JP2007223330A - サーマルインクジェットプリントヘッド - Google Patents
サーマルインクジェットプリントヘッド Download PDFInfo
- Publication number
- JP2007223330A JP2007223330A JP2007118001A JP2007118001A JP2007223330A JP 2007223330 A JP2007223330 A JP 2007223330A JP 2007118001 A JP2007118001 A JP 2007118001A JP 2007118001 A JP2007118001 A JP 2007118001A JP 2007223330 A JP2007223330 A JP 2007223330A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- heating resistor
- resistance layer
- heating
- resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Particle Formation And Scattering Control In Inkjet Printers (AREA)
Abstract
【課題】キャビテーション耐性に優れ且つ発熱効率の良い発熱抵抗体を備えたサーマルインクジェットプリントヘッドを提供する。
【解決手段】発熱抵抗体30はチップ基板21の基板面に接する下部層31と、下部層31をアニール処理した中間層32とこれに密着する発熱抵抗層33とで形成される。下部層31はTa−Si−O、Ta−Si−O−N、Ta−Si−Al−O又はTa−Si−Al−O−Nのいずれかで形成され、発熱抵抗層33も同様の組成で形成される。下部層31の抵抗値R2は発熱抵抗層33の抵抗値R1と「R2≧R1×10」の関係にあり電流は殆ど流れず、薄い発熱抵抗層33のみが発熱するので発熱効率がよい。また、双方ともに組成成分が同一であるので密着力が強力であり且つ双方の厚さd2及びd1を合わせた厚さが「d1+d2≧4000Å」となるように構成されているのでキャビテーション耐性に優れている。
【選択図】 図4
【解決手段】発熱抵抗体30はチップ基板21の基板面に接する下部層31と、下部層31をアニール処理した中間層32とこれに密着する発熱抵抗層33とで形成される。下部層31はTa−Si−O、Ta−Si−O−N、Ta−Si−Al−O又はTa−Si−Al−O−Nのいずれかで形成され、発熱抵抗層33も同様の組成で形成される。下部層31の抵抗値R2は発熱抵抗層33の抵抗値R1と「R2≧R1×10」の関係にあり電流は殆ど流れず、薄い発熱抵抗層33のみが発熱するので発熱効率がよい。また、双方ともに組成成分が同一であるので密着力が強力であり且つ双方の厚さd2及びd1を合わせた厚さが「d1+d2≧4000Å」となるように構成されているのでキャビテーション耐性に優れている。
【選択図】 図4
Description
本発明は、キャビテーション耐性に優れて且つ発熱効率の低下しない発熱抵抗体を備えたサーマルインクジェットプリントヘッドに関する。
従来より、インクジェット方式のプリンタが広く用いられている。このインクジェット方式のプリンタに用いられる印字ヘッドには、インクを加熱し気泡を発生させてその圧力でインク滴を飛ばすサーマル方式や、ピエゾ抵抗素子(圧電素子)の変形によってインク滴を飛ばすピエゾ方式等の印字ヘッドがある。
これらは、色材たるインクをインク滴にして直接記録紙に向かって吐出し印字を行うから、粉末状の印材であるトナーを用いる電子写真方式と比較した場合、印字エネルギーが低くて済み、インクの混合によってカラー化が容易であり、印字ドットを小さくできるので高画質であり、騒音がきわめて低いので、特にパーソナル用プリンタの印字ヘッドとして広く用いられている。
上記のサーマル方式の印字ヘッドは、サーマルインクジェットプリントヘッドと呼ばれており、インク滴の吐出方向により二通りの構成がある。一つは発熱素子の発熱面に平行な方向へインク滴を吐出する構成のサイドシュータ型と呼ばれているものであり、他の一つは発熱素子の発熱面に垂直な方向にインク滴を吐出する構成のルーフシュータ型と呼ばれているものである。このルーフシュータ型のサーマルインクジェットプリントヘッドは、サイドシュータ型に比較して、消費電力が極めて小さく経済的であることが知られている。
