独で用いてもよく、2種以上の化合物を任意の組み合わせ及び比率で併用してもよい。 A specific compound, that is, a cyclic siloxane compound represented by the general formula (1), a fluorosilane compound represented by the general formula (2), a compound represented by the general formula (3), and an SF bond in the molecule. Compound, nitrate, nitrite, monofluorophosphate, difluorophosphate, acetate or propionate may be used alone, or two or more compounds may be used in any combination and ratio May be. Moreover, even if it is a compound classified into said each with a specific compound, 1 type may be used independently and 2 or more types of compounds may be used together by arbitrary combinations and a ratio.
非水系電解液中のこれら特定化合物の割合は、全非水系電解液に対して、合計で10ppm以上(0.001質量%以上)が必須であるが、好ましくは0.01質量%以上、より好ましくは0.05質量%以上、更に好ましくは0.1質量%以上である。また、上限は、好ましくは5質量%以下、より好ましくは4質量%以下、更に好ましくは3質量%以下である。特定化合物の濃度が低すぎると、長期間使用した後でも、出力特性が維持される効果が得られ難い場合があり、一方、濃度が高すぎると充放電効率の低下を招く場合がある。 The ratio of these specific compounds in the non-aqueous electrolyte solution is essential to be 10 ppm or more (0.001 mass% or more) in total with respect to the total non-aqueous electrolyte solution, but is preferably 0.01 mass% or more. Preferably it is 0.05 mass% or more, More preferably, it is 0.1 mass% or more. The upper limit is preferably 5% by mass or less, more preferably 4% by mass or less, and still more preferably 3% by mass or less. If the concentration of the specific compound is too low, it may be difficult to obtain the effect of maintaining the output characteristics even after long-term use. On the other hand, if the concentration is too high, the charge / discharge efficiency may be reduced.
また、これら特定化合物は、非水系電解液として実際に二次電池作製に供すると、その電池を解体して再び非水系電解液を取り出しても、その中の含有量が著しく低下している場合が多い。そのため、電池から抜き出した非水系電解液から、少なくとも上記特定化合物が検出できるものは本発明に含まれるとみなされる。 In addition, when these specific compounds are actually used in the production of secondary batteries as non-aqueous electrolytes, the content of the specific compounds is significantly reduced even if the battery is disassembled and the non-aqueous electrolyte is taken out again. There are many. Therefore, what can detect the said specific compound at least from the non-aqueous electrolyte solution extracted from the battery is considered to be included in this invention.
[他の化合物]
本発明のリチウムイオン二次電池における非水系電解液は、電解質であるリチウム塩及び特定化合物を必須成分として含有するが、必要に応じて他の化合物を、本発明の効果を損なわない範囲で、任意の量で含有させることができる。このような他の化合物としては、具体的には、例えば、
(1)ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t−ブチルベンゼン、t−アミルベンゼン、ジフェニルエーテル、ジベンゾフラン等の芳香族化合物;2−フルオロビフェニル、o−シクロヘキシルフルオロベンゼン、p−シクロヘキシルフルオロベンゼン等の前記芳香族化合物の部分フッ素化物;2,4−ジフルオロアニソール、2,5−ジフルオロアニソール、2,6−ジフルオロアニソール、3,5−ジフルオロアニソール等の含フッ素アニソール化合物等の過充電防止剤;
(2)ビニレンカーボネート、ビニルエチレンカーボネート、フルオロエチレンカーボネート、トリフルオロプロピレンカーボネート、無水コハク酸、無水グルタル酸、無水マレイン酸、無水シトラコン酸、無水グルタコン酸、無水イタコン酸、シクロヘキサンジカルボン酸無水物等の負極被膜形成剤;
(3)亜硫酸エチレン、亜硫酸プロピレン、亜硫酸ジメチル、プロパンスルトン、ブタンスルトン、メタンスルホン酸メチル、ブスルファン、トルエンスルホン酸メチル、硫酸ジメチル、硫酸エチレン、スルホラン、ジメチルスルホン、ジエチルスルホン、ジメチルスルフォキシド、ジエチルスルホキシド、テトラメチレンスルホキシド、ジフェニルスルフィド、チオアニソール、ジフェニルジスルフィド、ジピリジニウムジスルフィド等の正極保護剤;
等が挙げられる。
[Other compounds]
The non-aqueous electrolyte solution in the lithium ion secondary battery of the present invention contains a lithium salt that is an electrolyte and a specific compound as essential components, but other compounds may be added as necessary within the range that does not impair the effects of the present invention. It can be contained in any amount. As such other compounds, specifically, for example,
(1) Aromatic compounds such as biphenyl, alkylbiphenyl, terphenyl, partially hydrogenated terphenyl, cyclohexylbenzene, t-butylbenzene, t-amylbenzene, diphenyl ether, dibenzofuran; 2-fluorobiphenyl, o-cyclohexylfluoro Partially fluorinated products of the above-mentioned aromatic compounds such as benzene and p-cyclohexylfluorobenzene; fluorinated anisole such as 2,4-difluoroanisole, 2,5-difluoroanisole, 2,6-difluoroanisole, and 3,5-difluoroanisole Overcharge inhibitors such as compounds;
(2) vinylene carbonate, vinyl ethylene carbonate, fluoroethylene carbonate, trifluoropropylene carbonate, succinic anhydride, glutaric anhydride, maleic anhydride, citraconic anhydride, glutaconic anhydride, itaconic anhydride, cyclohexanedicarboxylic anhydride, etc. Negative electrode film-forming agent;
(3) Ethylene sulfite, propylene sulfite, dimethyl sulfite, propane sultone, butane sultone, methyl methanesulfonate, busulfan, methyl toluenesulfonate, dimethyl sulfate, ethylene sulfate, sulfolane, dimethyl sulfone, diethyl sulfone, dimethyl sulfoxide, diethyl sulfoxide Positive electrode protective agents such as tetramethylene sulfoxide, diphenyl sulfide, thioanisole, diphenyl disulfide, dipyridinium disulfide;
Etc.
過充電防止剤としては、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t−ブチルベンゼン、t−アミルベンゼン、ジフェニルエーテル、ジベンゾフラン等の芳香族化合物が好ましい。これらは2種以上併用して用いてもよい。2種以上併用する場合は、特に、シクロヘキシルベンゼンやターフェニル(又はその部分水素化体)と、t−ブチルベンゼンやt−アミルベンゼンを併用するのが好ましい。 As the overcharge inhibitor, aromatic compounds such as biphenyl, alkylbiphenyl, terphenyl, partially hydrogenated terphenyl, cyclohexylbenzene, t-butylbenzene, t-amylbenzene, diphenyl ether, and dibenzofuran are preferable. Two or more of these may be used in combination. When using 2 or more types together, it is particularly preferable to use cyclohexylbenzene or terphenyl (or a partially hydrogenated product thereof) together with t-butylbenzene or t-amylbenzene.
負極被膜形成剤としては、ビニレンカーボネート、ビニルエチレンカーボネート、フルオロエチレンカーボネート、無水コハク酸、無水マレイン酸が好ましい。これらは2種以上併用して用いてもよい。正極保護剤としては、亜硫酸エチレン、亜硫酸プロピレン、プロパンスルトン、ブタンスルトン、メタンスルホン酸メチル、ブスルファンが好ましい。これらは2種以上併用して用いてもよい。また、負極皮膜形成剤と正極保護剤との併用や、過充電防止剤と負極皮膜形成剤と正極保護剤との併用が特に好ましい。 As the negative electrode film forming agent, vinylene carbonate, vinyl ethylene carbonate, fluoroethylene carbonate, succinic anhydride, and maleic anhydride are preferable. Two or more of these may be used in combination. As the positive electrode protective agent, ethylene sulfite, propylene sulfite, propane sultone, butane sultone, methyl methanesulfonate, and busulfan are preferable. Two or more of these may be used in combination. Moreover, the combined use of a negative electrode film forming agent and a positive electrode protective agent, or the combined use of an overcharge inhibitor, a negative electrode film forming agent, and a positive electrode protective agent is particularly preferable.
非水系電解液中におけるこれら他の化合物の含有割合は特に限定はないが、非水系電解液全体に対し、それぞれ、0.01質量%以上が好ましく、特に好ましくは0.1質量%以上、更に好ましくは0.2質量%以上であり、上限は、5質量%以下が好ましく、特に好ましくは3質量%以下、更に好ましくは2質量%以下である。これらの化合物を添加することにより、過充電による異常時に電池の破裂・発火を抑制したり、高温保存後の容量維持特性やサイクル特性を向上させたりすることができる。 The content ratio of these other compounds in the non-aqueous electrolyte solution is not particularly limited, but is preferably 0.01% by mass or more, particularly preferably 0.1% by mass or more, respectively, based on the whole non-aqueous electrolyte solution. The upper limit is preferably 5% by mass or less, particularly preferably 3% by mass or less, and further preferably 2% by mass or less. By adding these compounds, it is possible to suppress rupture / ignition of the battery at the time of abnormality due to overcharge, and to improve the capacity maintenance characteristic and cycle characteristic after high-temperature storage.
<負極>
以下に本発明のリチウムイオン二次電池に使用される負極について説明する。
[負極活物質]
以下に負極に使用される負極活物質について述べる。
<Negative electrode>
The negative electrode used for the lithium ion secondary battery of this invention is demonstrated below.
[Negative electrode active material]
The negative electrode active material used for the negative electrode is described below.
本発明に用いられる負極活物質としては、電気化学的にリチウムイオンを吸蔵・放出可能なものが用いられる。本発明のリチウムイオン二次電池に用いられる負極活物質は、性質の異なる2種類以上の負極活物質を含有することを特徴としている。 As the negative electrode active material used in the present invention, a material capable of electrochemically inserting and extracting lithium ions is used. The negative electrode active material used in the lithium ion secondary battery of the present invention is characterized by containing two or more types of negative electrode active materials having different properties.
ここで述べた「性質の異なる」とは、X線回折パラメータ、メジアン径、アスペクト比、BET比表面積、配向比、ラマンR値、タップ密度、真密度、細孔分布、円形度、灰分量等に代表される粉体形状や粉体物性が異なることのみならず、「結晶性の異なる炭素質物を2種類以上含有する複合炭素質物」、「配向性の異なる炭素質物を2種類以上含有する異配向性炭素複合物」等の材料の構成が異なること、また、「負極活物質に熱処理を加えること」や「負極活物質に力学的エネルギー処理を加えること」等の加工処理が異なることをも含む。 “Different properties” mentioned here are X-ray diffraction parameters, median diameter, aspect ratio, BET specific surface area, orientation ratio, Raman R value, tap density, true density, pore distribution, circularity, ash content, etc. In addition to the difference in powder shape and powder physical properties typified by the above, “composite carbonaceous materials containing two or more types of carbonaceous materials having different crystallinity” and “different types containing two or more types of carbonaceous materials having different orientations”. The composition of the material such as “oriented carbon composite” is different, and the processing such as “adding heat treatment to the negative electrode active material” or “adding mechanical energy treatment to the negative electrode active material” is also different. Including.
[形状、物性等の違い]
これらの中でも、本発明に用いられる負極活物質は、体積基準平均粒径(メジアン径)が異なる2種類以上の負極活物質を含有することで、低温出力を維持しながら、サイクル特性を向上することが可能となる。体積基準平均粒径(メジアン径)の差としては、通常1μm以上、好ましくは2μm以上、より好ましくは5μm以上差があることが望ましい。上限としては、通常30μm以下、好ましくは25μm以下である。この範囲を上回ると、メジアン径の大きい側の粒子径が大きくなりすぎる傾向があり、そのため電極作製時に塗工面の筋引き等の問題が起こる場合がある。一方、この範囲を下回ると、2種類を混合した効果が発現しにくくなる場合がある。
[Differences in shape, physical properties, etc.]
Among these, the negative electrode active material used in the present invention contains two or more types of negative electrode active materials having different volume-based average particle diameters (median diameters), thereby improving cycle characteristics while maintaining low-temperature output. It becomes possible. The difference in volume-based average particle diameter (median diameter) is usually 1 μm or more, preferably 2 μm or more, more preferably 5 μm or more. As an upper limit, it is 30 micrometers or less normally, Preferably it is 25 micrometers or less. Beyond this range, the particle diameter on the larger median diameter tends to be too large, which may cause problems such as striation on the coated surface during electrode production. On the other hand, if it falls below this range, the effect of mixing the two types may be difficult to express.
また、本発明に用いられる負極活物質は、体積基準粒度分布の偏った材料も上述と同様の理由で良好な特性を発現することが可能である。「体積基準粒度分布が偏っている」とは、横軸対数目盛としたときの体積基準粒度分布が、体積基準平均粒径(メジアン径)を中心としたときに左右対称とならないことを意味し、左右対称でない程度としては、下記式(1)で示されるZの値が、通常0.3μm以上、好ましくは0.5μm以上、より好ましくは1μm以上である。Zがこの値を下回ると、粒度分布が偏っていることによるサイクル特性向上の効果が得にくい場合がある。
Z = |(モード径)−(メジアン径)| (1)
式(1)中、モード径とメジアン径は何れも単位は「μm」であり、「| |」は絶対値を示す。
In addition, the negative electrode active material used in the present invention can exhibit good characteristics for the same reason as described above even when the material has an uneven volume-based particle size distribution. “Volume-based particle size distribution is biased” means that the volume-based particle size distribution with the logarithmic scale on the horizontal axis is not symmetrical when centered on the volume-based average particle size (median diameter). As the degree of not being symmetrical, the value of Z represented by the following formula (1) is usually 0.3 μm or more, preferably 0.5 μm or more, more preferably 1 μm or more. If Z is less than this value, it may be difficult to obtain the effect of improving the cycle characteristics due to the uneven particle size distribution.
Z = | (mode diameter) − (median diameter) | (1)
In the formula (1), the unit of the mode diameter and the median diameter is “μm”, and “||” represents an absolute value.
本発明において、体積基準平均粒径(メジアン径)及びモード径は、界面活性剤であるポリオキシエチレン(20)ソルビタンモノラウレートの0.2質量%水溶液(約1mL)に負極活物質を分散させて、レーザー回折式粒度分布計(堀場製作所社製LA−700)を用いて測定した値で定義する。「メジアン径」とは、一般にd50とも言われ、体積基準で粉体をある粒子径から2つに分けたときに大きい側と小さい側が等量となるその粒子径を指し、「モード径」とは、体積基準の粒度分布にて、分布の極大値を示す粒径を指し、何れも、堀場製作所社製LA−700では、単に、「メジアン径」、「モード径」という名称の値で、それぞれ一義的に装置に表示されるものである。 In the present invention, the volume-based average particle diameter (median diameter) and mode diameter are determined by dispersing the negative electrode active material in a 0.2 mass% aqueous solution (about 1 mL) of polyoxyethylene (20) sorbitan monolaurate as a surfactant. And defined by a value measured using a laser diffraction particle size distribution meter (LA-700, manufactured by Horiba, Ltd.). The “median diameter” is generally also referred to as d50, and refers to the particle diameter in which the larger side and the smaller side are equivalent when the powder is divided into two from a certain particle diameter on a volume basis. Is the particle size distribution indicating the maximum value of the distribution in the volume-based particle size distribution, both of which are simply the values of “median diameter” and “mode diameter” in LA-700 manufactured by HORIBA, Ltd. Each is uniquely displayed on the device.
また、負極活物質の少なくとも1種に、メジアン径が10μm以下である負極活物質を用いることが、低温出力を維持しながら、サイクル特性の向上効果が得られる点で好ましい。特に好ましくは8μm以下である。メジアン径が10μm以下である負極活物質は、負極活物質全体に対して、0.5〜10質量%の範囲で用いることが特に好ましい。 In addition, it is preferable to use a negative electrode active material having a median diameter of 10 μm or less as at least one of the negative electrode active materials because an effect of improving cycle characteristics can be obtained while maintaining a low temperature output. Particularly preferably, it is 8 μm or less. The negative electrode active material having a median diameter of 10 μm or less is particularly preferably used in the range of 0.5 to 10% by mass with respect to the whole negative electrode active material.
また、本発明に用いられる負極活物質は、アルゴンイオンレーザーラマンスペクトル法を用いて測定したラマンR値が異なる2種類以上の負極活物質を含有することで、サイクル特性を維持しながら低温出力を向上することが可能となる。ラマンR値の差としては、通常0.1以上、好ましくは0.2以上、更に好ましくは0.3以上であり、上限としては、通常1.4以下、好ましくは1.3以下、より好ましくは1.2以下の範囲である。この範囲を下回ると、ラマンR値の違いによる効果が得にくい場合がある。一方、この範囲を上回ると、ラマンR値の高い部分に起因して不可逆容量が増加する場合がある。 In addition, the negative electrode active material used in the present invention contains two or more types of negative electrode active materials having different Raman R values measured by using an argon ion laser Raman spectrum method, so that low temperature output can be achieved while maintaining cycle characteristics. It becomes possible to improve. The difference in Raman R value is usually 0.1 or more, preferably 0.2 or more, more preferably 0.3 or more, and the upper limit is usually 1.4 or less, preferably 1.3 or less, more preferably Is in the range of 1.2 or less. Below this range, it may be difficult to obtain the effect due to the difference in the Raman R value. On the other hand, if it exceeds this range, the irreversible capacity may increase due to a portion having a high Raman R value.
本発明において、ラマンスペクトルの測定は、ラマン分光器(例えば、日本分光社製ラマン分光器)を用い、試料を測定セル内へ自然落下させることで試料充填し、測定はセル内のサンプル表面にアルゴンイオンレーザー光を照射しながら、セルをレーザー光と垂直な面内で回転させながら行なう。得られたラマンスペクトルについて、1580cm-1のピークPAの強度IAと、1360cm-1のピークPBの強度IBとを測定し、その強度比R(R=IB/IA)を算出して、これを黒鉛質炭素粒子のラマンR値と定義する。また、得られたラマンスペクトルの1580cm-1のピークPAの半値幅を測定し、これを黒鉛質炭素粒子のラマン半値幅と定義する。 In the present invention, a Raman spectrum is measured by using a Raman spectrometer (for example, a Raman spectrometer manufactured by JASCO Corporation), and the sample is naturally dropped into the measurement cell to fill the sample, and the measurement is performed on the sample surface in the cell. While irradiating with argon ion laser light, the cell is rotated in a plane perpendicular to the laser light. The obtained Raman spectrum, the intensity I A of the peak P A in the 1580 cm -1, and measuring the intensity I B of a peak P B of 1360 cm -1, the intensity ratio R of the (R = I B / I A) This is calculated and defined as the Raman R value of the graphitic carbon particles. Further, the half width of the peak P A at 1580 cm −1 of the obtained Raman spectrum is measured, and this is defined as the Raman half width of the graphitic carbon particles.
なお、ここでのラマンスペクトル測定条件は、次の通りである。
・アルゴンイオンレーザー波長 :514.5nm
・試料上のレーザーパワー :15〜25mW
・分解能 :10〜20cm-1
・測定範囲 :1100cm-1〜1730cm-1
・ラマンR値、ラマン半値幅解析:バックグラウンド処理
・スムージング処理 :単純平均、コンボリューション5ポイント
Here, the Raman spectrum measurement conditions are as follows.
Argon ion laser wavelength: 514.5nm
・ Laser power on the sample: 15-25mW
・ Resolution: 10-20cm -1
Measurement range: 1100 cm −1 to 1730 cm −1
・ Raman R value, Raman half width analysis: Background processing ・ Smoothing processing: Simple average, 5 points of convolution
また、本発明に用いられる負極活物質として用いられる負極活物質は、1580cm-1のラマン半値幅は特に制限されないが、通常10cm-1以上、好ましくは15cm-1以上、また上限として、通常150cm-1以下、好ましく140cm-1以下の範囲である。ラマン半値幅がこの範囲を下回ると、粒子表面の結晶性が高くなり過ぎ、低温出力が低下する場合がある。一方、この範囲を上回ると、粒子表面の結晶性が低下するため、不可逆容量が増大する場合がある。 The negative electrode active material used as a negative electrode active material used in the present invention, although the Raman half-value width of 1580 cm -1 is not particularly limited, usually 10 cm -1 or more, preferably 15cm -1 or more, and as the upper limit, usually 150cm -1 or less, preferably 140 cm -1 or less. If the Raman half width is less than this range, the crystallinity of the particle surface becomes too high, and the low-temperature output may decrease. On the other hand, if it exceeds this range, the crystallinity of the particle surface will decrease, and the irreversible capacity may increase.
また、本発明に用いられる負極活物質として用いられる負極活物質は、結晶性の異なる2種類以上の負極活物質を含有することでも、サイクル特性を維持しながら低温出力を向上することが可能となる。結晶性とは、ここでは、炭素の六角網面の積層体の繰り返し構造の厚さ、間隔等の積層構造をいう。結晶性の違いを示す具体的物性値は特に限定はないが、例えば、面間隔、結晶子サイズ等があり、それらが、本発明のリチウムイオン二次電池で用いられる2種類以上の負極活物質で異なっていることが好ましい。結晶性の差が小さすぎると、混合による効果が得にくい場合がある。 In addition, the negative electrode active material used as the negative electrode active material used in the present invention can improve low-temperature output while maintaining cycle characteristics even when it contains two or more types of negative electrode active materials having different crystallinity. Become. The crystallinity here refers to a laminated structure such as the thickness and spacing of a repeating structure of a laminate of carbon hexagonal mesh surfaces. Specific physical property values showing the difference in crystallinity are not particularly limited, but there are, for example, face spacing, crystallite size, etc., and these are two or more types of negative electrode active materials used in the lithium ion secondary battery of the present invention. It is preferable that they are different. If the difference in crystallinity is too small, the effect of mixing may be difficult to obtain.
本発明に用いられる負極活物質は、広角X線回折法による(002)面の面間隔(d002)の異なる2種類以上の負極活物質を含有することで、サイクル特性を維持しながら低温出力を向上することが可能となる。面間隔(d002)の差としては、通常0.0005nm以上、好ましくは0.001nm以上、より好ましくは0.003nm以上、更に好ましくは0.004nm以上であり、上限としては、通常0.05以下、好ましくは0.04以下、より好ましくは0.03nm以下、更に好ましくは0.02nm以下の範囲である。この範囲を下回ると、結晶性の違いによる効果が得にくい場合がある。一方、この範囲を上回ると、結晶性の低い部分に起因して不可逆容量が増加する場合がある。本発明でいう、広角X線回折法による(002)面の面間隔(d002)とは、学振法によるX線回折で求めた格子面(002面)のd値(層間距離)である。 The negative electrode active material used in the present invention contains two or more types of negative electrode active materials having different (002) plane spacings (d002) by wide-angle X-ray diffraction, so that low temperature output is maintained while maintaining cycle characteristics. It becomes possible to improve. The difference in interplanar spacing (d002) is usually 0.0005 nm or more, preferably 0.001 nm or more, more preferably 0.003 nm or more, still more preferably 0.004 nm or more, and the upper limit is usually 0.05 or less. , Preferably 0.04 or less, more preferably 0.03 nm or less, still more preferably 0.02 nm or less. Below this range, it may be difficult to obtain the effect due to the difference in crystallinity. On the other hand, if it exceeds this range, the irreversible capacity may increase due to the low crystallinity. In the present invention, the (002) plane spacing (d002) by the wide angle X-ray diffraction method is the d value (interlayer distance) of the lattice plane (002 plane) obtained by the X-ray diffraction by the Gakushin method.
