[go: up one dir, main page]

JP2007214348A - Magnetic induction element and manufacturing method thereof - Google Patents

Magnetic induction element and manufacturing method thereof Download PDF

Info

Publication number
JP2007214348A
JP2007214348A JP2006032409A JP2006032409A JP2007214348A JP 2007214348 A JP2007214348 A JP 2007214348A JP 2006032409 A JP2006032409 A JP 2006032409A JP 2006032409 A JP2006032409 A JP 2006032409A JP 2007214348 A JP2007214348 A JP 2007214348A
Authority
JP
Japan
Prior art keywords
insulating substrate
hole
magnetic insulating
magnetic
induction element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006032409A
Other languages
Japanese (ja)
Inventor
Hideaki Matsuyama
秀昭 松山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Device Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Device Technology Co Ltd filed Critical Fuji Electric Device Technology Co Ltd
Priority to JP2006032409A priority Critical patent/JP2007214348A/en
Publication of JP2007214348A publication Critical patent/JP2007214348A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Coils Of Transformers For General Uses (AREA)

Abstract

【目的】低コストで厚い磁性絶縁基板に貫通孔を形成した薄膜磁気誘導素子およびその製造方法を提供する。
【解決手段】この磁気誘導素子は、磁性絶縁基板1の第1主面(表面)に形成される第1コイル導体4と、第2主面(裏面)に形成される溝21の底部22に形成される第2コイル導体5と、第1コイル導体4の端部と第2コイル導体5の端部を電気的に接続するために形成される接続導体3と、この接続導体3を形成するために磁性絶縁基板1に開けた貫通孔23とで構成される。第1コイル導体4、第2コイル導体5、接続導体3でソレノイド状のコイル導体が形成され、表面には保護膜16が被覆されている。溝21を形成し、磁性絶縁基板1の薄い個所に穴を一方向から掘り貫通孔を形成することで低コストで厚い磁性絶縁基板に貫通孔を形成できる。
【選択図】 図1
[Objective] To provide a thin film magnetic induction element in which a through hole is formed in a thick magnetic insulating substrate at a low cost and a method for manufacturing the same.
The magnetic induction element includes a first coil conductor formed on a first main surface (front surface) of a magnetic insulating substrate and a bottom portion of a groove formed on a second main surface (back surface). The second coil conductor 5 to be formed, the connection conductor 3 formed to electrically connect the end of the first coil conductor 4 and the end of the second coil conductor 5, and the connection conductor 3 are formed. For this purpose, it is constituted by a through hole 23 opened in the magnetic insulating substrate 1. A solenoidal coil conductor is formed by the first coil conductor 4, the second coil conductor 5, and the connection conductor 3, and a protective film 16 is coated on the surface. By forming the groove 21 and digging a hole from one direction in a thin portion of the magnetic insulating substrate 1 to form a through hole, the through hole can be formed in the thick magnetic insulating substrate at low cost.
[Selection] Figure 1

Description

本発明は薄型のインダクタ、トランス等の磁気誘導素子およびその製造方法に関する。   The present invention relates to a magnetic induction element such as a thin inductor and a transformer, and a manufacturing method thereof.

近年、各種電子機器は小型・軽量化されてきており、なおかつ低消費電力化が求められている。これに伴い電子機器に搭載される電源として小型のスイッチング電源に対する要求が高まっている。ノート型パソコンや携帯電話等の小型携帯機器、薄型CRT、フラットパネルディスプレイなどに用いられるスイッチング電源では、その小型・薄型化が強く求められている。特に、携帯型の各種電子機器においては電池を電源としており、DC−DCコンバータなどの電力変換装置が内蔵され、小型・薄型化が求められている。しかしながら、従来のスイッチング電源は、その主要な構成部品であるトランス、インダクタ等の磁気部品が大きな体積を占める。   In recent years, various electronic devices have been reduced in size and weight, and there has been a demand for lower power consumption. Accordingly, there is an increasing demand for a small switching power supply as a power supply mounted on an electronic device. In switching power supplies used for small portable devices such as notebook personal computers and mobile phones, thin CRTs, flat panel displays, etc., there is a strong demand for miniaturization and thinning. In particular, in various portable electronic devices, a battery is used as a power source, and a power conversion device such as a DC-DC converter is built in, and a reduction in size and thickness is required. However, in conventional switching power supplies, magnetic components such as transformers and inductors, which are main components, occupy a large volume.

