JP2007217775A - Stainless steel member having crevice structure - Google Patents
Stainless steel member having crevice structure Download PDFInfo
- Publication number
- JP2007217775A JP2007217775A JP2006042085A JP2006042085A JP2007217775A JP 2007217775 A JP2007217775 A JP 2007217775A JP 2006042085 A JP2006042085 A JP 2006042085A JP 2006042085 A JP2006042085 A JP 2006042085A JP 2007217775 A JP2007217775 A JP 2007217775A
- Authority
- JP
- Japan
- Prior art keywords
- stainless steel
- gap
- less
- stress corrosion
- mass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 229910001220 stainless steel Inorganic materials 0.000 title claims abstract description 15
- 239000010935 stainless steel Substances 0.000 title claims abstract description 15
- 229910000963 austenitic stainless steel Inorganic materials 0.000 claims abstract description 24
- 238000003466 welding Methods 0.000 claims abstract description 19
- 239000000203 mixture Substances 0.000 claims abstract description 15
- 238000005304 joining Methods 0.000 claims abstract description 9
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 8
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 6
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 5
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 4
- 229910052802 copper Inorganic materials 0.000 claims abstract description 3
- 239000000470 constituent Substances 0.000 claims description 2
- 230000007797 corrosion Effects 0.000 abstract description 54
- 238000005260 corrosion Methods 0.000 abstract description 54
- 238000005336 cracking Methods 0.000 abstract description 36
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 abstract description 7
- 238000000034 method Methods 0.000 abstract description 4
- 238000012360 testing method Methods 0.000 description 17
- 229910000831 Steel Inorganic materials 0.000 description 16
- 150000002500 ions Chemical class 0.000 description 16
- 239000010959 steel Substances 0.000 description 16
- 239000000463 material Substances 0.000 description 14
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 239000003921 oil Substances 0.000 description 9
- 235000002639 sodium chloride Nutrition 0.000 description 8
- 239000011780 sodium chloride Substances 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 5
- 150000001805 chlorine compounds Chemical class 0.000 description 5
- 239000002436 steel type Substances 0.000 description 5
- 239000003502 gasoline Substances 0.000 description 4
- 229910001566 austenite Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- 239000002828 fuel tank Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 201000004384 Alopecia Diseases 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 230000003676 hair loss Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000005413 snowmelt Substances 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Landscapes
- Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
Abstract
Description
本発明は、自動車の燃料タンクや給油管などに適した、大気環境における隙間部での耐応力腐食割れ性を改善したステンレス鋼部材に関する。 The present invention relates to a stainless steel member having improved resistance to stress corrosion cracking in a gap portion in an atmospheric environment, which is suitable for a fuel tank or a fuel supply pipe of an automobile.
自動車や自動二輪に搭載されるガソリンタンクや給油管は、気密性が悪いと気化したガソリンが大気中に散逸する。ガソリンの散逸は最近特に重視されている地球環境保護に悪影響を及ぼす大きな要因となる。 If gasoline tanks and refueling pipes installed in automobiles and motorcycles are not airtight, vaporized gasoline will dissipate into the atmosphere. Dissipation of gasoline is a major factor that adversely affects global environmental protection, which has been especially emphasized recently.
一般に上記のような給油系部材は強度や安全性の観点から金属材料で構成され、その気密性の維持は素材の特性(耐孔食性、耐隙間腐食性、耐応力腐食割れ性など)に大きく影響される。そこで、長期間にわたって良好な気密性を維持するために、従来の表面処理鋼板などに替えて、耐食材料であるステンレス鋼材を給油系部材に適用する検討が進められている。 In general, the above-mentioned oil supply system members are made of metal materials from the viewpoint of strength and safety, and maintaining their airtightness greatly depends on the characteristics of the materials (pitting corrosion resistance, crevice corrosion resistance, stress corrosion cracking resistance, etc.). Affected. Therefore, in order to maintain good hermeticity over a long period of time, studies are being made to apply a stainless steel material, which is a corrosion-resistant material, to an oil supply system member in place of a conventional surface-treated steel sheet.
燃料タンクや給油管は複雑形状に加工されて製造されることが多く、加工性の観点からフェライト系鋼種よりオーステナイト系鋼種の方が有利である。しかし、オーステナイト系ステンレス鋼は本来的に応力腐食割れを生じやすいという欠点を有する。特に給油系部材では加工度の大きい部位や、溶接部、かしめ加工部などで残留応力が存在しやすい。また、給油管や燃料タンクのシーム溶接部やスポット溶接部、あるいはかしめ加工部などに形成される隙間部には、海塩粒子、融雪塩、雨水などが浸入して隙間腐食が生じやすく、これが応力腐食割れの起点となりやすい。 Fuel tanks and oil supply pipes are often manufactured by being processed into complex shapes, and austenitic steel types are more advantageous than ferritic steel types from the viewpoint of workability. However, austenitic stainless steel inherently has the disadvantage of being prone to stress corrosion cracking. In particular, in the oil supply system member, residual stress tends to exist in a portion having a high degree of processing, a welded portion, a crimped portion, or the like. In addition, sea salt particles, snowmelt salt, rainwater, etc. intrude into gaps formed in seam welds, spot welds, or caulking parts of fuel pipes and fuel tanks. It tends to be the starting point of stress corrosion cracking.