図5(a) は、そのようなルーフシュータ型のインクジェットプリンタに配設されるサーマルインクジェトプリントヘッドのインク吐出面を模式的に示す平面図であり、同図(b) は、そのA−A′断面矢視図、同図(c) は、その内部構造を透視的に示す拡大平面図である。
同図(a),(b),(c) に示すサーマルインクジェットプリントヘッド(以下、単に印字ヘッドという)1は、不図示のシリコンウェハ上に多数区画されたチップ基板2の上で、LSI形成処理技術と薄膜形成処理技術とにより形成され、完成後にシリコンウェハから個々に切り出されて採取される。
同図(a) に示すように、印字ヘッド1のインク吐出面には、イエロー、マゼンタ、シアン及びブラックの4種類のインクを吐出するための4列のノズル列3が形成されている。1列のノズル列3には、例えばこの印字ヘッド1が600ドット/25.4mmの解像度であれば、多数のノズル4が42.3μmの配列ピッチで縦1列に並んで配置されている。これらの各ノズル列3には不図示のインクカートリッジ等から各ノズル列3に対応する色のインクが夫々供給される。
この印字ヘッド1の内部構造は、同図(b),(c) に示すように、チップ基板2上に、LSIからなる駆動回路5と薄膜からなる発熱抵抗体6が形成され、この発熱抵抗体6の一方の端部と駆動回路5を結ぶ個別配線電極7が形成され、更に発熱抵抗体6の他方の端部と給電用端子8(同図(a) 参照)とを接続する共通電極9が形成されている。そして、これらの上に隔壁11(11a、11b、11c)が積層されている。上記の発熱抵抗体6と個別駆動電極7は、それぞれ後から形成されるノズル列3のノズル4の数だけ配設される。
そして、この発熱抵抗体6の配置方向と平行に延在するインク供給溝12と、このインク供給溝12に連通してチップ基板2の下面に貫通するインク供給孔13が穿設され、これらの上からオリフィス板14が、隔壁11上に接着されて積層されている。このオリフィス板14の積層により、隔壁11の厚さに対応する高さおよそ10μmのインク流路15が、発熱抵抗体6とインク供給溝12間に形成される。この後、オリフィス板14に、インクを吐出する上述のノズル4が形成される。
この印字ヘッド1は、印字の際には、外部のインクカートリッジ等から発熱抵抗体6に、インク供給孔13、インク供給溝12及びインク流路15を介してインクが供給される。駆動回路5は、画像情報に応じて複数の発熱抵抗体6を選択的に通電して、インクとの界面に急激に膨張し消滅する膜気泡現象を発生させ、その膨張時の圧力で、インク滴をノズル4から用紙面に向かって吐出させる。
図6(a),(b),(c) は、上記印字ヘッド1の基本的なインク吐出動作を示す図である。同図には、図5(a),(b),(c) に示した構成と同一の構成部分には図5(a),(b),(c) と同一の番号を付与して全体を簡略に示している。先ず、図6(a) に示す待機状態において、外部からインク流路15に供給されているインク16は、ノズル4内に入り込み、オリフィス板14の上面に沿ったノズル4の上部開口でメニスカス16aを形成している。
次に、このノズル4からインク16を吐出させるには、上述したように画像情報に応じた通電により発熱抵抗体6を発熱させて、同図(b) に示すように、発熱抵抗体6上に膜気泡17を発生させる。この膜気泡17は最初に発生した多数の核気泡が合体して形成されたものである。
この膜気泡17が断熱膨張して成長し周囲のインク16を押し遣り、これによりノズル4からインク16bが押し出され、更にこの押し出されたインク16bが、同図(c) に示すように、インク滴16cとなってノズル4から不図示の記録媒体に向けて吐出される。この後、上記の成長した膜気泡は周囲のインクに熱を取られて収縮して、ついには消滅する。インク滴16cが飛び出した直後のインク16は、ノズル4の底部でメニスカス16aを形成しているが、このメニスカス16aはインク16が外部からインク流路15に補充されることにより、ノズル4内を上昇して、同図(a) の基準待機状態に復元される。
図7(a),(b) は、上記のインク滴の吐出に係る気泡の成長と消滅の過程を模式的に示す図である。同図(a) は実験的に水深1mm(ミリメータ)のオープンプール18に設定した発熱抵抗体6と、これによる気泡の成長と消滅の過程を0〜6μs(マイクロ秒)まで、1μs毎に示している。また、同図(b) は発熱抵抗体6への通電タイミングを示している。
