JP2007211273A - Unidirectional solidification nickel-base superalloy excellent in strength, corrosion resistance and oxidation resistance and method for producing unidirectional solidification nickel-base superalloy - Google Patents
Unidirectional solidification nickel-base superalloy excellent in strength, corrosion resistance and oxidation resistance and method for producing unidirectional solidification nickel-base superalloy Download PDFInfo
- Publication number
- JP2007211273A JP2007211273A JP2006030583A JP2006030583A JP2007211273A JP 2007211273 A JP2007211273 A JP 2007211273A JP 2006030583 A JP2006030583 A JP 2006030583A JP 2006030583 A JP2006030583 A JP 2006030583A JP 2007211273 A JP2007211273 A JP 2007211273A
- Authority
- JP
- Japan
- Prior art keywords
- less
- weight
- strength
- base superalloy
- nickel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
【課題】高温でのクリ−プ破断強度が単結晶材とほぼ同等であり、高温耐酸化性および高温耐食性が従来の一方向凝固材と同等ないしは優れている一方向凝固用ニッケル基超合金を提供する。
【解決手段】重量でCr:3.0〜8.0%、Co:3.0〜18.0%、W:4.5〜10.0%、Re:0.5〜6.0%、Ta:4.0〜10.0%、Ti:0.8〜4.0%、Al:2.5〜6.5%、Hf:0.1〜2.0%、C:0.01〜0.15%、B:0.001〜0.05%、Zr:0.001〜0.05%、Mo:0〜0.5%未満、Ru:0〜6.0%以下、残部Ni及び不可避不純物よりなり、
不純物中のSi,P,S,O及びNの量を、それぞれ、Si:0.1%以下、P:0.01%以下、S:0.005以下、O:0.005%以下、N:0.005%以下に規制した。
【選択図】なしA nickel-based superalloy for unidirectional solidification that has a creep rupture strength at high temperatures almost equal to that of a single crystal material, and high-temperature oxidation resistance and high-temperature corrosion resistance are equivalent to or superior to conventional unidirectional solidification materials. provide.
SOLUTION: By weight: Cr: 3.0-8.0%, Co: 3.0-18.0%, W: 4.5-10.0%, Re: 0.5-6.0%, Ta: 4.0-10.0%, Ti: 0.8-4.0%, Al: 2.5-6.5%, Hf: 0.1-2.0%, C: 0.01- 0.15%, B: 0.001 to 0.05%, Zr: 0.001 to 0.05%, Mo: 0 to less than 0.5%, Ru: 0 to 6.0% or less, balance Ni and Consisting of inevitable impurities,
The amounts of Si, P, S, O, and N in the impurities are respectively Si: 0.1% or less, P: 0.01% or less, S: 0.005 or less, O: 0.005% or less, N : Restricted to 0.005% or less.
[Selection figure] None
Description
本発明は、高温における強度、靭性、耐食性及び耐酸化特性に優れていることが要求される部品および製品の素材として利用するのに適したニッケル基超合金とその製造方法に関する。 The present invention relates to a nickel-base superalloy suitable for use as a material for parts and products that are required to have excellent strength, toughness, corrosion resistance, and oxidation resistance at high temperatures, and a method for producing the same.
近年、ジェットエンジンやガスタービンなどの動力機関においては、その高性能化および高効率化などのために、タービン入口温度の高温化が必要不可欠となっており、1500℃或いはそれ以上の高温化に耐え得るタービン動翼材料の開発が重要課題とされている。 In recent years, in a power engine such as a jet engine or a gas turbine, it is indispensable to increase the turbine inlet temperature in order to improve its performance and efficiency, and to increase the temperature to 1500 ° C. or higher. Development of a turbine blade material that can withstand is an important issue.
タービン動翼材料に要求される主な特性は、高温での遠心力に耐えるための優れたクリープ破断強度、靭性および高温燃焼ガス雰囲気に対する優れた耐酸化性及び耐食性である。これらの要求特性を満たすために、現在ではニッケル基超合金の一方向凝固材や単結晶材が実用化されている。 The main properties required for turbine blade materials are excellent creep rupture strength, toughness to withstand centrifugal forces at high temperatures, and excellent oxidation and corrosion resistance to high temperature combustion gas atmospheres. In order to satisfy these required characteristics, unidirectionally solidified materials and single crystal materials of nickel-base superalloys are currently in practical use.
ニッケル基超合金の単結晶材は、従来の等軸晶を有する普通鋳造材や柱状晶を有する一方向凝固材と異なり、粒界がないために融点直下で溶体化熱処理を施すことが可能である。このため、固溶強化度の高いWやTaを多量に添加して、凝固偏析を完全に除去した均質組織を得ることができる。これにより、普通鋳造材や一方向凝固材に比べて、クリープ破断強度と靭性を高くできるという特徴を有する。 Unlike conventional cast materials with equiaxed crystals and unidirectionally solidified materials with columnar crystals, nickel-base superalloy single crystal materials have no grain boundaries and can be solution heat treated just below the melting point. is there. For this reason, it is possible to obtain a homogeneous structure in which solid segregation is completely removed by adding a large amount of W or Ta having a high degree of solid solution strengthening. Thereby, it has the characteristic that a creep rupture strength and toughness can be made high compared with a normal cast material and a unidirectional solidification material.
一方、一方向凝固材は、単結晶材ほどクリープ破断強度は高く無いが、普通鋳造材に比べるとクリープ破断強度と靭性が著しく高い。また、鋳造も単結晶材に比べると非常に容易であり、コスト的にも安くなることから、単結晶材ほどの強度を必要としない部分に数多く使用されている。一方向凝固ニッケル基超合金について記載された公知例としては、例えば特許文献1及び2がある。 On the other hand, the unidirectionally solidified material is not as high in creep rupture strength as a single crystal material, but has significantly higher creep rupture strength and toughness than ordinary cast material. Also, casting is much easier than a single crystal material, and the cost is low. Therefore, many castings are used in portions that do not require the same strength as a single crystal material. Known examples described for unidirectionally solidified nickel-base superalloys include, for example, Patent Documents 1 and 2.
上述したように単結晶ニッケル基超合金は優れた特徴を有しているが、鋳造が難しくコストが高い。このため、特に発電用の大型ガスタービンの動翼を単結晶化することは非常に困難であり、この点が各種特性に優れた単結晶翼が普及しない大きな要因となっている。 As described above, the single crystal nickel-base superalloy has excellent characteristics, but is difficult to cast and expensive. For this reason, it is very difficult to monocrystalize the rotor blades of large gas turbines for power generation, and this is a major factor that prevents the widespread use of single crystal blades having various characteristics.
これに対し、一方向凝固ニッケル基超合金は鋳造が容易であり、発電用大型ガスタービンの動翼の鋳造も容易であり、現有の発電用大型ガスタービンの動翼として数多く使用されている。しかしながら、現在使用されている一方向凝固材は、クリープ破断強度が単結晶材ほど高くないために、ガスタービンの燃焼温度を高温化し熱効率の向上を図るには、もはや限界に達しているのが実情である。 On the other hand, unidirectionally solidified nickel-base superalloy is easy to cast, and it is easy to cast moving blades of large-sized gas turbines for power generation, and many are used as moving blades of existing large-sized gas turbines for power generation. However, the unidirectionally solidified material currently used is not as high as the creep rupture strength, so that it is no longer possible to increase the combustion temperature of the gas turbine and improve the thermal efficiency. It is a fact.
このようなことから、クリープ強度に優れた一方向凝固用ニッケル基超合金を開発することは、燃焼ガス温度の上昇による発電用ガスタービンの更なる熱効率向上を図るために、きわめて重要である。 For this reason, it is extremely important to develop a nickel-base superalloy for unidirectional solidification with excellent creep strength, in order to further improve the thermal efficiency of the power generation gas turbine due to an increase in the combustion gas temperature.