これまで、オーステナイト系ステンレス鋼の耐応力腐食割れ性に関しては「水環境」すなわち水中に浸漬された環境について多くの研究が行われており、例えば特許文献1、2にはSiおよびCuを多めに添加することにより温水中の耐応力腐食割れ性を顕著に改善したオーステナイト系ステンレス鋼が開示されている。
So far, regarding the stress corrosion cracking resistance of austenitic stainless steel, much research has been conducted on the “water environment”, that is, the environment immersed in water. For example,
自動車の給油系部材が使用される環境は「大気環境」であり、上記の「水環境」とは腐食環境が異なる。このため、特許文献1、2のような水環境での耐応力腐食割れ性を向上させたオーステナイト系ステンレス鋼を塩化物が付着するような大気環境に使用した場合、必ずしも優れた耐応力腐食割れ性が安定して発揮できるとは限らない。現に、特許文献1、2の鋼を溶接部やかしめ加工部を有する部材に加工して塩化物の付着する大気環境で使用する実験を行ったところ、Cr含有量レベルやSi含有量レベルが比較的低い組成域では溶接部やかしめ加工部周辺の隙間部分において隙間腐食を生じることかあり、それが基点となって応力腐食割れを起こすケースも見られた。このことから、自動車の給油系部材などの用途では、水環境での特性向上を図ったオーステナイト系鋼を選択するだけでは安定した高耐久性を得る手段にならないことがわかった。
The environment where the oil supply system member of the automobile is used is an “atmosphere environment”, and the corrosive environment is different from the above “water environment”. For this reason, when austenitic stainless steel with improved resistance to stress corrosion cracking in water environments such as
一方、特許文献1、2の鋼の中でもCrおよびSiの含有量レベルをかなり高めた鋼種を採用すれば大気環境での耐応力腐食割れ性を問題ないレベルに引き上げることは可能になると考えられる。しかし、CrやSiはフェライト形成元素であるから、これらの元素を同時に高めたオーステナイト系鋼を得るにはNi等のオーステナイト形成元素を多量に添加する必要が生じ、材料コストが高くなる。また、製造性も悪くなる。
On the other hand, it is considered that the stress corrosion cracking resistance in the atmospheric environment can be raised to a problem-free level by adopting a steel type in which the Cr and Si content levels are considerably increased among the steels of
特許文献3に開示されるような高Cr化、高Mo化を図ったオーステナイト系鋼を使用することによっても大気環境での腐食によるトラブルを回避することは可能であると考えられる。しかし、Moは高価な元素であるため高Mo化は材料コストを大きく増大させ、自動車給油系部材への適用は現実的ではない。
It is considered possible to avoid troubles due to corrosion in the atmospheric environment by using austenitic steel with high Cr and high Mo as disclosed in
本発明はこのような現状に鑑み、SiやMoを多量添加していないオーステナイト系ステンレス鋼を用いて、隙間部に塩化物が付着しやすい大気環境で使用される加工部材の応力腐食割れによるトラブルを安定して回避できる技術を提供しようというものである。 In view of such a current situation, the present invention uses austenitic stainless steel to which a large amount of Si or Mo is not added, and causes trouble due to stress corrosion cracking of a processed member used in an atmospheric environment in which chloride easily adheres to a gap. This is to provide a technology that can stably avoid this problem.
発明者らは種々検討の結果、オーステナイト系ステンレス鋼部材の隙間部における耐応力腐食割れ性は、鋼素材の特性だけでなく、部材の隙間構造の形態にも大きく影響されることを知見した。大気環境では水環境の場合とはむしろ逆に、タイトな隙間部を形成することによって耐応力腐食割れ性は顕著に改善されるのである。ただし、その部材には一定範囲の組成を有する鋼を適用する必要がある。 As a result of various studies, the inventors have found that the stress corrosion cracking resistance in the gap portion of the austenitic stainless steel member is greatly influenced not only by the characteristics of the steel material but also by the shape of the gap structure of the member. In the atmospheric environment, the stress corrosion cracking resistance is remarkably improved by forming a tight gap, as opposed to the case of the water environment. However, it is necessary to apply steel having a certain range of composition to the member.