また、本発明に用いられる負極活物質は、学振法によるX線回折で求めた結晶子サイズ(Lc)の異なる2種類以上の負極活物質を含有することで、サイクル特性を維持しながら低温出力を向上することが可能となる。学振法によるX線回折で求めた結晶子サイズ(Lc)の差は、通常1nm以上、好ましくは10nm以上、より好ましくは50nm以上の範囲である。この範囲を下回ると、結晶子サイズの違いによる効果が得にくい場合がある。 Further, the negative electrode active material used in the present invention contains two or more types of negative electrode active materials having different crystallite sizes (Lc) determined by X-ray diffraction by the Gakushin method, so that the low temperature is maintained while maintaining cycle characteristics. The output can be improved. The difference in crystallite size (Lc) determined by X-ray diffraction by the Gakushin method is usually in the range of 1 nm or more, preferably 10 nm or more, more preferably 50 nm or more. Below this range, it may be difficult to obtain the effect due to the difference in crystallite size.
また、本発明に用いられる負極活物質は、真密度の異なる2種類以上の負極活物質を含有することでも、サイクル特性を維持しながら低温出力を向上することが可能となる。真密度の差としては、通常0.03g/cm3以上、好ましくは0.05g/cm3以上、より好ましくは0.1g/cm3以上、更に好ましくは0.2g/cm3以上であり、上限としては、通常0.7g/cm3以下、好ましくは0.5g/cm3以下、より好ましくは0.4g/cm3以下の範囲である。この範囲を下回ると、真密度の違いによる効果が得にくい場合がある。一方、この範囲を上回ると、真密度の低い部分に起因して不可逆容量が増加する場合がある。 Further, the negative electrode active material used in the present invention can improve low-temperature output while maintaining cycle characteristics even when it contains two or more negative electrode active materials having different true densities. The difference between the true density, typically 0.03 g / cm 3 or higher, preferably 0.05 g / cm 3 or more, more preferably 0.1 g / cm 3 or more, more preferably 0.2 g / cm 3 or more, The upper limit is usually 0.7 g / cm 3 or less, preferably 0.5 g / cm 3 or less, more preferably 0.4 g / cm 3 or less. Below this range, it may be difficult to obtain the effect due to the difference in true density. On the other hand, if it exceeds this range, the irreversible capacity may increase due to the low true density.
本発明でいう真密度は、ブタノールを使用した液相置換法(ピクノメータ法)によって測定したもので定義する。 The true density referred to in the present invention is defined by a value measured by a liquid phase replacement method (pycnometer method) using butanol.
また、本発明に用いられる負極活物質は、円形度の異なる2種類以上の負極活物質を含有することでも、低温出力を維持しながらサイクル特性を向上することが可能となる。円形度の差としては、通常0.01以上、好ましくは0.02以上、より好ましくは0.03以上であり、上限としては通常0.3以下、好ましくは0.2以下、より好ましくは0.1以下の範囲である。この範囲を下回ると、円形度の違いによる効果が得にくい場合がある。一方この範囲を上回ると、円形度の低い部分に起因して電極化時に筋引き等の問題を生じる場合がある。
本発明でいう円形度は、以下の式で定義される。
円形度
=(粒子投影形状と同じ面積を持つ相当円の周囲長)/(粒子投影形状の実際の周囲長)
In addition, the negative electrode active material used in the present invention can improve cycle characteristics while maintaining a low temperature output even when it contains two or more negative electrode active materials having different degrees of circularity. The difference in circularity is usually 0.01 or more, preferably 0.02 or more, more preferably 0.03 or more, and the upper limit is usually 0.3 or less, preferably 0.2 or less, more preferably 0. .1 or less. Below this range, it may be difficult to obtain the effect due to the difference in circularity. On the other hand, if it exceeds this range, problems such as streaking may occur during electrode formation due to the low circularity.
The circularity referred to in the present invention is defined by the following equation.
Circularity = (perimeter of equivalent circle having the same area as the particle projection shape) / (actual circumference of particle projection shape)
円形度の値としては、フロー式粒子像分析装置(例えば、シスメックスインダストリアル社製FPIA)を用い、試料約0.2gを、界面活性剤であるポリオキシエチレン(20)ソルビタンモノラウレートの0.2質量%水溶液(約50mL)に分散させ、28kHzの超音波を出力60Wで1分間照射した後、検出範囲を0.6〜400μmに指定し、粒径が3〜40μmの範囲の粒子について測定した値を用いる。 As the circularity value, a flow type particle image analyzer (for example, FPIA manufactured by Sysmex Industrial Co., Ltd.) was used, and about 0.2 g of a sample was added to a polyoxyethylene (20) sorbitan monolaurate, which is a surfactant, in an amount of 0. Dispersed in a 2% by weight aqueous solution (about 50 mL), irradiated with 28 kHz ultrasonic waves at 60 W output for 1 minute, specified a detection range of 0.6 to 400 μm, and measured particles with a particle size in the range of 3 to 40 μm Use the value obtained.
また、本発明に用いられる負極活物質は、タップ密度の異なる2種類以上の負極活物質を含有することでも、低温出力を維持しながらサイクル特性を向上することが可能となる。タップ密度の差としては、通常0.1g/cm3以上、好ましくは0.2g/cm3以上、より好ましくは0.3g/cm3以上の範囲である。この範囲を下回るとタップ密度の異なる材料を混合させたことによる効果が得にくい場合がある。 In addition, the negative electrode active material used in the present invention can improve cycle characteristics while maintaining a low-temperature output even by containing two or more negative electrode active materials having different tap densities. The difference in tap density is usually 0.1 g / cm 3 or more, preferably 0.2 g / cm 3 or more, more preferably 0.3 g / cm 3 or more. Below this range, it may be difficult to obtain the effect of mixing materials with different tap densities.
本発明においてタップ密度は、目開き300μmの篩を通過させて、20cm3のタッピングセルに試料を落下させてセルの上端面まで試料を満たした後、粉体密度測定器(例えば、セイシン企業社製タップデンサー)を用いて、ストローク長10mmのタッピングを1000回行なって、その時の体積と試料の重量から求めた密度をタップ密度として定義する。 In the present invention, the tap density is measured by passing a sieve having a mesh size of 300 μm, dropping the sample onto a 20 cm 3 tapping cell and filling the sample to the upper end surface of the cell, and then measuring a powder density measuring instrument (for example, Seishin Enterprise Co., Ltd.). Using a tap denser), tapping with a stroke length of 10 mm is performed 1000 times, and the density obtained from the volume at that time and the weight of the sample is defined as the tap density.
また、本発明に用いられる負極活物質は、BET比表面積の異なる2種類以上の負極活物質を含有することでも、サイクル特性を維持しながら、低温出力を向上することが可能となる。BET比表面積の差としては、通常0.1m2/g以上、好ましくは0.5m2/g以上、より好ましくは1m2/g以上であり、上限としては、通常20m2/g以下、好ましくは15m2/g以下、より好ましくは12m2/g以下の範囲である。この範囲を下回るとBET比表面積の異なる材料を混合させたことによる効果が得にくい場合がある。一方、この範囲を上回ると、BET比表面積の大きい部分に起因する不可逆容量の増加が起こる場合がある。 Further, the negative electrode active material used in the present invention can improve low-temperature output while maintaining cycle characteristics even when it contains two or more negative electrode active materials having different BET specific surface areas. The difference in BET specific surface area is usually 0.1 m 2 / g or more, preferably 0.5 m 2 / g or more, more preferably 1 m 2 / g or more, and the upper limit is usually 20 m 2 / g or less, preferably Is in the range of 15 m 2 / g or less, more preferably 12 m 2 / g or less. Below this range, it may be difficult to obtain the effect of mixing materials having different BET specific surface areas. On the other hand, if it exceeds this range, the irreversible capacity may increase due to a portion having a large BET specific surface area.
本発明においてBET比表面積は、表面積計(大倉理研製全自動表面積測定装置)を用い、試料に対して窒素流通下350℃で15分間、予備乾燥を行なった後、大気圧に対する窒素の相対圧の値が0.3となるように正確に調整した窒素ヘリウム混合ガスを用い、ガス流動法による窒素吸着BET1点法によって測定した値で定義する。 In the present invention, the BET specific surface area is determined by using a surface area meter (a fully automatic surface area measuring device manufactured by Okura Riken), preliminarily drying the sample at 350 ° C. for 15 minutes under a nitrogen flow, and then relative pressure of nitrogen to atmospheric pressure. This is defined as a value measured by a nitrogen adsorption BET one-point method using a gas flow method, using a nitrogen-helium mixed gas that has been accurately adjusted so that the value of γ is 0.3.
本発明に用いられる負極活物質の上記の異なる2種類以上の混合割合としては、1種の負極活物質の占める割合が、全量に対して、通常0.1質量%以上、好ましくは1質量%以上、より好ましくは10質量%以上、更に好ましくは20質量%以上であり、上限としては、通常99.9質量%以下、好ましくは99質量%以下、より好ましくは90質量%以下、更に好ましくは80質量%以下の範囲である。この範囲を外れると、異なる2種類以上の負極活物質を含有していることによる効果が得にくい場合がある。 As the mixing ratio of the two or more different types of negative electrode active materials used in the present invention, the ratio of one type of negative electrode active material is usually 0.1% by mass or more, preferably 1% by mass with respect to the total amount. Or more, more preferably 10% by mass or more, further preferably 20% by mass or more, and the upper limit is usually 99.9% by mass or less, preferably 99% by mass or less, more preferably 90% by mass or less, and still more preferably. The range is 80% by mass or less. If it is out of this range, the effect of containing two or more different types of negative electrode active materials may be difficult to obtain.
またこれらの中で、異なる2種類の負極活物質の少なくとも一種に、天然黒鉛及び/又は天然黒鉛の加工物が含まれていることが、コストパフォーマンスの高さから好ましい。 Of these, it is preferable in view of high cost performance that at least one of two different types of negative electrode active materials contains natural graphite and / or a processed product of natural graphite.
天然黒鉛は、その性状によって、鱗片状黒鉛(Flake Graphite)、鱗状黒鉛(Crystalline(Vein) Graphite)、土状黒鉛(Amorphous Graphite)に分類される(「粉粒体プロセス技術集成」((株)産業技術センター、昭和49年発行)の黒鉛の項、及び「HANDBOOK OF CARBON, GRAPHITE, DIAMOND AND FULLERENES」(Noyes Publications発行)参照)。黒鉛化度は、鱗状黒鉛が100%で最も高く、これに次いで鱗片状黒鉛が99.9%で高いが、土状黒鉛は28%と低い。天然黒鉛である鱗片状黒鉛は、マダガスカル、中国、ブラジル、ウクライナ、カナダ等に産し、鱗状黒鉛は、主にスリランカに産する。土状黒鉛は、朝鮮半島、中国、メキシコ等を主な産地としている。これらの天然黒鉛の中で、土状黒鉛は一般に粒径が小さいうえ、純度が低い。これに対して、鱗片状黒鉛や鱗状黒鉛は、黒鉛化度が高く、不純物量が低い等の長所があるため、本発明において好ましく使用することができる。 Natural graphite is classified into flake graphite (Flake Graphite), scaly graphite (Crystalline (Vein) Graphite), and earthy graphite (Amorphous Graphite), depending on its properties ("Powder Process Technology Assembly" (Co., Ltd.). (Refer to "HANDBOOK OF CARBON, GRAPHITE, DIAMOND AND FULLERENES" (published by Noyes Publications)). The degree of graphitization is the highest at 100% for scaly graphite, followed by 99.9% for scaly graphite, but as low as 28% for earthy graphite. Scaly graphite, which is natural graphite, is produced in Madagascar, China, Brazil, Ukraine, Canada, etc., and scaly graphite is produced mainly in Sri Lanka. Soil graphite is mainly produced in the Korean peninsula, China, Mexico, etc. Among these natural graphites, earthy graphite generally has a small particle size and low purity. In contrast, scaly graphite and scaly graphite have advantages such as a high degree of graphitization and a low amount of impurities, and therefore can be preferably used in the present invention.
[処理の違い]
本発明に用いられる負極活物質は、加工処理が異なる2種類以上の負極活物質を含有することでも、サイクル特性を維持しながら、低温出力を向上することが可能となる。天然黒鉛の加工方法としては、熱処理を加える方法、力学的エネルギー処理を加える処理等が挙げられる。熱処理の一例を下記に示す。
[Processing differences]
Even when the negative electrode active material used in the present invention contains two or more types of negative electrode active materials having different processing treatments, it is possible to improve low-temperature output while maintaining cycle characteristics. Examples of the processing method of natural graphite include a method of applying heat treatment, a treatment of applying mechanical energy treatment, and the like. An example of the heat treatment is shown below.
[[熱処理温度]]
負極活物質の熱処理温度としては、通常600℃以上、好ましくは1200℃以上、より好ましくは2000℃以上、更に好ましくは2500℃以上、特に好ましくは2800℃以上の範囲である。上限は、通常3200℃以下、好ましくは3100℃以下の範囲である。温度条件がこの範囲を下回ると、天然黒鉛粒子の表面の結晶修復が不十分となる場合がある。一方、前記範囲を上回ると、黒鉛の昇華量が多くなりやすくなる場合がある。本発明に用いられる負極活物質は、熱処理温度が異なる2種類以上の負極活物質を含有することも好ましい。
[[Heat treatment temperature]]
The heat treatment temperature of the negative electrode active material is usually in the range of 600 ° C. or higher, preferably 1200 ° C. or higher, more preferably 2000 ° C. or higher, still more preferably 2500 ° C. or higher, and particularly preferably 2800 ° C. or higher. The upper limit is usually 3200 ° C. or lower, preferably 3100 ° C. or lower. If the temperature condition is below this range, the crystal repair of the surface of the natural graphite particles may be insufficient. On the other hand, if it exceeds the above range, the sublimation amount of graphite tends to increase. The negative electrode active material used in the present invention preferably contains two or more types of negative electrode active materials having different heat treatment temperatures.
[[熱処理手法]]
熱処理は前述の温度範囲を一度経ることで達成される。温度条件を上記範囲に保持する保持時間は特に制限されないが、通常10秒より長時間であり、168時間以下である。
[[Heat treatment method]]
The heat treatment is achieved by passing through the aforementioned temperature range once. The holding time for keeping the temperature condition in the above range is not particularly limited, but is usually longer than 10 seconds and not longer than 168 hours.
熱処理は、通常、窒素ガス等の不活性ガス雰囲気下、又は、原料天然黒鉛から発生するガスによる非酸化性雰囲気下で行なう。但し、ブリーズ(細かいピッチ焼成炭素)中に包埋するタイプの炉では、最初、大気が混合している場合がある。この様な場合は、必ずしも完全な不活性ガス雰囲気化でなくともよい。熱処理に用いる装置としては特に制限はないが、例えば、シャトル炉、トンネル炉、電気炉、リードハンマー炉、ロータリーキルン、直接通電炉、アチソン炉、抵抗加熱炉、誘導加熱炉等を用いることができる。本発明に用いられる負極活物質は、熱処理手法が異なる2種類以上の負極活物質を含有することも好ましい。 The heat treatment is usually performed in an inert gas atmosphere such as nitrogen gas or in a non-oxidizing atmosphere by a gas generated from the raw natural graphite. However, in the type of furnace that is embedded in a breeze (fine pitch calcined carbon), the atmosphere may initially be mixed. In such a case, a completely inert gas atmosphere is not necessarily required. Although there is no restriction | limiting in particular as an apparatus used for heat processing, For example, a shuttle furnace, a tunnel furnace, an electric furnace, a lead hammer furnace, a rotary kiln, a direct current furnace, an Atchison furnace, a resistance heating furnace, an induction heating furnace etc. can be used. The negative electrode active material used in the present invention preferably contains two or more types of negative electrode active materials having different heat treatment techniques.
その他、上記の各処理に加え、分級処理等の各種の処理を行なうことができる。分級処理は、目的の粒径にするべく、粗粉や微粉を除去するためのものである。分級処理に用いる装置としては特に制限はないが、例えば、乾式篩い分けの場合:回転式篩い、動揺式篩い、旋動式篩い、振動式篩い等を、乾式気流式分級の場合:重力式分級機、慣性力式分級機、遠心力式分級機(クラシファイア、サイクロン等)等を、湿式篩い分けの場合:機械的湿式分級機、水力分級機、沈降分級機、遠心式湿式分級機等を、それぞれ用いることができる。分級処理は、熱処理前に行なうこともできるし、その他のタイミング、例えば、熱処理後に行なってもよい。更には、分級処理自体を省略することも可能である。本発明に用いられる負極活物質は、分級処理の条件が異なる2種類以上の負極活物質を含有することも好ましい。 In addition to the above processes, various processes such as a classification process can be performed. The classification treatment is for removing coarse powder and fine powder to obtain a target particle size. There are no particular restrictions on the equipment used for the classification process. For example, in the case of dry sieving: rotary sieving, oscillating sieving, rotating sieving, vibrating sieving, etc. Machine, inertial classifier, centrifugal classifier (classifier, cyclone, etc.), etc., when wet sieving: mechanical wet classifier, hydraulic classifier, sedimentation classifier, centrifugal wet classifier, Each can be used. The classification treatment can be performed before the heat treatment, or can be performed at other timing, for example, after the heat treatment. Furthermore, the classification process itself can be omitted. The negative electrode active material used in the present invention preferably contains two or more types of negative electrode active materials having different classification treatment conditions.
本発明に用いられる負極活物質は、後述の力学的エネルギー処理が異なる2種類以上の負極活物質を含有することでも、サイクル特性を維持しながら、低温出力を向上することが可能となる。力学的エネルギー処理の一例を以下に示す。 Even when the negative electrode active material used in the present invention contains two or more types of negative electrode active materials having different mechanical energy treatments described later, it is possible to improve low-temperature output while maintaining cycle characteristics. An example of mechanical energy treatment is shown below.
[[力学的エネルギー処理]]
力学的エネルギー処理は、処理前後の体積平均粒子径が1以下になるように行う。「処理前後の体積平均粒子径比」とは、処理後の体積平均粒子系を処理前の体積平均粒子径で除した値である。本発明で、熱処理前原料を製造するために行う力学的エネルギー処理では、処理前後の平均粒径比が1以下になるようにするのが好ましい。力学的エネルギー処理は、粉末粒子の処理前後の平均粒径比が1以下となるように粒子サイズを減ずると同時に、粒子形状を制御するものである。粉砕、分級、混合、造粒、表面改質、反応等の粒子設計に活用できる工学的単位操作の中で、力学的エネルギー処理は粉砕処理に属する。
[[Mechanical energy treatment]]
The mechanical energy treatment is performed so that the volume average particle diameter before and after the treatment is 1 or less. The “volume average particle diameter ratio before and after treatment” is a value obtained by dividing the volume average particle system after treatment by the volume average particle diameter before treatment. In the present invention, in the mechanical energy treatment performed for producing the raw material before the heat treatment, the average particle size ratio before and after the treatment is preferably 1 or less. The mechanical energy treatment is to control the particle shape while reducing the particle size so that the average particle size ratio before and after the treatment of the powder particles is 1 or less. Among engineering unit operations that can be utilized for particle design such as grinding, classification, mixing, granulation, surface modification, reaction, etc., mechanical energy treatment belongs to grinding treatment.
粉砕とは、物質に力を加えて、その大きさを減少させ、物質の粒径や粒度分布、充填性を調節することを指す。粉砕処理は、物質へ加える力の種類、処理形態により分類される。物質に加える力は、(1)たたき割る力(衝撃力)、(2)押しつぶす力(圧縮力)、(3)すりつぶす力(摩砕力)、(4)削りとる力(剪断力)の4つに大別される。一方、処理形態は、粒子内部に亀裂を発生させ、伝播させていく体積粉砕と、粒子表面を削り取っていく表面粉砕の二つに大別される。体積粉砕は、衝撃力、圧縮力、剪断力により進行し、表面粉砕は、摩砕力、剪断力により進行する。粉砕は、これらの物質に加える力の種類と処理形態を様々に組み合わせた処理である。その組み合わせは、処理目的に応じて適宜決定することができる。 Grinding refers to applying a force to a substance to reduce its size and adjusting the particle size, particle size distribution, and fillability of the substance. The pulverization process is classified according to the type of force applied to the substance and the processing form. The force applied to the substance is (1) crushing force (impact force), (2) crushing force (compression force), (3) crushing force (grinding force), and (4) scraping force (shearing force). It is roughly divided into two. On the other hand, the treatment mode is roughly divided into two types: volume pulverization in which cracks are generated and propagated inside the particles, and surface pulverization in which the particle surfaces are scraped off. Volume pulverization proceeds by impact force, compression force, and shear force, and surface pulverization proceeds by grinding force and shear force. Grinding is a process that variously combines the types of forces applied to these substances and the processing forms. The combination can be appropriately determined according to the processing purpose.
粉砕は、爆破等化学的な反応や体積膨張を用いて行う場合もあるが、粉砕機等の機械装置を用いて行うのが一般的である。本発明の原料である球形化炭素質の製造に用いられる粉砕処理は、体積粉砕の有無に関わらず、最終的に表面処理の占める割合が高くなるような処理であるのが好ましい。それは、粒子の表面粉砕の角を取って、粒子形状に丸みを導入するために重要だからである。具体的には、ある程度体積粉砕が進んでから表面処理を行ってもよいし、体積粉砕をほとんど進めずに表面処理のみを行ってもよいし、更には、体積粉砕と表面処理を同時に行ってもよい。最終的に表面粉砕が進み、粒子の表面から角がとれるような粉砕処理を行うことが好ましい。本発明に用いられる負極活物質は、かかる表面処理の程度が異なる2種類以上の負極活物質を含有することでも、サイクル特性を維持しながら、低温出力を向上することが可能となる。 The pulverization may be performed using a chemical reaction such as blasting or volume expansion, but is generally performed using a mechanical device such as a pulverizer. The pulverization treatment used for the production of the spheroidized carbonaceous material as the raw material of the present invention is preferably a treatment that finally increases the proportion of the surface treatment regardless of the presence or absence of volume pulverization. This is because it is important to take the corner of the surface grinding of the particle and introduce roundness into the particle shape. Specifically, the surface treatment may be performed after volume pulverization has progressed to some extent, the surface treatment may be performed with little progress in volume pulverization, and further, volume pulverization and surface treatment may be performed simultaneously. Also good. It is preferable to carry out a pulverization process so that the surface pulverization finally proceeds and the corners of the particles are removed. Even when the negative electrode active material used in the present invention contains two or more types of negative electrode active materials having different degrees of surface treatment, the low temperature output can be improved while maintaining cycle characteristics.
力学的エネルギー処理を行う装置は、上記の好ましい処理を行うことが可能なものの中から選択する。力学的エネルギー処理は、上記物質に加える4つの力の一つ以上を用いることでも達成可能であるが、好ましくは、衝撃力を主体に粒子の相互作用も含めた圧縮、摩擦、せん断力等の機械的作用を繰り返し粒子に与えることが有効である。従って、具体的には、ケーシング内部に多数のブレードを設置したローターを有していて、そのローターが高速回転することによって、内部に導入された炭素材料に対して衝撃圧縮、摩擦、せん断力等の機械的作用を与え、体積粉砕を進行させながら表面処理を行う装置が好ましい。また、炭素質物を循環又は対流させることによって機械的作用を繰り返して与える機構を有するものがより好ましい。 The apparatus for performing the mechanical energy treatment is selected from those capable of performing the above preferred treatment. Mechanical energy treatment can also be achieved by using one or more of the four forces applied to the substance, but preferably, compression, friction, shearing force, etc., including the interaction of particles mainly with impact force. It is effective to repeatedly give mechanical action to the particles. Therefore, specifically, it has a rotor with a large number of blades installed inside the casing, and when the rotor rotates at high speed, impact compression, friction, shearing force, etc. are applied to the carbon material introduced inside. An apparatus that performs the surface treatment while advancing volume grinding is preferable. Moreover, what has a mechanism which gives a mechanical action repeatedly by circulating or convection of a carbonaceous material is more preferable.