本発明は、上述の背景に鑑みてなされたものであり、その目的は高温でのクリ−プ破断強度が単結晶材と同等であり、高温における耐酸化性及び耐食性が従来の一方向凝固材と同等ないしは優れている一方向凝固用ニッケル基超合金及び一方向凝固ニッケル基超合金の製造方法を提供することにある。 The present invention has been made in view of the above-mentioned background, and its purpose is that the creep rupture strength at high temperature is equivalent to that of a single crystal material, and oxidation resistance and corrosion resistance at high temperature are conventional unidirectionally solidified materials. It is an object of the present invention to provide a unidirectionally solidified nickel-base superalloy and a method for producing a unidirectionally solidified nickel-base superalloy that are equivalent to or superior to the above.
本発明は、重量でCr:3.0〜8.0%、Co:3.0〜18.0%、W:4.5〜10.0%、Re:0.5〜6.0%、Ta:4.0〜10.0%、Ti:0.8〜4.0%、Al:2.5〜6.5%、Hf:0.1〜2.0%、C:0.01〜0.15%、B:0.001〜0.05%、Zr:0.001〜0.05%、Mo:0〜0.5%未満、Ru:0〜6.0%以下、残部Ni及び不可避不純物よりなり、
不純物中のSi,P,S,O及びNの量を、それぞれ、Si:0.1%以下、P:0.01%以下、S:0.005以下、O:0.005%以下、N:0.005%以下に規制したことを特徴とする一方向凝固用ニッケル基超合金にある。
The present invention, by weight, Cr: 3.0-8.0%, Co: 3.0-18.0%, W: 4.5-10.0%, Re: 0.5-6.0%, Ta: 4.0-10.0%, Ti: 0.8-4.0%, Al: 2.5-6.5%, Hf: 0.1-2.0%, C: 0.01- 0.15%, B: 0.001 to 0.05%, Zr: 0.001 to 0.05%, Mo: 0 to less than 0.5%, Ru: 0 to 6.0% or less, balance Ni and Consisting of inevitable impurities,
The amounts of Si, P, S, O, and N in the impurities are respectively Si: 0.1% or less, P: 0.01% or less, S: 0.005 or less, O: 0.005% or less, N : A nickel-base superalloy for unidirectional solidification characterized by being restricted to 0.005% or less.
本発明に係る一方向凝固用ニッケル基超合金の好ましい成分組成は、重量でCr:3.0〜7.0%、Co:3.0〜18.0%、W:4.5〜8.0%、Re:1.0〜6.0%、Ta:4.0〜10.0%、Ti:0.8〜2.0%、Al:4.5〜6.5%、Hf:0.1〜2.0%、C:0.01〜0.15%、B:0.001〜0.05%、Zr:0.001〜0.05%、Mo:0〜0.5%未満、Ru:0〜6.0%以下、残部Ni及び不可避不純物よりなり、
不純物中のSi,P,S,O及びNの量を、それぞれ、Si:0.1%以下、P:0.01%以下、S:0.005以下、O:0.005%以下、N:0.005%以下に規制したものである。
The preferred component composition of the nickel-base superalloy for unidirectional solidification according to the present invention is Cr: 3.0-7.0%, Co: 3.0-18.0%, W: 4.5-8. 0%, Re: 1.0 to 6.0%, Ta: 4.0 to 10.0%, Ti: 0.8 to 2.0%, Al: 4.5 to 6.5%, Hf: 0 0.1 to 2.0%, C: 0.01 to 0.15%, B: 0.001 to 0.05%, Zr: 0.001 to 0.05%, Mo: 0 to less than 0.5% Ru: 0 to 6.0% or less, remaining Ni and inevitable impurities,
The amounts of Si, P, S, O, and N in the impurities are respectively Si: 0.1% or less, P: 0.01% or less, S: 0.005 or less, O: 0.005% or less, N : Restricted to 0.005% or less.
また、本発明に係る一方向凝固用ニッケル基超合金のより好ましい成分組成は、重量でCr:3.8〜7.0%、Co:3.0〜18.0%、W:5.5〜8.0%、Re:3.3〜5.2%、Ta:5.0〜10.0%、Ti:0.8〜2.0%、Al:5.0〜6.0%、Hf:1.0〜2.0%、C:0.01〜0.15%、B:0.001〜0.05%、Zr:0.001〜0.05%、Mo:0〜0.5%未満、Ru:0〜6.0%以下、残部Ni及び不可避不純物よりなり、
不純物中のSI,P,S,O及びNの量を、それぞれ、Si:0.1%以下、P:0.01%以下、S:0.005以下、O:0.005%以下、N:0.005%以下に規制したものである。
Moreover, the more preferable component composition of the nickel-base superalloy for unidirectional solidification according to the present invention is Cr: 3.8 to 7.0% by weight, Co: 3.0 to 18.0%, W: 5.5. -8.0%, Re: 3.3-5.2%, Ta: 5.0-10.0%, Ti: 0.8-2.0%, Al: 5.0-6.0%, Hf: 1.0-2.0%, C: 0.01-0.15%, B: 0.001-0.05%, Zr: 0.001-0.05%, Mo: 0-0. Less than 5%, Ru: 0 to 6.0% or less, remaining Ni and inevitable impurities,
The amounts of SI, P, S, O and N in the impurities are respectively Si: 0.1% or less, P: 0.01% or less, S: 0.005 or less, O: 0.005% or less, N : Restricted to 0.005% or less.
また、最も好ましい成分組成は、重量でCr:5.0〜7.0%、Co:10.0〜18.0%、W:5.5〜7.6%、Re:3.5〜5.2%、Ta:5.8〜10.0%、Ti:1.2〜2.0%、Al:5.0〜6.0%、Hf:1.0〜1.8%、C:0.05〜0.10%、B:0.01〜0.02%、Zr:0.001〜0.02%、Mo:0〜0.5%未満、Ru:0〜6.0%以下、残部Ni及び不可避不純物よりなり、
不純物中のSi,P,S,0及びNの量を、それぞれ、Si:0.1%以下、P:0.01%以下、S:0.005以下、O:0.005%以下、N:0.005%以下に規制したものである。
The most preferable component composition is Cr: 5.0 to 7.0% by weight, Co: 10.0 to 18.0%, W: 5.5 to 7.6%, Re: 3.5 to 5 0.2%, Ta: 5.8 to 10.0%, Ti: 1.2 to 2.0%, Al: 5.0 to 6.0%, Hf: 1.0 to 1.8%, C: 0.05 to 0.10%, B: 0.01 to 0.02%, Zr: 0.001 to 0.02%, Mo: 0 to less than 0.5%, Ru: 0 to 6.0% or less The balance Ni and inevitable impurities,
The amounts of Si, P, S, 0 and N in the impurities are respectively Si: 0.1% or less, P: 0.01% or less, S: 0.005 or less, O: 0.005% or less, N : Restricted to 0.005% or less.
本発明は、上述の成分組成を有するニッケル基超合金を一方向凝固鋳造し、真空中または不活性ガス中で、1250℃から1280℃の温度範囲で溶体化熱処理を行った後急冷し、次いで、1100℃から1200℃の温度範囲で1段時効熱処理を行い、更に前記1段時効熱処理よりも低い温度で2段時効熱処理を施すことを特徴とする一方向凝固ニッケル基超合金の製造方法にある。 The present invention unidirectionally solidifies and casts a nickel-base superalloy having the above-mentioned composition, and after performing solution heat treatment in a temperature range of 1250 ° C. to 1280 ° C. in a vacuum or an inert gas, A method for producing a unidirectionally solidified nickel-base superalloy, characterized in that a one-step aging heat treatment is performed in a temperature range of 1100 ° C to 1200 ° C, and further a two-step aging heat treatment is performed at a temperature lower than the one-step aging heat treatment. is there.