すなわち本発明では、Ni:14.0〜23.0質量%、Cr:23.0〜30.0質量%を含有し、表面の一部に溶接または塑性加工接合によって生じた隙間構造を有するオーステナイト系ステンレス鋼を構成要素にもつ部材であって、前記隙間構造は隙間間隔が0.5mm以下であり、かつその隙間構造が大気環境に曝されて使用されるステンレス鋼部材が提供される。当該部材として自動車給油系部材が好適な対象となる。上記オーステナイト系ステンレス鋼の好ましい組成としては、質量%で、C:0.08%以下、Si:1.5%以下、Mn:2.5%以下、Ni:14.0〜23.0%、Cr:23.0〜30.0%、N:0.08%以下であり、必要に応じてさらにCu:1.0%以下、Mo:1.0%以下の1種以上を含み、残部が実質的にFeである組成が挙げられる。「残部が実質的にFe」とは、本発明の効果を阻害しない範囲で上記以外の元素の混入が許容されることを意味し、残部がFeおよび不可避的不純物であるものが含まれる。 That is, in the present invention, austenite containing Ni: 14.0 to 23.0% by mass, Cr: 23.0 to 30.0% by mass, and having a gap structure formed by welding or plastic work joining on a part of the surface. There is provided a member having a stainless steel as a constituent element, wherein the gap structure has a gap gap of 0.5 mm or less, and the gap structure is used by being exposed to an atmospheric environment. An automobile oil supply system member is a suitable target. The preferred composition of the austenitic stainless steel is, by mass, C: 0.08% or less, Si: 1.5% or less, Mn: 2.5% or less, Ni: 14.0 to 23.0%, Cr: 23.0 to 30.0%, N: 0.08% or less, if necessary, further including one or more of Cu: 1.0% or less, Mo: 1.0% or less, with the balance being The composition which is substantially Fe is mentioned. “The balance is substantially Fe” means that mixing of elements other than the above is allowed within a range that does not impair the effects of the present invention, and the balance includes Fe and inevitable impurities.
塑性加工接合は、2以上の素材に塑性加工を伴う変形を付与することによってそれらの素材を接合する加工法であり、代表的には「かしめ加工」が挙げられる。溶接としては隙間部を伴う接合法として2つの素材を部分的に重ね合わせて接合する「抵抗溶接」が例示される。 Plastic working joining is a working method in which two or more materials are joined together by applying deformation accompanied by plastic working, and a typical example is “caulking”. An example of welding is “resistance welding” in which two materials are partially overlapped and joined as a joining method involving a gap.
隙間構造は、対向する表面同士の間に面状の空間または接触部が形成されている部分であり、前記「面状」には曲面状が含まれる。ただし、対向する表面同士の平均距離δ(mm)と、面状の空間または接触部の面積s(mm2)が、s≧10δを満たさない場合は、本発明でいう隙間構造に該当しない。隙間間隔が0.5mm以下とは、前記隙間構造において対向する表面同士の距離が0.5mm以内に収まっていることをいう。 The gap structure is a portion in which a planar space or a contact portion is formed between opposing surfaces, and the “planar shape” includes a curved surface shape. However, when the average distance δ (mm) between the opposing surfaces and the area s (mm 2 ) of the planar space or contact portion does not satisfy s ≧ 10δ, the gap structure in the present invention is not applicable. The gap interval of 0.5 mm or less means that the distance between the opposing surfaces in the gap structure is within 0.5 mm.
大気環境は、部材が雨水や空気中の水分等により濡れることはあるものの、基本的には乾燥した状態で使用される環境であり、本発明の部材は特に塩化物の付着を伴う環境で優れた耐久性を発揮する。屋外に存在する水分や塩化物の付着を伴うことから、本発明における大気環境は屋外環境と言うこともできる。 The atmospheric environment is basically an environment that is used in a dry state, although the member may get wet by rainwater or moisture in the air, etc., and the member of the present invention is particularly excellent in an environment with chloride adhesion. Demonstrate durability. It can be said that the atmospheric environment in the present invention is an outdoor environment because it involves the adhesion of moisture and chloride existing outdoors.
本発明によれば、隙間構造を伴う加工部を有し、その加工部が塩化物の付着しやすい大気環境に曝されて使用される部材において、応力腐食割れによるトラブルを安定して回避することのできる耐久性の高い部材が提供された。素材にはオーステナイト系ステンレス鋼が使用されるため複雑形状に加工された部材が構築できる。また特段に高Si化や高Mo化を図っていないオーステナイト系ステンレス鋼が使用されるため、過剰に高耐食性を付与した鋼種と比べ、コストが低減される。したがって本発明は、長期間にわてって優れた密閉性を維持することが要求されるガソリンタンクや給油管などの自動車給油系部材として好適であり、これらの部材の耐久性向上に寄与するものである。 According to the present invention, it is possible to stably avoid troubles caused by stress corrosion cracking in a member that has a processed part with a gap structure and is exposed to an atmospheric environment where the processed part easily adheres to chloride. A highly durable member was provided. Since austenitic stainless steel is used as the material, a member processed into a complicated shape can be constructed. In addition, since austenitic stainless steel that is not particularly high in Si or Mo is used, the cost is reduced compared to a steel type that is excessively imparted with high corrosion resistance. Therefore, the present invention is suitable as a vehicle oil supply system member such as a gasoline tank or a fuel supply pipe that is required to maintain an excellent hermeticity for a long period of time, and contributes to improvement of durability of these members. Is.
本発明のステンレス鋼部材は、隙間部を大気環境に曝して使用するものである。大気環境では、腐食生成物の多くが腐食部近傍に残るという点で、水環境の場合と腐食環境が大きく相違する。隙間内で腐食が進むとオーステナイト系ステンレス鋼中に含まれるFe、Ni、Cr等がイオンとなって隙間内に溶出し、イオンあるいは酸化物等の沈殿物として腐食部近傍に存在する。 The stainless steel member of the present invention is used by exposing the gap to the atmospheric environment. In the atmospheric environment, the corrosive environment is greatly different from the water environment in that many corrosion products remain in the vicinity of the corroded portion. When corrosion progresses in the gap, Fe, Ni, Cr and the like contained in the austenitic stainless steel become ions and are eluted in the gap, and are present in the vicinity of the corrosion portion as precipitates of ions or oxides.