これまでさまざまな小型・薄型化の努力がなされているが、特許文献1において、薄型化されたインダクタ(薄膜磁気誘導素子)が記載されている。図4は当該インダクタの構成図であり、同図(a)じゃ要部平面図、同図(b)は同図(a)のX−X線で切断した要部断面図、同図(c)は同図(b)のB部の拡大図である。図4に示すように、この素子は磁性絶縁基板1に貫通孔をあけてコイル導体が巻かれ、コイルの発生する磁場が基板面内となる構造を持つ。磁性絶縁基板1の第1主面にコイル導体4、第2主面にコイル導体5が形成されており、それぞれの導体4、5は貫通孔23に形成される接続導体3によって電気的に接続され、ソレノイド状のコイルが形成されている。小型化にともない、薄膜磁気誘導素子1の大きさが1辺の長さLが3.5mm(正方形)、厚さが525μmと小さくなり、さらに貫通孔23の直径は表面で130μmφ程度と非常に小さなものとなっている。   Various efforts have been made to reduce the size and thickness of the device, and Patent Document 1 describes a thinned inductor (thin film magnetic induction element). FIG. 4 is a configuration diagram of the inductor. FIG. 4A is a plan view of the main part, FIG. 4B is a cross-sectional view of the main part taken along line XX of FIG. ) Is an enlarged view of a portion B in FIG. As shown in FIG. 4, this element has a structure in which a magnetic conductor generated by a coil is in the substrate plane by forming a through hole in the magnetic insulating substrate 1 and winding a coil conductor. A coil conductor 4 is formed on the first main surface of the magnetic insulating substrate 1, and a coil conductor 5 is formed on the second main surface. The conductors 4 and 5 are electrically connected by the connection conductor 3 formed in the through hole 23. Thus, a solenoidal coil is formed. Along with miniaturization, the size of the thin-film magnetic induction element 1 is reduced to a side length L of 3.5 mm (square) and a thickness of 525 μm, and the diameter of the through hole 23 is as small as about 130 μmφ on the surface. It has become a thing.

このような貫通孔23の加工はサンドブラスト加工、レーザ加工、放電加工、超音波加工などでなされるが、微小で多数の貫通孔を生産性よく加工する方法としてはサンドブラスト加工がある。この方法では磁性絶縁基板1の表面から奥に加工するにしたがって、穴の径が小さくなる。たとえば、図5に示すように、サンドブラスト加工により厚さMが500μmの磁性絶縁基板1であるフェライト平板の表面に直径D3が150μmの穴31を開けた場合、磁性絶縁基板1の中央(深さNが250μm)で穴の底部の直径D4が約80μmとサイズが2/3程度に小さくなり穴31の側壁にはテーパー32が付く。さらに深く掘ろうとしても底部33からのサンドブラスト粒子の跳ね返りにより掘れなくなる。   Such a through hole 23 is processed by sandblasting, laser processing, electric discharge processing, ultrasonic processing, or the like. As a method of processing a large number of through holes with high productivity, there is sandblasting. In this method, the diameter of the hole is reduced as processing from the surface of the magnetic insulating substrate 1 to the back. For example, as shown in FIG. 5, when a hole 31 having a diameter D3 of 150 .mu.m is formed on the surface of a ferrite flat plate, which is a magnetic insulating substrate 1 having a thickness M of 500 .mu.m, by sandblasting, the center (depth of the magnetic insulating substrate 1). N is 250 μm), the diameter D4 of the bottom of the hole is about 80 μm, the size is reduced to about 2/3, and the side wall of the hole 31 is tapered. Even when trying to dig deeper, the sandblast particles from the bottom 33 bounce off and cannot be dug.

ここでは、サンドブラスト加工について示したが、他の加工法についてもこのように穴31にはテーパー32が付く。従って、貫通孔3は中央部がくびれた形状となることは避けられない。尚、図中の6a、6bは端子電極、2は端子電極6a、6bを接続する接続導体、16は保護膜、16aは開口部である。
特開2004−274004号公報
Here, although the sandblasting is shown, the taper 32 is attached to the hole 31 in this way also in other processing methods. Therefore, it is inevitable that the through hole 3 has a constricted central portion. In the figure, 6a and 6b are terminal electrodes, 2 is a connecting conductor for connecting the terminal electrodes 6a and 6b, 16 is a protective film, and 16a is an opening.
JP 2004-274004 A

薄膜磁気誘導素子の小型化(占有面積の縮小化)を図るために、もしくは、薄膜磁気誘導素子の性能を向上させるために、磁性絶縁基板1の厚さを厚くすると、加工により貫通孔3の穴はテーパーを持つため、磁性絶縁基板1の深さ方向に徐々に穴径が小さくなり、厚い磁性絶縁基板1には貫通孔3を形成することが困難になる。また、図4のように、磁性絶縁基板1の両面から穴を掘ると製造コストも高くなる。   If the thickness of the magnetic insulating substrate 1 is increased in order to reduce the size of the thin film magnetic induction element (reduction of the occupied area) or to improve the performance of the thin film magnetic induction element, the through holes 3 are formed by processing. Since the hole has a taper, the hole diameter gradually decreases in the depth direction of the magnetic insulating substrate 1, and it becomes difficult to form the through hole 3 in the thick magnetic insulating substrate 1. Further, as shown in FIG. 4, when the holes are dug from both surfaces of the magnetic insulating substrate 1, the manufacturing cost is increased.

この発明の目的は、前記の課題を解決して、低コストで厚い磁性絶縁基板に貫通孔を形成した薄膜磁気誘導素子およびその製造方法を提供することにある。   An object of the present invention is to solve the above-described problems and provide a thin film magnetic induction element in which a through hole is formed in a thick magnetic insulating substrate at low cost and a method for manufacturing the same.