次に、本発明に係る一方向凝固用ニッケル基超合金の成分範囲の限定理由について説明する。
[Cr:3.0〜8.0重量%]
Crはニッケル基超合金の高温における耐食性を改善するのに有効な元素であり、その効果がより顕著に現れるのは3.0重量%以上の含有からである。Cr含有量の増加に伴って、耐食性改善の効果は大きくなるが、含有量が多くなると固溶強化元素の固溶限度を下げるとともに、脆化相であるTCP相が析出して高温強度や高温耐食性を害するため、その上限は8.0重量%とする必要がある。この組成範囲に於いて、強度と耐食性のバランスを考慮した場合、より好ましくは3.8〜7.0重量%の範囲、更に好ましくは5.0〜7.0重量%の範囲である。
[Co:3.0〜18.0重量%]
Coは、金属間化合物Ni3Alよりなるγ’相の固溶温度を低下させて溶体化処理を容易にするほか、γ相を固溶強化すると共に高温耐食性を向上させる効果を有する。そのような効果が現れるのは、3.0重量%以上の含有からである。一方、Coの含有量が18.0%を超えると、γ’相の固溶温度を著しく低下させて、析出強化相であるγ’相の析出量を少なくし、高温強度を低下させてしまうため、18.0重量%以下にする必要がある。この組成範囲に於いて、溶体化熱処理の容易性と強度とのバランスを考慮した場合、より好ましくは10.0〜18.0重量%の範囲である。
[W:4.5〜10.0重量%]
Wはマトリックスであるγ相と析出相であるγ’相に固溶し、固溶強化によりクリープ強度を高めるのに有効な元素である。このような効果を十分に得るためには4.5重量%以上の含有量が必要である。しかし、Wは比重が大きく、合金の重量を増大するばかりでなく、合金の高温における耐食性を低下させる。また、10.0重量%を超えると針状のα−Wが析出し、クリープ強度、高温耐食性および靭性を低下させるため、その上限を10.0重量%とする必要がある。この組成範囲に於いて、高温における強度、耐食性及び高温での組織安定性のバランスを考慮した場合、好ましくは5.5〜8.0重量%の範囲、より好ましくは5.5〜7.6重量%の範囲である。
[Re:0.5〜6.0重量%]
Reはマトリックスであるγ相にほとんど固溶し、固溶強化によってクリープ強度を高めるとともに、ニッケル基超合金の耐食性を改善するのに有効な元素である。このような効果を十分に得るためには0.5重量%以上の含有量が必要である。しかし、Reは高価であり、比重が大きく、合金の重量を増大する。また、6.0重量%を超えると針状のα−Wまたはα−Reが析出し、クリープ強度および靭性を低下させるため、その上限を6.0重量%とする必要がある。この組成範囲に於いて、高温における強度、耐食性及び高温での組織安定性のバランスを考慮した場合、好ましい範囲は1.0〜6.0重量%、より好ましい範囲は3.3〜5.2重量%、更により好ましい範囲は3.5〜5.2重量%である。
[Ta:4.0〜10.0重量%]
Taはγ’相にNi3(Al,Ta)の形で固溶し、固溶強化する。これによりクリープ強度が向上する。この効果を十分に得るためには、4.0重量%以上の含有量が必要であり、10.0重量%を超えると過飽和になって針状のδ相すなわちNi8Taが析出し、クリープ強度を低下させる。したがって、その上限を10.0重量%とする必要がある。この組成範囲に於いて、高温における強度と組織安定性のバランスを考慮した場合、好ましくは5.0〜10.0重量%の範囲、より好ましくは5.8〜10.0重量%の範囲である。
[Ti:0.8〜4.0重量%]
TiはTaと同様にγ’相にNi3(Al,Ta,Ti)の形で固溶し、固溶強化するが、Taほどの効果はない。むしろ、Tiは合金の高温における耐食性を改善する効果があるので0.8重量%以上の含有量とする。しかし、4.0重量%を超えて含有すると、耐酸化特性が劣化するため、その上限を4.0重量%とする必要がある。この組成範囲に於いて、高温における強度と耐食性、耐酸化特性のバランスを考慮した場合、好ましくは0.8〜2.0重量%の範囲、より好ましくは1.2〜2.0重量%の範囲である。
[Al:2.5〜6.5重量%]
Alは析出強化相であるγ’相の構成元素であり、これによりクリープ強度が向上する。また、耐酸化特性の向上にも大きく寄与する。それらの効果が十分に得られるようにするためには、2.5重量%以上の含有量が必要であるが、6.5重量%を超えると、γ’相が過大に析出し、かえって強度を低下させることから、2.5〜6.5重量%の範囲とすることが必要である。この組成範囲に於いて、高温における強度と耐酸化特性のバランスを考慮した場合、好ましくは4.5〜6.0重量%の範囲、より好ましくは5.0〜6.0重量%の範囲である。
[Ru:0〜6.0%]
Ruは、必ずしも含有する必要はないが、含有するとγ’相の固溶できる領域を広げて溶体化処理を容易にするほか、γ相を固溶強化すると共に高温耐食性を向上させる効果を有する。しかし、Ruは高価であり、含有量を多くすると素材の価格が上昇する。また、Ruの含有量が6.0重量%を超えると、析出強化相であるγ’相の析出を減少させて、高温強度を低下させてしまうため、6.0重量%以下にする必要がある。
[Hf:0.1〜2.0重量%]
Hfは高温での耐食、耐酸化性を向上させる効果がある。Hfの含有により、合金表面に形成される保護皮膜、例えばCr2O3,Al2O3の密着性が向上する。また、結晶粒界に共晶のNi3Hfを形成し、結晶粒界の強度を向上させる。保護皮膜の密着性を向上させるためには、0.1重量%以上の含有量が必要である。Hfの含有量が多くなると保護皮膜の密着性は著しく向上し、更に結晶粒界強度も向上するが、2.0重量%を超えるとNi基超合金の融点を著しく下げて、溶体化熱処理を困難にする。また、鋳造時に雰囲気中の酸素とHfO2を形成し、鋳造品の表面欠陥となって鋳造歩留りを低下させることから、2.0重量%以下にすることが必要である。この組成範囲に於いて、耐食性、耐酸化特性及び結晶粒界強度と合金の熱処理温度範囲のバランスを考慮した場合、好ましくは1.0〜2.0重量%の範囲であり、より好ましくは1.0〜1.8重量%の範囲である。
[Mo:0〜0.5重量%未満]
MoはWと同様の効果を有するため、必要に応じてWの一部と代替することが可能である。また、γ’相の固溶温度を上げるので、クリープ強度を向上させる効果がある。MoはWに比べて比重が小さいため合金の軽量化が図れる。しかし、Moは合金の耐酸化特性および耐食性を低下させるため、含有するにしてもその上限を0.5重量%未満とする必要がある。この組成範囲に於いて、高温における強度、耐食性及び高温での耐酸化特性のバランスを考慮した場合、好ましくは0.1重量%未満であり、より好ましくは実質的に含有しないことである。
[C:0.01〜0.15重量%]
Cは強化元素として必要である。Cは合金中に一部固溶するが、大部分は結晶粒界にTiC,TaC等の炭化物を形成し、塊状に析出することで、結晶粒界の強度を向上させる。TiC,TaC等の炭化物を形成し、結晶粒界の強度を向上させるためには0.01%以上の含有量が必要である。しかし、0.15重量%を超えると、固溶強化元素であるTaと炭化物を形成することにより、固溶強化Taのみかけの含有量が少なくなり、高温でのクリープ強度を低下させる。そこで、Cの上限を0.15重量%とした。この組成範囲に於いて、結晶粒界強度と高温でのクリープ強度とのバランスを考慮した場合、より好ましくは0.05〜0.10重量%の範囲である。
[B:0.001〜0.05重量%]
BはCと同じく強化元素として必要である。Bは合金中に殆んど固溶せず、結晶粒界に偏析することで結晶粒界の強度を向上させる。結晶粒界に偏析させて結晶粒界の強度を向上させるためには0.001%以上の含有量が必要であるが、0.05重量%を超えると、結晶粒界で(Cr,Ni,Ti,Mo)3B2よりなるホウ化物を形成する。ホウ化物は、合金の融点に比べ著しく低融点であるため、合金の溶体化熱処理を困難にすることから、上限を0.05重量%とした。この組成範囲に於いて、結晶粒界強度と溶体化熱処理のバランスを考慮した場合、より好ましくは0.01〜0.02重量%の範囲である。
[Zr:0.001〜0.05重量%]
ZrはBと同じく強化元素として必要である。Zrの一部は合金中に固溶するが、大部分は固溶せずに結晶粒界に偏析することで結晶粒界の強度を向上させる。結晶粒界に偏析させて結晶粒界の強度を向上させるためには0.001%以上の含有量が必要であるが、含有量が0.05重量%を超えると、結晶粒界でNi3Zrに代表されるNiとの金属間化合物が形成される。NiとZrの金属間化合物は、合金の融点に比べて著しく低融点であるため、合金の溶体化熱処理を困難にすることから、上限を0.05重量%とした。この組成範囲に於いて、結晶粒界強度と溶体化熱処理のバランスを考慮した場合、より好ましくは0.01〜0.02重量%の範囲である。
Next, the reason for limiting the component range of the nickel-base superalloy for unidirectional solidification according to the present invention will be described.