同図(a) に示すように、0〜1μsで発熱抵抗体6が加熱され、1〜2μsで核気泡が成長し、2μsから3μsに至る間に図6に示したインク滴16cを吐出する気泡17が発生し、3μsでは既にその気泡の収縮が始まっている。そして6μsで気泡が消滅するまでの間に気泡内部の圧力が急激に低下し、同図の矢印a−1、a−2、a−3で示すにように負圧を伴うキャビテーションが発生する。このキャビテーションは、発熱抵抗体6を設置面から引き剥がそうとする力として働き、その衝撃力は、上記の水深1mmのオープンプールの場合、1000ton/cm2 に達すると言われている。このような稼動環境下において、発熱抵抗体6は、キャビテーションの衝撃により、やがて破壊される。
一方、発熱抵抗体6の寿命確保は重要な課題である。したがって、上記のキャビテーションの衝撃によって発熱抵抗体6が破壊されるという不具合の発生を極力防止する構成が考えられてきた。図8(a) は、従来からの、つまりキャビテーション衝撃の破壊作用が明らかになる以前の、発熱抵抗体の厚さを模式的に示す図であり、同図(b) は、キャビテーション衝撃の破壊作用に耐性を持たせるべく発熱抵抗体そのものを厚く形成した例を示す図である。同図(a) に示す発熱抵抗体6′の厚さは、素材にもよるが、1000Å〜5000Å程度に形成される。同図(b) の発熱抵抗体6″は、同図(a) の発熱抵抗体6′の厚さを3倍近くの厚さに形成したものである。更に従来は、上記の例の他に、同図(a) に示す発熱抵抗体6′の上に、例えば3000Å程度の厚い保護層を設けることも考えられていた。
特開平11−240156(要約、[0029]、図3)
しかしながら、発熱抵抗体そのものを厚く形成するのは、厚くなるのに応じて発熱抵抗体の抵抗値が低下して発熱性能が低下する。発熱性能が低下すれば、その低い発熱性能を補って所望の発熱を得るために多大の電力を消耗する。したがって、経済的でないという問題を有している。
また、発熱抵抗体の上に厚い保護層を設けるのは、厚い保護層を通してインクを加熱しなければならないためインク加熱のためのエネルギー効率が低下する。この場合も低下したエネルギー効率を補って所望の加熱性能を得るために多大の電力を消耗する。したがって、やはり経済的でないという問題を有している。
本発明の課題は、上記従来の実情に鑑み、キャビテーション耐性に優れ、発熱効率の良い発熱抵抗体を備えたサーマルインクジェットプリントヘッドを提供することである。
以下に、本発明に係わるサーマルインクジェットプリントヘッドの構成を述べる。
本発明のサーマルインクジェットプリントヘッドは、基板表面に設けられた発熱抵抗体によりインクを加熱して発生させた気泡の圧力により上記インクを所定方向に吐出させて記録を行うサーマルインクジェットプリントヘッドであって、上記基板面に接して下地高抵抗層としてTaAB(但しAはSi又はSi−Al、BはO又はO−N)を設け、その上層に発熱抵抗層としてTaAB(但しAはSi又はSi−Al、BはO又はO−N)を設け、上記下地高抵抗層の抵抗値をR2とし上記発熱抵抗層の抵抗値をR1としたとき「R1×10≦R2」であり、上記下地高抵抗層の厚さをd2とし上記発熱抵抗層の厚さをd1としたとき、上記R1を上記d1が1000Åのときの抵抗値と同程度に維持し、「d1+d2≧4000Å」の関係を有し、上記下地高抵抗層を大気中で400〜500℃でアニール処理することにより、上記下地高抵抗層と上記発熱抵抗層の間にTa−Si−Oよりなる絶縁層を設けるように構成される。
本発明のサーマルインクジェットプリントヘッドは、基板表面に設けられた発熱抵抗体によりインクを加熱して発生させた気泡の圧力により上記インクを所定方向に吐出させて記録を行うサーマルインクジェットプリントヘッドであって、上記基板面に接して下地高抵抗層としてTaAB(但しAはSi又はSi−Al、BはO又はO−N)を設け、その上層に発熱抵抗層としてTaAB(但しAはSi又はSi−Al、BはO又はO−N)を設け、上記下地高抵抗層の抵抗値をR2とし上記発熱抵抗層の抵抗値をR1としたとき「R1×10≦R2」であり、上記下地高抵抗層の厚さをd2とし上記発熱抵抗層の厚さをd1としたとき、上記R1を上記d1が1000Åのときの抵抗値と同程度に維持し、「d1+d2≧4000Å」の関係を有し、上記下地高抵抗層を大気中で400〜500℃でアニール処理することにより、上記下地高抵抗層と上記発熱抵抗層の間にTa−Si−Oよりなる絶縁層を設けるように構成される。
上記下地高抵抗層は、上記発熱抵抗層よりもO又はO−Nのモル%が大きいように構成される。また、上記絶縁層の厚みは、2000Å以下であることが好ましい。