好ましい装置としては、ハイブリダイゼーションシステム(奈良機械製作所社製)、クリプトロン(アーステクニカ社製)、CFミル(宇部興産社製)、メカノフュージョンシステム(ホソカワミクロン社製)等が挙げられる。これらの中で、奈良機械製作所社製のハイブリダイゼーションシステムが好ましい。この装置を用いて処理する場合は、回転するローターの周速度を30〜100m/秒にするのが好ましく、40〜100m/秒にするのがより好ましく、50〜100m/秒にするのが更に好ましい。また、処理は、単に炭素質物を通過させるだけでも可能であるが、30秒以上装置内を循環又は滞留させて処理するのが好ましく、1分以上装置内を循環又は滞留させて処理することがより好ましい。 Preferred devices include a hybridization system (manufactured by Nara Machinery Co., Ltd.), kryptron (manufactured by Earth Technica), CF mill (manufactured by Ube Industries), mechanofusion system (manufactured by Hosokawa Micron), and the like. Among these, a hybridization system manufactured by Nara Machinery Co., Ltd. is preferable. When processing using this apparatus, the peripheral speed of the rotating rotor is preferably 30 to 100 m / sec, more preferably 40 to 100 m / sec, and further preferably 50 to 100 m / sec. preferable. The treatment can be performed by simply passing a carbonaceous material, but it is preferable to circulate or stay in the apparatus for 30 seconds or longer, and it is preferable to circulate or stay in the apparatus for 1 minute or longer. More preferred.
このような力学的エネルギー処理を行うことによって、炭素粒子は、全体的には高結晶性を維持したまま、粒子の表面近傍のみが粗くなり歪み及びエッジ面の露出した粒子となる。このことでリチウムイオンの出入りできる面が増加することとなり高電流密度においても高い容量を持つことになる。 By performing such a mechanical energy treatment, the carbon particles are roughened only in the vicinity of the surface of the particles while maintaining high crystallinity as a whole, and become strained and exposed edges. This increases the number of surfaces through which lithium ions can enter and exit, resulting in a high capacity even at high current densities.
一般的に、鱗片状、鱗状、板状の炭素材料は、粒子径が小さくなるほど充填性が悪化する傾向にある。これは、粉砕により粒子がより不定形化する、また、粒子の表面に「ささくれ」や「はがれかけ」、「折れ曲がり」等の突起状物の生成が増加する、更には粒子表面に、より微細な不定形粒子がある程度の強度で付着される等の原因で、隣接粒子との間の抵抗が大きくなり充填性を悪化させるためと考えられる。これらの不定形性が減少し、粒子形状が球形に近づけば粒子径が小さくなっても充填性の減少は少なくなり、理論的には大粒径炭素粉でも小粒径炭素分でも同程度のタップ密度を示すことになるはずである。 In general, scaly, scaly, and plate-like carbon materials tend to have poorer packing properties as the particle size decreases. This is because the particles become more irregular due to pulverization, and the generation of protrusions such as “crushing”, “peeling”, and “bending” is increased on the surface of the particles. This is considered to be because the resistance between adjacent particles is increased due to the adhesion of such irregular shaped particles with a certain degree of strength and the filling property is deteriorated. If these irregularities are reduced and the particle shape is close to a sphere, the decrease in filling property is reduced even if the particle size is reduced. Theoretically, the particle size is the same for both large and small particle size carbon powders. It should indicate the tap density.
これらの天然黒鉛及び/又は天然黒鉛の加工物の割合としては、通常0.1質量%以上、好ましくは1質量%以上、より好ましくは10質量%以上、更に好ましくは20質量%以上であり、上限としては、通常99.9質量%以下、好ましくは99質量%以下、より好ましくは90質量%以下、更に好ましくは80質量%以下の範囲である。この範囲を下回ると、天然黒鉛及び/又は天然黒鉛の加工物を加えることによる、コストパフォーマンスの向上が得にくくなる場合がある。一方この範囲を上回ると、異なる負極活物質による向上効果が得にくくなる場合がある。 The ratio of these natural graphite and / or processed natural graphite is usually 0.1% by mass or more, preferably 1% by mass or more, more preferably 10% by mass or more, and further preferably 20% by mass or more. As an upper limit, it is 99.9 mass% or less normally, Preferably it is 99 mass% or less, More preferably, it is 90 mass% or less, More preferably, it is the range of 80 mass% or less. Below this range, it may be difficult to improve the cost performance by adding natural graphite and / or processed natural graphite. On the other hand, when it exceeds this range, the improvement effect by a different negative electrode active material may become difficult to obtain.
[[細孔容積等]]
本発明のリチウムイオン二次電池の負極活物質として用いられる負極活物質の細孔容積は、水銀ポロシメトリー(水銀圧入法)により求められる、直径0.01μm以上、1μm以下に相当する粒子内の空隙、粒子表面のステップによる凹凸の量(以下、「細孔容積」と略記する)が、通常0.01mL/g以上、好ましくは0.05mL/g以上、より好ましくは0.1mL/g以上、上限としては、通常0.6mL/g以下、好ましくは0.4mL/g以下、より好ましくは0.3mL/g以下の範囲である。この範囲を上回ると、極板化時にバインダーを多量に必要となる場合がある。下回ると、高電流密度充放電特性が低下し、かつ充放電時の電極の膨張収縮の緩和効果が得られない場合がある。
[[Pore volume etc.]]
The pore volume of the negative electrode active material used as the negative electrode active material of the lithium ion secondary battery of the present invention is determined by mercury porosimetry (mercury intrusion method), and the inside of particles corresponding to a diameter of 0.01 μm or more and 1 μm or less. The amount of irregularities due to voids and particle surface steps (hereinafter abbreviated as “pore volume”) is usually 0.01 mL / g or more, preferably 0.05 mL / g or more, more preferably 0.1 mL / g or more. The upper limit is usually 0.6 mL / g or less, preferably 0.4 mL / g or less, more preferably 0.3 mL / g or less. If it exceeds this range, a large amount of binder may be required when forming an electrode plate. If it is less than the range, the high current density charge / discharge characteristics may be deteriorated, and the effect of mitigating the expansion / contraction of the electrode during charge / discharge may not be obtained.
また、全細孔容積が、好ましくは0.1mL/g以上、より好ましくは0.25mL/g以上、上限としては、通常10mL/g以下、好ましくは5mL/g以下、より好ましくは2mL/g以下の範囲である。この範囲を上回ると極板化時にバインダーを多量に必要となる場合がある。下回ると極板化時に増粘剤や結着剤の分散効果が得られない場合がある。 The total pore volume is preferably 0.1 mL / g or more, more preferably 0.25 mL / g or more, and the upper limit is usually 10 mL / g or less, preferably 5 mL / g or less, more preferably 2 mL / g. The range is as follows. If this range is exceeded, a large amount of binder may be required during electrode plate formation. If it is less than that, it may not be possible to obtain the effect of dispersing the thickener or the binder during the electrode plate formation.
また、平均細孔径が、好ましくは0.05μm以上、より好ましくは0.1μm以上、更に好ましくは0.5μm以上、上限としては、通常50μm以下、好ましくは20μm以下、より好ましくは10μm以下の範囲である。この範囲を上回ると、バインダーを多量に必要となる場合がある。下回ると高電流密度充放電特性が低下する場合がある。 The average pore diameter is preferably 0.05 μm or more, more preferably 0.1 μm or more, further preferably 0.5 μm or more, and the upper limit is usually 50 μm or less, preferably 20 μm or less, more preferably 10 μm or less. It is. Beyond this range, a large amount of binder may be required. If it is less, the high current density charge / discharge characteristics may deteriorate.
水銀ポロシメトリー用の装置としては、水銀ポロシメータ(オートポア9520:マイクロメリテックス社製)を用いる。試料(負極材料)を、0.2g前後の値となるように秤量し、パウダー用セルに封入し、室温、真空下(50μmHg以下)にて10分間脱気して前処理を実施する。引き続き、4psia(約28kPa)に減圧し水銀を導入し、4psia(約28kPa)から40000psia(約280MPa)までステップ状に昇圧させた後、25psia(約170kPa)まで降圧させる。昇圧時のステップ数は80点以上とし、各ステップでは10秒の平衡時間の後、水銀圧入量を測定する。こうして得られる水銀圧入曲線からWashburnの式を用い、細孔分布を算出する。なお、水銀の表面張力(γ)は485dyne/cm、接触角(ψ)は140°として算出する。平均細孔径には累計細孔体積が50%となるときの細孔径を用いる。 As an apparatus for mercury porosimetry, a mercury porosimeter (Autopore 9520: manufactured by Micromeritex Corporation) is used. A sample (negative electrode material) is weighed to a value of about 0.2 g, sealed in a powder cell, and pretreated by degassing at room temperature and under vacuum (50 μmHg or less) for 10 minutes. Subsequently, the pressure is reduced to 4 psia (about 28 kPa), mercury is introduced, the pressure is increased stepwise from 4 psia (about 28 kPa) to 40000 psia (about 280 MPa), and then the pressure is reduced to 25 psia (about 170 kPa). The number of steps at the time of pressure increase is 80 points or more, and the mercury intrusion amount is measured after an equilibration time of 10 seconds in each step. The pore distribution is calculated from the mercury intrusion curve thus obtained using the Washburn equation. The surface tension (γ) of mercury is calculated as 485 dyne / cm and the contact angle (ψ) is calculated as 140 °. As the average pore diameter, the pore diameter when the cumulative pore volume is 50% is used.
[[灰分]]
本発明のリチウムイオン二次電池の負極活物質の灰分は、黒鉛質炭素粒子の全質量に対して、1質量%以下が好ましく、特に好ましくは0.5質量%以下、更に好ましくは0.1質量%以下である。また下限としては、1ppm以上であることが好ましい。上記の範囲を上回ると充放電時の非水系電解液との反応による電池性能の劣化が無視できなくなる場合がある。一方、この範囲を下回ると、製造に多大な時間とエネルギーと汚染防止のための設備とを必要とし、コストが上昇する場合がある。
[[ash]]
The ash content of the negative electrode active material of the lithium ion secondary battery of the present invention is preferably 1% by mass or less, particularly preferably 0.5% by mass or less, more preferably 0.1% by mass with respect to the total mass of the graphitic carbon particles. It is below mass%. Moreover, as a minimum, it is preferable that it is 1 ppm or more. If the above range is exceeded, deterioration of battery performance due to reaction with the non-aqueous electrolyte during charge / discharge may not be negligible. On the other hand, if it falls below this range, a great amount of time, energy and equipment for preventing contamination may be required for production, which may increase costs.
[[配向比]]
本発明のリチウムイオン二次電池の負極活物質として用いられる黒鉛質炭素粒子の配向比は、通常0.005以上であり、好ましくは0.01以上、より好ましくは0.015以上、上限は、理論上0.67以下である。この範囲を下回ると、高密度充放電特性が低下する場合がある。
[[Orientation ratio]]
The orientation ratio of the graphitic carbon particles used as the negative electrode active material of the lithium ion secondary battery of the present invention is usually 0.005 or more, preferably 0.01 or more, more preferably 0.015 or more, and the upper limit is Theoretically 0.67 or less. Below this range, the high-density charge / discharge characteristics may deteriorate.
配向比はX線回折により測定する。X線回折により炭素の(110)回折と(004)回折のピークを、プロファイル関数として非対称ピアソンVIIを用いてフィッティングすることによりピーク分離を行ない、(110)回折と(004)回折のピークの積分強度を各々算出する。得られた積分強度から、(110)回折積分強度/(004)回折積分強度で表わされる比を算出し、活物質の配向比と定義する。 The orientation ratio is measured by X-ray diffraction. The peaks of (110) and (004) diffraction are integrated by fitting the peaks of (110) and (004) diffraction of carbon by X-ray diffraction using asymmetric Pearson VII as a profile function. Each intensity is calculated. From the obtained integrated intensity, a ratio expressed by (110) diffraction integrated intensity / (004) diffraction integrated intensity is calculated and defined as the orientation ratio of the active material.
ここでのX線回折測定条件は次の通りである。なお、「2θ」は回折角を示す。
・ターゲット:Cu(Kα線)グラファイトモノクロメーター
・スリット :発散スリット=1度、受光スリット=0.1mm、散乱スリット=1度
・測定範囲及びステップ角度/計測時間:
(110)面:76.5度≦2θ≦78.5度 0.01度/3秒
(004)面:53.5度≦2θ≦56.0度 0.01度/3秒
The X-ray diffraction measurement conditions here are as follows. “2θ” indicates a diffraction angle.
・ Target: Cu (Kα ray) graphite monochromator ・ Slit: Divergence slit = 1 degree, Receiving slit = 0.1 mm, Scattering slit = 1 degree ・ Measurement range and step angle / measurement time:
(110) plane: 76.5 degrees ≦ 2θ ≦ 78.5 degrees 0.01 degrees / 3 seconds (004) plane: 53.5 degrees ≦ 2θ ≦ 56.0 degrees 0.01 degrees / 3 seconds
[[アスペクト比]]
本発明のリチウムイオン二次電池の負極活物質として用いられる黒鉛質炭素粒子のアスペクト比は、理論上1以上であり、上限としては、通常10以下、好ましくは8以下、更に好ましくは5以下である。上限を上回ると、極板化時にスジ引きや、均一な塗布面が得られず、高電流密度充放電特性が低下する場合がある。
[[aspect ratio]]
The aspect ratio of the graphitic carbon particles used as the negative electrode active material of the lithium ion secondary battery of the present invention is theoretically 1 or more, and the upper limit is usually 10 or less, preferably 8 or less, more preferably 5 or less. is there. If the upper limit is exceeded, streaking or a uniform coated surface may not be obtained during electrode plate formation, and the high current density charge / discharge characteristics may deteriorate.
なお、アスペクト比は、3次元的に観察した時の粒子の最長となる径A、それと直交する最短となる径Bとしたとき、A/Bであらわされる。粒子の観察は、拡大観察ができる走査型電子顕微鏡で行う。厚さ50μm以下の金属の端面に固定した任意の50個の粒子を選択し、それぞれについて試料が固定されているステージを回転、傾斜させて、A、Bを測定し、A/Bの平均値を求める。 The aspect ratio is expressed as A / B when the diameter is the longest diameter A when observed three-dimensionally and the shortest diameter B is perpendicular to the diameter. The particles are observed with a scanning electron microscope capable of magnifying observation. Select 50 arbitrary particles fixed to the end face of a metal with a thickness of 50 μm or less, rotate and tilt the stage on which the sample is fixed, measure A and B, and average A / B Ask for.
負極活物質の、少なくとも1種の好ましい物性値として、ラマンR値、X線面間隔、結晶子サイズ、真密度、円形度、タップ密度、BET比表面積については、以下のとおりである。
(1)ラマンR値
前記のような測定方法および測定条件によりアルゴンイオンレーザーラマンスペクトル法を用いて測定した炭素質材料のラマンR値は、通常0.01以上、好ましくは0.03以上、より好ましくは0.1以上、上限としては1.5以下、好ましくは1.2以下、より好ましくは1.0以下、更に好ましくは0.5以下の範囲である。ラマンR値がこの範囲を下回ると、粒子表面の結晶性が高くなり過ぎて、充放電に伴ってLiが層間に入るサイトが少なくなる場合がある。すなわち、充電受入性が低下する場合がある。また、集電体に塗布した後、プレスすることによって負極を高密度化した場合に電極板と平行方向に結晶が配向しやすくなり、負荷特性の低下を招く場合がある。一方、この範囲を上回ると、粒子表面の結晶性が低下し、非水系電解液との反応性が増し、効率の低下やガス発生の増加を招く場合がある。
As the at least one preferred physical property value of the negative electrode active material, the Raman R value, the X-ray plane spacing, the crystallite size, the true density, the circularity, the tap density, and the BET specific surface area are as follows.
(1) Raman R value The Raman R value of the carbonaceous material measured using the argon ion laser Raman spectrum method by the measurement method and measurement conditions as described above is usually 0.01 or more, preferably 0.03 or more. Preferably it is 0.1 or more, and the upper limit is 1.5 or less, preferably 1.2 or less, more preferably 1.0 or less, and still more preferably 0.5 or less. When the Raman R value is below this range, the crystallinity of the particle surface becomes too high, and there are cases where the number of sites where Li enters between layers decreases with charge / discharge. That is, charge acceptance may be reduced. In addition, when the negative electrode is densified by applying it to the current collector and then pressing it, the crystals are likely to be oriented in a direction parallel to the electrode plate, which may lead to a decrease in load characteristics. On the other hand, if it exceeds this range, the crystallinity of the particle surface will decrease, the reactivity with the non-aqueous electrolyte will increase, and the efficiency and gas generation may increase.
(2)X線面間隔、結晶子サイズ
炭素質材料は、学振法によるX線回折で求めた格子面(002面)のd値(層間距離)が、0.335nm以上であることが好ましく、上限は、通常0.36nm以下、好ましくは0.35nm以下、更に好ましくは0.345nm以下であることが望まれる。
また、学振法によるX線回折で求めた炭素質材料の結晶子サイズ(Lc)は、1nm以上であることが好ましく、中でも1.5nm以上であることが更に好ましい。
(2) X-ray plane spacing, crystallite size The carbonaceous material preferably has a d-value (interlayer distance) of the lattice plane (002 plane) determined by X-ray diffraction by the Gakushin method of 0.335 nm or more. The upper limit is usually 0.36 nm or less, preferably 0.35 nm or less, and more preferably 0.345 nm or less.
The crystallite size (Lc) of the carbonaceous material determined by X-ray diffraction by the Gakushin method is preferably 1 nm or more, and more preferably 1.5 nm or more.
(3)真密度
炭素質材料の真密度は、通常1.4g/cm3以上、好ましくは1.6g/cm3以上、より好ましくは1.8g/cm3以上、更に好ましくは2.0g/cm3以上であり、上限としては2.26g/cm3以下である。上限は黒鉛の理論値である。この範囲を下回ると炭素の結晶性が低すぎて初期不可逆容量が増大する場合がある。
(3) True density The true density of the carbonaceous material is usually 1.4 g / cm 3 or more, preferably 1.6 g / cm 3 or more, more preferably 1.8 g / cm 3 or more, and still more preferably 2.0 g / cm 3. cm 3 and the upper limit is 2.26 g / cm 3 or less. The upper limit is the theoretical value of graphite. Below this range, the crystallinity of the carbon is too low and the initial irreversible capacity may increase.
(4)円形度
炭素質材料の球形の程度として円形度を用い、その粒径が3〜40μmの範囲にある粒子の円形度が0.1以上が好ましく、特に好ましくは0.5以上、より好ましくは0.8以上、更に好ましくは0.85以上、最も好ましくは0.9以上である。円形度が大きいと高電流密度充放電特性が向上するため好ましい。
(4) Circularity The circularity is used as the degree of sphericity of the carbonaceous material, and the circularity of particles having a particle size in the range of 3 to 40 μm is preferably 0.1 or more, particularly preferably 0.5 or more. Preferably it is 0.8 or more, more preferably 0.85 or more, and most preferably 0.9 or more. High circularity is preferable because high current density charge / discharge characteristics are improved.
(5)タップ密度
炭素質材料のタップ密度は、通常0.1g/cm3以上、好ましくは0.5g/cm3以上、更に好ましくは0.7g/cm3以上、特に好ましくは1.0g/cm3以上であることが望まれる。また、上限は、好ましくは2g/cm3以下、更に好ましくは1.8g/cm3以下、特に好ましくは1.6g/cm3以下である。タップ密度がこの範囲を下回ると、負極として用いた場合に充填密度が上がり難く、高容量の電池を得ることができない場合がある。一方、この範囲を上回ると、電極中の粒子間の空隙が少なくなり過ぎ、粒子間の導電性が確保され難くなり、好ましい電池特性が得られにくい場合がある。
(5) Tap density The tap density of the carbonaceous material is usually 0.1 g / cm 3 or more, preferably 0.5 g / cm 3 or more, more preferably 0.7 g / cm 3 or more, and particularly preferably 1.0 g / cm 3. It is desired to be cm 3 or more. The upper limit is preferably 2 g / cm 3 or less, more preferably 1.8 g / cm 3 or less, and particularly preferably 1.6 g / cm 3 or less. When the tap density is below this range, the packing density is difficult to increase when used as a negative electrode, and a high-capacity battery may not be obtained. On the other hand, if it exceeds this range, there are too few voids between the particles in the electrode, it becomes difficult to ensure conductivity between the particles, and it may be difficult to obtain preferable battery characteristics.
(6)BET比表面積
BET法を用いて測定した本発明の炭素質材料の比表面積は、通常0.1m2/g以上、好ましくは0.7m2/g以上、より好ましくは1.0m2/g以上、更に好ましくは1.5m2/g以上である。上限は、通常100m2/g以下、好ましくは25m2/g以下、より好ましくは15m2/g以下、更に好ましくは10m2/g以下である。比表面積の値がこの範囲を下回ると、負極材料として用いた場合の充電時にリチウムの受け入れ性が悪くなり易く、リチウムが電極表面で析出し易くなる場合がある。一方、この範囲を上回ると、負極材料として用いた時に非水系電解液との反応性が増加し、ガス発生が多くなり易く、好ましい電池が得られにくい場合がある。
(6) BET specific surface area The specific surface area of the carbonaceous material of the present invention measured using the BET method is usually 0.1 m 2 / g or more, preferably 0.7 m 2 / g or more, more preferably 1.0 m 2. / G or more, more preferably 1.5 m 2 / g or more. The upper limit is usually 100 m 2 / g or less, preferably 25 m 2 / g or less, more preferably 15 m 2 / g or less, and still more preferably 10 m 2 / g or less. When the value of the specific surface area is less than this range, the acceptability of lithium is likely to deteriorate during charging when used as a negative electrode material, and lithium may easily precipitate on the electrode surface. On the other hand, if it exceeds this range, when used as a negative electrode material, the reactivity with the non-aqueous electrolyte increases, gas generation tends to increase, and a preferable battery may be difficult to obtain.
本発明のリチウム二次電池は、性質の異なる2種類以上の負極活物質を含有していれば、負極活物質の種類は特に限定はない。ただし、面間隔(d002)、結晶子サイズ(Lc)、配向比、極板配向比等のX線回折で測定される性質;ラマンR値、ラマン半値幅等のラマンスペクトル関連の性質;灰分については、上記数値は炭素質物を前提にしているものであるため、上記数値の差は炭素質物に適用される。一方、メジアン径、モード径、Z等の粒度分布関連の性質;BET比表面積;細孔容積、全細孔容積、平均細孔径等の水銀ポロシメトリーで測定される性質;真密度;円形度;タップ密度;アスペクト比については、上記数値は、炭素質物に限らず、負極活物質として用いられ得る物質全てに適応されるものであり、上記数値の差は物質全てに適用される。ただ、好ましくは、かかる2種類の性質を持つ物質が炭素質物であることである。その場合、上記数値は炭素質物の性質を表す値とみなし、その性質が異なる2種類以上の炭素質物を負極活物質として用いることが好ましい。 If the lithium secondary battery of this invention contains the 2 or more types of negative electrode active material from which a property differs, the kind of negative electrode active material will not be specifically limited. However, properties measured by X-ray diffraction such as face spacing (d002), crystallite size (Lc), orientation ratio, electrode plate orientation ratio, etc .; Raman spectrum related properties such as Raman R value, Raman half width, etc .; Since the above figures are based on the assumption of carbonaceous materials, the difference between the above values applies to carbonaceous materials. On the other hand, particle size distribution-related properties such as median diameter, mode diameter, and Z; BET specific surface area; properties measured by mercury porosimetry such as pore volume, total pore volume, and average pore size; true density; circularity; Regarding the tap density; aspect ratio, the above numerical values are not limited to carbonaceous materials, but are applicable to all materials that can be used as the negative electrode active material, and the above difference in numerical values applies to all materials. However, preferably, the substance having such two kinds of properties is a carbonaceous material. In that case, the above numerical values are regarded as values representing the properties of the carbonaceous material, and two or more types of carbonaceous materials having different properties are preferably used as the negative electrode active material.