前記の目的を達成するために、磁性絶縁基板の第1主面に形成された第1導体と、前記磁性絶縁基板の第2主面に形成された第2導体と、前記磁性絶縁基板を貫通する貫通孔に形成された接続導体とをそれぞれ接続してなるコイル導体を有する薄型の磁気誘導素子において、前記貫通孔を設ける箇所の前記磁性絶縁基板の厚さを選択的に薄くする構成とする。       In order to achieve the above object, the first conductor formed on the first main surface of the magnetic insulating substrate, the second conductor formed on the second main surface of the magnetic insulating substrate, and the magnetic insulating substrate are penetrated. In a thin magnetic induction element having a coil conductor formed by connecting a connection conductor formed in each through hole, the thickness of the magnetic insulating substrate at the location where the through hole is provided is selectively reduced. .

また、前記コイル導体が、ソレノイド状のコイル導体であるとよい。   The coil conductor may be a solenoidal coil conductor.

また、前記磁性絶縁基板が、フェライト基板もしくは圧粉磁心であるとよい。   The magnetic insulating substrate may be a ferrite substrate or a dust core.

また、磁性絶縁基板の第1主面に形成された第1導体と、前記磁性絶縁基板の第2主面に形成された第2導体と、前記磁性絶縁基板を貫通する貫通孔に形成された接続導体とをそれぞれ接続してなるコイル導体を有する薄型の磁気誘導素子の製造方法において、前記接続導体を形成する予定箇所を含むように前記磁性絶縁基板に溝を形成する工程と、該予定箇所に貫通孔を形成する工程と、該貫通孔に前記接続導体を形成する工程と、該接続導体と接続する導体を前記磁性絶縁基板の両面に形成しコイル導体を形成する工程とを有する製造方法とする。   A first conductor formed on the first main surface of the magnetic insulating substrate; a second conductor formed on the second main surface of the magnetic insulating substrate; and a through-hole penetrating the magnetic insulating substrate. In the method of manufacturing a thin magnetic induction element having a coil conductor formed by connecting each of the connection conductors, a step of forming a groove in the magnetic insulating substrate so as to include the planned location for forming the connection conductor; The manufacturing method which has the process of forming a through-hole in this, the process of forming the said connection conductor in this through-hole, and the process of forming the conductor connected to this connection conductor on both surfaces of the said magnetic insulation board | substrate And

また、前記貫通孔が、サンドブラスト加工で形成される製造方法とするとよい。   Moreover, it is good to set it as the manufacturing method in which the said through-hole is formed by sandblasting.

また、前記貫通孔の直径が、前記磁性絶縁基板の一方の面から他方の面に向って小さくなる(テーパー状にする)製造方法とするとよい。   The diameter of the through hole may be a manufacturing method in which the diameter decreases from one surface of the magnetic insulating substrate to the other surface (tapered).

この発明によれば、厚い磁性絶縁基板に貫通孔を形成する際、貫通孔を形成する予定箇所を含むように磁性絶縁基板を予め選択的に溝を掘り薄くしておき、その薄い箇所に一方向から穴を掘って貫通孔を形成することで、厚い磁性絶縁基板でも貫通孔を形成できる。   According to the present invention, when the through hole is formed in the thick magnetic insulating substrate, the magnetic insulating substrate is selectively thinned by digging the magnetic insulating substrate in advance so as to include the portion where the through hole is to be formed. By digging a hole from the direction to form the through hole, the through hole can be formed even with a thick magnetic insulating substrate.

また、一方向から穴を掘ることで、従来の両方向から穴を掘る場合に比べて製造コストを低減できる。   Further, by digging a hole from one direction, the manufacturing cost can be reduced as compared with the conventional case of digging a hole from both directions.

このように、厚い磁性絶縁基板を用いることができるために、磁気誘導素子を小型化(占有面積を縮小)しても従来と同等のコイル特性が得られる。また、磁性絶縁基板の大きさを従来と同一の大きさにした場合には、磁性絶縁基板を厚くできるために、コイル特性の向上を図ることができる。   Thus, since a thick magnetic insulating substrate can be used, even if the magnetic induction element is reduced in size (occupied area is reduced), coil characteristics equivalent to those of the prior art can be obtained. In addition, when the size of the magnetic insulating substrate is the same as the conventional size, the thickness of the magnetic insulating substrate can be increased, so that the coil characteristics can be improved.

発明の実施するための最良の形態を以下の実施例で説明する。   The best mode for carrying out the invention will be described in the following examples.

図1は、この発明の第1実施例の磁気誘導素子であるインダクタの構成図であり、同図(a)は要部平面図、同図(b)は同図(a)のX−X線で切断した要部断面図、同図(c)は同図(b)のA部の拡大図である。尚、図4と同一部位には同一符号を付した。   FIGS. 1A and 1B are configuration diagrams of an inductor which is a magnetic induction element according to a first embodiment of the present invention. FIG. 1A is a plan view of an essential part, and FIG. 1B is an XX of FIG. The principal part sectional drawing cut | disconnected by the line | wire, the figure (c) is an enlarged view of the A section of the figure (b). In addition, the same code | symbol was attached | subjected to the same site | part as FIG.