本発明によれば、基板に対するキャビテーション衝撃による孔破壊が進行する距離を吸収する少なくとも4000Åの厚さの発熱部を、密着強度の強力な3層構造で形成して最上層を比較的薄い発熱抵抗層とし、中間の絶縁層を下地高抵抗層を大気中でアニール処理することにより形成するので、キャビテーション耐性に優れると共に発熱効率の良い抵抗体を備えたサーマルインクジェットプリントヘッドを提供することが可能となる。
以下、本発明の実施の形態を図面を参照しながら説明する。
(実施形態1)
図1は、一実施の形態におけるサーマルインクジェットプリントヘッドの発熱抵抗体の構成を示す図である。尚、本例のサーマルインクジェットプリントヘッドは、この発熱抵抗体の作成工程が異なる点を別にすれば、図5に示したサーマルインクジェットプリントヘッド1と同様の方法で作成される。
(実施形態1)
図1は、一実施の形態におけるサーマルインクジェットプリントヘッドの発熱抵抗体の構成を示す図である。尚、本例のサーマルインクジェットプリントヘッドは、この発熱抵抗体の作成工程が異なる点を別にすれば、図5に示したサーマルインクジェットプリントヘッド1と同様の方法で作成される。
本例のサーマルインクジェットプリントヘッドの発熱部20は、図1に示すように、チップ基板21の上に、基板面に接して下地高抵抗層22が形成され、これに密着する発熱抵抗層23が発熱抵抗体として形成されている。上記の下地高抵抗層22の材料組成は、Ta−Si−O、Ta−Si−O−N、Ta−Si−Al−O又はTa−Si−Al−O−Nのいずれかで形成する。
また、発熱抵抗層23の材料組成も上記同様に、Ta−Si−O、Ta−Si−O−N、Ta−Si−Al−O又はTa−Si−Al−O−Nのいずれかで形成するが、この発熱抵抗層23と上記の下地高抵抗層22とでは、組成がきわめて近似していながら電気抵抗値が大きく異なる。
すなわち、下地高抵抗層22の抵抗値をR2とし発熱抵抗層23の抵抗値をR1とすると、「R1×10≦R2」となるように、それぞれが構成されている。この抵抗値の差は、詳しくは後述するが、それぞれの組成のうちの「O」又は「O−N」のモル%を変更するだけで実現ができる。
また、上記下地高抵抗層22と発熱抵抗層23とを合わせた厚さは、下地高抵抗層22の厚さをd2とし発熱抵抗層23の厚さをd1とすると、「d1+d2≧4000Å」となるように構成されている。このような組成と厚さの構成からなる発熱抵抗体部分の構造こそが、キャビテーション衝撃の破壊力に対して強い耐性のある本発明のサーマルインクジェットプリントヘッドの特徴となっている。このようにキャビテーション衝撃の破壊力に対して強い耐性のあるサーマルインクジェットプリントヘッドを開発するについては、先ず、キャビテーション破壊のメカニズムを調査することから開始した。以下、これについて説明する。
この調査では、最初に、キャビテーション破壊のメカニズムを調査するためのキャビテーション破壊用の試料を以下のようにして作成した。先ず、表面に厚さ約1μmのSiO2 の絶縁層が予め形成されているSi基板の上に、スパッタリングでTa−Si−O−Nの発熱抵抗体膜を作成する。膜厚は1000Åにした。この上に、W−Ti系の下地配線膜、Auの本配線膜、更にW−Ti系の親隔壁配線膜からなる3層構造の配線膜を形成する。
この後、これら配線膜と発熱抵抗体膜をパターン化して、下層の発熱抵抗体膜の発熱部となる部分つまり発熱抵抗体となる部分を露出させ、この露出した発熱抵抗体の両側に電極膜からパターン化された3層構造の配線を形成する。上記発熱抵抗体の大きさは、25μm角である。更に、この発熱抵抗体を囲むようにして隔壁を形成した。
図2は、上記のように作成した試料のサーマルインクジェットプリントヘッドを水のオープンプールに入れて、発熱駆動パルスを印加して実験した結果を示すグラフである。同図は横軸に印加した発熱駆動パルスの回数を108 単位(右端の「1」が1億回を示す)で示しており、縦軸には試料の発熱抵抗体の電気抵抗値(以下、単に抵抗値という)を初期値を1として示している。
この実験では、上記のサーマルインクジェットプリントヘッドを水のオープンプールに入れて、水圧が1mmとなるように適宜の台上に固定し、多数の発熱抵抗体の中から試料としてランダムに9個の発熱抵抗体chxx(同図の例ではch01、ch09、ch17、ch25、ch33、ch41、ch49、ch57、ch65)を選択した。
次に、印加エネルギーを変化させながら発泡状態を観察し、泡の大きさが最大になるエネルギーの1割り増しの印加エネルギーを設定し、この設定条件で9個の発熱抵抗体に10KHzで1μsecの発熱駆動パルスを、1千万パルス連続的に印加し、その前後で抵抗値の変化率を測定した。そして、上記1千万回の連続パルス印加を十回繰り返して、合計1億パルスの発熱駆動パルスを印加した。その結果、およそ8千万回で、1個の発熱抵抗体、例えば発熱抵抗体ch09が断線状態(図2のf参照)となった。