[Cr: 3.0 to 8.0% by weight]
Cr is an element effective for improving the corrosion resistance of nickel-base superalloys at high temperatures, and the effect is more prominent because it is contained in an amount of 3.0% by weight or more. As the Cr content increases, the effect of improving corrosion resistance increases, but as the content increases, the solid solution limit of the solid solution strengthening element is lowered, and the TCP phase, which is an embrittlement phase, precipitates, resulting in high temperature strength and high temperature. In order to impair the corrosion resistance, the upper limit must be 8.0% by weight. In consideration of the balance between strength and corrosion resistance in this composition range, it is more preferably in the range of 3.8 to 7.0% by weight, still more preferably in the range of 5.0 to 7.0% by weight.
[Co: 3.0 to 18.0 wt%]
Co has the effect of lowering the solid solution temperature of the γ ′ phase made of the intermetallic compound Ni 3 Al to facilitate solution treatment, strengthening the γ phase in solid solution, and improving high-temperature corrosion resistance. Such an effect appears from the content of 3.0% by weight or more. On the other hand, when the Co content exceeds 18.0%, the solid solution temperature of the γ 'phase is remarkably lowered, the precipitation amount of the γ' phase, which is a precipitation strengthening phase, is reduced, and the high temperature strength is lowered. Therefore, it is necessary to make it 18.0% by weight or less. In this composition range, when considering the balance between the ease of solution heat treatment and the strength, the range of 10.0 to 18.0% by weight is more preferable.
[W: 4.5 to 10.0% by weight]
W is an element effective for increasing the creep strength by solid solution strengthening by forming a solid solution in the matrix γ phase and the precipitated γ ′ phase. In order to obtain such an effect sufficiently, a content of 4.5% by weight or more is necessary. However, W has a large specific gravity, which not only increases the weight of the alloy, but also reduces the corrosion resistance of the alloy at high temperatures. On the other hand, if it exceeds 10.0% by weight, acicular α-W precipitates and the creep strength, high-temperature corrosion resistance and toughness are lowered, so the upper limit must be 10.0% by weight. In this composition range, when considering the balance between strength at high temperature, corrosion resistance and structural stability at high temperature, it is preferably in the range of 5.5 to 8.0% by weight, more preferably 5.5 to 7.6. It is in the range of wt%.
[Re: 0.5 to 6.0% by weight]
Re is an element effective for improving the corrosion resistance of nickel-base superalloys as well as increasing the creep strength by solid solution strengthening and almost solid solution in the matrix γ phase. In order to sufficiently obtain such an effect, a content of 0.5% by weight or more is necessary. However, Re is expensive, has a large specific gravity, and increases the weight of the alloy. On the other hand, when the amount exceeds 6.0% by weight, acicular α-W or α-Re precipitates and decreases the creep strength and toughness, so the upper limit must be 6.0% by weight. In this composition range, when considering the balance between strength at high temperature, corrosion resistance, and structure stability at high temperature, a preferable range is 1.0 to 6.0% by weight, and a more preferable range is 3.3 to 5.2. % By weight, and an even more preferred range is 3.5 to 5.2% by weight.
[Ta: 4.0 to 10.0% by weight]
Ta forms a solid solution in the form of Ni 3 (Al, Ta) in the γ ′ phase and strengthens the solution. This improves the creep strength. In order to sufficiently obtain this effect, a content of 4.0% by weight or more is necessary. When the content exceeds 10.0% by weight, supersaturation occurs and acicular δ phase, that is, Ni 8 Ta precipitates, and creep occurs. Reduce strength. Therefore, the upper limit needs to be 10.0 weight%. In this composition range, when considering the balance between strength and structure stability at high temperature, it is preferably in the range of 5.0 to 10.0% by weight, more preferably in the range of 5.8 to 10.0% by weight. is there.
[Ti: 0.8 to 4.0% by weight]
Ti, like Ta, dissolves in the γ ′ phase in the form of Ni 3 (Al, Ta, Ti) and strengthens it, but is not as effective as Ta. Rather, Ti has the effect of improving the corrosion resistance of the alloy at high temperatures, so the content is 0.8% by weight or more. However, if the content exceeds 4.0% by weight, the oxidation resistance deteriorates, so the upper limit must be 4.0% by weight. In this composition range, when considering the balance between strength at high temperature, corrosion resistance, and oxidation resistance, it is preferably in the range of 0.8 to 2.0% by weight, more preferably 1.2 to 2.0% by weight. It is a range.
[Al: 2.5 to 6.5% by weight]
Al is a constituent element of the γ ′ phase, which is a precipitation strengthening phase, thereby improving the creep strength. It also greatly contributes to the improvement of oxidation resistance. In order to obtain these effects sufficiently, a content of 2.5% by weight or more is necessary. However, if it exceeds 6.5% by weight, the γ ′ phase is excessively precipitated, and the strength is rather increased. Therefore, it is necessary to set the range of 2.5 to 6.5% by weight. In this composition range, when considering the balance between strength at high temperature and oxidation resistance, it is preferably in the range of 4.5 to 6.0% by weight, more preferably in the range of 5.0 to 6.0% by weight. is there.
[Ru: 0 to 6.0%]
Ru does not necessarily need to be contained, but if contained, it expands the region where the γ ′ phase can be dissolved to facilitate solution treatment, and has the effect of strengthening the γ phase by solid solution strengthening and improving high-temperature corrosion resistance. However, Ru is expensive, and increasing the content increases the price of the material. Further, if the Ru content exceeds 6.0% by weight, the precipitation of the γ ′ phase, which is a precipitation strengthening phase, is reduced and the high-temperature strength is lowered. is there.
[Hf: 0.1 to 2.0% by weight]
Hf has the effect of improving corrosion resistance and oxidation resistance at high temperatures. By containing Hf, adhesion of a protective film formed on the alloy surface, for example, Cr 2 O 3 or Al 2 O 3 is improved. In addition, eutectic Ni 3 Hf is formed at the crystal grain boundary to improve the strength of the crystal grain boundary. In order to improve the adhesion of the protective film, a content of 0.1% by weight or more is necessary. When the Hf content is increased, the adhesion of the protective film is remarkably improved and the grain boundary strength is also improved. However, if the Hf content exceeds 2.0% by weight, the melting point of the Ni-base superalloy is remarkably lowered, and solution heat treatment is performed. Make it difficult. Further, oxygen and HfO 2 in the atmosphere are formed at the time of casting, which becomes a surface defect of the cast product and lowers the casting yield, so it is necessary to make it 2.0% by weight or less. In this composition range, when considering the balance between the corrosion resistance, oxidation resistance, grain boundary strength and the heat treatment temperature range of the alloy, the range is preferably 1.0 to 2.0% by weight, more preferably 1 The range is from 0.0 to 1.8% by weight.