この磁気誘導素子は、磁性絶縁基板1の第1主面(表面)に形成される第1コイル導体4と、第2主面(裏面)に形成される溝21の底部22に形成される第2コイル導体5と、第1コイル導体4の端部と第2コイル導体5の端部を電気的に接続するために形成される接続導体3と、この接続導体3を形成するために磁性絶縁基板1に開けた貫通孔23とで構成される。第1コイル導体4、第2コイル導体5、接続導体3でソレノイド状のコイル導体が形成され、表面には保護膜16が被覆されている。   This magnetic induction element is formed on the first coil conductor 4 formed on the first main surface (front surface) of the magnetic insulating substrate 1 and on the bottom portion 22 of the groove 21 formed on the second main surface (back surface). Two coil conductors 5, a connection conductor 3 formed to electrically connect the end of the first coil conductor 4 and the end of the second coil conductor 5, and magnetic insulation to form the connection conductor 3 It consists of a through hole 23 opened in the substrate 1. A solenoidal coil conductor is formed by the first coil conductor 4, the second coil conductor 5, and the connection conductor 3, and a protective film 16 is coated on the surface.

この磁性絶縁基板1は、例えば、フェライト基板などである。磁性絶縁基板1の大きさを縦の長さL1を3.0mm、横の長さL2を3.5mm、厚さHを600μmとした場合、溝21の深さTを350μmとして、溝21を形成した箇所の磁性絶縁基板1の厚さWを250μmとする。貫通孔23は、表面の直径D1が150μmの穴を一方向からのみ掘って形成されるため、貫通孔23の側壁にはテーパー24が形成され、貫通孔23の底面の直径D2は80μmである。   The magnetic insulating substrate 1 is, for example, a ferrite substrate. When the length L1 of the magnetic insulating substrate 1 is 3.0 mm, the horizontal length L2 is 3.5 mm, and the thickness H is 600 μm, the depth T of the groove 21 is 350 μm, and the groove 21 is formed. The thickness W of the magnetic insulating substrate 1 at the formed position is set to 250 μm. Since the through hole 23 is formed by digging a hole having a surface diameter D1 of 150 μm from only one direction, a taper 24 is formed on the side wall of the through hole 23, and the diameter D2 of the bottom surface of the through hole 23 is 80 μm. .

尚、図中の6a、6bは磁性絶縁基板1の外周に形成される端子電極、2は端子電極6a、6bを接続する接続導体、16aは保護膜16に開けた開口部である。   In the figure, 6a and 6b are terminal electrodes formed on the outer periphery of the magnetic insulating substrate 1, 2 is a connecting conductor for connecting the terminal electrodes 6a and 6b, and 16a is an opening formed in the protective film 16.

このように、部分的に溝21を形成して磁性絶縁基板1を薄くし、この薄い箇所に貫通孔23を一方向から形成することで、厚い磁性絶縁基板1でも貫通孔23を形成できる。また、一方向に貫通孔23を形成できるので製造コストを低減できる。   In this way, the through holes 23 can be formed even in the thick magnetic insulating substrate 1 by partially forming the grooves 21 to thin the magnetic insulating substrate 1 and forming the through holes 23 in this thin portion from one direction. Moreover, since the through-hole 23 can be formed in one direction, manufacturing cost can be reduced.

尚、図2は、図1のY−Y線で切断した要部断面図である。貫通孔3の周辺のみに溝21が形成されている。   2 is a cross-sectional view of the main part taken along line YY of FIG. A groove 21 is formed only around the through hole 3.

図3は、図1の磁気誘導素子の製造方法であり、同図(a)から同図(c)は工程順に示す要部製造工程断面図である。磁性絶縁基板1として、厚さHが600μmのNi−Zn系フェライト基板を用いた。磁性絶縁基板1の厚さHは、必要なインダクタンス、コイル電流値、基板の磁性に関する特性(透磁率など)から決定されるものであり、この厚さに限ったものではない。   FIG. 3 shows a method of manufacturing the magnetic induction element of FIG. 1, and FIGS. As the magnetic insulating substrate 1, a Ni—Zn ferrite substrate having a thickness H of 600 μm was used. The thickness H of the magnetic insulating substrate 1 is determined from necessary inductance, coil current value, and magnetic properties (such as magnetic permeability) of the substrate, and is not limited to this thickness.

まず、600μmの厚さのフェライト基板である磁性絶縁基板1に貫通孔23を形成する予定箇所を含むように磁性絶縁基板1の厚さを溝21を掘って薄くする。溝21は帯状に形成し、薄くなった磁性絶縁基板1の厚さがWである。   First, the thickness of the magnetic insulating substrate 1 is reduced by digging the grooves 21 so that the magnetic insulating substrate 1, which is a ferrite substrate having a thickness of 600 μm, includes a portion where the through hole 23 is to be formed. The groove 21 is formed in a band shape, and the thickness of the thinned magnetic insulating substrate 1 is W.