上記の各発熱抵抗体chxxは、初期の平均抵抗値で一定値に規格化している。上記の8千万回の印加パルスで断線した発熱抵抗体ch09は、断線する直前まで、抵抗値に変化はほとんど見られず、あっても3%以下であった。また、断線に至らなかった残る他の発熱抵抗体chxxの抵抗値も、その変化は5%以下であった。そして、上記の一億パルス印加後の試料を光学顕微鏡で観察したところ、断線した発熱抵抗体ch09以外の他の発熱抵抗体chxxにも異常が観察された。
図3(a),(b),(c) は、上記の断線箇所及び他の異常箇所に対する走査電子顕微鏡(SEM)による観察を行った所見を模式的に示す図である。この観察によれば、同図(a) に示すように、異常箇所の発熱抵抗体chxxでは、発熱抵抗体chxxの一部に孔24が空いており、その孔24は基板26側に達していた。その孔24の深さは、約3000Å程度である。
また、断線箇所の発熱抵抗体ch09では、同図(c) に示すように、電流と直角方向に全面的な破壊27が見られた。この部分をEPMAで面分析を行ったところ、破壊部分の発熱抵抗膜は剥がれて消滅しており、基板面が露出していることが判明した。更に、この露出部分を観察すると、この露出部分にも上述したと同様の深さ3000Å程度の孔24が空いていることが観察された。
以上の観察結果をまとめると、(1)断線直前まで発熱抵抗体の抵抗値はほとんど変化しない。(2)断線前に基板に達する孔が形成される(図3(a) 参照)。(3)この孔の数が逐次増加する(図3(b) 参照)。(4)これらの孔を中心に横方向に破壊が一挙に進行する(図3(c) 参照)。というモデルが考えられる。
尚、上記の「横方向」は、発熱抵抗体に流れる電流方向に直角で基板に平行な方向として定義している。また、上記の孔破壊は基板に達して更に深さ3000Å程度まで進行するが、上記の横方向破壊は、発熱抵抗体のみで起り、基板面を露出させるまで進行するが基板内部にまでは達しないことが判明している。
上記のモデルで、断線直前まで抵抗がほとんど変化しないことを確かめるために、基板に達する孔の大きさを、発熱抵抗体の大きさの1/10とし、この大きさで、横方向に断線が進行した場合の抵抗値の変化率を計算すると、横方向に3割程度まで破壊が進行した場合の抵抗値の変化率は5%程度であった。このことは、発熱抵抗体の大きさの1/10の孔が3つ横方向に直線に並んだ場合に抵抗変化が5%程度であることを意味する。
したがって、この計算結果は、キャビテーション破壊によって、孔が複数個形成され、これらの孔を中心に横方向に破壊が一挙に進行し、この破壊の直前まで、抵抗値の変化が少ないとする上述したモデルと良く整合する。尚、現実の発熱抵抗体は、それ自身の損傷以外に、配線電極が破損して、当初の接続位置から後退していることも観察されているが、この影響については、本発明の要点ではないので、ここでは触れない。
いずれにしても、上記観察と計算の結果から、発熱抵抗体の長寿命化のためには、その膜厚を厚くすれば良いことになる。例えば、孔が基板面まで達しないようにするためには、膜厚を少なくとも4000Åにすれば良いと考えられた。そして、このことを確かめるために、上記とほぼ同じ膜質で、厚さ約4000Åの発熱抵抗体を成膜し、上記と同様の実験をおこなったところ、1億回の発熱駆動パルスでの断線はゼロであった。
しかしながら、発熱抵抗体の膜厚を厚くすることは多大の電力を消耗するため望ましくないことは前述した。例えば、膜厚1000Åでシート抵抗100Ω/sqrの発熱抵抗体を正方形に成形すると、その抵抗値は100Ωになる。この発熱抵抗体を用いて1μJのエネルギーでインクを吐出させると、電流は100mAである。これに対して同じ膜質で4倍の膜厚の発熱抵抗体を作成した場合の抵抗値は25Ωになるから、この場合の駆動電流は200mAである。このように発熱抵抗体の抵抗値が下がるほど、それを発熱駆動するためには大電流のドライバーが必要になり、現実には実用にならない。
そこで、発熱抵抗体の抵抗値を、厚さが1000Åのときの抵抗値と同じ程度に維持したまま、全体としての厚さを4000Å以上に形成する方法を志向することにした。これで結果として得られた構造が図1に示した発熱部20の構造である。