[2種類以上の負極活物質の混合方法]
2種類以上の負極活物質を混合する際に、用いる装置に特に制限はないが、例えば、V型混合機、W型混合機、容器可変型混合機、混練機、ドラムミキサー、せん断ミキサー等が挙げられる。
[Method of mixing two or more negative electrode active materials]
When mixing two or more types of negative electrode active materials, there is no particular limitation on the apparatus to be used. For example, a V-type mixer, a W-type mixer, a container variable type mixer, a kneader, a drum mixer, a shear mixer, etc. Can be mentioned.
[電極作製]
負極の製造は、常法によればよい。例えば、負極活物質に、バインダー、溶媒、必要に応じて、増粘剤、導電材、充填材等を加えてスラリーとし、これを集電体に塗布、乾燥した後にプレスすることによって形成することができる。電池の電解液注液工程直前の段階での片面あたりの負極活物質層の厚さは通常15μm以上、好ましくは20μm以上、より好ましくは30μm以上であり、上限は、通常150μm以下、好ましくは120μm以下、より好ましくは100μm以下である。この範囲を上回ると、非水系電解液が集電体界面付近まで浸透しにくいため、高電流密度充放電特性が低下する場合がある。またこの範囲を下回ると、負極活物質に対する集電体の体積比が増加し、電池の容量が減少する場合がある。また、負極活物質をロール成形してシート電極としたり、圧縮成形によりペレット電極としても良い。
[Electrode production]
The negative electrode may be manufactured by a conventional method. For example, it is formed by adding a binder, a solvent, and, if necessary, a thickener, a conductive material, a filler, etc. to a negative electrode active material to form a slurry, which is applied to a current collector, dried and then pressed. Can do. The thickness of the negative electrode active material layer per side at the stage immediately before the step of injecting the electrolyte into the battery is usually 15 μm or more, preferably 20 μm or more, more preferably 30 μm or more, and the upper limit is usually 150 μm or less, preferably 120 μm. Hereinafter, it is more preferably 100 μm or less. If it exceeds this range, the non-aqueous electrolyte solution hardly penetrates to the vicinity of the current collector interface, and thus the high current density charge / discharge characteristics may deteriorate. On the other hand, below this range, the volume ratio of the current collector to the negative electrode active material increases, and the battery capacity may decrease. Further, the negative electrode active material may be roll-formed to form a sheet electrode, or may be formed into a pellet electrode by compression molding.
[[集電体]]
負極活物質を保持させる集電体としては、公知のものを任意に用いることができる。負極の集電体としては、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等の金属材料が挙げられ、中でも加工し易さとコストの点から特に銅が好ましい。集電体の形状は、集電体が金属材料の場合は、例えば金属箔、金属円柱、金属コイル、金属板、金属薄膜、エキスパンドメタル、パンチメタル、発泡メタル等が挙げられる。中でも好ましくは金属薄膜、より好ましくは銅箔であり、更に好ましくは圧延法による圧延銅箔と、電解法による電解銅箔があり、どちらも集電体として用いることができる。銅箔の厚さが25μmよりも薄い場合、純銅よりも強度の高い銅合金(リン青銅、チタン銅、コルソン合金、Cu−Cr−Zr合金等)を用いることができる。
[[Current collector]]
As the current collector for holding the negative electrode active material, a known material can be arbitrarily used. Examples of the current collector for the negative electrode include metal materials such as copper, nickel, stainless steel, and nickel-plated steel. Of these, copper is particularly preferable from the viewpoint of ease of processing and cost. When the current collector is a metal material, examples of the shape of the current collector include metal foil, metal cylinder, metal coil, metal plate, metal thin film, expanded metal, punch metal, and foam metal. Among them, a metal thin film is preferable, a copper foil is more preferable, and a rolled copper foil by a rolling method and an electrolytic copper foil by an electrolytic method are more preferable, and both can be used as a current collector. When the thickness of the copper foil is less than 25 μm, a copper alloy (phosphor bronze, titanium copper, Corson alloy, Cu—Cr—Zr alloy, etc.) having higher strength than pure copper can be used.
圧延法により作製した銅箔からなる集電体は、銅結晶が圧延方向に並んでいるため、負極を密に丸めても、鋭角に丸めても割れにくく、小型の円筒状電池に好適に用いることができる。電解銅箔は、例えば、銅イオンが溶解された非水系電解液中に金属製のドラムを浸漬し、これを回転させながら電流を流すことにより、ドラムの表面に銅を析出させ、これを剥離して得られるものである。上記の圧延銅箔の表面に、電解法により銅を析出させていても良い。銅箔の片面又は両面には、粗面化処理や表面処理(例えば、厚さが数nm〜1μm程度までのクロメート処理、Ti等の下地処理等)がなされていても良い。 A current collector made of a copper foil produced by a rolling method is suitable for use in a small cylindrical battery because the copper crystals are arranged in the rolling direction so that the negative electrode is hard to crack even if it is rounded sharply or rounded at an acute angle. be able to. Electrolytic copper foil, for example, immerses a metal drum in a non-aqueous electrolyte solution in which copper ions are dissolved, and causes the copper to precipitate on the surface of the drum by flowing current while rotating it. Is obtained. Copper may be deposited on the surface of the rolled copper foil by an electrolytic method. One side or both sides of the copper foil may be subjected to a roughening treatment or a surface treatment (for example, a chromate treatment having a thickness of about several nm to 1 μm, a base treatment such as Ti).
また、集電体基板には、更に次のような物性が望まれる。
(1)平均表面粗さ(Ra)
JISB0601−1994に記載の方法で規定される集電体基板の活物質薄膜形成面の平均表面粗さ(Ra)は、特に制限されないが、通常0.01μm以上、好ましくは0.03μm以上、通常1.5μm以下、好ましくは1.3μm以下、特に好ましくは1.0μm以下である。集電体基板の平均表面粗さ(Ra)を上記した下限と上限の間の範囲内とすることにより、良好な充放電サイクル特性が期待できる。上記下限値以上とすることにより、活物質薄膜との界面の面積が大きくなり、活物質薄膜との密着性が向上する。平均表面粗さ(Ra)の上限値は特に制限されるものではないが、平均表面粗さ(Ra)が1.5μmを超えるものは電池として実用的な厚みの箔としては一般に入手しにくいため、1.5μm以下のものが好ましい。
Further, the following physical properties are desired for the current collector substrate.
(1) Average surface roughness (Ra)
The average surface roughness (Ra) of the active material thin film forming surface of the current collector substrate defined by the method described in JIS B0601-1994 is not particularly limited, but is usually 0.01 μm or more, preferably 0.03 μm or more, usually It is 1.5 μm or less, preferably 1.3 μm or less, particularly preferably 1.0 μm or less. By setting the average surface roughness (Ra) of the current collector substrate within the range between the lower limit and the upper limit described above, good charge / discharge cycle characteristics can be expected. By setting it to the above lower limit or more, the area of the interface with the active material thin film is increased, and the adhesion with the active material thin film is improved. The upper limit of the average surface roughness (Ra) is not particularly limited, but those having an average surface roughness (Ra) exceeding 1.5 μm are generally difficult to obtain as foils having a practical thickness as a battery. 1.5 μm or less is preferable.
(2)引張強度
集電体基板の引張強度は、特に制限されないが、通常50N/mm2以上、好ましくは100N/mm2以上、更に好ましくは150N/mm2以上、である。引張強度とは、試験片が破断に至るまでに要した最大引張力を、試験片の断面積で割ったものである。本発明における引張強度は、伸び率と同様な装置及び方法で測定される。引張強度が高い集電体基板であれば、充電・放電に伴う活物質薄膜の膨張・収縮による集電体基板の亀裂を抑制することができ、良好なサイクル特性を得ることができる。
(2) Tensile Tensile strength strength collector substrate is not particularly limited, normally 50 N / mm 2 or more, preferably 100 N / mm 2 or more, more preferably 150 N / mm 2 or more. The tensile strength is obtained by dividing the maximum tensile force required until the test piece breaks by the cross-sectional area of the test piece. The tensile strength in the present invention is measured by the same apparatus and method as the elongation rate. If the current collector substrate has a high tensile strength, cracking of the current collector substrate due to expansion / contraction of the active material thin film accompanying charging / discharging can be suppressed, and good cycle characteristics can be obtained.
(3)0.2%耐力
集電体基板の0.2%耐力は、特に制限されないが、通常30N/mm2以上、好ましくは100N/mm2以上、特に好ましくは150N/mm2以上である。0.2%耐力とは、0.2%の塑性(永久)歪みを与えるに必要な負荷の大きさであり、この大きさの負荷を加えた後に除荷しても0.2%変形している事を意味している。本発明における0.2%耐力は、伸び率と同様な装置及び方法で測定される。0.2%耐力が高い集電体基板であれば、充電・放電に伴う活物質薄膜の膨張・収縮による集電体基板の塑性変形を抑制することができ、良好なサイクル特性を得ることができる。金属薄膜の厚さは任意であるが、通常1μm以上、好ましくは3μm以上、より好ましくは5μm以上である。また、上限は、通常1mm以下、好ましくは100μm以下、より好ましくは30μm以下である。1μmより薄くなると強度が低下するため塗布が困難となる場合がある。100μmより厚くなると捲回等で所望の電極の形に変形させることが困難になる場合がある。また、金属薄膜は、メッシュ状でもよい。
(3) 0.2% proof stress of 0.2% proof stress current collector substrate is not particularly limited, normally 30 N / mm 2 or more, preferably 100 N / mm 2 or more, particularly preferably 150 N / mm 2 or more . The 0.2% proof stress is the magnitude of the load necessary to give a plastic (permanent) strain of 0.2%. It means that The 0.2% proof stress in the present invention is measured by the same apparatus and method as the elongation rate. If the current collector substrate has a high 0.2% proof stress, plastic deformation of the current collector substrate due to expansion / contraction of the active material thin film accompanying charging / discharging can be suppressed, and good cycle characteristics can be obtained. it can. Although the thickness of a metal thin film is arbitrary, it is 1 micrometer or more normally, Preferably it is 3 micrometers or more, More preferably, it is 5 micrometers or more. Moreover, an upper limit is 1 mm or less normally, Preferably it is 100 micrometers or less, More preferably, it is 30 micrometers or less. If the thickness is less than 1 μm, the strength may be reduced, and application may be difficult. If it is thicker than 100 μm, it may be difficult to deform it into a desired electrode shape by winding or the like. The metal thin film may be mesh.
[[集電体と活物質層の厚さの比]]
集電体と活物質層の厚さの比は特には限定されないが、(非水系電解液注液直前の片面の活物質層の厚さ)/(集電体の厚さ)の値が、通常150以下、好ましくは20以下、より好ましくは10以下であり、下限は、通常0.1以上、好ましくは0.4以上、より好ましくは1以上の範囲である。この範囲を上回ると、高電流密度充放電時に集電体がジュール熱による発熱を生じる場合がある。この範囲を下回ると、負極活物質に対する集電体の体積比が増加し、電池の容量が減少する場合がある。
[[Ratio of current collector to active material layer thickness]]
The ratio of the thickness of the current collector to the active material layer is not particularly limited, but the value of (thickness of active material layer on one side just before non-aqueous electrolyte injection) / (thickness of current collector) is Usually, it is 150 or less, preferably 20 or less, more preferably 10 or less, and the lower limit is usually 0.1 or more, preferably 0.4 or more, more preferably 1 or more. Above this range, the current collector may generate heat due to Joule heat during high current density charge / discharge. Below this range, the volume ratio of the current collector to the negative electrode active material increases and the battery capacity may decrease.
[[電極密度]]
負極活物質の電極化した際の電極構造は特には限定されないが、集電体上に存在している活物質の密度は、好ましくは1g/cm3以上、より好ましくは1.2g/cm3以上、更に好ましくは1.3g/cm3以上であり、上限としては、通常2g/cm3以下、好ましくは1.9g/cm3以下、より好ましくは1.8g/cm3以下、更に好ましくは1.7g/cm3以下の範囲である。この範囲を上回ると活物質粒子が破壊され、初期不可逆容量の増加や、集電体/活物質界面付近への非水系電解液の浸透性が低下し、高電流密度充放電特性が低下する場合がある。また下回ると活物質間の導電性が低下し、電池抵抗が増大し、単位容積当たりの容量が低下する場合がある。
[[Electrode density]]
The electrode structure when the negative electrode active material is converted into an electrode is not particularly limited, but the density of the active material present on the current collector is preferably 1 g / cm 3 or more, more preferably 1.2 g / cm 3. More preferably, it is 1.3 g / cm 3 or more, and the upper limit is usually 2 g / cm 3 or less, preferably 1.9 g / cm 3 or less, more preferably 1.8 g / cm 3 or less, still more preferably The range is 1.7 g / cm 3 or less. If this range is exceeded, the active material particles are destroyed, the initial irreversible capacity increases, the permeability of the non-aqueous electrolyte near the current collector / active material interface decreases, and the high current density charge / discharge characteristics decrease. There is. On the other hand, if it is lower, the conductivity between the active materials is lowered, the battery resistance is increased, and the capacity per unit volume may be lowered.
[[バインダー]]
活物質を結着するバインダーとしては、非水系電解液や電極製造時に用いる溶媒に対して安定な材料であれば、特に制限されない。具体的には、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメチルメタクリレート、芳香族ポリアミド、セルロース、ニトロセルロース等の樹脂系高分子;SBR(スチレン・ブタジエンゴム)、イソプレンゴム、ブタジエンゴム、フッ素ゴム、NBR(アクリロニトリル・ブタジエンゴム)、エチレン・プロピレンゴム等のゴム状高分子;スチレン・ブタジエン・スチレンブロック共重合体及びその水素添加物;EPDM(エチレン・プロピレン・ジエン三元共重合体)、スチレン・エチレン・ブタジエン・スチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体及びその水素添加物等の熱可塑性エラストマー状高分子;シンジオタクチック−1,2−ポリブタジエン、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、プロピレン・α−オレフィン共重合体等の軟質樹脂状高分子;ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン、ポリテトラフルオロエチレン・エチレン共重合体等のフッ素系高分子;アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有する高分子組成物等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用しても良い。
[[binder]]
The binder for binding the active material is not particularly limited as long as it is a material that is stable with respect to the non-aqueous electrolyte solution and the solvent used during electrode production. Specifically, resin-based polymers such as polyethylene, polypropylene, polyethylene terephthalate, polymethyl methacrylate, aromatic polyamide, cellulose, nitrocellulose; SBR (styrene / butadiene rubber), isoprene rubber, butadiene rubber, fluorine rubber, NBR ( Acrylonitrile / butadiene rubber), rubbery polymers such as ethylene / propylene rubber; styrene / butadiene / styrene block copolymers and hydrogenated products thereof; EPDM (ethylene / propylene / diene terpolymer), styrene / ethylene / Thermoplastic elastomeric polymers such as butadiene / styrene copolymer, styrene / isoprene / styrene block copolymer and hydrogenated products thereof; syndiotactic-1,2-polybutadiene, polyvinyl acetate, ethylene / vinegar Soft resinous polymers such as vinyl copolymers and propylene / α-olefin copolymers; fluorinated polymers such as polyvinylidene fluoride, polytetrafluoroethylene, fluorinated polyvinylidene fluoride, and polytetrafluoroethylene / ethylene copolymers Molecule: a polymer composition having ion conductivity of alkali metal ions (particularly lithium ions), and the like. These may be used individually by 1 type, or may use 2 or more types together by arbitrary combinations and a ratio.
スラリーを形成するための溶媒としては、活物質、バインダー、必要に応じて使用される増粘剤及び導電材を、溶解又は分散することが可能な溶媒であれば、その種類に特に制限はなく、水系溶媒と有機系溶媒のどちらを用いても良い。水系溶媒の例としては水、アルコールと水との混合溶媒等が挙げられ、有機系溶媒の例としてはN−メチルピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N,N−ジメチルアミノプロピルアミン、テトラヒドロフラン(THF)、トルエン、アセトン、ジメチルエーテル、ジメチルアセトアミド、ヘキサメリルホスファルアミド、ジメチルスルフォキシド、ベンゼン、キシレン、キノリン、ピリジン、メチルナフタレン、ヘキサン等が挙げられる。特に水系溶媒を用いる場合、上述の増粘剤に併せて分散剤等を加え、SBR等のラテックスを用いてスラリー化する。なお、これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用しても良い。 The solvent for forming the slurry is not particularly limited as long as it is a solvent that can dissolve or disperse the active material, binder, thickener and conductive material used as necessary. Either an aqueous solvent or an organic solvent may be used. Examples of the aqueous solvent include water, a mixed solvent of alcohol and water, and examples of the organic solvent include N-methylpyrrolidone (NMP), dimethylformamide, dimethylacetamide, methyl ethyl ketone, cyclohexanone, methyl acetate, acrylic acid. Methyl, diethyltriamine, N, N-dimethylaminopropylamine, tetrahydrofuran (THF), toluene, acetone, dimethyl ether, dimethylacetamide, hexamerylphosphalamide, dimethyl sulfoxide, benzene, xylene, quinoline, pyridine, methylnaphthalene, Hexane etc. are mentioned. In particular, when an aqueous solvent is used, a dispersant or the like is added in addition to the above-described thickener, and a slurry is formed using a latex such as SBR. In addition, these may be used individually by 1 type, or may use 2 or more types together by arbitrary combinations and a ratio.
活物質に対するバインダーの割合は、通常0.1質量%以上、好ましくは0.5質量%以上、より好ましくは0.6質量%以上であり、上限としては、通常20質量%以下、好ましくは15質量%以下、より好ましくは10質量%以下、更に好ましくは8質量%以下の範囲である。この範囲を上回るとバインダー量が電池容量に寄与しないバインダー割合が増加して、電池容量が低下する場合がある。また下回ると、負極電極の強度低下を招き、電池作製工程上好ましくない場合がある。特に、SBRに代表されるゴム状高分子を主要成分に含有する場合には、活物質に対するバインダーの割合は、通常0.1質量%以上、好ましくは0.5質量%以上、より好ましくは0.6質量%以上であり、上限としては、通常5質量%以下、好ましくは3質量%以下、より好ましくは2質量%以下の範囲である。また、ポリフッ化ビニリデンに代表されるフッ素系高分子を主要成分に含有する場合には活物質に対する割合は、通常1質量%以上、好ましくは2質量%以上、より好ましくは3質量%以上であり、上限としては、通常15質量%以下、好ましくは10質量%以下、より好ましくは8質量%以下の範囲である。 The ratio of the binder to the active material is usually 0.1% by mass or more, preferably 0.5% by mass or more, more preferably 0.6% by mass or more, and the upper limit is usually 20% by mass or less, preferably 15%. It is in the range of not more than mass%, more preferably not more than 10 mass%, still more preferably not more than 8 mass%. If it exceeds this range, the binder ratio in which the binder amount does not contribute to the battery capacity may increase, and the battery capacity may decrease. On the other hand, if it is lower, the strength of the negative electrode is lowered, which may be undesirable in the battery production process. In particular, when the main component contains a rubbery polymer typified by SBR, the ratio of the binder to the active material is usually 0.1% by mass or more, preferably 0.5% by mass or more, more preferably 0%. The upper limit is usually 5% by mass or less, preferably 3% by mass or less, and more preferably 2% by mass or less. Further, when the main component contains a fluorine-based polymer typified by polyvinylidene fluoride, the ratio to the active material is usually 1% by mass or more, preferably 2% by mass or more, more preferably 3% by mass or more. The upper limit is usually 15% by mass or less, preferably 10% by mass or less, more preferably 8% by mass or less.
増粘剤は、通常、スラリーの粘度を調製するために使用される。増粘剤としては、特に制限はないが、具体的には、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン及びこれらの塩等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用しても良い。更に増粘剤を添加する場合には、活物質に対する増粘剤の割合は、通常0.1質量%以上、好ましくは0.5%以上、より好ましくは0.6%以上であり、上限としては、通常5質量%以下、好ましくは3質量%以下、より好ましくは2質量%以下の範囲である。この範囲を下回ると、著しく塗布性が低下する場合がある。上回ると、負極活物質層に占める活物質の割合が低下し、電池の容量が低下する問題や負極活物質間の抵抗が増大する問題が生じる場合がある。 A thickener is usually used to adjust the viscosity of the slurry. The thickener is not particularly limited, and specific examples include carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, casein, and salts thereof. These may be used individually by 1 type, or may use 2 or more types together by arbitrary combinations and a ratio. When a thickener is further added, the ratio of the thickener to the active material is usually 0.1% by mass or more, preferably 0.5% or more, more preferably 0.6% or more. Is usually 5% by mass or less, preferably 3% by mass or less, more preferably 2% by mass or less. Below this range, applicability may be significantly reduced. If it exceeds the upper limit, the ratio of the active material in the negative electrode active material layer may be reduced, resulting in a problem that the capacity of the battery is reduced and a problem that the resistance between the negative electrode active materials is increased.
[[極板配向比]]
極板配向比は、通常0.001以上、好ましくは0.005以上、より好ましくは0.01以上、上限は理論値である0.67以下である。この範囲を下回ると、高密度充放電特性が低下する場合がある。
[[Plate orientation ratio]]
The electrode plate orientation ratio is usually 0.001 or more, preferably 0.005 or more, more preferably 0.01 or more, and the upper limit is 0.67 or less, which is a theoretical value. Below this range, the high-density charge / discharge characteristics may deteriorate.
極板配向比の測定は以下のとおりである。目的密度にプレス後の負極電極について、X線回折により電極の活物質配向比を測定する。具体的手法は特に制限されないが、標準的な方法としては、X線回折により炭素の(110)回折と(004)回折のピークを、プロファイル関数として非対称ピアソンVIIを用いてフィッティングすることによりピーク分離を行ない、(110)回折と(004)回折のピークの積分強度を各々算出する。得られた積分強度から、(110)回折積分強度/(004)回折積分強度で表わされる比を算出する。該測定で算出される電極の活物質配向比を極板配向比と定義する。 The measurement of the electrode plate orientation ratio is as follows. About the negative electrode after pressing to the target density, the active material orientation ratio of the electrode is measured by X-ray diffraction. The specific method is not particularly limited, but as a standard method, peak separation is performed by fitting the peaks of (110) and (004) diffraction of carbon by X-ray diffraction using asymmetric Pearson VII as a profile function. The integrated intensities of the peaks of (110) diffraction and (004) diffraction are calculated. From the obtained integrated intensity, a ratio represented by (110) diffraction integrated intensity / (004) diffraction integrated intensity is calculated. The electrode active material orientation ratio calculated by this measurement is defined as the electrode plate orientation ratio.