発明者らは腐食生成物に着目して、大気環境における隙間部での耐応力腐食割れ性について、詳細な検討を行ってきた。その結果、腐食生成物としてNiイオンが隙間内に存在すると、オーステナイト系ステンレス鋼の当該隙間部での耐応力腐食割れ性が顕著に向上することを見出した。SUS304のような耐応力腐食割れ性を特段に向上させていない汎用鋼でも、隙間部にNi2+を含む水溶液を滴下して隙間内にNiイオンを供給したのち、大気環境の腐食試験(加速試験)に供すると、応力腐食割れが顕著に抑止されるのである。そのメカニズムについては現時点で明確ではないが、Niイオンの効果は例えば次のような実験で把握することができる。 The inventors have focused on corrosion products and have conducted detailed studies on the resistance to stress corrosion cracking in gaps in the atmospheric environment. As a result, it has been found that when Ni ions are present as a corrosion product in the gap, the stress corrosion cracking resistance of the austenitic stainless steel in the gap is significantly improved. Even for general-purpose steel such as SUS304, which does not have particularly improved stress corrosion cracking resistance, an aqueous solution containing Ni 2+ is dropped into the gap and Ni ions are supplied into the gap. When subjected to the test, stress corrosion cracking is remarkably suppressed. Although the mechanism is not clear at present, the effect of Ni ions can be grasped by, for example, the following experiment.
すなわち、SUS304の2D仕上げ材(板厚1mm)から30mm×30mmの大片と15mm×15mmの小片を切り出し、表面を#600湿式研磨で仕上げた後、大片の中央に小片を直径5mmの電極を用いてスポット溶接によりナゲットが形成される条件で接合した。溶接部近傍には密着状態に近い隙間構造が形成されている。このようにして作製した溶接隙間試験片(溶接により隙間構造を形成した試験片)を塩乾湿複合サイクル試験(CCT)に供した。試験片は小片側が上になるように概ね水平に置いた。CCTは、「85%R.H.、50℃×15h保持→30%R.H.、50℃×3h保持による強制乾燥→50%R.H.、20℃×6h保持」を1サイクルとし、これを100サイクルまで行った。ただし、初回サイクルと途中の10サイクルごとにそのサイクル開始前に「5%NaCl水溶液」または「5%NaClに2000ppmのNi2+イオンを添加した水溶液」のいずれかを一方を小片の中央部に1mL滴下した。 That is, a 30 mm × 30 mm large piece and a 15 mm × 15 mm small piece are cut out from a SUS304 2D finish (plate thickness: 1 mm), the surface is finished by # 600 wet polishing, and then an electrode having a diameter of 5 mm is used at the center of the large piece. Then, joining was performed under the condition that a nugget was formed by spot welding. A gap structure close to a close contact state is formed in the vicinity of the weld. The weld gap test piece produced in this way (test piece in which a gap structure was formed by welding) was subjected to a salt-dry wet cycle test (CCT). The test piece was placed almost horizontally with the small piece side up. For CCT, “85% RH, 50 ° C. × 15 h hold → 30% RH. Forced drying by holding 50 ° C. × 3 h → 50% RH, 20 ° C. × 6 h hold” is one cycle. This was done up to 100 cycles. However, before the start of the cycle and every 10 cycles in the middle, either “5% NaCl aqueous solution” or “5% NaCl added with 2000 ppm Ni 2+ ions” is placed in the center of the small piece. 1 mL was added dropwise.
100サイクル後の溶接隙間試験片の大片と小片を分離し、溶接部近傍の応力腐食割れの有無を調べた。その結果、「5%NaCl水溶液」を滴下した試料には応力腐食割れが生じていたのに対し、「5%NaClに2000ppmのNi2+イオンを添加した水溶液」を滴下した試料には応力腐食割れは認められなかった。つまり、SUS304であってもNi2+イオンが存在する溶接隙間では耐応力腐食割れ性が顕著に改善されることが明らかになった。なお、SUS304を用いたこの溶接隙間試験片は、水環境では著しい応力腐食を起こすものである。 The large and small pieces of the weld gap test piece after 100 cycles were separated, and the presence or absence of stress corrosion cracking in the vicinity of the weld was examined. As a result, stress corrosion cracking occurred in the sample dropped with “5% NaCl aqueous solution”, whereas stress corrosion occurred in the sample dropped with “aqueous solution obtained by adding 2000 ppm Ni 2+ ions to 5% NaCl”. No cracks were observed. That is, it was revealed that even in the case of SUS304, the stress corrosion cracking resistance is remarkably improved in the weld gap where Ni 2+ ions exist. In addition, this weld gap test piece using SUS304 causes remarkable stress corrosion in a water environment.