すなわち、発熱抵抗体としての発熱抵抗層23の下に、より高抵抗の下地高抵抗層22を配置して、実質的に膜厚の厚い発熱部を形成する。例えば、Ta−Si−O系やTa−Si−O−N系の抵抗体は、O又はO−Nの量(モル%)を増やすことによって、抵抗値を大きくすることができる。具体的には、例えば、Ta−Si−Oの場合、酸素量を通常の発熱抵抗体の場合の30%から、50%に増やすことにより抵抗率が1桁程度増加する。
すなわち、発熱抵抗層23の酸素量が30モル%でその抵抗値がR1であるとすると、下地高抵抗層22を、その酸素量が50モル%になるように形成すると、その抵抗値R2は「R2≧R1×10」となる。このように、Ta−Si−O系という同一の組成を用い、酸素量を変更する(増やす)だけで、抵抗値を変更する(高抵抗にする)ことができる。
尚、上記の酸素量を更に60%まで増加させた場合は抵抗値が数桁増加する。しかし、発熱抵抗層23の抵抗値よりも下地高抵抗層22の抵抗値を1桁増加させることができれば当初の開発目的は達成されるので、敢えて数桁増加を目指す必要はない。
また、この抵抗値の変更方法は、薄膜の組成がTa−Si−O−N系にした場合でも、「酸素+窒素」の増加により、抵抗が増加することが実験により判明している。但し、酸素と窒素の割合によって、抵抗値特性は複雑な挙動を示すが、それでも、「酸素+窒素」の増加により抵抗値が増加することにおいては変わりがない。
上記一方の発熱抵抗層23は、その抵抗値R1が通常の発熱抵抗体の持つ抵抗値となるように組成的に設定されている。これに対して下層の下地高抵抗層22の抵抗値R2は、「R2≧R1×10」というようにきわめて高抵抗であるので、電流は殆ど流れず、この部分でのエネルギー損失は無視できる程度のものである。
したがって、このように連続する2層構造であっても、発熱抵抗層23の抵抗値は、単独の1層構造の場合に比べて、多少低下するものの9%以下の低下率にとどまるので、熱効率を大きく損なうことはない。すなわち駆動電圧の印加によって効率良く発熱して、効率よくインクを吐出する。
このように、下地高抵抗層22と発熱抵抗層23は電気的にみるとほぼ相互に独立しているが、それにも拘らず、この下地高抵抗層22と発熱抵抗層23は、酸素量が異なるだけで同一の組成であるから、その界面の密着性はきわめて強力である。これは、両者のアモルファス状態が類似している(X線回折のブロードパターンが類似している)ためと考えられる。
このように、この下地高抵抗層22と発熱抵抗層23との界面の密着性がきわめて強力であるから、上層の発熱抵抗層23はキャビテーション衝撃の負圧に対しても容易に引き剥がされることがない。また、双方それぞれの厚さd2とd1を重ねた全体としての厚さが4000Å以上となるように形成されているので、1億回の駆動パルスで、キャビテーション破壊による孔が3000Åまで進行しても、孔が基板面に達することがなく、これにより、発熱部と基板面との密着性が損なわれることがなく、したがって、横方向の破壊を誘発することがない。
(実施形態2)
図4は、他の実施の形態におけるサーマルインクジェットプリントヘッドの発熱部の構成を示す図である。同図に示す発熱抵抗体30は、チップ基板21の上に、下部層31、中間層32、そして最上層に発熱抵抗層33が形成されている。最上層の発熱抵抗層33は、Ta−Si−O系又はTa−Si−O−N系の組成からなる薄膜であり、下部層31も発熱抵抗層33とほぼ同じ組成の薄膜である。そして、中間層32は、Ta−Si−O系の組成で、酸素量が約70モル%、厚さが50〜100Å程度の絶縁層である。
図4は、他の実施の形態におけるサーマルインクジェットプリントヘッドの発熱部の構成を示す図である。同図に示す発熱抵抗体30は、チップ基板21の上に、下部層31、中間層32、そして最上層に発熱抵抗層33が形成されている。最上層の発熱抵抗層33は、Ta−Si−O系又はTa−Si−O−N系の組成からなる薄膜であり、下部層31も発熱抵抗層33とほぼ同じ組成の薄膜である。そして、中間層32は、Ta−Si−O系の組成で、酸素量が約70モル%、厚さが50〜100Å程度の絶縁層である。
この中間層32は、下部層31のTa−Si−O又はTa−Si−O−Nを、大気中で400〜500℃でアニール処理することによって得られる。この場合も、Ta−SiーO膜の中間絶縁層(中間層32)と、上下のTa−SiーO膜又はTa−Si−O−N膜の発熱抵抗層33及び下部層31との密着性は強力である。但しこの場合は、両者のアモルファス状態が類似しているかどうかは未確認である。