この溝21加工としては、サンドブラスト加工やダイサーなどによる機械加工があるが、この実施例ではサンドブラスト法を用いた(同図(a))。   As the groove 21 processing, there is sand blasting or mechanical processing by a dicer or the like. In this embodiment, the sand blasting method is used ((a) in the figure).

次に、磁性絶縁基板1に貫通孔23を第1主面からサンドブラスト法で一方向に穴を掘って形成する。その貫通孔23の表面の直径D1は150μmで、底部22の直径D2は80μmである(同図(b))。ここで、溝21の平面形状や貫通孔23の平面形状は、レジストをマスクに用いて、サンドブラスト粒子を遮蔽して加工を行った。従って、円形の他に四角など任意の平面形状とすることができる。   Next, the through hole 23 is formed in the magnetic insulating substrate 1 by digging a hole in one direction from the first main surface by the sandblast method. The diameter D1 of the surface of the through-hole 23 is 150 μm, and the diameter D2 of the bottom portion 22 is 80 μm ((b) in the figure). Here, the planar shape of the groove 21 and the planar shape of the through-hole 23 were processed using a resist as a mask to shield sandblast particles. Therefore, it can have an arbitrary planar shape such as a square in addition to a circle.

溝21のためのレジストパターンは2.5mm×0.3mmとし、貫通孔23のためのレジストパターンは150μmφとした。また、サンドブラスト加工条件は一方向から吹き付け、噴射粒子SiCの粒径が約20μm、噴射量が100mg/min、噴射圧力が0.2MPaとした。溝21加工は加工時間を2時間として、溝の深さが約350μmとなった。このとき溝を形成した箇所の磁性絶縁基板の厚さWは250μmとなる。貫通孔23の加工は加工時間を2時間することで穴が貫通し、最小穴径(底部の直径D2)が約80μmとなった。比較のために溝加工しない試作も行ったが、穴は貫通しなかった。   The resist pattern for the groove 21 was 2.5 mm × 0.3 mm, and the resist pattern for the through hole 23 was 150 μmφ. The sandblasting conditions were sprayed from one direction, the particle size of the spray particles SiC was about 20 μm, the spray amount was 100 mg / min, and the spray pressure was 0.2 MPa. Groove 21 processing had a processing time of 2 hours, and the groove depth was about 350 μm. At this time, the thickness W of the magnetic insulating substrate at the location where the groove is formed is 250 μm. The through hole 23 was processed by setting the processing time to 2 hours, and the minimum hole diameter (bottom diameter D2) was about 80 μm. For comparison, a prototype without groove processing was also performed, but the hole did not penetrate.

次に、磁性絶縁基板1に図示しないTi膜とCu膜をスパッタ法で成膜し、図示しない導電性めっきシード層を形成する。それぞれの膜厚はTi膜が0.1μmでありCu膜が0.2μmである。次に、第1主面、第2主面に形成される予定の第1、第2コイル導体4,5のパターンをレジストで形成する。レジストパターンの開口部へ電解めっきでCu膜を形成させる。このとき、貫通孔23へもCu膜がめっきで形成され、接続導体3も同時に形成される。つぎに、Cu膜上に、連続して膜厚2μmのNi膜と膜厚1μmのAu膜を電解めっきで形成する。つぎに、不要なレジスト、シート層を除去することで、第1、第2コイル導体4、5と接続導体3で構成されるソレノイド状コイル導体が形成される。尚、第1、第2コイル導体4、5の厚みはそれぞれ37μmであるがあるが図2では誇張して書いてある(同図(c))。   Next, a Ti film and a Cu film (not shown) are formed on the magnetic insulating substrate 1 by sputtering to form a conductive plating seed layer (not shown). Each film thickness is 0.1 μm for the Ti film and 0.2 μm for the Cu film. Next, the pattern of the 1st, 2nd coil conductors 4 and 5 which are going to be formed in the 1st main surface and the 2nd main surface is formed with a resist. A Cu film is formed on the openings of the resist pattern by electrolytic plating. At this time, a Cu film is also formed on the through hole 23 by plating, and the connection conductor 3 is also formed at the same time. Next, a Ni film having a thickness of 2 μm and an Au film having a thickness of 1 μm are continuously formed on the Cu film by electrolytic plating. Next, by removing unnecessary resist and sheet layers, a solenoidal coil conductor composed of the first and second coil conductors 4 and 5 and the connection conductor 3 is formed. Although the thicknesses of the first and second coil conductors 4 and 5 are each 37 μm, they are exaggerated in FIG. 2 ((c) in FIG. 2).

表1は、本発明品のインダクタンス値の直流重畳特性を示す。ここで、磁性絶縁基板1の縦の長さL1は3.0mm、横の長さL2は3.5mm、厚さHは600μmとした。ソレノイドコイル幅となる接続導体3の間隔dは1.5mmとし、フェライト基板の透磁率μは100である。コイルターン数は11ターンとする。測定周波数は2MHzとした。   Table 1 shows the DC superposition characteristics of the inductance values of the products of the present invention. Here, the vertical length L1 of the magnetic insulating substrate 1 was 3.0 mm, the horizontal length L2 was 3.5 mm, and the thickness H was 600 μm. The distance d between the connecting conductors 3 that becomes the solenoid coil width is 1.5 mm, and the permeability μ of the ferrite substrate is 100. The number of coil turns is 11 turns. The measurement frequency was 2 MHz.