実際の大気環境では外部からNi2+イオンが供給されることはない。そこで、本発明のステンレス鋼部材は、
i) 塩化物の付着するような大気環境において、素材のオーステナイト系ステンレス鋼から隙間内にNi2+イオンが供給されること、
ii) そのNi2+イオンが隙間内に滞留すること、
により、耐応力腐食割れ性の問題を解消を図ったものである。
上記i) については、素材のオーステナイト系ステンレス鋼の組成を規定することによって実現される。上記ii) については隙間部をNi2+イオンが流出しにくい構造にすることによって実現される。以下、鋼組成と隙間構造の規定について説明する。
In the actual atmospheric environment, Ni 2+ ions are not supplied from the outside. Therefore, the stainless steel member of the present invention is
i) Ni 2+ ions are supplied into the gap from the austenitic stainless steel of the material in an atmospheric environment where chloride adheres,
ii) the Ni 2+ ions stay in the gap;
Thus, the problem of stress corrosion cracking resistance is solved.
The above i) is realized by defining the composition of the austenitic stainless steel as a raw material. The above ii) is realized by making the gap portion a structure in which Ni 2+ ions hardly flow out. Hereinafter, the steel composition and the definition of the gap structure will be described.
〔鋼組成〕
種々検討の結果、自動車の給油系部材や足回り部材など塩化物の付着が起こりやすい大気環境で使用された場合に、素材自体から隙間部に十分な量のNi2+イオンが供給されるためには、Ni含有量を多めに確保することが有効である。また、隙間内ではpHが低下して酸環境となりやすいため、Ni含有量を多くして臨界不動態化電流を低下させることが、応力腐食割れの基点となる腐食の成長を抑制する上で効果的である。これらのことから、素材のNi含有量は14.0質量%以上とする必要がある。ただし、過剰のNi含有はヘゲ等の表面欠陥を招きやすく、またコスト増となるため、Ni含有量は23.0質量%以下に制限される。
[Steel composition]
As a result of various investigations, a sufficient amount of Ni 2+ ions are supplied from the material itself to the gap when used in an atmospheric environment where chlorides are likely to adhere, such as automobile refueling parts and underbody parts. It is effective to secure a large Ni content. In addition, since the pH is likely to decrease in the gap and become an acid environment, increasing the Ni content and reducing the critical passivation current is effective in suppressing the growth of corrosion, which is the starting point of stress corrosion cracking. Is. From these things, Ni content of a raw material needs to be 14.0 mass% or more. However, excessive Ni content tends to cause surface defects such as baldness and increases costs, so the Ni content is limited to 23.0% by mass or less.
また、塩化物存在下での基本的な耐食性を確保し、かつ隙間内でのpH低下による耐食性低下に対応するために、Cr含有量を23.0質量%以上確保する。ただし、あまりCr含有量が高くなるとオーステナイト単相組織が得られなくなり、また加工性を害するようになる。このため、Cr含有量は30.0質量%以下に制限される。 In addition, in order to ensure basic corrosion resistance in the presence of chlorides and to cope with a decrease in corrosion resistance due to a decrease in pH in the gap, a Cr content of 23.0% by mass or more is ensured. However, if the Cr content is too high, an austenite single phase structure cannot be obtained, and workability is impaired. For this reason, Cr content is restrict | limited to 30.0 mass% or less.
オーステナイト系ステンレス鋼に通常含まれるその他の元素については、製造性、加工性、溶接性を害さない限り、特に制限しなくてもよいが、例えばC:0.08質量%以下、Si:1.5質量%以下、Mn:2.5質量%以下、N:0.08質量%以下、Cu:1.0%質量以下、Mo:1.0%質量以下の範囲において良好な結果が得られる。
その他、例えばBは0.03質量%以下、Ti、Nbはいずれも0.05質量%以下、REM(希土類元素)、Y、Caは合計0.02質量%以下の範囲で含有が許容される。Sはできるだけ低く抑えることが望ましく、本発明では0.007質量%まで許容される。
The other elements usually contained in the austenitic stainless steel are not particularly limited as long as they do not impair manufacturability, workability, and weldability. For example, C: 0.08 mass% or less, Si: 1. Good results are obtained in a range of 5% by mass or less, Mn: 2.5% by mass or less, N: 0.08% by mass or less, Cu: 1.0% by mass or less, and Mo: 1.0% by mass or less.
In addition, for example, B is allowed to be contained in a range of 0.03 mass% or less, Ti and Nb are both 0.05 mass% or less, and REM (rare earth element), Y, and Ca are contained in a total range of 0.02 mass% or less. . It is desirable to keep S as low as possible. In the present invention, up to 0.007% by mass is acceptable.