一般的に絶縁層は、弾性変形領域が少ないためであるのか、キャビテーション耐性が低いことが知られている。したがって、上記中間層32となる絶縁層の厚さは薄いほうが良く、2000Å以下とするのが好ましい。勿論、この場合も、3層構造全体の膜厚は4000Å以上であるようにするのが好ましい。
尚、全体の膜厚を4000Å以上とすることのみに主眼を置いて、発熱抵抗層と下部層の2層構造の下部層を、酸素量が約70モル%のTa−Si−Oの膜すなわち絶縁層とし、これを蓄熱層として兼用する構成としてもよい。この場合、上述した実施の形態と比較して、キャビテーション耐性の点でやや劣るものの、構造が簡単、つまり工程上からみて作成が容易であるという利点がある。
尚、上述した各実施の形態では、Ta−Si−O系又はTa−Si−O−N系を例として取り上げて説明してきたが、これに限ることなく、例えばTa−Si−Al−O系であっても、酸素濃度の変化に応じて抵抗率が変化する系であるので、上記の構成を適用することが可能である。
1 サーマルインクジェットプリントヘッド
2 チップ基板
3 ノズル列
4 ノズル
5 駆動回路
6、6′、6″ 発熱抵抗体
7 個別配線電極
9 共通電極
11(11a、11b、11c) 隔壁
12 インク供給溝
13 インク供給孔
14 オリフィス板
15 インク流路
16 インク
16a メニスカス
16b インク
16c インク滴
17 膜気泡
20 発熱部
21 チップ基板
22 下地高抵抗層
23 発熱抵抗層
24 孔
26 基板
27 破壊
30 発熱抵抗体
31 下部層
32 中間層
33 発熱抵抗層
2 チップ基板
3 ノズル列
4 ノズル
5 駆動回路
6、6′、6″ 発熱抵抗体
7 個別配線電極
9 共通電極
11(11a、11b、11c) 隔壁
12 インク供給溝
13 インク供給孔
14 オリフィス板
15 インク流路
16 インク
16a メニスカス
16b インク
16c インク滴
17 膜気泡
20 発熱部
21 チップ基板
22 下地高抵抗層
23 発熱抵抗層
24 孔
26 基板
27 破壊
30 発熱抵抗体
31 下部層
32 中間層
33 発熱抵抗層
Claims (3)
- 基板表面に設けられた発熱抵抗体によりインクを加熱して発生させた気泡の圧力により前記インクを所定方向に吐出させて記録を行うサーマルインクジェットプリントヘッドであって、
前記基板面に接して下地高抵抗層としてTaAB(但しAはSi又はSi−Al、BはO又はO−N)を設け、その上層に発熱抵抗層としてTaAB(但しAはSi又はSi−Al、BはO又はO−N)を設け、
前記下地高抵抗層の抵抗値をR2とし前記発熱抵抗層の抵抗値をR1としたとき、
R1×10≦R2
であり、
前記下地高抵抗層の厚さをd2とし前記発熱抵抗層の厚さをd1としたとき、前記R1を前記d1が1000Åのときの抵抗値と同程度に維持し、
d1+d2≧4000Å
の関係を有し、
前記下地高抵抗層を大気中で400〜500℃でアニール処理することにより、前記下地高抵抗層と前記発熱抵抗層の間にTa−Si−Oよりなる絶縁層を設けることを特徴とするサーマルインクジェットプリントヘッド。 - 前記下地高抵抗層は、前記発熱抵抗層よりもO又はO−Nのモル%が大きいことを特徴とする請求項1記載のサーマルインクジェットプリントヘッド。
- 前記絶縁層の厚みは2000Å以下であることを特徴とする請求項1記載のサーマルインクジェットプリントヘッド。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007118001A JP2007223330A (ja) | 2007-04-27 | 2007-04-27 | サーマルインクジェットプリントヘッド |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007118001A JP2007223330A (ja) | 2007-04-27 | 2007-04-27 | サーマルインクジェットプリントヘッド |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001201757A Division JP4258141B2 (ja) | 2001-07-03 | 2001-07-03 | サーマルインクジェットプリントヘッド |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007223330A true JP2007223330A (ja) | 2007-09-06 |
Family
ID=38545553