[Mo: 0 to less than 0.5% by weight]
Since Mo has the same effect as W, it can be replaced with a part of W if necessary. Further, since the solid solution temperature of the γ ′ phase is raised, there is an effect of improving the creep strength. Since Mo has a smaller specific gravity than W, the weight of the alloy can be reduced. However, since Mo reduces the oxidation resistance and corrosion resistance of the alloy, even if it is contained, the upper limit thereof needs to be less than 0.5% by weight. In this composition range, when considering the balance of strength at high temperature, corrosion resistance and oxidation resistance at high temperature, it is preferably less than 0.1% by weight, more preferably not substantially contained.
[C: 0.01 to 0.15% by weight]
C is necessary as a strengthening element. C partially dissolves in the alloy, but most forms carbides such as TiC and TaC at the crystal grain boundaries and precipitates in a lump shape, thereby improving the strength of the crystal grain boundaries. In order to form carbides such as TiC and TaC and improve the strength of the grain boundaries, a content of 0.01% or more is required. However, if it exceeds 0.15% by weight, the apparent content of the solid solution strengthened Ta is reduced by forming a carbide with Ta which is a solid solution strengthening element, and the creep strength at high temperature is lowered. Therefore, the upper limit of C is set to 0.15% by weight. In this composition range, when considering the balance between the grain boundary strength and the creep strength at high temperature, the range is more preferably 0.05 to 0.10% by weight.
[B: 0.001 to 0.05% by weight]
B is necessary as a strengthening element like C. B hardly dissolves in the alloy and segregates at the grain boundaries to improve the strength of the grain boundaries. In order to improve the strength of the grain boundary by segregating at the grain boundary, a content of 0.001% or more is necessary. However, if it exceeds 0.05% by weight, (Cr, Ni, A boride composed of (Ti, Mo) 3 B 2 is formed. Since the boride has a remarkably lower melting point than the melting point of the alloy, it makes the solution heat treatment of the alloy difficult, so the upper limit was made 0.05% by weight. In this composition range, when considering the balance between the grain boundary strength and the solution heat treatment, the range is more preferably 0.01 to 0.02% by weight.
[Zr: 0.001 to 0.05% by weight]
Zr, like B, is necessary as a strengthening element. A part of Zr is dissolved in the alloy, but most of the Zr is not dissolved but segregates at the grain boundary to improve the strength of the grain boundary. A content of 0.001% or more is necessary for segregating at the grain boundaries to improve the strength of the grain boundaries. However, if the content exceeds 0.05% by weight, Ni 3 may be present at the grain boundaries. An intermetallic compound with Ni typified by Zr is formed. Since the intermetallic compound of Ni and Zr has a remarkably low melting point compared to the melting point of the alloy, it makes the solution heat treatment of the alloy difficult, so the upper limit was made 0.05% by weight. In this composition range, when considering the balance between the grain boundary strength and the solution heat treatment, the range is more preferably 0.01 to 0.02% by weight.
次に、溶解製造時に坩堝から混入或いは合金原料から持ち込まれる不可避不純物のうち、Si,P.S,O及びNの許容量を限定した理由について説明する。
[Si:0.1%重量%以下]
Siは合金原料から持ち込まれ、不純物として存在する。Siは耐酸化特性向上の効果は認められるが、Hfほどの効果は無く、過剰に存在するとMo等の耐火合金元素と金属間化合物を形成する。これら金属間化合物が合金中に存在すると、クリープ変形中にこれらがクラックの起点となり、クリープ破断寿命が低下する。そこで上限を0.1重量%とした。
[P:0.01重量%%以下]
[S:0.005重量%以下]
これらの元素はいずれも合金原料から持ち込まれ、不純物として存在する。これらの元素は合金の耐食性を低下させることから、可能な限り少ないことが望まれる。しかし、これらの元素が少ない原料は素材コストが高くなることから、耐食性とのバランスで、Pを0.01重量%以下、Sを0.005重量%以下とした。
[O:0.005重量%以下]
[N:0.005重量%以下]
これらの元素も合金原料から持ち込まれることが多く、Oは坩堝からも入る。これらの元素は合金中に酸化物例えばAl2O3、窒化物例えばTiNあるいはAlNとして塊状に存在する。合金中にこれらの酸化物或いは窒化物が存在すると、クリープ変形中にこれらがクラックの起点となり、クリープ破断寿命が低下する。そこで両元素の上限をいずれも0.005重量%とした。
Next, among the unavoidable impurities mixed from the crucible or brought from the alloy raw material during melting production, Si, P.I. The reason why the allowable amounts of S, O, and N are limited will be described.
[Si: 0.1% by weight or less]
Si is brought from the alloy raw material and exists as an impurity. Although Si has an effect of improving oxidation resistance, it is not as effective as Hf, and when it is present in excess, it forms an intermetallic compound with a refractory alloy element such as Mo. If these intermetallic compounds are present in the alloy, they become the starting point of cracks during creep deformation, and the creep rupture life is reduced. Therefore, the upper limit was set to 0.1% by weight.
[P: 0.01% by weight or less]
[S: 0.005% by weight or less]
All of these elements are brought from the alloy raw material and exist as impurities. Since these elements reduce the corrosion resistance of the alloy, it is desirable that they be as few as possible. However, since the raw material cost of these elements is high, the material cost is high, so that P is 0.01 wt% or less and S is 0.005 wt% or less in balance with corrosion resistance.
[O: 0.005% by weight or less]
[N: 0.005% by weight or less]
These elements are often brought from alloy raw materials, and O enters from the crucible. These elements exist in the form of oxides such as Al 2 O 3 and nitrides such as TiN or AlN in the alloy. If these oxides or nitrides are present in the alloy, they become the starting point of cracks during creep deformation, and the creep rupture life is reduced. Therefore, the upper limit of both elements is set to 0.005% by weight.
次に、一方向凝固ニッケル基超合金の製造工程と熱処理温度を限定した理由について説明する。 Next, the reason for limiting the manufacturing process and heat treatment temperature of the unidirectionally solidified nickel-base superalloy will be described.
本発明では、γ’相の析出量を多くして高温クリープ強度の増大を図ることにした。このために、まず、鋳造材を溶体化熱処理し、母相のγ相中にγ’相を再固溶させて組織を均一化した。次いで、時効熱処理を施して、溶体化熱処理で再固溶した組織からγ’相を析出させた。時効熱処理は2段階で行い、1段時効ではγ’相の大きさと形状を整え、2段時効において、1段時効で析出したγ’相の組成を安定化させると共にγ相に過飽和に固溶解しているγ’相形成元素を析出させて、γ’相の析出量増加を図った。 In the present invention, the precipitation amount of the γ 'phase is increased to increase the high temperature creep strength. For this purpose, first, the cast material was subjected to solution heat treatment, and the γ ′ phase was re-dissolved in the γ phase of the parent phase to make the structure uniform. Next, an aging heat treatment was performed to precipitate a γ 'phase from the structure re-dissolved by the solution heat treatment. Aging heat treatment is performed in two stages. In the first stage aging, the size and shape of the γ 'phase are adjusted. In the second stage aging, the composition of the γ' phase precipitated in the first stage aging is stabilized and the γ phase is supersaturated and dissolved. The γ ′ phase forming element was precipitated to increase the amount of γ ′ phase precipitated.
溶体化熱処理は、温度が低すぎると溶体化が不十分となり、クリープ強度がでなくなる。温度が高すぎると、合金の一部が溶融を開始し、やはり強度が出なくなる。溶体化がある程度可能で、且つ、溶融を生じない温度範囲として1250℃〜1280℃を選定した。 In the solution heat treatment, when the temperature is too low, the solution treatment becomes insufficient, and the creep strength is lost. If the temperature is too high, a part of the alloy starts to melt and the strength is not obtained. A temperature range of 1250 ° C. to 1280 ° C. was selected as a temperature range in which solutionization is possible to some extent and melting does not occur.