表2は従来の磁気誘導素子のインダクタンス値の直流重畳特性である。その材料は本発明品のものと同じであるが、寸法が異なる。すなわち、表2にその特性を示す従来の磁気誘導素子の、縦の長さL1および横の長さL2は3.5mm(正方形)、厚さHは525μm、接続導体3の間隔dは1.75mm、コイルのターン数は11である。   Table 2 shows the DC superposition characteristics of the inductance values of the conventional magnetic induction element. The material is the same as that of the product of the invention, but the dimensions are different. That is, in the conventional magnetic induction element whose characteristics are shown in Table 2, the vertical length L1 and the horizontal length L2 are 3.5 mm (square), the thickness H is 525 μm, and the distance d between the connection conductors 3 is 1. The number of turns of the coil is 75 mm.

また、表3は比較のために従来の磁気誘導素子の厚さを厚くして本発明品と同じ600μmとした磁気誘導素子のインダクタンス値の直流重畳特性である。比較品の使用は、厚さH以外は表2と同じである。   Table 3 shows the DC superposition characteristics of the inductance value of the magnetic induction element, which is 600 μm, which is the same as that of the present invention, by increasing the thickness of the conventional magnetic induction element for comparison. The use of the comparative product is the same as in Table 2 except for the thickness H.

表1に示すように直流重畳電流の印加とともにインダクタンス値は減少するものの200mAで従来の磁気誘導素子の2μHと同じ値を得ることができた。つまり、従来の磁気誘導素子のL1を0.5mm短くすることができる(面積を約15%減少できる)。   As shown in Table 1, although the inductance value decreased with the application of the DC superposition current, the same value as 2 μH of the conventional magnetic induction element could be obtained at 200 mA. That is, L1 of the conventional magnetic induction element can be shortened by 0.5 mm (the area can be reduced by about 15%).

Figure 2007214348
このデータは表2の従来のL=3.5mm(正方形)、厚さ=525μm、d=1.75mm、ターン数=11と、ほぼ同じであった。
Figure 2007214348
This data was almost the same as the conventional L = 3.5 mm (square), thickness = 525 μm, d = 1.75 mm, and number of turns = 11 in Table 2.

Figure 2007214348
当然、L1=L2=3.5mm(正方形)、厚さ=600μm、d=1.75、ターン数=11にすると、表3の比較品に示すように従来より厚くした分コイル特性を改善できる。
Figure 2007214348
Naturally, when L1 = L2 = 3.5 mm (square), thickness = 600 μm, d = 1.75, and number of turns = 11, the coil characteristics can be improved by increasing the thickness as shown in the comparative product of Table 3. .

Figure 2007214348
尚、溝21は一面(ここでは第2主面)から形成したが、両面(第1、第2主面)から形成して、磁性絶縁基板1の厚さ薄くし、一方の溝の底面から一方向に穴をあけて貫通させて、貫通孔23を形成しても構わない。また、磁性絶縁基板1として、フェライト基板の場合で説明したが磁性粉末を絶縁処理してから圧粉成形した圧粉磁芯であっても構わない。
Figure 2007214348
Although the groove 21 is formed from one surface (here, the second main surface), it is formed from both surfaces (the first and second main surfaces), the thickness of the magnetic insulating substrate 1 is reduced, and from the bottom surface of one of the grooves. The through hole 23 may be formed by making a hole in one direction to penetrate. The magnetic insulating substrate 1 has been described as a ferrite substrate, but may be a dust core obtained by subjecting magnetic powder to insulation treatment and then compacted.

この発明の第1実施例の磁気誘導素子であるインダクタの構成図であり、(a)は要部平面図、(b)は(a)のX−X線で切断した要部断面図、(c)は(b)のA部の拡大図BRIEF DESCRIPTION OF THE DRAWINGS It is a block diagram of the inductor which is a magnetic induction element of 1st Example of this invention, (a) is a principal part top view, (b) is principal part sectional drawing cut | disconnected by the XX line of (a), ( c) Enlarged view of part A of (b) 図1のY−Y線で切断した要部断面図Sectional drawing of the principal part cut | disconnected by the YY line of FIG. 図1の磁気誘導素子の製造方法であり、(a)から(c)は工程順に示す要部製造工程断面図1. It is a manufacturing method of the magnetic induction element of FIG. 1, (a) to (c) is a main part manufacturing process sectional view showing in order of processes. 従来の磁気誘導素子であるインダクタの構成図であり、(a)は要部平面図、(b)は(a)のX−X線で切断した要部断面図、(c)は(b)のB部の拡大図It is a block diagram of the inductor which is the conventional magnetic induction element, (a) is a principal part top view, (b) is principal part sectional drawing cut | disconnected by the XX line of (a), (c) is (b). Enlarged view of part B of 厚い磁性絶縁基板にサンドブラスト法で一方向から穴を掘った状態を示す図Diagram showing a state where holes are dug from one direction by sandblasting on a thick magnetic insulating substrate