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007118001A Pending JP2007223330A (ja) | 2007-04-27 | 2007-04-27 | サーマルインクジェットプリントヘッド |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007223330A (ja) |
-
2007
- 2007-04-27 JP JP2007118001A patent/JP2007223330A/ja active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8491087B2 (en) | Circuit board for ink jet head, ink jet head having the same, method for cleaning the head and ink jet printing apparatus using the head | |
CN100522616C (zh) | 具有被保形涂敷的加热器的喷墨打印头 | |
JP6270358B2 (ja) | 液体吐出ヘッド | |
JP2010512262A (ja) | 液体射出装置および液体射出装置を製造する方法 | |
JP2007281031A (ja) | アクチュエータ装置及び液体噴射ヘッド並びに液体噴射装置 | |
US20120019597A1 (en) | Inkjet printhead with cross-slot conductor routing | |
US9033470B2 (en) | Fluid ejection assembly and related methods | |
EP2170613B1 (en) | Heating element | |
US8191998B2 (en) | Liquid ejecting head | |
US10040285B2 (en) | Liquid ejection head and liquid ejection device, and aging treatment method and initial setup method for a liquid ejection device | |
US7178904B2 (en) | Ultra-low energy micro-fluid ejection device | |
US7581820B2 (en) | Inkjet printhead and image forming apparatus including the same | |
JP4258141B2 (ja) | サーマルインクジェットプリントヘッド | |
JP4976890B2 (ja) | 液体吐出装置および液体吐出ヘッドの駆動方法 | |
JP2008173924A (ja) | 液滴吐出ヘッド | |
JP2007223330A (ja) | サーマルインクジェットプリントヘッド | |
KR100828362B1 (ko) | 잉크젯 프린트헤드용 히터 및 이 히터를 구비하는 잉크젯프린트헤드 | |
KR20050062743A (ko) | 잉크젯 프린트헤드 및 그 제조방법 | |
JP3780882B2 (ja) | 発熱抵抗体の製造方法 | |
JP2001315355A (ja) | インクジェットヘッド、インクジェットプリンタ | |
JP2004203049A (ja) | インクジェットプリントヘッド及びその製造方法 | |
JP2008265198A (ja) | インクジェット記録ヘッド、及びインクジェット記録ヘッドの作製方法 | |
JP2003237089A (ja) | プリンタの駆動条件の設定方法及びプリンタ | |
JP2000168088A (ja) | 発熱抵抗体及びその製造方法 | |
JP3903749B2 (ja) | サーマルインクジェットプリントヘッド及びその発熱抵抗体の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080415 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080603 |
|
A02 | Decision of refusal |
Effective date: 20081014 Free format text: JAPANESE INTERMEDIATE CODE: A02 |