〔隙間構造〕
給油系部材などの自動車部材を構築する際、部品相互を抵抗溶接やかしめ加工によって接合することが多い。抵抗溶接は、シーム溶接やスポット溶接が最も一般的であり、通常2つの板状部品を重ね合わせて、それらを電極で挟んで加圧しながら通電し、接合する。接合された溶接部の近傍には、重ね合わされた両部品間に隙間が形成される。この隙間は、両部品が面接触している場合もあるし、一部または全部が離れている場合もある。かしめ加工では、その加工部に面接触に近い形態の隙間が形成され、その周辺に両部品が離れている隙間が形成されることもある。いずれにしても、抵抗溶接やかしめ加工の接合部近傍に形成される隙間は、その接合部に力がかかったときに両部品が押し合わされることで接合部の強度を維持する機能を有する。隙間部の面積があまり小さいと、接合強度の維持機能が発揮されない。対向する表面同士の平均距離δ(mm)と、面状の空間または接触部の面積s(mm2)が、s≧10δを満たさない場合は、隙間間隔に対し重なり部の面積が小さすぎ、接合強度の維持機能が不十分となりやすい。
(Gap structure)
When constructing automobile parts such as oil supply system members, parts are often joined by resistance welding or caulking. The resistance welding is most commonly seam welding or spot welding. Usually, two plate-like parts are overlapped, and they are sandwiched between electrodes and are energized while being pressed and joined. In the vicinity of the welded portion joined, a gap is formed between the two superimposed components. The gap may be in surface contact with both parts, or may be partially or wholly separated. In the caulking process, a gap having a form close to surface contact is formed in the processed portion, and a gap in which both parts are separated may be formed around the gap. In any case, the gap formed in the vicinity of the joint portion of resistance welding or caulking has a function of maintaining the strength of the joint portion by pressing both parts when a force is applied to the joint portion. If the area of the gap is too small, the function of maintaining the bonding strength is not exhibited. When the average distance δ (mm) between the opposing surfaces and the area s (mm 2 ) of the planar space or contact portion does not satisfy s ≧ 10δ, the area of the overlapping portion is too small with respect to the gap interval, The function of maintaining the bonding strength tends to be insufficient.
隙間内部で生じたNi2+が隙間外に流出すると、隙間部での耐応力腐食割れ性が十分得られなくなる。このため、隙間間隔ができるだけ小さい隙間構造を形成させることが本発明では極めて重要である。詳細な研究の結果、隙間間隔が0.5mm以下であるようなタイトな隙間構造を構築し、かつ上記組成を有する鋼素材を少なくとも対向する部品のいずれかに使用することによって、その隙間部は、塩化物の付着しやすい大気環境に曝されたとき、トラブルの原因になる応力腐食割れを生じないことがわかった。この点、タイトな隙間が隙間腐食や応力腐食割れを助長する要因となる水環境とは、腐食挙動が大きく異なると言える。大気環境では、隙間間隔が0.5mmを超えると安定して耐応力腐食割れ性の顕著な向上効果を得ることが難しくなる。 If Ni 2+ generated inside the gap flows out of the gap, sufficient stress corrosion cracking resistance in the gap cannot be obtained. For this reason, it is very important in the present invention to form a gap structure with a gap gap as small as possible. As a result of detailed research, by constructing a tight gap structure in which the gap interval is 0.5 mm or less and using the steel material having the above composition for at least one of the facing parts, the gap portion is It was found that stress corrosion cracking, which causes trouble, does not occur when exposed to an atmospheric environment where chlorides are likely to adhere. In this respect, it can be said that the corrosion behavior is greatly different from the water environment in which tight gaps promote crevice corrosion and stress corrosion cracking. In the atmospheric environment, when the gap interval exceeds 0.5 mm, it becomes difficult to stably obtain a remarkable improvement effect of stress corrosion cracking resistance.
隙間を挟んだ両部品のうち、いずれか一方を本発明で規定する上記組成のオーステナイト系ステンレス鋼で構成することにより、隙間内部でのNi2+イオンの生成が実現され、隙間部での耐応力腐食割れ性は顕著に改善される。隙間を挟んだ両部品をいずれも本発明で規定する上記組成のオーステナイト系ステンレス鋼で構成すれば、信頼性が一層向上し、好ましい。 By forming either one of the parts sandwiching the gap with the austenitic stainless steel having the above composition as defined in the present invention, the generation of Ni 2+ ions inside the gap is realized, and the resistance in the gap is reduced. Stress corrosion cracking is significantly improved. If both parts having a gap are made of the austenitic stainless steel having the above composition defined in the present invention, the reliability is further improved, which is preferable.
表1に示す組成のオーステナイト系ステンレス鋼を溶製し、一般的なステンレス鋼板の製造プロセスにより、2D仕上げの素材鋼板(板厚2mm)を製造し、この素材鋼板を用いて図1に示すような構造の溶接隙間試験片を作製した。すなわち、30mm×30mmの大片1と15mm×15mmの小片2を素材鋼板から切り出した。このうち小片2には、精密切削加工により、一方の面の中央位置に直径5mm、高さ10μm〜1.0mmの突起3を形成した。表面仕上げは、大片1は#600湿式研磨仕上げ、小片は精密切削加工ままとした。大片1の中央に突起3の先端が当たるようにして、直径5mmの電極を用いてスポット溶接によりナゲットが形成される条件で接合した。電極の軸と小片2の突起3の軸が一致するようにスポット溶接を行った。
図1に、このようにして作製した溶接隙間試験片の構造を模式的に示す。図1(a)が平面図、図1(b)中央部の断面図である。隙間間隔δが10μm〜1.0mmの種々の段階にある溶接隙間試験片が用意された。
なお、各鋼のS含有量はいずれも0.007質量%以下に低減されている。
An austenitic stainless steel having the composition shown in Table 1 is melted, and a 2D-finished steel plate (2 mm thick) is manufactured by a general stainless steel plate manufacturing process. As shown in FIG. A weld gap test piece having a simple structure was prepared. That is, a large piece 1 of 30 mm × 30 mm and a
FIG. 1 schematically shows the structure of the weld gap test piece thus produced. FIG. 1A is a plan view, and FIG. 1B is a cross-sectional view at the center. Weld gap test pieces in various stages with a gap interval δ of 10 μm to 1.0 mm were prepared.