ここでのX線回折測定条件は次の通りである。なお、「2θ」は回折角を示す。
・ターゲット: Cu(Kα線)グラファイトモノクロメーター
・スリット : 発散スリット=1度、受光スリット=0.1mm、散乱スリット=1度・測定範囲、及び、ステップ角度/計測時間:
(110)面 : 76.5度≦2θ≦78.5度 0.01度/3秒
(004)面 : 53.5度≦2θ≦56.0度 0.01度/3秒
・試料調製 : 硝子板に0.1mm厚さの両面テープで電極を固定
The X-ray diffraction measurement conditions here are as follows. “2θ” indicates a diffraction angle.
-Target: Cu (Kα ray) graphite monochromator-Slit: Divergence slit = 1 degree, Receiving slit = 0.1 mm, Scattering slit = 1 degree-Measurement range and step angle / measurement time:
(110) plane: 76.5 degrees ≦ 2θ ≦ 78.5 degrees 0.01 degrees / 3 seconds (004) plane: 53.5 degrees ≦ 2θ ≦ 56.0 degrees 0.01 degrees / 3 seconds Sample preparation: Fix the electrode to the glass plate with double-sided tape with a thickness of 0.1 mm
[[インピーダンス]]
放電状態から公称容量の60%まで充電した時の負極の抵抗が500Ω以下が好ましく、特に好ましくは100Ω以下、より好ましくは50Ω以下、及び/又は二重層容量が1×10-6F以上が好ましく、特に好ましくは1×10-5F以上、より好ましくは3×10-5F以上である。この範囲であると出力特性が良く好ましい。
[[Impedance]]
The resistance of the negative electrode when charged to 60% of the nominal capacity from the discharged state is preferably 500Ω or less, particularly preferably 100Ω or less, more preferably 50Ω or less, and / or the double layer capacity is preferably 1 × 10 −6 F or more. Particularly preferably, it is 1 × 10 −5 F or more, more preferably 3 × 10 −5 F or more. Within this range, the output characteristics are good and preferable.
負極の抵抗及び二重層容量は、次の手順で測定する。測定するリチウムイオン二次電池は、公称容量を5時間で充電できる電流値にて充電した後に、20分間充放電をしない状態を維持し、次に公称容量を1時間で放電できる電流値で放電したときの容量が公称容量の80%以上あるものを用いる。前述の放電状態のリチウムイオン二次電池について公称容量を5時間で充電できる電流値にて公称容量の60%まで充電し、直ちにリチウムイオン二次電池をアルゴンガス雰囲気下のグローブボックス内に移す。ここで該リチウムイオン二次電池を負極が放電又はショートしない状態ですばやく解体して取り出し、両面塗布電極であれば、片面の電極活物質を他面の電極活物質を傷つけずに剥離し、負極電極を12.5mmφに2枚打ち抜き、セパレータを介して活物質面がずれないよう対向させる。電池に使用されていた非水系電解液60μLをセパレータと両負極間に滴下して密着し、外気と触れない状態を保持して、両負極の集電体に導電をとり、交流インピーダンス法を実施する。測定は温度25℃で、10-2〜105Hzの周波数帯で複素インピーダンス測定を行ない、求められたコール・コール・プロットの負極抵抗成分の円弧を半円で近似して表面抵抗(Rct)と、二重層容量(Cdl)を求める。 The resistance and double layer capacity of the negative electrode are measured by the following procedure. The lithium-ion secondary battery to be measured is charged at a current value that can be charged for 5 hours in a nominal capacity, then maintained in a state where it is not charged / discharged for 20 minutes, and then discharged at a current value that can be discharged in 1 hour for a nominal capacity. The capacity when the capacity is 80% or more of the nominal capacity is used. About the lithium ion secondary battery of the above-mentioned discharge state, it charges to 60% of a nominal capacity with the electric current value which can charge a nominal capacity in 5 hours, Immediately transfers a lithium ion secondary battery in the glove box under argon gas atmosphere. Here, the lithium ion secondary battery is quickly disassembled and taken out in a state where the negative electrode is not discharged or short-circuited, and if it is a double-sided coated electrode, the electrode active material on one side is peeled off without damaging the electrode active material on the other side. Two electrodes are punched to 12.5 mmφ, and are opposed to each other so that the active material surface does not shift through a separator. 60μL of non-aqueous electrolyte used in the battery was dropped between the separator and both negative electrodes, and kept in close contact with the outside air, and the current collector of both negative electrodes was made conductive and the AC impedance method was carried out. To do. The measurement is performed at a temperature of 25 ° C., and a complex impedance measurement is performed in a frequency band of 10 −2 to 10 5 Hz. And double layer capacity | capacitance (Cdl) is calculated | required.
<正極>
以下に本発明の非水系電解液二次電池に使用される正極について説明する。
[正極活物質]
以下に正極に使用される正極活物質について述べる。
[[正極活物質の組成]]
正極活物質としては、電気化学的にリチウムイオンを吸蔵・放出可能なものであれば特に制限はない。リチウムと少なくとも1種の遷移金属を含有する物質が好ましく、例えば、リチウム遷移金属複合酸化物、リチウム含有遷移金属リン酸化合物が挙げられる。
<Positive electrode>
The positive electrode used for the non-aqueous electrolyte secondary battery of the present invention will be described below.
[Positive electrode active material]
The positive electrode active material used for the positive electrode is described below.
[[Composition of positive electrode active material]]
The positive electrode active material is not particularly limited as long as it can electrochemically occlude and release lithium ions. A substance containing lithium and at least one transition metal is preferable, and examples thereof include a lithium transition metal composite oxide and a lithium-containing transition metal phosphate compound.
リチウム遷移金属複合酸化物の遷移金属としてはV、Ti、Cr、Mn、Fe、Co、Ni、Cu等が好ましく、具体例としては、LiCoO2等のリチウム・コバルト複合酸化物、LiNiO2等のリチウム・ニッケル複合酸化物、LiMnO2、LiMn2O4、Li2MnO3等のリチウム・マンガン複合酸化物、これらのリチウム遷移金属複合酸化物の主体となる遷移金属原子の一部をAl、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr、Si等の他の金属で置換したもの等が挙げられる。置換されたものの具体例としては、例えば、LiNi0.5Mn0.5O2、LiNi0.85Co0.10Al0.05O2、LiNi0.33Co0.33Mn0.33O2、LiMn1.8Al0.2O4、LiMn1.5Ni0.5O4等が挙げられる。 The transition metal of the lithium transition metal composite oxide is preferably V, Ti, Cr, Mn, Fe, Co, Ni, Cu or the like, and specific examples include lithium / cobalt composite oxide such as LiCoO 2 or LiNiO 2 . Lithium / nickel composite oxide, LiMnO 2 , LiMn 2 O 4 , Li 2 MnO 3 and other lithium / manganese composite oxides, Al, Ti , V, Cr, Mn, Fe, Co, Li, Ni, Cu, Zn, Mg, Ga, Zr, and those substituted with other metals such as Si. Specific examples of the substituted ones include, for example, LiNi 0.5 Mn 0.5 O 2 , LiNi 0.85 Co 0.10 Al 0.05 O 2 , LiNi 0.33 Co 0.33 Mn 0.33 O 2 , LiMn 1.8 Al 0.2 O 4 , LiMn 1.5 Ni 0.5 O 4, etc. Is mentioned.
リチウム含有遷移金属リン酸化合物の遷移金属としては、V、Ti、Cr、Mn、Fe、Co、Ni、Cu等が好ましく、具体例としては、例えば、LiFePO4、Li3Fe2(PO4)3、LiFeP2O7等のリン酸鉄類、LiCoPO4等のリン酸コバルト類、これらのリチウム遷移金属リン酸化合物の主体となる遷移金属原子の一部をAl、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr、Nb、Si等の他の金属で置換したもの等が挙げられる。 As the transition metal of the lithium-containing transition metal phosphate compound, V, Ti, Cr, Mn, Fe, Co, Ni, Cu and the like are preferable, and specific examples include, for example, LiFePO 4 , Li 3 Fe 2 (PO 4 ). 3 , iron phosphates such as LiFeP 2 O 7 , cobalt phosphates such as LiCoPO 4 , and some of the transition metal atoms that are the main components of these lithium transition metal phosphate compounds are Al, Ti, V, Cr, Mn , Fe, Co, Li, Ni, Cu, Zn, Mg, Ga, Zr, Nb, Si and the like substituted with other metals.
[[表面被覆]]
また、これら正極活物質の表面に、正極活物質を構成する物質とは異なる組成の物質が付着したものを用いることもできる。表面付着物質としては酸化アルミニウム、酸化ケイ素、酸化チタン、酸化ジルコニウム、酸化マグネシウム、酸化カルシウム、酸化ホウ素、酸化アンチモン、酸化ビスマス等の酸化物、硫酸リチウム、硫酸ナトリウム、硫酸カリウム、硫酸マグネシウム、硫酸カルシウム、硫酸アルミニウム等の硫酸塩、炭酸リチウム、炭酸カルシウム、炭酸マグネシウム等の炭酸塩、炭素等が挙げられる。これら表面付着物質は、例えば、溶媒に溶解又は懸濁させて正極活物質に含浸添加、乾燥する方法、表面付着物質前駆体を溶媒に溶解又は懸濁させて正極活物質に含浸添加後、加熱等により反応させる方法、正極活物質前駆体に添加して同時に焼成する方法等により正極活物質表面に付着させることができる。なお、炭素を付着させる場合には、炭素質を、例えば活性炭などの形で後から機械的に付着させる方法も用いることができる。
[[Surface coating]]
In addition, a material in which a material having a composition different from that of the material constituting the positive electrode active material is attached to the surface of the positive electrode active material can be used. Surface adhering substances include aluminum oxide, silicon oxide, titanium oxide, zirconium oxide, magnesium oxide, calcium oxide, boron oxide, antimony oxide, bismuth oxide, lithium sulfate, sodium sulfate, potassium sulfate, magnesium sulfate, calcium sulfate And sulfates such as aluminum sulfate, carbonates such as lithium carbonate, calcium carbonate, and magnesium carbonate, and carbon. These surface adhering materials are, for example, dissolved or suspended in a solvent and impregnated and added to the positive electrode active material, and dried. It can be made to adhere to the positive electrode active material surface by the method of making it react by the method etc., the method of adding to a positive electrode active material precursor, and baking simultaneously. In addition, when attaching carbon, the method of attaching carbonaceous material later, for example in the form of activated carbon etc. can also be used.
表面付着物質の量としては、正極活物質に対して質量で、下限として好ましくは0.1ppm以上、より好ましくは1ppm以上、更に好ましくは10ppm以上、上限として好ましくは20質量%以下、より好ましくは10質量%以下、更に好ましくは5質量%以下で用いられる。表面付着物質により、正極活物質表面での非水系電解液の酸化反応を抑制することができ、電池寿命を向上させることができるが、その付着量が少なすぎる場合その効果は十分に発現せず、多すぎる場合には、リチウムイオンの出入りを阻害するため抵抗が増加する場合がある。 The amount of the surface adhering substance is by mass with respect to the positive electrode active material, and is preferably 0.1 ppm or more, more preferably 1 ppm or more, still more preferably 10 ppm or more, and the upper limit is preferably 20% by mass or less, more preferably as a lower limit. It is used at 10 mass% or less, more preferably 5 mass% or less. The surface adhering substance can suppress the oxidation reaction of the non-aqueous electrolyte solution on the surface of the positive electrode active material, and can improve the battery life. However, when the amount of the adhering quantity is too small, the effect is not sufficiently exhibited. If the amount is too large, the resistance may increase in order to inhibit the entry and exit of lithium ions.
[[正極活物質の物性]]
[[[形状]]]
本発明における正極活物質粒子の形状は、従来用いられるような、塊状、多面体状、球状、楕円球状、板状、針状、柱状等が用いられるが、中でも一次粒子が凝集して、二次粒子を形成して成り、その二次粒子の形状が球状ないし楕円球状であるものが好ましい。通常、電気化学素子はその充放電に伴い、電極中の活物質が膨張収縮をするため、そのストレスによる活物質の破壊や導電パス切れ等の劣化がおきやすい。そのため一次粒子のみの単一粒子活物質であるよりも、一次粒子が凝集して、二次粒子を形成したものである方が膨張収縮のストレスを緩和して、劣化を防ぐため好ましい。また、板状等軸配向性の粒子であるよりも球状ないし楕円球状の粒子の方が、電極の成形時の配向が少ないため、充放電時の電極の膨張収縮も少なく、また電極を作成する際の導電材との混合においても、均一に混合されやすいため好ましい。
[[Physical properties of positive electrode active material]]
[[[shape]]]
As the shape of the positive electrode active material particles in the present invention, a lump shape, a polyhedron shape, a sphere shape, an oval sphere shape, a plate shape, a needle shape, a column shape, etc., which are conventionally used, are used. It is preferably formed by forming particles, and the shape of the secondary particles is spherical or elliptical. In general, an electrochemical element expands and contracts as the active material in the electrode expands and contracts as it is charged and discharged. Therefore, the active material is easily damaged due to the stress or the conductive path is broken. Therefore, it is preferable that the primary particles are aggregated to form secondary particles, rather than a single particle active material having only primary particles, in order to relieve expansion and contraction stress and prevent deterioration. In addition, spherical or oval spherical particles are less oriented during molding of the electrode than plate-like equiaxed particles, so that the expansion and contraction of the electrode during charging and discharging is small, and the electrode is produced. The mixing with the conductive material is also preferable because it is easy to mix uniformly.
[[[タップ密度]]]
正極活物質のタップ密度は、通常1.3g/cm3以上、好ましくは1.5g/cm3以上、更に好ましくは1.6g/cm3以上、最も好ましくは1.7g/cm3以上である。正極活物質のタップ密度が上記下限を下回ると正極活物質層形成時に、必要な分散媒量が増加すると共に、導電材や結着剤の必要量が増加し、正極活物質層への正極活物質の充填率が制約され、電池容量が制約される場合がある。タップ密度の高い金属複合酸化物粉体を用いることにより、高密度の正極活物質層を形成することができる。タップ密度は一般に大きいほど好ましく特に上限はないが、大きすぎると、正極活物質層内における非水系電解液を媒体としたリチウムイオンの拡散が律速となり、負荷特性が低下しやすくなる場合があるため、通常2.5g/cm3以下、好ましくは2.4g/cm3以下である。正極活物質のタップ密度も、負極活物質の項に記載した方法と同一の方法で測定され定義される。
[[[Tap density]]]
The tap density of the positive electrode active material is usually 1.3 g / cm 3 or more, preferably 1.5 g / cm 3 or more, more preferably 1.6 g / cm 3 or more, and most preferably 1.7 g / cm 3 or more. . If the tap density of the positive electrode active material is lower than the lower limit, the amount of the required dispersion medium increases when the positive electrode active material layer is formed, and the necessary amount of the conductive material and the binder increases. In some cases, the filling rate of the substance is limited, and the battery capacity is limited. By using a metal composite oxide powder having a high tap density, a high-density positive electrode active material layer can be formed. In general, the tap density is preferably as large as possible, but there is no particular upper limit. However, if the tap density is too large, diffusion of lithium ions using the non-aqueous electrolyte solution as a medium in the positive electrode active material layer becomes rate-determining, and load characteristics may be likely to deteriorate. Usually, it is 2.5 g / cm 3 or less, preferably 2.4 g / cm 3 or less. The tap density of the positive electrode active material is also measured and defined by the same method as that described in the section of the negative electrode active material.
[[[メジアン径d50]]]
粒子のメジアン径d50(一次粒子が凝集して二次粒子を形成している場合には二次粒子径)は、通常0.1μm以上、好ましくは0.5μm以上、より好ましくは1μm以上、最も好ましくは3μm以上であり、上限は、通常20μm以下、好ましくは18μm以下、より好ましくは16μm以下、最も好ましくは15μm以下である。上記下限を下回ると、高タップ密度品が得られなくなる場合があり、上限を超えると粒子内のリチウムの拡散に時間がかかるため、電池性能の低下をきたしたり、電池の正極作成すなわち活物質と導電材やバインダー等を溶媒でスラリー化し、薄膜状に塗布する際に、スジを引く等の問題を生ずる場合がある。ここで、異なるメジアン径d50をもつ正極活物質を2種類以上混合することで、正極作成時の充填性を更に向上させることもできる。
[[[Median diameter d 50 ]]]
The median diameter d 50 of the particles (secondary particle diameter when primary particles are aggregated to form secondary particles) is usually 0.1 μm or more, preferably 0.5 μm or more, more preferably 1 μm or more, Most preferably, it is 3 μm or more, and the upper limit is usually 20 μm or less, preferably 18 μm or less, more preferably 16 μm or less, and most preferably 15 μm or less. If the lower limit is not reached, a high tap density product may not be obtained, and if the upper limit is exceeded, it takes time to diffuse lithium in the particles. When a conductive material, a binder, or the like is slurried with a solvent and applied as a thin film, problems such as streaking may occur. Here, by mixing two or more types of positive electrode active materials having different median diameters d 50 , the filling property at the time of forming the positive electrode can be further improved.
なお、本発明におけるメジアン径d50は、公知のレーザー回折/散乱式粒度分布測定装置によって測定される。粒度分布計としてHORIBA社製LA−920を用いる場合、測定の際に用いる分散媒として、0.1質量%ヘキサメタリン酸ナトリウム水溶液を用い、5分間の超音波分散後に測定屈折率1.24を設定して測定される。 The median diameter d 50 in the present invention is measured by a known laser diffraction / scattering particle size distribution measuring device. When LA-920 manufactured by HORIBA is used as a particle size distribution meter, a 0.1% by mass sodium hexametaphosphate aqueous solution is used as a dispersion medium for measurement, and a measurement refractive index of 1.24 is set after ultrasonic dispersion for 5 minutes. Measured.
[[[平均一次粒子径]]]
一次粒子が凝集して二次粒子を形成している場合には、正極活物質の平均一次粒子径としては、通常0.01μm以上、好ましくは0.05μm以上、更に好ましくは0.08μm以上、最も好ましくは0.1μm以上で、上限は、通常3μm以下、好ましくは2μm以下、更に好ましくは1μm以下、最も好ましくは0.6μm以下である。上記上限を超えると球状の二次粒子を形成し難く、粉体充填性に悪影響を及ぼしたり、BET比表面積が大きく低下するために、出力特性等の電池性能が低下する可能性が高くなる場合がある。逆に、上記下限を下回ると、通常、結晶が未発達であるために充放電の可逆性が劣る等の問題を生ずる場合がある。
[[[Average primary particle size]]]
When primary particles are aggregated to form secondary particles, the average primary particle diameter of the positive electrode active material is usually 0.01 μm or more, preferably 0.05 μm or more, more preferably 0.08 μm or more, Most preferably, it is 0.1 μm or more, and the upper limit is usually 3 μm or less, preferably 2 μm or less, more preferably 1 μm or less, and most preferably 0.6 μm or less. When the above upper limit is exceeded, it is difficult to form spherical secondary particles, which adversely affects the powder filling property, or the BET specific surface area is greatly reduced, so that there is a high possibility that the battery performance such as output characteristics will deteriorate. There is. On the other hand, when the value falls below the lower limit, there is a case where problems such as inferior reversibility of charge / discharge are usually caused because crystals are not developed.
なお、一次粒子径は、走査電子顕微鏡(SEM)を用いた観察により測定される。具体的には、10000倍の倍率の写真で、水平方向の直線に対する一次粒子の左右の境界線による切片の最長の値を、任意の50個の一次粒子について求め、平均値をとることにより求められる。 The primary particle diameter is measured by observation using a scanning electron microscope (SEM). Specifically, in a photograph at a magnification of 10000 times, the longest value of the intercept by the left and right boundary lines of the primary particles with respect to the horizontal straight line is obtained for any 50 primary particles and obtained by taking the average value. It is done.
[[[BET比表面積]]]
本発明の二次電池に供する正極活物質のBET比表面積は、通常0.2m2/g以上、好ましくは0.3m2/g以上、更に好ましくは0.4m2/g以上で、上限は4.0m2/g以下、好ましくは2.5m2/g以下、更に好ましくは1.5m2/g以下である。BET比表面積がこの範囲よりも小さいと電池性能が低下しやすく、大きいとタップ密度が上がりにくくなり、正極活物質形成時の塗布性に問題が発生しやすい場合がある。
[[[BET specific surface area]]]
The BET specific surface area of the positive electrode active material used for the secondary battery of the present invention is usually 0.2 m 2 / g or more, preferably 0.3 m 2 / g or more, more preferably 0.4 m 2 / g or more, and the upper limit is It is 4.0 m 2 / g or less, preferably 2.5 m 2 / g or less, more preferably 1.5 m 2 / g or less. If the BET specific surface area is smaller than this range, the battery performance tends to be lowered, and if the BET specific surface area is larger, the tap density is difficult to increase, and there may be a problem in applicability when forming the positive electrode active material.
BET比表面積は、表面積計(例えば、大倉理研製全自動表面積測定装置)を用い、試料に対して窒素流通下150℃で30分間、予備乾燥を行なった後、大気圧に対する窒素の相対圧の値が0.3となるように正確に調整した窒素ヘリウム混合ガスを用い、ガス流動法による窒素吸着BET1点法によって測定した値で定義される。 The BET specific surface area is determined by using a surface area meter (for example, a fully automated surface area measuring device manufactured by Okura Riken), preliminarily drying the sample for 30 minutes at 150 ° C. under nitrogen flow, and then measuring the relative pressure of nitrogen relative to atmospheric pressure. It is defined by a value measured by a nitrogen adsorption BET one-point method using a gas flow method using a nitrogen-helium mixed gas that is accurately adjusted to have a value of 0.3.
[[[正極活物質の製造法]]]
正極活物質の製造法としては、無機化合物の製造法として一般的な方法が用いられる。特に球状ないし楕円球状の活物質を作成するには種々の方法が考えられるが、例えば、遷移金属硝酸塩、遷移金属硫酸塩等の遷移金属原料物質と、必要に応じ他の元素の原料物質を水等の溶媒中に溶解ないし粉砕分散して、攪拌をしながらpHを調節して球状の前駆体を作成回収し、これを必要に応じて乾燥した後、LiOH、Li2CO3、LiNO3等のLi源を加えて高温で焼成して活物質を得る方法、遷移金属硝酸塩、遷移金属硫酸塩、遷移金属水酸化物、遷移金属酸化物等の遷移金属原料物質と、必要に応じ他の元素の原料物質を水等の溶媒中に溶解ないし粉砕分散して、それをスプレードライヤー等で乾燥成型して球状ないし楕円球状の前駆体とし、これにLiOH、Li2CO3、LiNO3等のLi源を加えて高温で焼成して活物質を得る方法、また、遷移金属硝酸塩、遷移金属硫酸塩、遷移金属水酸化物、遷移金属酸化物等の遷移金属原料物質と、LiOH、Li2CO3、LiNO3等のLi源と、必要に応じ他の元素の原料物質とを水等の溶媒中に溶解ないし粉砕分散して、それをスプレードライヤー等で乾燥成型して球状ないし楕円球状の前駆体とし、これを高温で焼成して活物質を得る方法等が挙げられる。
[[[Production method of positive electrode active material]]]
As a manufacturing method of the positive electrode active material, a general method is used as a manufacturing method of the inorganic compound. In particular, various methods are conceivable for producing a spherical or elliptical spherical active material. For example, transition metal raw materials such as transition metal nitrates and transition metal sulfates and, if necessary, raw materials of other elements are mixed with water. It is dissolved or pulverized and dispersed in a solvent such as, and the pH is adjusted while stirring to produce and recover a spherical precursor, which is dried as necessary, and then LiOH, Li 2 CO 3 , LiNO 3, etc. A method of obtaining an active material by adding a Li source of the above, a transition metal source material such as transition metal nitrate, transition metal sulfate, transition metal hydroxide, transition metal oxide, and other elements as required The raw material is dissolved or pulverized and dispersed in a solvent such as water, and is then dried and molded with a spray dryer or the like to obtain a spherical or elliptical precursor, and LiOH, Li 2 CO 3 , LiNO 3 and other Li Add the source at high temperature A method of obtaining an active material by firing, a transition metal source material such as transition metal nitrate, transition metal sulfate, transition metal hydroxide, transition metal oxide, and LiOH such as LiOH, Li 2 CO 3 , and LiNO 3 Dissolve or pulverize the source and other elemental raw materials as necessary in a solvent such as water, and dry-mold them with a spray drier or the like to obtain a spherical or elliptical precursor, which is heated at a high temperature. Examples thereof include a method for obtaining an active material by firing.