符号の説明Explanation of symbols

1 磁性絶縁基板
2、3 接続導体
4 第1コイル導体
5 第2コイル導体
6a、6b 端子電極
16 保護膜
16a 開口部
21 溝
22 底部
23 貫通孔
24 テーパー
D1 表面の直径
D2 底面の直径
H 磁性絶縁基板の厚さ
W 薄い箇所の厚さ
T 溝の深さ
DESCRIPTION OF SYMBOLS 1 Magnetic insulating board 2, 3 Connection conductor 4 1st coil conductor 5 2nd coil conductor 6a, 6b Terminal electrode
16 Protective film 16a Opening 21 Groove 22 Bottom 23 Through-hole 24 Taper D1 Surface diameter D2 Bottom diameter
H Thickness of magnetic insulating substrate
W Thin part thickness
T depth of groove

Claims (6)

磁性絶縁基板の第1主面に形成された第1導体と、前記磁性絶縁基板の第2主面に形成された第2導体と、前記磁性絶縁基板を貫通する貫通孔に形成された接続導体とをそれぞれ接続してなるコイル導体を有する薄型の磁気誘導素子において、前記貫通孔を設ける箇所の前記磁性絶縁基板の厚さを選択的に薄くすることを特徴とする磁気誘導素子。 A first conductor formed on the first main surface of the magnetic insulating substrate, a second conductor formed on the second main surface of the magnetic insulating substrate, and a connection conductor formed in a through-hole penetrating the magnetic insulating substrate A thin magnetic induction element having coil conductors connected to each other, wherein the thickness of the magnetic insulating substrate at the portion where the through hole is provided is selectively reduced. 前記コイル導体が、ソレノイド状のコイル導体であることを特徴とする請求項1に記載の磁気誘導素子。 The magnetic induction element according to claim 1, wherein the coil conductor is a solenoidal coil conductor. 前記磁性絶縁基板が、フェライト基板もしくは圧粉磁心であることを特徴とする請求項1または2に記載の磁気誘導素子。 3. The magnetic induction element according to claim 1, wherein the magnetic insulating substrate is a ferrite substrate or a dust core. 磁性絶縁基板の第1主面に形成された第1導体と、前記磁性絶縁基板の第2主面に形成された第2導体と、前記磁性絶縁基板を貫通する貫通孔に形成された接続導体とをそれぞれ接続してなるコイル導体を有する薄型の磁気誘導素子の製造方法において、前記接続導体を形成する予定箇所を含むように前記磁性絶縁基板に溝を形成する工程と、該予定箇所に貫通孔を形成する工程と、該貫通孔に前記接続導体を形成する工程と、該接続導体と接続する導体を前記磁性絶縁基板の両面に形成しコイル導体を形成する工程と、を有することを特徴とする磁気誘導素子の製造方法。 A first conductor formed on the first main surface of the magnetic insulating substrate, a second conductor formed on the second main surface of the magnetic insulating substrate, and a connection conductor formed in a through-hole penetrating the magnetic insulating substrate In the method of manufacturing a thin magnetic induction element having coil conductors connected to each other, a step of forming a groove in the magnetic insulating substrate so as to include a portion where the connection conductor is to be formed; A step of forming a hole; a step of forming the connection conductor in the through hole; and a step of forming a coil conductor by forming conductors connected to the connection conductor on both surfaces of the magnetic insulating substrate. A method for manufacturing a magnetic induction element. 前記貫通孔が、サンドブラスト加工で形成されることを特徴とする請求項4に記載の磁気誘導素子の製造方法。 The method of manufacturing a magnetic induction element according to claim 4, wherein the through hole is formed by sandblasting. 前記貫通孔の直径が、前記磁性絶縁基板の一方の面から他方の面に向って小さくなることを特徴とする請求項5に記載の磁気誘導素子の製造方法。 6. The method of manufacturing a magnetic induction element according to claim 5, wherein the diameter of the through hole decreases from one surface of the magnetic insulating substrate toward the other surface.
JP2006032409A 2006-02-09 2006-02-09 Magnetic induction element and manufacturing method thereof Withdrawn JP2007214348A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006032409A JP2007214348A (en) 2006-02-09 2006-02-09 Magnetic induction element and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006032409A JP2007214348A (en) 2006-02-09 2006-02-09 Magnetic induction element and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2007214348A true JP2007214348A (en) 2007-08-23