In addition, all S content of each steel is reduced to 0.007 mass% or less.
各溶接隙間試験片について、塩乾湿複合サイクル試験(CCT)に供した。試験片は小片側が上になるように概ね水平に置いた。CCTは、「85%R.H.、50℃×15h保持→30%R.H.、50℃×3h保持による強制乾燥→50%R.H.、20℃×6h保持」を1サイクルとし、これを100サイクルまで行った。ただし、初回サイクルと途中の10サイクルごとにそのサイクル開始前に5%NaCl水溶液(Ni2+イオン無添加のもの)を小片の中央部に1mL滴下した。各鋼種ともn=3で行った。 Each weld gap test piece was subjected to a salt dry / wet combined cycle test (CCT). The test piece was placed almost horizontally with the small piece side up. For CCT, “85% RH, 50 ° C. × 15 h hold → 30% RH. Forced drying by holding 50 ° C. × 3 h → 50% RH, 20 ° C. × 6 h hold” is one cycle. This was done up to 100 cycles. However, 1 mL of 5% NaCl aqueous solution (with no Ni 2+ ions added) was dropped at the center of the small piece before the start of the first cycle and every 10 cycles in the middle. Each steel type was performed with n = 3.
100サイクル後の試験片の大片と小片を分離し、溶接部近傍の応力腐食割れの有無を光学顕微鏡により詳細に調べ、n=3のうち、すべての試験片について応力腐食割れが認められなかったものを○(良好)、1つでも応力腐食割れが認められたものを×(不良)と評価した。結果を表2に示す。 After 100 cycles, the large and small pieces of the test piece were separated, and the presence or absence of stress corrosion cracking in the vicinity of the weld was examined in detail with an optical microscope, and no stress corrosion cracking was observed for all the test pieces of n = 3. A thing (circle) (good) and the one where stress corrosion cracking was recognized were evaluated as x (bad). The results are shown in Table 2.
表2からわかるように、本発明規定の組成を有するオーステナイト系ステンレス鋼で試験片を構成し、かつ隙間間隔が0.5mm以下の隙間構造を形成した本発明例のものはいずれも応力腐食割れを生じておらず、塩化物の付着しやすい大気環境において優れた耐応力腐食割れ性を安定して示すことが確認された。 As can be seen from Table 2, all of the examples of the present invention in which the test piece is composed of austenitic stainless steel having the composition defined in the present invention and a gap structure with a gap interval of 0.5 mm or less is formed are stress corrosion cracking. It was confirmed that the material exhibits stable stress corrosion cracking resistance stably in an atmospheric environment where chlorides are likely to adhere.
これに対し、本発明規定の組成を有するオーステナイト系ステンレス鋼であっても、隙間間隔が0.8mmおよび1.0mmのものでは応力腐食割れが生じた。これは、隙間間隔が広くなることでNi2+イオンが隙間外へ流出しやすくなる一方、酸素濃度は隙間内の方が低いままであり、酸素濃淡電池が形成されたためである考えられる。 On the other hand, even in the austenitic stainless steel having the composition defined in the present invention, stress corrosion cracking occurred when the gap interval was 0.8 mm and 1.0 mm. This is probably because Ni 2+ ions easily flow out of the gap due to the wide gap interval, while the oxygen concentration remains lower in the gap and an oxygen concentration cell is formed.
また、Cr含有量あるいはNi含有量が本発明規定範囲を外れて少ない鋼(No.21〜26)で構成したものは、隙間間隔0.5mm以下のタイトな隙間構造としても応力腐食割れの発生を回避することはできなかった。 In addition, when the Cr content or the Ni content is made of steel (No. 21 to 26) that is less than the scope of the present invention, stress corrosion cracking occurs even in a tight gap structure with a gap interval of 0.5 mm or less. Could not be avoided.