[[正極の構成]]
以下に、本発明に使用される正極の構成について述べる。
[[[電極構造と作製法]]]
本発明のリチウムイオン二次電池用正極は、正極活物質と結着剤とを含有する正極活物質層を、集電体上に形成して作製される。正極活物質を用いる正極の製造は、常法により行うことができる。すなわち、正極活物質と結着剤、並びに必要に応じて導電材及び増粘剤等を乾式で混合してシート状にしたものを正極集電体に圧着するか、又はこれらの材料を液体媒体に溶解又は分散させてスラリーとして、これを正極集電体に塗布し、乾燥することにより、正極活物質層を集電体上に形成させることにより正極を得ることができる。正極活物質はその2種類以上を事前に混合して用いてもよいし、正極作成時に同時に加えることによって混合されてもよい。
[[Composition of positive electrode]]
Below, the structure of the positive electrode used for this invention is described.
[[[Electrode structure and fabrication method]]]
The positive electrode for a lithium ion secondary battery of the present invention is produced by forming a positive electrode active material layer containing a positive electrode active material and a binder on a current collector. Manufacture of the positive electrode using a positive electrode active material can be performed by a conventional method. That is, a positive electrode active material and a binder, and if necessary, a conductive material and a thickener mixed in a dry form are pressure-bonded to a positive electrode current collector, or these materials are liquid media A positive electrode can be obtained by forming a positive electrode active material layer on the current collector by applying it to a positive electrode current collector and drying it as a slurry by dissolving or dispersing in a slurry. Two or more types of positive electrode active materials may be mixed in advance and used, or may be mixed by adding them simultaneously when forming the positive electrode.
本発明のリチウムイオン二次電池の正極に用いられる正極活物質の、正極活物質層中の含有量は、好ましくは80質量%以上、より好ましくは82質量%以上、特に好ましくは84質量%以上である。また上限は、好ましくは95質量%以下、より好ましくは93質量%以下である。正極活物質層中の正極活物質の含有量が低いと電気容量が不十分となる場合がある。逆に含有量が高すぎると正極の強度が不足する場合がある。 The content of the positive electrode active material used in the positive electrode of the lithium ion secondary battery of the present invention in the positive electrode active material layer is preferably 80% by mass or more, more preferably 82% by mass or more, and particularly preferably 84% by mass or more. It is. Moreover, an upper limit becomes like this. Preferably it is 95 mass% or less, More preferably, it is 93 mass% or less. If the content of the positive electrode active material in the positive electrode active material layer is low, the electric capacity may be insufficient. Conversely, if the content is too high, the strength of the positive electrode may be insufficient.
[[[導電材]]]
導電材としては、公知の導電材を任意に用いることができる。具体例としては、銅、ニッケル等の金属材料;天然黒鉛、人造黒鉛等の黒鉛(グラファイト);アセチレンブラック等のカーボンブラック;ニードルコークス等の無定形炭素等の炭素材料等が挙げられる。なお、これらは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
[[[Conductive material]]]
A known conductive material can be arbitrarily used as the conductive material. Specific examples include metal materials such as copper and nickel; graphite such as natural graphite and artificial graphite (graphite); carbon black such as acetylene black; and carbon materials such as amorphous carbon such as needle coke. In addition, these may be used individually by 1 type and may use 2 or more types together by arbitrary combinations and a ratio.
導電材は、正極活物質層中に、通常0.01質量%以上、好ましくは0.1質量%以上、より好ましくは1質量%以上であり、また上限は、通常50質量%以下、好ましくは30質量%以下、より好ましくは15質量%以下含有するように用いられる。含有量がこの範囲よりも低いと導電性が不十分となる場合がある。逆に、含有量がこの範囲よりも高いと電池容量が低下する場合がある。 The conductive material is usually 0.01% by mass or more, preferably 0.1% by mass or more, more preferably 1% by mass or more in the positive electrode active material layer, and the upper limit is usually 50% by mass or less, preferably It is used so as to contain 30% by mass or less, more preferably 15% by mass or less. If the content is lower than this range, the conductivity may be insufficient. Conversely, if the content is higher than this range, the battery capacity may decrease.
[[[結着剤]]]
正極活物質層の製造に用いる結着剤としては、特に限定されず、塗布法の場合は、電極製造時に用いる液体媒体に対して溶解又は分散される材料であれば良いが、具体例としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメチルメタクリレート、芳香族ポリアミド、セルロース、ニトロセルロース等の樹脂系高分子;SBR(スチレン・ブタジエンゴム)、NBR(アクリロニトリル・ブタジエンゴム)、フッ素ゴム、イソプレンゴム、ブタジエンゴム、エチレン・プロピレンゴム等のゴム状高分子;スチレン・ブタジエン・スチレンブロック共重合体又はその水素添加物、EPDM(エチレン・プロピレン・ジエン三元共重合体)、スチレン・エチレン・ブタジエン・エチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体又はその水素添加物等の熱可塑性エラストマー状高分子;シンジオタクチック−1,2−ポリブタジエン、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、プロピレン・α−オレフィン共重合体等の軟質樹脂状高分子;ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン、ポリテトラフルオロエチレン・エチレン共重合体等のフッ素系高分子;アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有する高分子組成物等が挙げられる。なお、これらの物質は、1種を単独で用いても良く、2種以上を任意の組み合わせ及び比率で併用しても良い。
[[[Binder]]]
The binder used in the production of the positive electrode active material layer is not particularly limited, and in the case of a coating method, any material that can be dissolved or dispersed in the liquid medium used in electrode production may be used. , Polyethylene, polypropylene, polyethylene terephthalate, polymethyl methacrylate, aromatic polyamide, cellulose, nitrocellulose and other resin polymers; SBR (styrene butadiene rubber), NBR (acrylonitrile butadiene rubber), fluorine rubber, isoprene rubber, butadiene Rubber, ethylene-propylene rubber and other rubbery polymers; styrene / butadiene / styrene block copolymers or hydrogenated products thereof, EPDM (ethylene / propylene / diene terpolymer), styrene / ethylene / butadiene / ethylene copolymer Polymer, styrene / isoprene Thermoplastic elastomeric polymers such as styrene block copolymers or hydrogenated products thereof; syndiotactic-1,2-polybutadiene, polyvinyl acetate, ethylene / vinyl acetate copolymers, propylene / α-olefin copolymers, etc. Soft polymer such as polyvinylidene fluoride (PVdF), polytetrafluoroethylene, fluorinated polyvinylidene fluoride, polytetrafluoroethylene / ethylene copolymer, etc .; alkali metal ions (especially lithium ions) Examples thereof include a polymer composition having ion conductivity. In addition, these substances may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and ratios.
正極活物質層中の結着剤の割合は、通常0.1質量%以上、好ましくは1質量%以上、更に好ましくは3質量%以上であり、上限は通常80質量%以下、好ましくは60質量%以下、更に好ましくは40質量%以下、最も好ましくは10質量%以下である。結着剤の割合が低すぎると、正極活物質を十分保持できずに正極の機械的強度が不足し、サイクル特性等の電池性能を悪化させてしまう場合がある。一方で、高すぎると、電池容量や導電性の低下につながる場合がある。 The ratio of the binder in the positive electrode active material layer is usually 0.1% by mass or more, preferably 1% by mass or more, more preferably 3% by mass or more, and the upper limit is usually 80% by mass or less, preferably 60% by mass. % Or less, more preferably 40% by mass or less, and most preferably 10% by mass or less. When the ratio of the binder is too low, the positive electrode active material cannot be sufficiently retained and the positive electrode has insufficient mechanical strength, which may deteriorate battery performance such as cycle characteristics. On the other hand, if it is too high, battery capacity and conductivity may be reduced.
[[[液体媒体]]]
スラリーを形成するための液体媒体としては、正極活物質、導電材、結着剤、並びに必要に応じて使用される増粘剤を溶解又は分散することが可能な溶媒であれば、その種類に特に制限はなく、水系溶媒と有機系溶媒のどちらを用いても良い。
[[[Liquid medium]]]
The liquid medium for forming the slurry may be any type of solvent that can dissolve or disperse the positive electrode active material, the conductive material, the binder, and the thickener used as necessary. There is no particular limitation, and either an aqueous solvent or an organic solvent may be used.
水系媒体としては、例えば、水、アルコールと水との混合媒等が挙げられる。有機系媒体としては、例えば、ヘキサン等の脂肪族炭化水素類;ベンゼン、トルエン、キシレン、メチルナフタレン等の芳香族炭化水素類;キノリン、ピリジン等の複素環化合物;アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類;酢酸メチル、アクリル酸メチル等のエステル類;ジエチレントリアミン、N,N−ジメチルアミノプロピルアミン等のアミン類;ジエチルエーテル、プロピレンオキシド、テトラヒドロフラン(THF)等のエーテル類;N−メチルピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド等のアミド類;ヘキサメチルホスファルアミド、ジメチルスルフォキシド等の非プロトン性極性溶媒等を挙げることができる。 Examples of the aqueous medium include water, a mixed medium of alcohol and water, and the like. Examples of the organic medium include aliphatic hydrocarbons such as hexane; aromatic hydrocarbons such as benzene, toluene, xylene, and methylnaphthalene; heterocyclic compounds such as quinoline and pyridine; ketones such as acetone, methyl ethyl ketone, and cyclohexanone. Esters such as methyl acetate and methyl acrylate; amines such as diethylenetriamine and N, N-dimethylaminopropylamine; ethers such as diethyl ether, propylene oxide and tetrahydrofuran (THF); N-methylpyrrolidone (NMP) Amides such as dimethylformamide and dimethylacetamide; aprotic polar solvents such as hexamethylphosphalamide and dimethylsulfoxide.
[[[増粘剤]]]
特に水系媒体を用いる場合、増粘剤と、スチレン・ブタジエンゴム(SBR)等のラテックスを用いてスラリー化するのが好ましい。増粘剤は、通常、スラリーの粘度を調製するために使用される。増粘剤としては、特に制限はないが、具体的には、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン及びこれらの塩等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用しても良い。更に増粘剤を添加する場合には、活物質に対する増粘剤の割合は、通常0.1質量%以上、好ましくは0.5質量%以上、より好ましくは0.6質量%以上であり、また上限としては、通常5質量%以下、好ましくは3質量%以下、より好ましくは2質量%以下の範囲である。この範囲を下回ると、著しく塗布性が低下する場合がある。上回ると、正極活物質層に占める活物質の割合が低下し、電池の容量が低下する問題や正極活物質間の抵抗が増大する問題が生じる場合がある。
[[[Thickener]]]
In particular, when an aqueous medium is used, it is preferable to make a slurry using a thickener and a latex such as styrene-butadiene rubber (SBR). A thickener is usually used to adjust the viscosity of the slurry. The thickener is not particularly limited, and specific examples include carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, casein, and salts thereof. These may be used individually by 1 type, or may use 2 or more types together by arbitrary combinations and a ratio. When a thickener is further added, the ratio of the thickener to the active material is usually 0.1% by mass or more, preferably 0.5% by mass or more, more preferably 0.6% by mass or more, Moreover, as an upper limit, it is 5 mass% or less normally, Preferably it is 3 mass% or less, More preferably, it is the range of 2 mass% or less. Below this range, applicability may be significantly reduced. If it exceeds, the ratio of the active material in the positive electrode active material layer may decrease, and there may be a problem that the capacity of the battery decreases and a problem that the resistance between the positive electrode active materials increases.
[[[圧密化]]]
塗布、乾燥によって得られた正極活物質層は、正極活物質の充填密度を上げるために、ハンドプレス、ローラープレス等により圧密化することが好ましい。正極活物質層の密度は、下限として好ましくは1.5g/cm3以上、より好ましくは2g/cm3以上、更に好ましくは2.2g/cm3以上であり、上限としては、好ましくは3.5g/cm3以下、より好ましくは3g/cm3以下、更に好ましくは2.8g/cm3以下の範囲である。この範囲を上回ると集電体/活物質界面付近への非水系電解液の浸透性が低下し、特に高電流密度での充放電特性が低下する場合がある。また下回ると活物質間の導電性が低下し、電池抵抗が増大する場合がある。
[[[Consolidation]]]
The positive electrode active material layer obtained by coating and drying is preferably consolidated by a hand press, a roller press or the like in order to increase the packing density of the positive electrode active material. Density of the positive electrode active material layer, preferably as a lower limit 1.5 g / cm 3 or more, more preferably 2 g / cm 3 or more, still more preferably 2.2 g / cm 3 or more, the upper limit is preferably 3. The range is 5 g / cm 3 or less, more preferably 3 g / cm 3 or less, and still more preferably 2.8 g / cm 3 or less. If this range is exceeded, the permeability of the non-aqueous electrolyte solution to the vicinity of the current collector / active material interface may decrease, and the charge / discharge characteristics at a high current density may decrease. On the other hand, if it is lower, the conductivity between the active materials may be reduced, and the battery resistance may be increased.
[[[集電体]]]
正極集電体の材質としては特に制限は無く、公知のものを任意に用いることができる。具体例としては、アルミニウム、ステンレス鋼、ニッケルメッキ、チタン、タンタル等の金属材料;カーボンクロス、カーボンペーパー等の炭素材料が挙げられる。中でも金属材料、特にアルミニウムが好ましい。
[[[Current collector]]]
There is no restriction | limiting in particular as a material of a positive electrode electrical power collector, A well-known thing can be used arbitrarily. Specific examples include metal materials such as aluminum, stainless steel, nickel plating, titanium, and tantalum; and carbon materials such as carbon cloth and carbon paper. Of these, metal materials, particularly aluminum, are preferred.
集電体の形状としては、金属材料の場合、金属箔、金属円柱、金属コイル、金属板、金属薄膜、エキスパンドメタル、パンチメタル、発泡メタル等が挙げられ、炭素材料の場合、炭素板、炭素薄膜、炭素円柱等が挙げられる。これらのうち、金属薄膜が好ましい。なお、薄膜は適宜メッシュ状に形成してもよい。薄膜の厚さは任意であるが、通常1μm以上、好ましくは3μm以上、より好ましくは5μm以上であり、また上限は、通常1mm以下、好ましくは100μm以下、より好ましくは50μm以下である。薄膜がこの範囲よりも薄いと集電体として必要な強度が不足する場合がある。逆に、薄膜がこの範囲よりも厚いと取り扱い性が損なわれる場合がある。 Examples of the shape of the current collector include metal foil, metal cylinder, metal coil, metal plate, metal thin film, expanded metal, punch metal, and foam metal in the case of a metal material. Examples include thin films and carbon cylinders. Of these, metal thin films are preferred. In addition, you may form a thin film suitably in mesh shape. The thickness of the thin film is arbitrary, but is usually 1 μm or more, preferably 3 μm or more, more preferably 5 μm or more, and the upper limit is usually 1 mm or less, preferably 100 μm or less, more preferably 50 μm or less. If the thin film is thinner than this range, the strength required for the current collector may be insufficient. Conversely, if the thin film is thicker than this range, the handleability may be impaired.
集電体と正極活物質層の厚さの比は特には限定されないが、(非水系電解液注液直前の片面の活物質層の厚さ)/(集電体の厚さ)の値が20以下であることが好ましく、より好ましくは15以下、最も好ましくは10以下であり、下限は、0.5以上が好ましく、より好ましくは0.8以上、最も好ましくは1以上の範囲である。この範囲を上回ると、高電流密度充放電時に集電体がジュール熱による発熱を生じる場合がある。一方、この範囲を下回ると、正極活物質に対する集電体の体積比が増加し、電池の容量が減少する場合がある。 The ratio of the thickness of the current collector to the positive electrode active material layer is not particularly limited, but the value of (thickness of active material layer on one side immediately before non-aqueous electrolyte injection) / (thickness of current collector) is It is preferably 20 or less, more preferably 15 or less, most preferably 10 or less, and the lower limit is preferably 0.5 or more, more preferably 0.8 or more, and most preferably 1 or more. Above this range, the current collector may generate heat due to Joule heat during high current density charge / discharge. On the other hand, below this range, the volume ratio of the current collector to the positive electrode active material may increase, and the battery capacity may decrease.
[[[電極面積]]]
本発明の場合、高出力かつ高温時の安定性を高める観点から、正極活物質層の面積は、電池外装ケースの外表面積に対して大きくすることが好ましい。具体的には、二次電池の外装の表面積に対する前記正極の電極面積の総和が面積比で20倍以上とすることが好ましく、更に40倍以上とすることがより好ましい。外装ケースの外表面積とは、有底角型形状の場合には、端子の突起部分を除いた発電要素が充填されたケース部分の縦と横と厚さの寸法から計算で求める総面積をいう。有底円筒形状の場合には、端子の突起部分を除いた発電要素が充填されたケース部分を円筒として近似する幾何表面積である。正極の電極面積の総和とは、負極活物質を含む合材層に対向する正極合材層の幾何表面積であり、集電体箔を介して両面に正極合材層を形成してなる構造では、それぞれの面を別々に算出する面積の総和をいう。
[[[Electrode area]]]
In the case of the present invention, it is preferable that the area of the positive electrode active material layer is larger than the outer surface area of the battery outer case from the viewpoint of increasing the stability at high output and high temperature. Specifically, the total electrode area of the positive electrode with respect to the surface area of the exterior of the secondary battery is preferably 20 times or more, and more preferably 40 times or more. The outer surface area of the outer case is the total area obtained by calculation from the vertical, horizontal, and thickness dimensions of the case part filled with the power generation element excluding the protruding part of the terminal in the case of a bottomed square shape. . In the case of a bottomed cylindrical shape, the geometric surface area approximates the case portion filled with the power generation element excluding the protruding portion of the terminal as a cylinder. The total electrode area of the positive electrode is the geometric surface area of the positive electrode mixture layer facing the mixture layer containing the negative electrode active material, and in the structure in which the positive electrode mixture layer is formed on both sides via the current collector foil. , The sum of the areas where each surface is calculated separately.
[[[放電容量]]]
本発明の特定化合物を含有する非水系電解液を用いる場合、二次電池の1個の電池外装に収納される電池要素のもつ電気容量(電池を満充電状態から放電状態まで放電したときの電気容量)が、3アンペアーアワー(Ah)以上であると、周辺部材との接触面積が大きくなり、熱伝導性向上の観点で好ましい。そのため、正極板は、放電容量が満充電で、3アンペアーアワー(Ah)以上20Ah以下になるように設計することが好ましく、更に4Ah以上10Ah以下がより好ましい。3Ah未満では、大電流の取り出し時に電極反応抵抗による電圧低下が大きくなり電力効率が悪くなる場合がある。20Ah以上では、電極反応抵抗が小さくなり電力効率は良くなるが、パルス充放電時の電池内部発熱による温度分布が大きく、充放電繰り返しの耐久性が劣り、また、過充電や内部短絡等の異常時の急激な発熱に対して放熱効率も悪くなり、内圧が上昇してガス放出弁が作動する現象(弁作動)、電池内容物が外に激しく噴出する現象(破裂)に至る確率が上がる場合がある。
[[[Discharge capacity]]]
When the non-aqueous electrolyte containing the specific compound of the present invention is used, the electric capacity of the battery element housed in one battery case of the secondary battery (the electric capacity when the battery is discharged from the fully charged state to the discharged state) When the (capacity) is 3 ampere hours (Ah) or more, the contact area with the peripheral member is increased, which is preferable from the viewpoint of improving thermal conductivity. Therefore, the positive electrode plate is preferably designed so that the discharge capacity is fully charged and is 3 ampere hours (Ah) or more and 20 Ah or less, and more preferably 4 Ah or more and 10 Ah or less. If it is less than 3 Ah, the voltage drop due to the electrode reaction resistance becomes large when taking out a large current, and the power efficiency may deteriorate. Above 20 Ah, the electrode reaction resistance decreases and the power efficiency improves, but the temperature distribution due to the internal heat generation of the battery during pulse charge / discharge is large, the durability of repeated charge / discharge is inferior, and abnormalities such as overcharge and internal short circuit When the heat release efficiency deteriorates due to sudden heat generation at the time, the probability that the internal pressure rises and the gas release valve operates (valve operation), or the battery contents erupt violently (explosion) increases. There is.
[[[正極板の厚さ]]]
正極板の厚さは特に限定されるものではないが、高容量かつ高出力の観点から、芯材の金属箔厚さを差し引いた合材層の厚さは、集電体の片面に対して下限として、好ましくは10μm以上、より好ましくは20μm以上であり、上限としては、好ましくは200μm以下、より好ましくは100μm以下である。
[[[Positive electrode plate thickness]]]
The thickness of the positive electrode plate is not particularly limited, but from the viewpoint of high capacity and high output, the thickness of the composite layer obtained by subtracting the metal foil thickness of the core material is relative to one side of the current collector. The lower limit is preferably 10 μm or more, more preferably 20 μm or more, and the upper limit is preferably 200 μm or less, more preferably 100 μm or less.
<電池形状>
電池形状は特に限定されるものではないが、有底筒型形状、有底角型形状、薄型形状、シート形状、ペーパー形状が挙げられる。システムや機器に組み込まれる際に、容積効率を高めて収納性を上げるために、電池周辺に配置される周辺システムへの収まりを考慮した馬蹄形、櫛型形状等の異型のものであってもよい。電池内部の熱を効率よく外部に放出する観点から、比較的平らで大面積の面を少なくとも一つを有する角型形状が好ましい。
<Battery shape>
The battery shape is not particularly limited, and examples thereof include a bottomed cylindrical shape, a bottomed square shape, a thin shape, a sheet shape, and a paper shape. When incorporating into a system or device, in order to increase the volumetric efficiency and improve the storage capacity, it may be of a different shape such as a horseshoe shape or a comb shape considering the fit in the peripheral system arranged around the battery. . From the viewpoint of efficiently releasing the heat inside the battery to the outside, a rectangular shape having at least one surface that is relatively flat and has a large area is preferable.
有底筒型形状の電池では、充填される発電素子に対する外表面積が小さくなるので、充電や放電時に内部抵抗による発生するジュール発熱を効率よく外部に逃げる設計にすることが好ましい。また、熱伝導性の高い物質の充填比率を高め、内部での温度分布が小さくなるように設計することが好ましい。 In a battery having a bottomed cylindrical shape, since the outer surface area with respect to the power generating element to be filled becomes small, it is preferable to design so that Joule heat generated by the internal resistance at the time of charging and discharging efficiently escapes to the outside. Moreover, it is preferable to design so that the filling ratio of the substance having high thermal conductivity is increased and the temperature distribution inside is reduced.