Family

ID=38492512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006032409A Withdrawn JP2007214348A (en) 2006-02-09 2006-02-09 Magnetic induction element and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2007214348A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015070122A (en) * 2013-09-30 2015-04-13 株式会社村田製作所 Electronic component and manufacturing method therefor
CN105527594A (en) * 2014-10-23 2016-04-27 北京自动化控制设备研究所 3D magnetic coil with large uniform region and manufacture method of 3D magnetic coil
JP2022506295A (en) * 2018-10-30 2022-01-17 北京航空航天大学 MEMS solenoid inductor and its manufacturing method
JP2022519968A (en) * 2018-10-30 2022-03-28 北京航空航天大学 MEMS solenoid transformer and its manufacturing method
JP7565721B2 (en) 2020-07-27 2024-10-11 日東電工株式会社 How to manufacture an inductor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07106192A (en) * 1993-09-30 1995-04-21 Taiyo Yuden Co Ltd Ceramic green sheet for laser machining and manufacture of laminated ceramic electronic component
JPH09129447A (en) * 1995-11-02 1997-05-16 Murata Mfg Co Ltd Laminated type inductor
JPH10284836A (en) * 1997-04-08 1998-10-23 Hitachi Ltd Ceramic batch laminated wiring board and method of manufacturing the same
JP2001015915A (en) * 1999-06-29 2001-01-19 Denso Corp Production of wiring board
JP2002252116A (en) * 2001-02-23 2002-09-06 Toko Inc Laminated electronic component and method of manufacturing the same
JP2004186312A (en) * 2002-12-02 2004-07-02 Fuji Electric Device Technology Co Ltd Micro power converter
JP2004274004A (en) * 2003-01-16 2004-09-30 Fuji Electric Device Technology Co Ltd Micro power converter

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07106192A (en) * 1993-09-30 1995-04-21 Taiyo Yuden Co Ltd Ceramic green sheet for laser machining and manufacture of laminated ceramic electronic component
JPH09129447A (en) * 1995-11-02 1997-05-16 Murata Mfg Co Ltd Laminated type inductor
JPH10284836A (en) * 1997-04-08 1998-10-23 Hitachi Ltd Ceramic batch laminated wiring board and method of manufacturing the same
JP2001015915A (en) * 1999-06-29 2001-01-19 Denso Corp Production of wiring board
JP2002252116A (en) * 2001-02-23 2002-09-06 Toko Inc Laminated electronic component and method of manufacturing the same
JP2004186312A (en) * 2002-12-02 2004-07-02 Fuji Electric Device Technology Co Ltd Micro power converter
JP2004274004A (en) * 2003-01-16 2004-09-30 Fuji Electric Device Technology Co Ltd Micro power converter

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015070122A (en) * 2013-09-30 2015-04-13 株式会社村田製作所 Electronic component and manufacturing method therefor
CN105527594A (en) * 2014-10-23 2016-04-27 北京自动化控制设备研究所 3D magnetic coil with large uniform region and manufacture method of 3D magnetic coil
JP2022506295A (en) * 2018-10-30 2022-01-17 北京航空航天大学 MEMS solenoid inductor and its manufacturing method
JP2022519968A (en) * 2018-10-30 2022-03-28 北京航空航天大学 MEMS solenoid transformer and its manufacturing method
JP7267641B2 (en) 2018-10-30 2023-05-02 北京航空航天大学 MEMS solenoid inductor and manufacturing method thereof
JP7378166B2 (en) 2018-10-30 2023-11-13 北京航空航天大学 MEMS solenoid transformer and its manufacturing method
US12136509B2 (en) 2018-10-30 2024-11-05 Beihang University MEMS solenoid inductor and manufacturing method thereof
JP7565721B2 (en) 2020-07-27 2024-10-11 日東電工株式会社 How to manufacture an inductor

Similar Documents

Publication Publication Date Title
EP2297751B1 (en) Planar, monolithically integrated coil
CN104766692B (en) Chip electronic component
KR101072784B1 (en) Multilayered chip power inductor using the magnetic sheet and the method for manufacturing the same
US9899143B2 (en) Chip electronic component and manufacturing method thereof
KR102080660B1 (en) Chip electronic component and manufacturing method thereof
CN104246925B9 (en) Printed circuit board coil for high current, low equivalent series resistance power transmission applications
CN204424454U (en) Coil device and antenna assembly
US10319515B2 (en) Chip electronic component
CN103377811B (en) Electromagnetic device and its coil structure
CN105185507B (en) Chip electronic device and the plate for installing chip electronic device
KR101514499B1 (en) Method for manufacturing common mode filter and common mode filter
JP2013042102A (en) Coil component and manufacturing method thereof
JP2007214348A (en) Magnetic induction element and manufacturing method thereof
US10971456B2 (en) Electronic component
JP2006032587A (en) Inductance component and manufacturing method thereof
US20150091688A1 (en) Coil sheet and method of manufacturing the same
US20160276096A1 (en) Power inductor
JP2006165212A (en) Inductance element and its manufacturing process, and wiring board
CN109427468B (en) Coil component
CN107039156A (en) Monolithic electronic component and the multilayer sheet type antenna including the monolithic electronic component
CN112562966A (en) Inductance component
JP2005317604A (en) Inductance components and electronic equipment using the same
JP2009135325A (en) Inductance element and method of manufacturing the same
US20230307174A1 (en) Coil inductor and method for forming the same
CN109559867A (en) Coil block

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081211

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081216

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110322

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110524