1 大片
2 小片
3 突起
1
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006042085A JP2007217775A (en) | 2006-02-20 | 2006-02-20 | Stainless steel member having crevice structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006042085A JP2007217775A (en) | 2006-02-20 | 2006-02-20 | Stainless steel member having crevice structure |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007217775A true JP2007217775A (en) | 2007-08-30 |
Family
ID=38495371
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006042085A Withdrawn JP2007217775A (en) | 2006-02-20 | 2006-02-20 | Stainless steel member having crevice structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007217775A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011152537A1 (en) * | 2010-06-03 | 2011-12-08 | 新日鐵住金ステンレス株式会社 | Oil feed pipe and process for producing same |
JP2012250255A (en) * | 2011-06-02 | 2012-12-20 | Nippon Yakin Kogyo Co Ltd | Stainless steel for welding |
JP2012251194A (en) * | 2011-06-02 | 2012-12-20 | Nippon Yakin Kogyo Co Ltd | Stainless steel and method for producing the same |
JP2015155116A (en) * | 2015-03-20 | 2015-08-27 | 日本冶金工業株式会社 | Method of overlaying stainless steel for welding |
WO2021019849A1 (en) * | 2019-07-31 | 2021-02-04 | Jfeスチール株式会社 | Austenitic stainless steel sheet for fuel cell separator substrate |
-
2006
- 2006-02-20 JP JP2006042085A patent/JP2007217775A/en not_active Withdrawn
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011152537A1 (en) * | 2010-06-03 | 2011-12-08 | 新日鐵住金ステンレス株式会社 | Oil feed pipe and process for producing same |
CN102947116A (en) * | 2010-06-03 | 2013-02-27 | 新日铁住金不锈钢株式会社 | Oil feed pipe and process for producing same |
KR101436711B1 (en) | 2010-06-03 | 2014-09-01 | 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 | Oil feed pipe and process for producing same |
US9249901B2 (en) | 2010-06-03 | 2016-02-02 | Nippon Steel & Sumikin Stainless Steel Corporation | Fuel pipe and method of production of same |
CN102947116B (en) * | 2010-06-03 | 2016-02-03 | 新日铁住金不锈钢株式会社 | Rail and manufacture method thereof |
JP2012250255A (en) * | 2011-06-02 | 2012-12-20 | Nippon Yakin Kogyo Co Ltd | Stainless steel for welding |
JP2012251194A (en) * | 2011-06-02 | 2012-12-20 | Nippon Yakin Kogyo Co Ltd | Stainless steel and method for producing the same |
JP2015155116A (en) * | 2015-03-20 | 2015-08-27 | 日本冶金工業株式会社 | Method of overlaying stainless steel for welding |
WO2021019849A1 (en) * | 2019-07-31 | 2021-02-04 | Jfeスチール株式会社 | Austenitic stainless steel sheet for fuel cell separator substrate |
JPWO2021019849A1 (en) * | 2019-07-31 | 2021-09-13 | Jfeスチール株式会社 | Austenitic stainless steel plate for base material of fuel cell separator |
JP7021706B2 (en) | 2019-07-31 | 2022-02-17 | Jfeスチール株式会社 | Austenitic stainless steel sheet for base material of fuel cell separator |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4014907B2 (en) | Stainless steel fuel tank and fuel pipe made of stainless steel with excellent corrosion resistance | |
CN107427950B (en) | Method for welding metal-based materials that are not directly weldable to one another using spacers | |
WO2011152537A1 (en) | Oil feed pipe and process for producing same | |
JP6084769B2 (en) | Oil supply pipe and manufacturing method thereof | |
WO2008062650A1 (en) | Surface-treated stainless-steel sheet excellent in salt damage/corrosion resistance and weld reliability for automotive fuel tank and for automotive fuel pipe and surface-treated stainless-steel welded pipe with excellent suitability for pipe expansion processing for automotive petrol pipe | |
US20100096291A1 (en) | Hot water tank and method for producing the same | |
CA2624140A1 (en) | Weld joint formed with stainless steel-based weld metal for welding a zinc-based alloy coated steel sheet | |
JP2007217775A (en) | Stainless steel member having crevice structure | |
JP5805954B2 (en) | Dissimilar metal joint and dissimilar metal joining method | |
CN108526692B (en) | A laser filler welding process of magnesium/aluminum dissimilar metals | |
US6953062B2 (en) | Fuel tank or fuel pipe excellent in corrosion resistance and method for producing the same | |
JP4262018B2 (en) | Structure building member and manufacturing method thereof | |
JP5014643B2 (en) | Stainless steel member with gap structure | |
JP2015199107A (en) | FeCrAl alloy welding wire and welded structure using the same | |
KR20090122941A (en) | Ferritic stainless steel and hot water containers for welded structure hot water containers | |
JP4874064B2 (en) | Non-consumable electrode type metal cored wire for welding | |
JP2008101241A (en) | Stainless steel container for high pressure water | |
JP4640995B2 (en) | Steel plate for brazing joint with aluminum material, joining method and joint using the steel plate | |
JP2004277767A (en) | Austenitic stainless steel for automotive oil filler pipe and fuel tank, and automotive oil filler pipe and fuel tank | |
JP2007277717A (en) | Steel sheet for brazing bonding to aluminum based material, bonding material using the steel sheet, and bonding joint | |
Ajide et al. | Effect of post-weld heat-treatment on corrosion and microstructure properties of electric arc weldedmild steels | |
JP2005015816A (en) | Can body for water heater with excellent corrosion resistance | |
JP4452204B2 (en) | Steel plate for brazing joint with aluminum material, joining method and joint using the steel plate | |
JP2006144040A (en) | Manufacturing method of highly corrosion-resistant fuel system parts with excellent productivity | |
JP2004330993A (en) | Automobile fuel tank and fuel supply pipe made of stainless steel excellent in corrosion resistance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20090512 |