有底角型形状では、一番大きい面の面積S(端子部を除く外形寸法の幅と高さとの積、単位cm2)の2倍と電池外形の厚さT(単位cm)との比率2S/Tの値が100以上であることが好ましく、200以上であることが更に好適である。最大面を大きくすることにより高出力かつ大容量の電池であってもサイクル性や高温保存等の特性を向上させると共に、異常発熱時の放熱効率を上げることができ、「弁作動」や「破裂」という危険な状態になることを抑制することができる。 In the bottomed square shape, the ratio between the area S of the largest surface (the product of the width and height of the outer dimensions excluding the terminal portion, unit cm 2 ) and the thickness T (unit cm) of the battery outer shape The 2S / T value is preferably 100 or more, and more preferably 200 or more. By increasing the maximum surface, it is possible to improve characteristics such as cycle performance and high-temperature storage even for high-power and large-capacity batteries, and increase heat dissipation efficiency during abnormal heat generation. Can be prevented from becoming a dangerous state.
<電池構成>
本発明の充放電可能なリチウムイオン二次電池は、リチウムイオンを吸蔵・放出可能な正極及び負極、本発明の上記非水系電解液、正極と負極の間に配設されるセパレータ、集電端子、及び外装ケース等によって少なくとも構成される。更に要すれば、電池の内部及び/又は電池の外部に保護素子を装着してもよい。
<Battery configuration>
The rechargeable lithium ion secondary battery of the present invention includes a positive electrode and a negative electrode capable of inserting and extracting lithium ions, the non-aqueous electrolyte of the present invention, a separator disposed between the positive electrode and the negative electrode, and a current collecting terminal , And an exterior case. Further, if necessary, a protective element may be mounted inside the battery and / or outside the battery.
[セパレータ]
本発明で用いられるセパレータは、両極間を電子的に絶縁する所定の機械的強度を有し、イオン透過度が大きく、かつ、正極と接する側における酸化性と負極側における還元性への耐性を兼ね備えるものであれば特に限定されるものではない。このような要求特性を有するセパレータの材質として、樹脂、無機物、ガラス繊維等が用いられる。前記樹脂としては、オレフィン系ポリマー、フッ素系ポリマー、セルロース系ポリマー、ポリイミド、ナイロン等が用いられる。具体的には、電解液に対して安定で、保液性の優れた材料の中から選ぶのが好ましく、ポリエチレン、ポリプロピレン等のポリオレフィンを原料とする多孔性シート又は不織布等を用いるのが好ましい。
[Separator]
The separator used in the present invention has a predetermined mechanical strength that electrically insulates both electrodes, has a high ion permeability, and has resistance to oxidation on the side in contact with the positive electrode and reduction on the negative electrode side. There is no particular limitation as long as it has both. As a material for the separator having such required characteristics, a resin, an inorganic material, glass fiber, or the like is used. As the resin, olefin polymer, fluorine polymer, cellulose polymer, polyimide, nylon and the like are used. Specifically, it is preferable to select from materials that are stable with respect to the electrolytic solution and have excellent liquid retention properties, and it is preferable to use a porous sheet or nonwoven fabric made of a polyolefin such as polyethylene or polypropylene.
前記無機物としては、アルミナや二酸化珪素等の酸化物類、窒化アルミニウムや窒化珪素等の窒化物類、硫酸バリウムや硫酸カルシウム等の硫酸塩類が用いられ、粒子形状又は繊維形状のものが用いられる。形態としては、不織布、織布、微多孔性フィルム等の薄膜形状のものが用いられる。薄膜形状では、孔径が0.01〜1μm、厚さが5〜50μmのものが好適に用いられる。前記の独立した薄膜形状以外に、樹脂製の結着剤を用いて前記無機物の粒子を含有する複合多孔層を正極及び/又は負極の表層に形成させてなるセパレータを用いることができる。例えば、正極の両面に90%粒径が1μm未満のアルミナ粒子を、フッ素樹脂を結着剤として、多孔層に形成させることが挙げられる。 Examples of the inorganic material include oxides such as alumina and silicon dioxide, nitrides such as aluminum nitride and silicon nitride, and sulfates such as barium sulfate and calcium sulfate, and those having a particle shape or fiber shape are used. As the form, a thin film shape such as a non-woven fabric, a woven fabric, or a microporous film is used. In the thin film shape, those having a pore diameter of 0.01 to 1 μm and a thickness of 5 to 50 μm are preferably used. In addition to the independent thin film shape, a separator formed by forming a composite porous layer containing the inorganic particles on the surface layer of the positive electrode and / or the negative electrode using a resin binder can be used. For example, alumina particles having a 90% particle diameter of less than 1 μm are formed on both surfaces of the positive electrode in a porous layer using a fluororesin as a binder.
[電極群]
電極群は、前述の正極板と負極板とを前述のセパレータを介してなる積層構造のもの、及び前述の正極板と負極板とを前述のセパレータを介して渦巻き状に捲回した構造のものの何れでもよい。
[Electrode group]
The electrode group has a laminated structure in which the positive electrode plate and the negative electrode plate are interposed via the separator, and a structure in which the positive electrode plate and the negative electrode plate are wound in a spiral shape via the separator. Either may be used.
電極群の体積が電池内容積に占める割合(以下、電極群占有率と称する)は、40%〜90%にすることが好ましく、50%〜80%にすることが更に好ましい。前記の電極群占有率が40%未満では、電池容量が小さくなり、また、90%以上では空隙スペースが少なく、電池が高温になることによって部材が膨張したり電解質の液成分の蒸気圧が高くなったりして内部圧力が上昇し、電池としての充放電繰り返し性能や高温保存等の諸特性を低下させたり、更には、内部圧力を外に逃がすガス放出弁が作動する場合がある。 The ratio of the volume of the electrode group to the battery internal volume (hereinafter referred to as electrode group occupancy) is preferably 40% to 90%, and more preferably 50% to 80%. If the electrode group occupancy is less than 40%, the battery capacity is small, and if it is 90% or more, the void space is small, the member expands when the battery becomes high temperature, and the vapor pressure of the liquid component of the electrolyte is high. As a result, the internal pressure rises, and various characteristics such as charge / discharge repetition performance and high-temperature storage as a battery are deteriorated. Further, a gas release valve that releases the internal pressure to the outside may operate.
[集電構造]
集電構造は特に限定されるものではないが、本発明の温度順応による出力回復をより効果的に実現するには、配線部分や接合部分の抵抗を低減する構造にする必要がある。こうした内部抵抗が小さい場合、本発明の非水系電解液と負極活物質とを併用した効果が特に良好に発揮される。
[Current collection structure]
The current collecting structure is not particularly limited, but in order to more effectively realize the output recovery by the temperature adaptation according to the present invention, it is necessary to have a structure that reduces the resistance of the wiring portion and the junction portion. When such an internal resistance is small, the effect of combining the non-aqueous electrolyte solution of the present invention and the negative electrode active material is exhibited particularly well.
電極群が前述の積層構造のものでは、各電極層の金属芯部分を束ねて端子に溶接して形成される構造が好適に用いられる。一枚の電極面積が大きくなる場合には、内部抵抗が大きくなるので、電極内に複数の端子を設けて抵抗を低減することも好適に用いられる。電極群が前述の捲回構造のものでは、正極及び負極にそれぞれ複数のリード構造を設け、端子に束ねることにより、内部抵抗を低くすることができる。 In the case where the electrode group has the laminated structure described above, a structure formed by bundling the metal core portions of the electrode layers and welding them to the terminals is preferably used. When the area of one electrode increases, the internal resistance increases. Therefore, it is also preferable to provide a plurality of terminals in the electrode to reduce the resistance. When the electrode group has the winding structure described above, the internal resistance can be lowered by providing a plurality of lead structures for the positive electrode and the negative electrode, respectively, and bundling the terminals.
前述の構造を最適化することにより、内部抵抗をできるだけ小さくすることができる。大電流で用いられる電池では、10kHz交流法で測定されるインピーダンス(以下、「直流抵抗成分」と略記する)を10ミリオーム(mΩ)以下にすることが好ましく、直流抵抗成分を5ミリオーム(mΩ)以下にすることがより好ましい。直流抵抗成分を0.1ミリオーム未満にすると高出力特性が向上するが、用いられる集電構造材の占める比率が増え、電池容量が減少する場合がある。 By optimizing the above structure, the internal resistance can be made as small as possible. In a battery used at a large current, the impedance measured by the 10 kHz AC method (hereinafter abbreviated as “DC resistance component”) is preferably 10 milliohms (mΩ) or less, and the DC resistance component is 5 milliohms (mΩ). It is more preferable to make it below. When the direct current resistance component is less than 0.1 milliohm, the high output characteristics are improved, but the ratio of the current collecting structure used increases and the battery capacity may decrease.
本発明に用いられる特定化合物を含有する非水系電解液は、電極活物質に対するリチウムの脱挿入に係わる反応抵抗の低減に効果があり、それがサイクル特性と低温出力発現の要因になっていると考えられる。しかし、通常の直流抵抗が大きな電池では、直流抵抗に阻害されて反応抵抗低減の効果を低温放電特性に100%反映できないことが分かった。直流抵抗成分の小さな電池を用いることでこれを改善し、本発明の非水系電解液の効果を充分に発揮できるようになる。 The non-aqueous electrolyte solution containing the specific compound used in the present invention is effective in reducing reaction resistance related to lithium desorption / insertion with respect to the electrode active material, which causes cycle characteristics and low temperature output. Conceivable. However, it has been found that a battery having a large direct current resistance is inhibited by the direct current resistance and the effect of reducing the reaction resistance cannot be reflected 100% on the low temperature discharge characteristics. This can be improved by using a battery having a small DC resistance component, and the effect of the non-aqueous electrolyte solution of the present invention can be sufficiently exhibited.
また、特定化合物を含有する非水系電解液の効果を引き出し、高い低温放電特性をもつ電池を作製するという観点からは、この要件と前述した二次電池の1個の電池外装に収納される電池要素のもつ電気容量(電池を満充電状態から放電状態まで放電したときの電気容量)が、3アンペアーアワー(Ah)以上である、という要件を同時に満たすことが特に好ましい。 Further, from the viewpoint of drawing out the effect of a non-aqueous electrolyte containing a specific compound and producing a battery having high low-temperature discharge characteristics, this requirement and the battery housed in one battery exterior of the secondary battery described above It is particularly preferable to satisfy the requirement that the electric capacity of the element (electric capacity when the battery is discharged from a fully charged state to a discharged state) is 3 ampere hours (Ah) or more at the same time.
[外装ケース]
外装ケースの材質は用いられる非水電解質に対して安定な物質であれば特に限定されるものではない。具体的には、ニッケルめっき鋼板、ステンレス、アルミニウム又はアルミニウム合金、マグネシウム合金等の金属類、又は、樹脂とアルミ箔との積層フィルム(ラミネートフィルム)が用いられる。軽量化の観点から、アルミニウム又はアルミニウム合金の金属、ラミネートフィルムが好適に用いられる。
[Exterior case]
The material of the outer case is not particularly limited as long as it is a substance that is stable with respect to the nonaqueous electrolyte used. Specifically, a nickel-plated steel plate, stainless steel, aluminum, an aluminum alloy, a metal such as a magnesium alloy, or a laminated film (laminate film) of a resin and an aluminum foil is used. From the viewpoint of weight reduction, an aluminum or aluminum alloy metal or a laminate film is preferably used.
前記金属類を用いる外装ケースでは、レーザー溶接、抵抗溶接、超音波溶接により金属同士を溶着して封止密閉構造とするもの、若しくは、樹脂製ガスケットを介して前記金属類を用いてかしめ構造とするものが挙げられる。 In the exterior case using the above metals, a laser-sealed, resistance-welded, ultrasonic welding is used to weld the metals together to form a sealed sealed structure, or a caulking structure using the above-mentioned metals via a resin gasket To do.
前記ラミネートフィルムを用いる外装ケースでは、樹脂層同士を熱融着することにより封止密閉構造とするもの等が挙げられる。シール性を上げるために、前記樹脂層の間にラミネートフィルムに用いられる樹脂と異なる樹脂を介在させてもよい。特に、集電端子を介して樹脂層を熱融着して密閉構造とする場合には、金属と樹脂との接合になるので、介在する樹脂として極性基を有する樹脂や極性基を導入した変成樹脂が好適に用いられる。 Examples of the outer case using the laminate film include those having a sealed and sealed structure by heat-sealing resin layers. In order to improve the sealing performance, a resin different from the resin used for the laminate film may be interposed between the resin layers. In particular, when a resin layer is heat-sealed through a current collecting terminal to form a sealed structure, a metal and a resin are joined, so that a resin having a polar group or a modified group having a polar group introduced as an intervening resin is used. Resins are preferably used.
[保護素子]
前述の保護素子として、異常発熱や過大電流が流れた時に抵抗が増大するPTC(Positive Temperature Coefficient)、温度ヒューズ、サーミスター、異常発熱時に電池内部圧力や内部温度の急激な上昇により回路に流れる電流を遮断する弁(電流遮断弁)等が挙げられる。前記保護素子は高電流の通常使用で作動しない条件のものを選択することが好ましく、高出力の観点から、保護素子がなくても異常発熱や熱暴走に至らない設計にすることがより好ましい。
[Protective element]
PTC (Positive Temperature Coefficient), thermal fuse, thermistor, which increases resistance when abnormal heat is generated or excessive current flows, the current flowing through the circuit due to a sudden rise in battery internal pressure or internal temperature during abnormal heat generation For example, a valve (current cutoff valve) that shuts off the current can be used. It is preferable to select a protective element that does not operate under normal use at a high current. From the viewpoint of high output, it is more preferable to design the protective element so as not to cause abnormal heat generation or thermal runaway even without the protective element.
<作用・原理>
「特定化合物を含有する非水系電解液」と、「性質の異なる2種類以上の負極活物質を含有する負極」とを組み合わせることで、低温出力とサイクル特性のバランスが良好であるリチウムイオン二次電池を提供できる作用・原理は明らかではないが、また、その作用・原理によって本発明は限定されるものではないが、出力に寄与できる部分と、サイクル特性を維持できる部分が混在し、更に同時に、特定化合物が存在することで、その効果が特に強調されたものと推察している。
<Action and principle>
Lithium ion secondary that has a good balance between low-temperature output and cycle characteristics by combining a “non-aqueous electrolyte containing a specific compound” and a “negative electrode containing two or more negative electrode active materials having different properties” The action / principle that can provide a battery is not clear, but the present invention is not limited by the action / principle, but there are both a part that can contribute to output and a part that can maintain cycle characteristics, and at the same time. It is speculated that the presence of the specific compound emphasizes the effect in particular.
以下、実施例及び比較例を挙げて本発明を更に具体的に説明するが、本発明は、その要旨を超えない限り、これらの実施例に限定されるものではない。 EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated further more concretely, this invention is not limited to these Examples, unless the summary is exceeded.
(負極活物質の作製1)
天然黒鉛粉末(d002:0.336nm、Lc:100nm以上、ラマンR値:0.11、タップ密度:0.46g/cm3、真密度:2.27g/cm3、体積基準平均粒径:35.4μm)を、ハイブリダイゼーションシステム((株)奈良機械製作所製ハイブリダイゼーションシステムNHS−1型)を用いて、処理量90g、ローター周速度60m/s、処理時間3分にて処理することによって球形化を行い、更に、粗大粒子の混入を防ぐため、ASTM400メッシュの篩いを5回繰り返した。ここで得られた負極活物質を炭素質物(A)とした。この操作を繰り返すことで、電池作製に必要な量を確保した。
(Preparation of negative electrode active material 1)
Natural graphite powder (d002: 0.336 nm, Lc: 100 nm or more, Raman R value: 0.11, tap density: 0.46 g / cm 3 , true density: 2.27 g / cm 3 , volume-based average particle diameter: 35 .4 μm) using a hybridization system (hybridization system NHS-1 type manufactured by Nara Machinery Co., Ltd.) and processing at a processing amount of 90 g, a rotor peripheral speed of 60 m / s, and a processing time of 3 minutes. In order to prevent the coarse particles from being mixed, the ASTM 400 mesh sieve was repeated five times. The negative electrode active material obtained here was a carbonaceous material (A). By repeating this operation, an amount necessary for battery production was secured.
(負極活物質の作製2)
市販の鱗片状天然黒鉛粉末を風力分級装置にて微粉を除去し、得られた粉末を粗大粒子の混入を防ぐため、ASTM400メッシュの篩いを5回繰り返した。ここで得られた負極活物質を炭素質物(B)とした。
(Preparation of negative electrode active material 2)
Fine powder was removed from the commercially available scaly natural graphite powder with an air classifier, and the resulting powder was subjected to ASTM 400 mesh sieving five times in order to prevent mixing of coarse particles. The negative electrode active material obtained here was a carbonaceous material (B).
(負極活物質の作製3)
キノリン不溶分が0.05質量%以下のコールタールピッチを、反応炉にて460℃で10時間熱処理し、軟化点385℃の、溶融性のある塊状の炭化処理前駆体を得た。得られた塊状の炭化処理前駆体を金属製の容器に詰め、箱形の電気炉で窒素ガス流通下、1000℃で2時間、熱処理を行なった。得られた非晶質の塊を粗砕機(吉田製作所製ロールジョークラッシャー)で粉砕、更に微粉砕機(マツボー社製ターボミル)を用いて微粉砕した後、風力分級装置にて微粉を除去し、得られた粉末を粗大粒子の混入を防ぐため、ASTM400メッシュの篩いを5回繰り返して、体積基準平均径9μmの非晶質粉末を得た。ここで得られた負極活物質を炭素質物(C)とした。
(Preparation of negative electrode active material 3)
A coal tar pitch having a quinoline insoluble content of 0.05% by mass or less was heat-treated in a reaction furnace at 460 ° C. for 10 hours to obtain a meltable bulk carbonized precursor having a softening point of 385 ° C. The obtained bulk carbonized precursor was packed in a metal container and heat-treated at 1000 ° C. for 2 hours in a box-shaped electric furnace under nitrogen gas flow. The obtained amorphous lump was pulverized with a crusher (Roll jaw crusher manufactured by Yoshida Seisakusho), and further pulverized with a fine pulverizer (Turbo Mill manufactured by Matsubo), and then the fine powder was removed with an air classifier. In order to prevent coarse particles from being mixed in the obtained powder, ASTM 400 mesh sieving was repeated 5 times to obtain an amorphous powder having a volume-based average diameter of 9 μm. The negative electrode active material obtained here was a carbonaceous material (C).
(負極活物質の作製4)
炭素質物(A)にナフサ熱分解時に得られる石油系重質油を混合し、不活性ガス中で1300℃の炭化処理を施し、しかる後に焼結物を分級処理することにより、炭素質物(A)粒子表面に異なる結晶性を有する炭素質物が被着した炭素質物を得た。分級処理に際しては、粗大粒子の混入を防ぐため、ASTM400メッシュの篩いを5回繰り返し、炭素質物(D)を得た。残炭率から、得られた負極活物質粉末は、黒鉛95重量部に対して5重量部の石油系重質油に由来する炭素質で被覆されていることが確認された。
(Preparation of negative electrode active material 4)
The carbonaceous material (A) is mixed with petroleum heavy oil obtained at the time of naphtha pyrolysis, subjected to carbonization treatment at 1300 ° C. in an inert gas, and then the sintered product is classified, whereby the carbonaceous material (A ) A carbonaceous material having a carbonaceous material having different crystallinity on the particle surface was obtained. In the classification process, in order to prevent the inclusion of coarse particles, ASTM 400 mesh sieving was repeated 5 times to obtain a carbonaceous material (D). From the residual carbon ratio, it was confirmed that the obtained negative electrode active material powder was coated with carbonaceous matter derived from 5 parts by weight of petroleum heavy oil with respect to 95 parts by weight of graphite.
(負極活物質の作製5)
炭素質物(A)80質量%と炭素質物(B)20質量%を均一になるまで混合し、混合炭素質物(E)とした。
(Preparation of negative electrode active material 5)
80% by mass of the carbonaceous material (A) and 20% by mass of the carbonaceous material (B) were mixed until uniform, to obtain a mixed carbonaceous material (E).
(負極活物質の作製6)
炭素質物(A)95質量%と炭素質物(C)5質量%を均一になるまで混合し、混合炭素質物(F)とした。
(Preparation of negative electrode active material 6)
The carbonaceous material (A) 95% by mass and the carbonaceous material (C) 5% by mass were mixed until uniform, to obtain a mixed carbonaceous material (F).
(負極活物質の作製7)
炭素質物(D)80質量%と炭素質物(A)20質量%を均一になるまで混合し、混合炭素質物(G)とした。
(Preparation of negative electrode active material 7)
80% by mass of the carbonaceous material (D) and 20% by mass of the carbonaceous material (A) were mixed until uniform, to obtain a mixed carbonaceous material (G).
負極活物質の作製1〜7で作製した、炭素質物(A)、(B)、(C)、及び、混合炭素質物(E)、(F)、(G)の物性、形状等を、上記方法で求めた。結果を表1にまとめて示す。 The physical properties, shapes, etc. of the carbonaceous materials (A), (B), (C), and the mixed carbonaceous materials (E), (F), (G) prepared in Preparations 1-7 of the negative electrode active material are as described above. Determined by the method. The results are summarized in Table 1.
〔電池の作製〕
《正極の作製1》
正極活物質としてのコバルト酸リチウム(LiCoO2)90質量%と、導電材としてのアセチレンブラック5質量%と、結着剤としてのポリフッ化ビニリデン(PVdF)5質量%とを、N−メチルピロリドン溶媒中で混合して、スラリー化した。得られたスラリーを厚さ15μmのアルミ箔の両面に塗布して乾燥し、プレス機で厚さ80μmに圧延したものを、活物質層のサイズとして幅100mm、長さ100mm及び幅30mmの未塗工部を有する形状に切り出し、正極とした。このときの正極の活物質の密度は2.35g/cm3であった。
[Production of battery]
<< Preparation of positive electrode 1 >>
90% by mass of lithium cobaltate (LiCoO 2 ) as a positive electrode active material, 5% by mass of acetylene black as a conductive material, and 5% by mass of polyvinylidene fluoride (PVdF) as a binder, an N-methylpyrrolidone solvent Mixed in to a slurry. The obtained slurry was applied on both sides of an aluminum foil having a thickness of 15 μm, dried, and rolled to a thickness of 80 μm with a press machine, and the active material layer was uncoated with a width of 100 mm, a length of 100 mm and a width of 30 mm. It cut out into the shape which has a process part, and was set as the positive electrode. At this time, the density of the active material of the positive electrode was 2.35 g / cm 3 .
《負極の作製1》
負極活物質を98重量部に、増粘剤、バインダーとしてそれぞれ、カルボキシメチルセルロースナトリウムの水性ディスパージョン(カルボキシメチルセルロースナトリウムの濃度1質量%)100重量部、及び、スチレン・ブタジエンゴムの水性ディスパージョン(スチレン・ブタジエンゴムの濃度50質量%)2重量部を加え、ディスパーザーで混合してスラリー化した。得られたスラリーを厚さ10μmの圧延銅箔の両面に塗布して乾燥し、プレス機で厚さ75μmに圧延したものを、活物質層のサイズとして幅104mm、長さ104mm及び幅30mmの未塗工部を有する形状に切り出し、負極とした。このときの負極の活物質の密度は1.35g/cm3であった。
<< Preparation of negative electrode 1 >>
98 parts by weight of the negative electrode active material, 100 parts by weight of an aqueous dispersion of sodium carboxymethyl cellulose (concentration of 1% by weight of sodium carboxymethyl cellulose) as a thickener and binder, and an aqueous dispersion of styrene-butadiene rubber (styrene) -2 parts by weight of a butadiene rubber concentration of 50 mass%) was added and mixed with a disperser to form a slurry. The obtained slurry was applied to both sides of a rolled copper foil having a thickness of 10 μm, dried, and rolled to a thickness of 75 μm with a press machine. The active material layer had a width of 104 mm, a length of 104 mm, and a width of 30 mm. It cut out in the shape which has a coating part, and was set as the negative electrode. At this time, the density of the active material of the negative electrode was 1.35 g / cm 3 .