γ’相の大きさと形は、時効熱処理の温度によって大きく異なり、温度が低いと球形になり、温度が高すぎると塊状になる。クリープ強度を高めるためには、γ’相の形状は立方体にすることが望ましく、本発明の合金組成では1120℃〜1180℃の温度範囲で1段時効熱処理を施すことによって達成される。 The size and shape of the γ ′ phase vary greatly depending on the temperature of the aging heat treatment. When the temperature is low, the shape becomes spherical, and when the temperature is too high, the shape becomes lumpy. In order to increase the creep strength, it is desirable that the shape of the γ ′ phase is a cube, and the alloy composition of the present invention is achieved by performing a one-step aging heat treatment in a temperature range of 1120 ° C. to 1180 ° C.
2段時効熱処理は、γ’相の組成を安定させることが主要な狙いであることから、γ相に固溶している元素が、ある程度の時間内で拡散できるようにするために、1段時効よりも低い温度に設定した。 Since the main aim of the two-stage aging heat treatment is to stabilize the composition of the γ 'phase, in order to allow elements dissolved in the γ phase to diffuse within a certain amount of time, The temperature was set lower than aging.
本発明に係る一方向凝固用ニッケル基超合金は、高温でのクリープ破断強度、耐食性及び耐酸化特性が優れている。このため、例えばジェットエンジンやガスタービンなどの動力機関における高性能化及び高効率化のためにタービン入口温度を高める場合にも十分対応しうる。 The nickel-base superalloy for unidirectional solidification according to the present invention is excellent in creep rupture strength, corrosion resistance and oxidation resistance at high temperatures. For this reason, for example, it is possible to sufficiently cope with the case where the turbine inlet temperature is increased in order to achieve high performance and high efficiency in a power engine such as a jet engine or a gas turbine.
以下、具体的実施例について説明するが、本発明は以下に示す例に限定されるものではない。 Hereinafter, specific examples will be described, but the present invention is not limited to the following examples.
表1に、本発明実施例合金(No.A1〜A18)及び比較例の既存合金(No.B1〜B2、No.C1〜C5)の化学組成を示す。既存合金No.B1〜B2は単結晶材であり、No.C1〜C4は一方向凝固材である。 In Table 1, the chemical composition of this invention Example alloy (No. A1-A18) and the existing alloy (No. B1-B2, No. C1-C5) of a comparative example are shown. Existing alloy No. B1 to B2 are single crystal materials. C1 to C4 are unidirectionally solidified materials.
最初に各合金の素材を配合後、容量15kgの耐火坩堝を用い,真空誘導炉で直径70mm、長さ200mmのインゴットを溶製した。表2に溶製したインゴットの不純物量を示す。このインゴットの状態では、等軸晶の組織を有する。 First, after blending the materials of each alloy, an ingot having a diameter of 70 mm and a length of 200 mm was melted in a vacuum induction furnace using a refractory crucible having a capacity of 15 kg. Table 2 shows the amount of impurities in the melted ingot. In this ingot state, it has an equiaxed crystal structure.
一方向凝固試験片の鋳造は、上記インゴットを用いて、鋳型引き出し式一方向凝固法で行った。具体的には、アルミナ質のセラミック鋳型を用い、鋳型加熱温度:1500℃、鋳型引き出し速度:20cm/hにて、直径15mm、長さ100mmの一方向凝固試験片を鋳造した。鋳造は、全て真空中で行った。 The casting of the unidirectional solidification test piece was performed by the mold drawing type unidirectional solidification method using the above ingot. Specifically, a unidirectional solidification test piece having a diameter of 15 mm and a length of 100 mm was cast using an alumina ceramic mold at a mold heating temperature of 1500 ° C. and a mold drawing speed of 20 cm / h. All castings were performed in a vacuum.
単結晶試験片も、鋳型の形状が異なる点を除いて、一方向凝固試験片とほぼ同様の方法で鋳造した。 The single crystal test piece was also cast by the same method as the unidirectional solidification test piece except that the shape of the mold was different.
鋳造した一方向凝固試験片及び単結晶試験片には、表3に示す条件で溶体化熱処理および時効熱処理を施した。これらの熱処理条件は別途予備試験を行い,マクロ組織及びミクロ組織から決定した。表3中にGFCとあるのはガスフロークーリングのことであり、ガス冷却を行ったことを示している。 The cast unidirectionally solidified test piece and single crystal test piece were subjected to solution heat treatment and aging heat treatment under the conditions shown in Table 3. These heat treatment conditions were determined from a macrostructure and a microstructure by conducting a separate preliminary test. In Table 3, GFC refers to gas flow cooling, which indicates that gas cooling was performed.
熱処理した一方向凝固試験片及び単結晶試験片から、それぞれ、機械加工により、平行部直径6.0mm、平行部長さ30mmのクリープ試験片と、長さ25mm、幅10mm、厚さ1.5mmの高温酸化試験片および直径8mm、長さ40mmの高温腐食試験片を切り出した。 From the heat-treated unidirectionally solidified test piece and the single crystal test piece, a creep test piece having a parallel part diameter of 6.0 mm and a parallel part length of 30 mm, a length of 25 mm, a width of 10 mm, and a thickness of 1.5 mm are obtained by machining. A high temperature oxidation test piece and a high temperature corrosion test piece having a diameter of 8 mm and a length of 40 mm were cut out.
表4に特性評価試験条件を示す。クリープ破断試験は、982℃−206MPa、920℃−314MPaの二つの条件で行った。酸化試験は、1040℃で600時間加熱保持したのち、室温まで冷却し、再び1040℃で600時間加熱する操作を5回繰り返して、合計3000時間の酸化試験を行い、3000時間酸化後の重量変化を測定した。耐食性試験は、燃焼ガス中にNaClを80ppm添加し、900℃の条件で7時間加熱保持したのち室温まで冷却し、再び900℃で7時間加熱する試験を5回繰り返して、合計35時間試験を行い、35時間腐食試験後の重量変化を測定した。 Table 4 shows the characteristic evaluation test conditions. The creep rupture test was performed under two conditions of 982 ° C.-206 MPa and 920 ° C.-314 MPa. In the oxidation test, after heating and holding at 1040 ° C. for 600 hours, the operation of cooling to room temperature and heating again at 1040 ° C. for 600 hours is repeated five times, and the oxidation test is performed for a total of 3000 hours, and the weight change after 3000 hours of oxidation Was measured. In the corrosion resistance test, 80 ppm of NaCl was added to the combustion gas, heated and maintained at 900 ° C for 7 hours, cooled to room temperature, and then heated again at 900 ° C for 7 hours. The test was repeated 5 times for a total of 35 hours. The weight change after the 35 hour corrosion test was measured.
これらの試験結果をまとめて表5に示した。なお、表5の酸化試験及び腐食試験後の試料には、重量増或いは重量減が見られるが、重量増は試験時に形成された酸化物皮膜が試料表面に密着していることを示し、重量減は酸化物皮膜が試料表面から剥がれたことを示している。重量増が少ないものほど特性が優れていることを示している。また、クリープ破談試験の結果は、破断寿命で示した。破断寿命が長いほど、クリープ強度が高いことを意味する。 The test results are summarized in Table 5. The samples after the oxidation test and the corrosion test in Table 5 show an increase or decrease in weight, but the increase in weight indicates that the oxide film formed during the test is in close contact with the sample surface. The decrease indicates that the oxide film was peeled off from the sample surface. The smaller the weight increase, the better the characteristics. Moreover, the result of the creep breaking test was shown by the fracture life. A longer rupture life means higher creep strength.