《非水系電解液の作製1》
乾燥アルゴン雰囲気下、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)及びエチルメチルカーボネート(EMC)の混合物(体積比3:3:4)に、1mol/Lの濃度で、充分に乾燥したヘキサフルオロリン酸リチウム(LiPF6)を溶解させた。更に、ジフルオロリン酸リチウム塩(LiPO2F2)を0.3質量%となるように含有させた。
<< Preparation of non-aqueous electrolyte 1 >>
Under a dry argon atmosphere, a well-dried hexafluorophosphorus at a concentration of 1 mol / L in a mixture of ethylene carbonate (EC), dimethyl carbonate (DMC) and ethyl methyl carbonate (EMC) (volume ratio 3: 3: 4) Lithium acid (LiPF 6 ) was dissolved. Furthermore, lithium difluorophosphate (LiPO 2 F 2 ) was contained so as to be 0.3% by mass.
《非水系電解液の作製2》
乾燥アルゴン雰囲気下、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)及びエチルメチルカーボネート(EMC)の混合物(体積比3:3:4)に、1mol/Lの濃度で、充分に乾燥したヘキサフルオロリン酸リチウム(LiPF6)を溶解させた。更に、メタンスルホン酸トリメチルシリルを0.3質量%となるように含有させた。
<< Preparation of non-aqueous electrolyte 2 >>
Under a dry argon atmosphere, a well-dried hexafluorophosphorus at a concentration of 1 mol / L in a mixture of ethylene carbonate (EC), dimethyl carbonate (DMC) and ethyl methyl carbonate (EMC) (volume ratio 3: 3: 4) Lithium acid (LiPF 6 ) was dissolved. Furthermore, trimethylsilyl methanesulfonate was contained so as to be 0.3% by mass.
《非水系電解液の作製3》
乾燥アルゴン雰囲気下、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)及びエチルメチルカーボネート(EMC)の混合物(体積比3:3:4)に、1mol/Lの濃度で、充分に乾燥したヘキサフルオロリン酸リチウム(LiPF6)を溶解させた。更に、ヘキサメチルシクロトリシロキサンを0.3質量%となるように含有させた。
<< Preparation of non-aqueous electrolyte 3 >>
Under a dry argon atmosphere, a well-dried hexafluorophosphorus at a concentration of 1 mol / L in a mixture of ethylene carbonate (EC), dimethyl carbonate (DMC) and ethyl methyl carbonate (EMC) (volume ratio 3: 3: 4) Lithium acid (LiPF 6 ) was dissolved. Furthermore, hexamethylcyclotrisiloxane was contained so that it might become 0.3 mass%.
《非水系電解液の作製4》
乾燥アルゴン雰囲気下、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)及びエチルメチルカーボネート(EMC)の混合物(体積比3:3:4)に、1mol/Lの濃度で、充分に乾燥したヘキサフルオロリン酸リチウム(LiPF6)を溶解させた。
<< Preparation of non-aqueous electrolyte solution 4 >>
Under a dry argon atmosphere, a well-dried hexafluorophosphorus at a concentration of 1 mol / L in a mixture of ethylene carbonate (EC), dimethyl carbonate (DMC) and ethyl methyl carbonate (EMC) (volume ratio 3: 3: 4) Lithium acid (LiPF 6 ) was dissolved.
《電池の作製1》
正極32枚と負極33枚は交互となるように配置し、各電極の間に多孔性ポリエチレンシートのセパレータ(厚さ25μm)が挟まれるよう積層した。この際、正極活物質面が負極活物質面内から外れないよう対面させた。この正極と負極それぞれについての未塗工部同士を溶接して集電タブを作製し、電極群としたものを電池缶(外寸:120×110×10mm)に封入した。その後、電極群を装填した電池缶に非水系電解液を20mL注入して、電極に充分浸透させ、密閉し角型電池を作製した。この電池の定格放電容量は約6アンペアーアワー(Ah)であり、10kHz交流法で測定される直流抵抗成分は約5ミリオーム(mΩ)である。電池の外装表面積の和に対する、正極の電極面積の総和の比は20.6であった。
<< Production of Battery 1 >>
The 32 positive electrodes and 33 negative electrodes were alternately arranged, and the porous polyethylene sheet separator (thickness 25 μm) was laminated between each electrode. At this time, the positive electrode active material surface was faced so as not to deviate from the negative electrode active material surface. The uncoated portions of each of the positive electrode and the negative electrode were welded together to produce a current collecting tab, and an electrode group was enclosed in a battery can (outside dimension: 120 × 110 × 10 mm). Thereafter, 20 mL of a non-aqueous electrolyte solution was injected into a battery can loaded with the electrode group, sufficiently infiltrated into the electrode, and sealed to produce a prismatic battery. The rated discharge capacity of this battery is about 6 ampere hours (Ah), and the DC resistance component measured by the 10 kHz AC method is about 5 milliohms (mΩ). The ratio of the total electrode area of the positive electrode to the sum of the outer surface areas of the batteries was 20.6.
実施例1
《負極の作製1》項の負極活物質を混合炭素質物(E)として作製した負極と、《正極の作製1》項で作製した正極と《非水系電解液の作製1》項で作製した非水系電解液を用いて、《電池の作製1》項の手法で電池を作製した。この電池について、下記の《電池の評価》項記載の電池評価を実施した。結果を表2に示す。
Example 1
A negative electrode produced as a mixed carbonaceous material (E) with the negative electrode active material described in the section << Preparation of Negative Electrode 1 >>, a positive electrode prepared in the section << Preparation of Positive Electrode 1 >>, and a non-preparation prepared in the section << Preparation 1 of Nonaqueous Electrolytic Solution >>. A battery was prepared using the aqueous electrolyte solution by the method described in the section <Preparation of battery 1>. With respect to this battery, the battery evaluation described in the section << Battery evaluation >> was performed. The results are shown in Table 2.
実施例2
実施例1の《負極の作製1》項の負極活物質に混合炭素質物(F)を用いた以外は同様にして電池を作製し、《電池の評価》項記載の電池評価を実施した。結果を表2に示す。
Example 2
A battery was prepared in the same manner as in Example 1 except that the mixed carbonaceous material (F) was used as the negative electrode active material in the section <Preparation of negative electrode 1>, and battery evaluation described in the section <Battery evaluation> was performed. The results are shown in Table 2.
実施例3
実施例1の《負極の作製1》項の負極活物質に混合炭素質物(G)を用いた以外は同様にして電池を作製し、《電池の評価》項記載の電池評価を実施した。結果を表2に示す。
Example 3
A battery was prepared in the same manner as in Example 1 except that the mixed carbonaceous material (G) was used as the negative electrode active material in the section “Preparation of negative electrode 1”, and battery evaluation described in the section “Battery evaluation” was performed. The results are shown in Table 2.
実施例4〜6
実施例1〜3の非水系電解液を、《非水系電解液の作製2》の項で作製した非水系電解液に代えた以外は、それぞれ同様の方法にて電池を作製し、電池評価を実施した。結果を表2に示す。
Examples 4-6
Batteries were prepared in the same manner except that the nonaqueous electrolytes of Examples 1 to 3 were replaced with the nonaqueous electrolyte prepared in the section “Preparation of Nonaqueous Electrolyte 2”. Carried out. The results are shown in Table 2.
実施例7〜9
実施例1〜3の非水系電解液を、《非水系電解液の作製3》の項で作製した非水系電解液に代えた以外は、それぞれ同様の方法にて電池を作製し、電池評価を実施した。結果を表2に示す。
Examples 7-9
Batteries were prepared in the same manner except that the non-aqueous electrolytes of Examples 1 to 3 were replaced with the non-aqueous electrolyte prepared in the section << Preparation of Non-Aqueous Electrolyte 3 >>. Carried out. The results are shown in Table 2.
比較例1
実施例1の非水系電解液に《非水系電解液の作製4》項で作製した非水系電解液を用いた以外は、同様にして電池を作製し、《電池の評価》項記載の電池評価を実施した。結果を表2に示す。
Comparative Example 1
A battery was prepared in the same manner as in Example 1 except that the non-aqueous electrolyte prepared in Section << Preparation of Non-Aqueous Electrolyte 4 >> was used as the non-aqueous electrolyte of Example 1, and the battery evaluation described in << Battery Evaluation >> Carried out. The results are shown in Table 2.
比較例2
実施例2の非水系電解液に《非水系電解液の作製4》項で作製した非水系電解液を用いた以外は、同様にして電池を作製し、《電池の評価》項記載の電池評価を実施した。結果を表2に示す。
Comparative Example 2
A battery was prepared in the same manner as in Example 2 except that the non-aqueous electrolyte prepared in Section << Preparation of Non-Aqueous Electrolyte 4 >> was used as the non-aqueous electrolyte of Example 2, and the battery evaluation described in << Battery Evaluation >> Carried out. The results are shown in Table 2.
比較例3
比較例1の《負極の作製1》項の負極活物質に炭素質物(A)を用いた以外は同様にして電池を作製し、《電池の評価》項記載の電池評価を実施した。結果を表2に示す。
Comparative Example 3
A battery was prepared in the same manner except that the carbonaceous material (A) was used as the negative electrode active material in the section “Preparation of Negative Electrode 1” in Comparative Example 1, and battery evaluation described in the section “Battery Evaluation” was performed. The results are shown in Table 2.
比較例4
比較例1の《負極の作製1》項の負極活物質に炭素質物(B)を用いた以外は同様にして電池を作製し、《電池の評価》項記載の電池評価を実施した。結果を表2に示す。
Comparative Example 4
A battery was prepared in the same manner except that the carbonaceous material (B) was used as the negative electrode active material in the << Negative Electrode Preparation 1 >> section of Comparative Example 1, and the battery evaluation described in the << Battery Evaluation >> section was performed. The results are shown in Table 2.
比較例5
比較例1の《負極の作製1》項の負極活物質に炭素質物(C)を用いた以外は同様にして電池を作製し、《電池の評価》項記載の電池評価を実施した。結果を表2に示す。
Comparative Example 5
Batteries were prepared in the same manner except that the carbonaceous material (C) was used as the negative electrode active material in the section “Preparation of negative electrode 1” in Comparative Example 1, and the battery evaluation described in the section “Battery evaluation” was performed. The results are shown in Table 2.
比較例6〜8
比較例3〜5の非水系電解液を、《非水系電解液の作製1》の項で作製した非水系電解液に代えた以外は、それぞれ同様の方法にて電池を作製し、評価を実施した。結果を表2に示す。
Comparative Examples 6-8
Batteries were prepared and evaluated in the same manner except that the non-aqueous electrolytes of Comparative Examples 3 to 5 were replaced with the non-aqueous electrolyte prepared in the section << Preparation of Non-Aqueous Electrolytic Solution 1 >>. did. The results are shown in Table 2.
比較例9〜11
比較例3〜5の非水系電解液を、《非水系電解液の作製2》の項で作製した非水系電解液に代えた以外は、それぞれ同様の方法にて電池を作製し、評価を実施した。結果を表2に示す。
Comparative Examples 9-11
Batteries were prepared and evaluated in the same manner except that the non-aqueous electrolytes of Comparative Examples 3 to 5 were replaced with the non-aqueous electrolyte prepared in Section << Preparation of Non-Aqueous Electrolyte 2 >>. did. The results are shown in Table 2.
比較例12〜14
比較例3〜5の非水系電解液を、《非水系電解液の作製3》の項で作製した非水系電解液に代えた以外は、それぞれ同様の方法にて電池を作製し、評価を実施した。結果を表2に示す。
Comparative Examples 12-14
Batteries were prepared and evaluated in the same manner except that the non-aqueous electrolytes of Comparative Examples 3 to 5 were replaced with the non-aqueous electrolyte prepared in the section << Preparation of Non-Aqueous Electrolytic Solution 3 >>. did. The results are shown in Table 2.
《電池の評価》
(容量測定)
充放電を経ていない新たな電池に対して、25℃で電圧範囲4.1V〜3.0Vの25℃で5サイクル初期充放電を行った(電圧範囲4.1V〜3.0V)。この時の5サイクル目0.2C(1時間率の放電容量による定格容量を1時間で放電する電流値を1Cとする、以下同様)放電容量を初期容量とした。
<Battery evaluation>
(Capacity measurement)
An initial charge / discharge for 5 cycles was performed at 25 ° C. in a voltage range of 4.1 V to 3.0 V at 25 ° C. (voltage range of 4.1 V to 3.0 V) for a new battery that had not been charged or discharged. At this time, the discharge capacity was defined as the initial capacity 0.2C at the fifth cycle (the rated capacity due to the discharge capacity at the hour rate is 1 C, and the same applies hereinafter).
(出力測定1)
25℃環境下で0.2Cの定電流により150分間充電を行ない、−30℃環境下で3時間静置した後に各々、0.1C、0.3C、1.0C、3.0C、5.0Cで10秒間放電させ、その10秒目の電圧を測定した。電流−電圧直線と下限電圧(3V)とで囲まれる3角形の面積を低温出力(W)とした。
(Output measurement 1)
The battery was charged for 150 minutes at a constant current of 0.2C in an environment of 25 ° C., and allowed to stand for 3 hours in an environment of −30 ° C., then 0.1 C, 0.3 C, 1.0 C, 3.0 C, and 5. The battery was discharged at 0C for 10 seconds, and the voltage at the 10th second was measured. The area of the triangle surrounded by the current-voltage straight line and the lower limit voltage (3 V) was defined as the low temperature output (W).
(サイクル試験)
リチウムイオン二次電池の実使用上限温度と目される60℃の高温環境下にてサイクル試験を行った。充電上限電圧4.2Vまで2Cの定電流定電圧法で充電した後、放電終止電圧3.0Vまで2Cの定電流で放電する充放電サイクルを1サイクルとし、このサイクルを500サイクルまで繰り返した。サイクル試験終了後の電池に対し、25℃環境下で3サイクルの充放電を行い、その3サイクル目の0.2C放電容量をサイクル後容量とした。サイクルに先だって測定した初期容量とサイクル試験終了後に測定したサイクル後容量から、下記計算式によってサイクル維持率を求めた。
サイクル維持率(%)=100×サイクル後容量/初期容量
(Cycle test)
The cycle test was performed in a high temperature environment of 60 ° C., which is regarded as the actual use upper limit temperature of the lithium ion secondary battery. After charging with a constant current constant voltage method of 2C to a charge upper limit voltage of 4.2V, a charge / discharge cycle for discharging with a constant current of 2C to a discharge end voltage of 3.0V was defined as one cycle, and this cycle was repeated up to 500 cycles. The battery after the end of the cycle test was charged and discharged for 3 cycles under an environment of 25 ° C., and the 0.2 C discharge capacity of the third cycle was defined as the post-cycle capacity. From the initial capacity measured prior to the cycle and the post-cycle capacity measured after the end of the cycle test, the cycle retention rate was determined by the following formula.
Cycle maintenance ratio (%) = 100 × capacity after cycle / initial capacity
表2の結果から分かるように、ジフルオロリン酸リチウム塩、メタンスルホン酸トリメチルシリル、ヘキサメチルシクロトリシロキサンを含有すること、及び、性質の異なる2種類以上の負極活物質を含有する負極を用いることで、サイクル特性と低温出力が共に良好であることが分かった。 As can be seen from the results in Table 2, by using lithium difluorophosphate, trimethylsilyl methanesulfonate, hexamethylcyclotrisiloxane, and using a negative electrode containing two or more negative electrode active materials having different properties. It was found that both cycle characteristics and low-temperature output were good.
本発明のリチウムイオン二次電池の用途は特に限定されず、公知の各種の用途に用いることが可能である。具体例としては、ノートパソコン、ペン入力パソコン、モバイルパソコン、電子ブックプレーヤー、携帯電話、携帯ファックス、携帯コピー、携帯プリンター、ヘッドフォンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、ポータブルCD、ミニディスク、トランシーバー、電子手帳、電卓、メモリーカード、携帯テープレコーダー、ラジオ、バックアップ電源、モーター、自動車、バイク、原動機付自転車、自転車、照明器具、玩具、ゲーム機器、時計、電動工具、ストロボ、カメラ等を挙げることができる。特に、本発明のリチウムイオン二次電池は、良好なサイクル特性と、常に高い低温特性を得られることから、寒暖差の激しい環境下での用途に、広く好適に利用できるものである。 The use of the lithium ion secondary battery of the present invention is not particularly limited, and can be used for various known uses. Specific examples include notebook computers, pen input computers, mobile computers, electronic book players, mobile phones, mobile faxes, mobile copy, mobile printers, headphone stereos, video movies, LCD TVs, handy cleaners, portable CDs, minidiscs, and transceivers. Electronic notebooks, calculators, memory cards, portable tape recorders, radios, backup power supplies, motors, automobiles, motorcycles, motorbikes, bicycles, lighting equipment, toys, game equipment, watches, electric tools, strobes, cameras, etc. Can do. In particular, since the lithium ion secondary battery of the present invention can obtain good cycle characteristics and always high low temperature characteristics, it can be used widely and suitably for applications in environments where there is a great difference in temperature.
Claims (17)
Z = |(モード径)−(メジアン径)| (1) 2. The negative electrode active material uses a volume-based average particle diameter (median diameter) (μm) and a mode diameter (μm), and a value of Z defined by the following formula (1) is 0.3 μm or more. Or the lithium ion secondary battery of Claim 2.
Z = | (mode diameter) − (median diameter) | (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007016276A JP2007227367A (en) | 2006-01-27 | 2007-01-26 | Lithium ion secondary battery |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006019879 | 2006-01-27 | ||
JP2007016276A JP2007227367A (en) | 2006-01-27 | 2007-01-26 | Lithium ion secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007227367A true JP2007227367A (en) | 2007-09-06 |
Family
ID=38548950
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007016276A Pending JP2007227367A (en) | 2006-01-27 | 2007-01-26 | Lithium ion secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007227367A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010053058A1 (en) * | 2008-11-06 | 2010-05-14 | 日立マクセル株式会社 | Electrochemical element |
WO2011074098A1 (en) * | 2009-12-17 | 2011-06-23 | トヨタ自動車株式会社 | Lithium secondary battery |
JP2011253688A (en) * | 2010-06-01 | 2011-12-15 | Toyota Motor Corp | Negative electrode active material particle, negative electrode plate, lithium ion secondary battery, vehicle, battery mounting device, and method of manufacturing negative electrode active material particle |
JP2012182130A (en) * | 2011-02-10 | 2012-09-20 | Mitsubishi Chemicals Corp | Nonaqueous electrolyte for secondary battery, and nonaqueous electrolyte secondary battery including the same |
WO2014163055A1 (en) * | 2013-04-01 | 2014-10-09 | 宇部興産株式会社 | Nonaqueous electrolyte solution and electricity storage device using same |
JPWO2014013850A1 (en) * | 2012-07-17 | 2016-06-30 | トヨタ自動車株式会社 | Lithium secondary battery and manufacturing method thereof |
US9419304B2 (en) | 2012-08-09 | 2016-08-16 | Sanyo Electric Co., Ltd. | Nonaqueous electrolyte secondary battery |
US9450269B2 (en) | 2012-08-09 | 2016-09-20 | Sanyo Electric Co., Ltd. | Nonaqueous electrolyte secondary battery |
US11581580B2 (en) | 2019-02-27 | 2023-02-14 | Toyota Jidosha Kabushiki Kaisha | Electrolyte for lithium ion secondary battery, lithium ion secondary battery, and module |
WO2025062937A1 (en) * | 2023-09-20 | 2025-03-27 | パナソニックIpマネジメント株式会社 | Secondary battery |
-
2007
- 2007-01-26 JP JP2007016276A patent/JP2007227367A/en active Pending
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010053058A1 (en) * | 2008-11-06 | 2010-05-14 | 日立マクセル株式会社 | Electrochemical element |
WO2011074098A1 (en) * | 2009-12-17 | 2011-06-23 | トヨタ自動車株式会社 | Lithium secondary battery |
US8460812B2 (en) | 2009-12-17 | 2013-06-11 | Toyota Jidosha Kabushiki Kaisha | Lithium secondary battery |
JP2011253688A (en) * | 2010-06-01 | 2011-12-15 | Toyota Motor Corp | Negative electrode active material particle, negative electrode plate, lithium ion secondary battery, vehicle, battery mounting device, and method of manufacturing negative electrode active material particle |
JP2012182130A (en) * | 2011-02-10 | 2012-09-20 | Mitsubishi Chemicals Corp | Nonaqueous electrolyte for secondary battery, and nonaqueous electrolyte secondary battery including the same |
JPWO2014013850A1 (en) * | 2012-07-17 | 2016-06-30 | トヨタ自動車株式会社 | Lithium secondary battery and manufacturing method thereof |
US9419304B2 (en) | 2012-08-09 | 2016-08-16 | Sanyo Electric Co., Ltd. | Nonaqueous electrolyte secondary battery |
US9450269B2 (en) | 2012-08-09 | 2016-09-20 | Sanyo Electric Co., Ltd. | Nonaqueous electrolyte secondary battery |
WO2014163055A1 (en) * | 2013-04-01 | 2014-10-09 | 宇部興産株式会社 | Nonaqueous electrolyte solution and electricity storage device using same |
JPWO2014163055A1 (en) * | 2013-04-01 | 2017-02-16 | 宇部興産株式会社 | Non-aqueous electrolyte and power storage device using the same |
US9934911B2 (en) | 2013-04-01 | 2018-04-03 | Ube Industries, Ltd. | Nonaqueous electrolyte solution and electricity storage device using same |
US11581580B2 (en) | 2019-02-27 | 2023-02-14 | Toyota Jidosha Kabushiki Kaisha | Electrolyte for lithium ion secondary battery, lithium ion secondary battery, and module |
WO2025062937A1 (en) * | 2023-09-20 | 2025-03-27 | パナソニックIpマネジメント株式会社 | Secondary battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5671775B2 (en) | Lithium ion secondary battery | |
JP5003095B2 (en) | Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery using the same | |
JP5671774B2 (en) | Lithium ion secondary battery | |
JP5636622B2 (en) | Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery using the same | |
JP5671772B2 (en) | Lithium ion secondary battery | |
JP5671773B2 (en) | Lithium ion secondary battery | |
JP5671771B2 (en) | Lithium secondary battery | |
JP6627904B2 (en) | Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery using the same | |
JP5671770B2 (en) | Lithium secondary battery | |
JP5916268B2 (en) | Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery using the same | |
JP5514394B2 (en) | Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery using the same | |
JP5503098B2 (en) | Non-aqueous electrolyte for secondary battery and secondary battery using the same | |
JP2007220670A (en) | Lithium ion secondary battery | |
JP2007194209A (en) | Lithium secondary battery and assembled battery connecting the same | |
JP5402974B2 (en) | Non-aqueous electrolyte for secondary battery and secondary battery using the same | |
JP2007227367A (en) | Lithium ion secondary battery | |
JP5740802B2 (en) | Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery using the same | |
JP2007194208A (en) | Lithium secondary battery and assembled battery formed by connecting the same | |
JP2007200871A (en) | Lithium ion secondary battery | |
JP2007165292A (en) | Non-aqueous electrolyte for secondary battery and secondary battery using the same | |
JP2007165299A (en) | Lithium secondary battery | |
JP5636623B2 (en) | Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery using the same | |
JP2007165298A (en) | Lithium secondary battery | |
JP2007165301A (en) | Lithium secondary battery | |
JP2013145762A (en) | Nonaqueous electrolyte for secondary battery and secondary battery using the same |