表5より明らかなように、本発明の実施例合金No.A1〜A18は、既存の単結晶材No.B1に比べてもクリープ破断寿命は見劣りせず、高温耐酸化性はかえって優れている。No.B2に比べると、982℃のクリープ破断寿命は短いが、920℃のクリープ破断寿命はほぼ同等であり、高温耐酸化性は優れている。また、既存の一方向凝固材No.C1〜C4に比べると、クリープ破断寿命、高温耐酸化性の点でいずれも優れており、高温耐食性でも同等ないしは優れている。すなわち、本発明合金は、高温強度と高温耐食性及び高温耐酸化特性のいずれも優れたバランスのとれた合金であることが認められた。このように上述の各特性がいずれも優れていることから、本発明合金は1500℃或いはそれ以上の高温に耐え得るタービン動翼材として好適である。 As apparent from Table 5, the alloy Nos. Of Examples of the present invention A1 to A18 are existing single crystal materials No. Compared to B1, the creep rupture life is not inferior, and the high-temperature oxidation resistance is rather excellent. No. Compared to B2, the creep rupture life at 982 ° C. is short, but the creep rupture life at 920 ° C. is almost the same, and the high-temperature oxidation resistance is excellent. In addition, the existing unidirectional solidified material No. Compared to C1 to C4, they are all excellent in terms of creep rupture life and high-temperature oxidation resistance, and equivalent or excellent in high-temperature corrosion resistance. That is, it was recognized that the alloy of the present invention is a well-balanced alloy having excellent high temperature strength, high temperature corrosion resistance and high temperature oxidation resistance. As described above, since each of the above-described characteristics is excellent, the alloy of the present invention is suitable as a turbine blade material that can withstand high temperatures of 1500 ° C. or higher.
Claims (5)
不純物中のSi,P,S,O及びNの量を、それぞれ、Si:0.1%以下、P:0.01%以下、S:0.005以下、O:0.005%以下、N:0.005%以下に規制したことを特徴とする強度、耐食性、耐酸化特性に優れた一方向凝固用ニッケル基超合金。 By weight: Cr: 3.0-8.0%, Co: 3.0-18.0%, W: 4.5-10.0%, Re: 0.5-6.0%, Ta: 4. 0 to 10.0%, Ti: 0.8 to 4.0%, Al: 2.5 to 6.5%, Hf: 0.1 to 2.0%, C: 0.01 to 0.15% B: 0.001 to 0.05%, Zr: 0.001 to 0.05%, Mo: 0 to less than 0.5%, Ru: 0 to 6.0% or less, remaining Ni and inevitable impurities ,
The amounts of Si, P, S, O, and N in the impurities are respectively Si: 0.1% or less, P: 0.01% or less, S: 0.005 or less, O: 0.005% or less, N : A nickel-base superalloy for unidirectional solidification excellent in strength, corrosion resistance, and oxidation resistance, characterized by being regulated to 0.005% or less.
不純物中のSi,P,S,O及びNの量を、それぞれ、Si:0.1%以下、P:0.01%以下、S:0.005以下、O:0.005%以下、N:0.005%以下に規制したことを特徴とする強度、耐食性、耐酸化特性に優れた一方向凝固用ニッケル基超合金。 By weight: Cr: 3.0-7.0%, Co: 3.0-18.0%, W: 4.5-8.0%, Re: 1.0-6.0%, Ta: 4. 0 to 10.0%, Ti: 0.8 to 2.0%, Al: 4.5 to 6.5%, Hf: 0.1 to 2.0%, C: 0.01 to 0.15% B: 0.001 to 0.05%, Zr: 0.001 to 0.05%, Mo: 0 to less than 0.5%, Ru: 0 to 6.0% or less, remaining Ni and inevitable impurities ,
The amounts of Si, P, S, O, and N in the impurities are respectively Si: 0.1% or less, P: 0.01% or less, S: 0.005 or less, O: 0.005% or less, N : A nickel-base superalloy for unidirectional solidification excellent in strength, corrosion resistance, and oxidation resistance, characterized by being regulated to 0.005% or less.
不純物中のSi,P,S,O及びNの量を、それぞれ、Si:0.1%以下、P:0.01%以下、S:0.005以下、O:0.005%以下、N:0.005%以下に規制したことを特徴とする強度、耐食性、耐酸化特性に優れた一方向凝固用ニッケル基超合金。 Cr: 3.8 to 7.0% by weight, Co: 3.0 to 18.0%, W: 5.5 to 8.0%, Re: 3.3 to 5.2%, Ta: 5. 0 to 10.0%, Ti: 0.8 to 2.0%, Al: 5.0 to 6.0%, Hf: 1.0 to 2.0%, C: 0.01 to 0.15% B: 0.001 to 0.05%, Zr: 0.001 to 0.05%, Mo: 0 to less than 0.5%, Ru: 0 to 6.0% or less, remaining Ni and inevitable impurities ,
The amounts of Si, P, S, O, and N in the impurities are respectively Si: 0.1% or less, P: 0.01% or less, S: 0.005 or less, O: 0.005% or less, N : A nickel-base superalloy for unidirectional solidification excellent in strength, corrosion resistance, and oxidation resistance, characterized by being regulated to 0.005% or less.
不純物中のSi,P,S,O及びNの量を、それぞれ、Si:0.1%以下、P:0.01%以下、S:0.005以下、O:0.005%以下、N:0.005%以下に規制したことを特徴とする強度、耐食性、耐酸化特性に優れた一方向凝固用ニッケル基超合金。 By weight: Cr: 5.0 to 7.0%, Co: 10.0 to 18.0%, W: 5.5 to 7.6%, Re: 3.5 to 5.2%, Ta: 5. 8 to 10.0%, Ti: 1.2 to 2.0%, Al: 5.0 to 6.0%, Hf: 1.0 to 1.8%, C: 0.05 to 0.10% B: 0.01 to 0.02%, Zr: 0.001 to 0.02%, Mo: 0 to less than 0.5%, Ru: 0 to 6.0% or less, remaining Ni and inevitable impurities ,
The amounts of Si, P, S, O, and N in the impurities are respectively Si: 0.1% or less, P: 0.01% or less, S: 0.005 or less, O: 0.005% or less, N : A nickel-base superalloy for unidirectional solidification excellent in strength, corrosion resistance, and oxidation resistance, characterized by being regulated to 0.005% or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006030583A JP4719583B2 (en) | 2006-02-08 | 2006-02-08 | Unidirectional solidification nickel-base superalloy excellent in strength, corrosion resistance and oxidation resistance and method for producing unidirectional solidification nickel-base superalloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006030583A JP4719583B2 (en) | 2006-02-08 | 2006-02-08 | Unidirectional solidification nickel-base superalloy excellent in strength, corrosion resistance and oxidation resistance and method for producing unidirectional solidification nickel-base superalloy |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007211273A true JP2007211273A (en) | 2007-08-23 |
JP4719583B2 JP4719583B2 (en) | 2011-07-06 |
Family
ID=38489975
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006030583A Expired - Fee Related JP4719583B2 (en) | 2006-02-08 | 2006-02-08 | Unidirectional solidification nickel-base superalloy excellent in strength, corrosion resistance and oxidation resistance and method for producing unidirectional solidification nickel-base superalloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4719583B2 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010037658A (en) * | 2008-08-06 | 2010-02-18 | General Electric Co <Ge> | Nickel-base superalloy, unidirectional solidification process therefor, and obtained casting |
JP2011046972A (en) * | 2009-08-25 | 2011-03-10 | Hitachi Ltd | Nickel based superalloy for unidirectional solidification having excellent strength and oxidation resistance characteristic |
JP2012012705A (en) * | 2010-06-30 | 2012-01-19 | Alstom Technology Ltd | Producing method of single-crystal component made of nickel-based superalloy |
JP2012036494A (en) * | 2010-08-05 | 2012-02-23 | Cannon-Muskegon Corp | Improved low sulfur nickel-base single crystal superalloy with ppm addition of lanthanum and yttrium |
CN108677064A (en) * | 2018-06-08 | 2018-10-19 | 南京赛达机械制造有限公司 | A kind of high life high temperature alloy blade of aviation engine and manufacturing method |
EP3428297A4 (en) * | 2016-03-07 | 2019-09-18 | National Institute for Materials Science | UNIDIRECTIONAL SOLIDIFYING ALLOY BASED ON NICKEL |
CN115110013A (en) * | 2022-06-13 | 2022-09-27 | 大冶特殊钢有限公司 | Solid solution treatment method for improving grain size uniformity of whole section of high-temperature alloy forging material |
WO2022233284A1 (en) * | 2021-05-06 | 2022-11-10 | 中国联合重型燃气轮机技术有限公司 | Ni-based superalloy having high thermal corrosion resistance and preparation method therefor |
CN116516272A (en) * | 2023-05-22 | 2023-08-01 | 中国航发北京航空材料研究院 | High-temperature aging heat treatment method of nickel-base single crystal superalloy and preparation method of nickel-base single crystal superalloy |
WO2024101048A1 (en) * | 2022-11-09 | 2024-05-16 | 国立研究開発法人物質・材料研究機構 | Nickel-cobalt-based alloy, nickel-cobalt-based alloy member using same, and method for manufacturing same |
WO2025050686A1 (en) * | 2023-09-05 | 2025-03-13 | 东方电气集团东方汽轮机有限公司 | Activating agent, prefabricated paste, prefabricated member and process for repairing thin-wall-penetrating defects |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10317080A (en) * | 1997-05-22 | 1998-12-02 | Toshiba Corp | Ni(nickel)-base superalloy, production of ni-base superalloy, and ni-base superalloy parts |
JPH10331659A (en) * | 1997-06-02 | 1998-12-15 | Hitachi Ltd | Gas turbine for power generation and combined power generation system |
WO2003080882A1 (en) * | 2002-03-27 | 2003-10-02 | National Institute For Materials Science | Ni-BASE DIRECTIONALLY SOLIDIFIED SUPERALLOY AND Ni-BASE SINGLE CRYSTAL SUPERALLOY |
JP2004131844A (en) * | 2002-07-12 | 2004-04-30 | Cannon-Muskegon Corp | Superalloy for single crystal turbine vane |
JP2004332061A (en) * | 2003-05-09 | 2004-11-25 | Hitachi Ltd | High oxidation resistant Ni-base superalloy and gas turbine parts |
JP2005060731A (en) * | 2003-08-11 | 2005-03-10 | Hitachi Ltd | Single crystal Ni-base superalloy with excellent strength, corrosion resistance and oxidation resistance |
-
2006
- 2006-02-08 JP JP2006030583A patent/JP4719583B2/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10317080A (en) * | 1997-05-22 | 1998-12-02 | Toshiba Corp | Ni(nickel)-base superalloy, production of ni-base superalloy, and ni-base superalloy parts |
JPH10331659A (en) * | 1997-06-02 | 1998-12-15 | Hitachi Ltd | Gas turbine for power generation and combined power generation system |
WO2003080882A1 (en) * | 2002-03-27 | 2003-10-02 | National Institute For Materials Science | Ni-BASE DIRECTIONALLY SOLIDIFIED SUPERALLOY AND Ni-BASE SINGLE CRYSTAL SUPERALLOY |
JP2004131844A (en) * | 2002-07-12 | 2004-04-30 | Cannon-Muskegon Corp | Superalloy for single crystal turbine vane |
JP2004332061A (en) * | 2003-05-09 | 2004-11-25 | Hitachi Ltd | High oxidation resistant Ni-base superalloy and gas turbine parts |
JP2005060731A (en) * | 2003-08-11 | 2005-03-10 | Hitachi Ltd | Single crystal Ni-base superalloy with excellent strength, corrosion resistance and oxidation resistance |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010037658A (en) * | 2008-08-06 | 2010-02-18 | General Electric Co <Ge> | Nickel-base superalloy, unidirectional solidification process therefor, and obtained casting |
JP2011046972A (en) * | 2009-08-25 | 2011-03-10 | Hitachi Ltd | Nickel based superalloy for unidirectional solidification having excellent strength and oxidation resistance characteristic |
JP2012012705A (en) * | 2010-06-30 | 2012-01-19 | Alstom Technology Ltd | Producing method of single-crystal component made of nickel-based superalloy |
JP2012036494A (en) * | 2010-08-05 | 2012-02-23 | Cannon-Muskegon Corp | Improved low sulfur nickel-base single crystal superalloy with ppm addition of lanthanum and yttrium |
EP3428297A4 (en) * | 2016-03-07 | 2019-09-18 | National Institute for Materials Science | UNIDIRECTIONAL SOLIDIFYING ALLOY BASED ON NICKEL |
CN108677064A (en) * | 2018-06-08 | 2018-10-19 | 南京赛达机械制造有限公司 | A kind of high life high temperature alloy blade of aviation engine and manufacturing method |
WO2022233284A1 (en) * | 2021-05-06 | 2022-11-10 | 中国联合重型燃气轮机技术有限公司 | Ni-based superalloy having high thermal corrosion resistance and preparation method therefor |
CN115110013A (en) * | 2022-06-13 | 2022-09-27 | 大冶特殊钢有限公司 | Solid solution treatment method for improving grain size uniformity of whole section of high-temperature alloy forging material |
WO2024101048A1 (en) * | 2022-11-09 | 2024-05-16 | 国立研究開発法人物質・材料研究機構 | Nickel-cobalt-based alloy, nickel-cobalt-based alloy member using same, and method for manufacturing same |
CN116516272A (en) * | 2023-05-22 | 2023-08-01 | 中国航发北京航空材料研究院 | High-temperature aging heat treatment method of nickel-base single crystal superalloy and preparation method of nickel-base single crystal superalloy |
WO2025050686A1 (en) * | 2023-09-05 | 2025-03-13 | 东方电气集团东方汽轮机有限公司 | Activating agent, prefabricated paste, prefabricated member and process for repairing thin-wall-penetrating defects |
Also Published As
Publication number | Publication date |
---|---|
JP4719583B2 (en) | 2011-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4719583B2 (en) | Unidirectional solidification nickel-base superalloy excellent in strength, corrosion resistance and oxidation resistance and method for producing unidirectional solidification nickel-base superalloy | |
JP2881626B2 (en) | Single crystal nickel-based superalloy | |
JP4036091B2 (en) | Nickel-base heat-resistant alloy and gas turbine blade | |
EP2471965A1 (en) | Ni-based superalloy, and turbine rotor and stator blades for gas turbine using the same | |
JP5235383B2 (en) | Ni-based single crystal alloy and casting | |
JP4885530B2 (en) | High strength and high ductility Ni-base superalloy, member using the same, and manufacturing method | |
JP5024797B2 (en) | Cobalt-free Ni-base superalloy | |
CN108441741B (en) | High-strength corrosion-resistant nickel-based high-temperature alloy for aerospace and manufacturing method thereof | |
JP4266196B2 (en) | Nickel-base superalloy with excellent strength, corrosion resistance and oxidation resistance | |
JP5558050B2 (en) | Nickel-base superalloy for unidirectional solidification with excellent strength and oxidation resistance | |
EP1927669B1 (en) | Low-density directionally solidified single-crystal superalloys | |
EP2942411B1 (en) | High strength single crystal nickel based superalloy | |
JP4222540B2 (en) | Nickel-based single crystal superalloy, manufacturing method thereof, and gas turbine high-temperature component | |
JP5063550B2 (en) | Nickel-based alloy and gas turbine blade using the same | |
JP4773303B2 (en) | Nickel-based single crystal superalloy excellent in strength, corrosion resistance, and oxidation resistance and method for producing the same | |
JP4157440B2 (en) | Single crystal Ni-base superalloy with excellent strength, corrosion resistance and oxidation resistance | |
JP5427642B2 (en) | Nickel-based alloy and land gas turbine parts using the same | |
JP4230970B2 (en) | Ni-base superalloys for unidirectional solidification with excellent solidification direction strength and grain boundary strength, castings and high-temperature parts for gas turbines | |
JP4184648B2 (en) | Ni-based single crystal alloy excellent in strength and corrosion resistance and its manufacturing method | |
JP2579316B2 (en) | Single crystal Ni-base superalloy with excellent strength and corrosion resistance | |
JP4607490B2 (en) | Nickel-base superalloy and single crystal casting | |
TWI540211B (en) | Equiaxed grain nickel-base casting alloy for high stress application | |
JPH0313297B2 (en) | ||
JPH0310039A (en) | Ni-base single crystal superalloy having excellent high temperature strength and high temperature corrosion resistance | |
JPH1046277A (en) | Columnar ni base heat resistant alloy casting and turbine blade made of the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080709 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101220 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110329 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110404 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140408 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |