[go: up one dir, main page]

JP2007201346A - Ceramics circuit board and its manufacturing method - Google Patents

Ceramics circuit board and its manufacturing method Download PDF

Info

Publication number
JP2007201346A
JP2007201346A JP2006020697A JP2006020697A JP2007201346A JP 2007201346 A JP2007201346 A JP 2007201346A JP 2006020697 A JP2006020697 A JP 2006020697A JP 2006020697 A JP2006020697 A JP 2006020697A JP 2007201346 A JP2007201346 A JP 2007201346A
Authority
JP
Japan
Prior art keywords
layer
conductor
circuit board
paste
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006020697A
Other languages
Japanese (ja)
Inventor
Koji Kobayashi
広治 小林
Hiroshi Yanagimoto
博 柳本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsuboshi Belting Ltd
Original Assignee
Mitsuboshi Belting Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsuboshi Belting Ltd filed Critical Mitsuboshi Belting Ltd
Priority to JP2006020697A priority Critical patent/JP2007201346A/en
Publication of JP2007201346A publication Critical patent/JP2007201346A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Structure Of Printed Boards (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ceramics circuit board excellent in a heat radiation property, conductivity, joining reliability of a ceramics substrate and a conductor circuit and durability without interposing a solder layer, and to provide its manufacturing method. <P>SOLUTION: (A) An application layer 2 is formed by applying first paste on the surface of the ceramics substrate B, (B) a first metallization layer 3 highly adhesive to the substrate B is formed by calcining the application layer 2, (C) an application layer 4 is formed by applying second paste to the metallization layer 3, (D) a second metallization layer 5 of a high heat radiation property is formed by calcining the application layer 4, and the circuit board is manufactured having the heat radiating conductor circuit 1 of a thick film selectively. By using the second paste in which the ratio of glass components to metal particle components such as copper powder is small compared to the first paste, the heat radiating conductor circuit 1 is formed as highly adhesive to the substrate and having the high heat radiation property. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、放熱性、導電性などに優れ、半導体を実装するのに適したセラミックス回路基板及びその製造方法に関する。   The present invention relates to a ceramic circuit board excellent in heat dissipation, conductivity, etc., and suitable for mounting a semiconductor, and a method for manufacturing the same.

近年、電子機器などに用いられる半導体装置において、発熱・電流量が増加する傾向にあるが、これに対して、セラミックス基板上に数百μmの厚みの金属膜を配設し、放熱性を向上させたり、大電流を流す導体回路として利用する試みがなされている。   In recent years, semiconductor devices used in electronic devices and the like have a tendency to increase heat generation and current. On the other hand, a metal film with a thickness of several hundred μm is placed on a ceramic substrate to improve heat dissipation. Attempts have been made to use it as a conductor circuit through which a large current flows.

放熱性を向上させるための具体的な手段としては、セラミックス基板上にメタライズ層を設け、その上部にヒートスプレッダーと呼ばれる金属製の放熱板を介して半導体を実装する方法がある。ヒートスプレッダーとしては、熱伝導率の高い銅やアルミニウムなどの材質で構成された部材が好ましく用いられ、半田を介してヒートスプレッダーとメタライズ層とが接合した構成となっている。例えば、セラミックス基板に金属箔を貼り合わせて厚みのある導体回路を形成する方法が知られている。具体的には、特開平03−18087号公報(特許文献1)には、銀粉、銅粉及び水素化チタン粉に有機溶剤を添加してペーストを調製した後、それをスクリーン印刷法にて窒化アルミニウム焼結体表面に塗布する工程、上記ペースト塗布箇所に銅板を配置する工程、上記銅板を配置した窒化アルミニウム焼結体を不活性雰囲気下800℃以上950℃以下の温度にて熱処理した後冷却する工程により、熱放散性のよい回路基板を製造する方法が提案されている。   As a specific means for improving the heat dissipation, there is a method in which a metallized layer is provided on a ceramic substrate, and a semiconductor is mounted on the upper part via a metal heat dissipation plate called a heat spreader. As the heat spreader, a member made of a material such as copper or aluminum having a high thermal conductivity is preferably used, and the heat spreader and the metallized layer are joined via solder. For example, a method of forming a thick conductor circuit by bonding a metal foil to a ceramic substrate is known. Specifically, Japanese Patent Laid-Open No. 03-18087 (Patent Document 1) discloses a paste prepared by adding an organic solvent to silver powder, copper powder and titanium hydride powder, and then nitriding it by screen printing. The step of applying to the surface of the aluminum sintered body, the step of arranging a copper plate at the paste application location, the aluminum nitride sintered body having the copper plate arranged thereon is heat-treated at a temperature of 800 ° C. or higher and 950 ° C. or lower in an inert atmosphere and then cooled. A method of manufacturing a circuit board with good heat dissipation has been proposed.

一方、金属膜を大電流用導体回路として利用する場合、酸素分圧が微小な酸素・窒素混合雰囲気下、予め銅箔表面を酸化処理した後、酸化処理後の銅箔とアルミナや窒化アルミニウム基板とを、酸素分圧が微小な酸素・窒素混合雰囲気下、1065〜1083℃で接合する工程、塩化鉄や塩化銅を用いてエッチング処理し、マスクで保護された必要部分を残して回路を形成する回路形成工程により回路基板を製造する方法が知られている。   On the other hand, when using a metal film as a high-current conductor circuit, the copper foil surface is oxidized in advance in an oxygen / nitrogen mixed atmosphere with a minute oxygen partial pressure, and then the oxidized copper foil and an alumina or aluminum nitride substrate Are bonded at 1065 to 1083 ° C. in an oxygen / nitrogen mixed atmosphere with a small oxygen partial pressure, etching is performed using iron chloride or copper chloride, and a circuit is formed while leaving a necessary portion protected by a mask. A method of manufacturing a circuit board by a circuit forming process is known.

しかし、ヒートスプレッダーを用いる方法では、メタライズ層とヒートスプレッダーとの間に熱伝導率の低い半田層が存在するため、ヒートスプレッダーを構成する材質本来の放熱性を充分に引き出せない。また半田成分がメタライズ層と基板との界面にまで拡散することによって、導体回路と基板との接合界面が劣化し、接合信頼性に劣るという不具合もある。   However, in the method using the heat spreader, since the solder layer having a low thermal conductivity exists between the metallized layer and the heat spreader, the heat radiation characteristic inherent to the material constituting the heat spreader cannot be sufficiently obtained. In addition, since the solder component diffuses to the interface between the metallized layer and the substrate, the bonding interface between the conductor circuit and the substrate is deteriorated, resulting in poor bonding reliability.

そして、絶縁基板に金属箔を貼り合わせて厚みのある導体回路を形成する方法では、選択的に所定部位の金属箔の厚みを変えることができず、基板面内ですべて同じ厚みとなる。そのため、最も厚くしなければならない部位の厚みにその他の部位の厚みが支配されてしまい、厚みの異なる導体回路を効率的に形成できない。また、回路パターンを形成するためには、金属箔を基板に接合した後にエッチング処理することが一般的に行われているが、厚い金属箔をエッチングして回路形成する場合、微細な回路パターンを形成するのが困難であり、基板面積を有効に活用できない。   In the method of forming a thick conductor circuit by laminating a metal foil on an insulating substrate, the thickness of the metal foil at a predetermined portion cannot be selectively changed, and all have the same thickness within the substrate surface. For this reason, the thickness of the other part is governed by the thickness of the part that should be made the thickest, and it is impossible to efficiently form conductor circuits having different thicknesses. Moreover, in order to form a circuit pattern, it is common to perform an etching process after bonding a metal foil to a substrate. However, when a circuit is formed by etching a thick metal foil, a fine circuit pattern is formed. It is difficult to form and the substrate area cannot be used effectively.

さらに、セラミックス基板に金属箔を貼り合わせると、セラミックスと金属との熱膨張係数が大きく異なることから、接合界面に熱応力が集中して接合面付近でセラミックス基板が破壊されてしまい信頼性に欠ける問題があった。また、基板と金属箔との接合時に発生する基板の反りを回避するために、両面ともに同じ厚みの金属箔を貼る必要があることもコストやスペースの点から効率的とは言えない。
特開平03−18087号公報(特許請求の範囲)
In addition, when a metal foil is bonded to a ceramic substrate, the thermal expansion coefficients of the ceramic and the metal are greatly different. Therefore, thermal stress is concentrated on the bonding interface and the ceramic substrate is destroyed near the bonding surface, resulting in poor reliability. There was a problem. In addition, it is not efficient from the viewpoint of cost and space that it is necessary to apply metal foils having the same thickness on both sides in order to avoid warping of the substrate that occurs when the substrate and the metal foil are joined.
Japanese Patent Laid-Open No. 03-18087 (Claims)

従って、本発明の目的は、半田層が介在することなく、放熱性、導電性に優れるのみならず、セラミックス基板と導体回路との接合信頼性、熱応力に対する高い耐久性を有するセラミックス回路基板及びその製造方法を提供することにある。   Accordingly, an object of the present invention is to provide a ceramic circuit board having not only excellent heat dissipation and conductivity without interposition of a solder layer, but also having high bonding durability between the ceramic board and the conductor circuit and high durability against thermal stress. It is in providing the manufacturing method.

本発明の他の目的は、厚みの異なる導体回路を効率よく形成できるとともに基板面積を有効に活用できるセラミックス回路基板及びその製造方法を提供することにある。   Another object of the present invention is to provide a ceramic circuit board capable of efficiently forming conductor circuits having different thicknesses and effectively utilizing the board area, and a method for manufacturing the same.

本発明のさらに他の目的は、厚みが大きくても微細な導体回路パターンを形成できるセラミックス回路基板及びその製造方法を提供することにある。   Still another object of the present invention is to provide a ceramic circuit board capable of forming a fine conductor circuit pattern even when the thickness is large, and a method for manufacturing the same.

本発明の別の目的は、基板の一方の面に導体回路を形成しても反りが生じることのないセラミックス回路基板及びその製造方法を提供することにある。   Another object of the present invention is to provide a ceramic circuit board that does not warp even when a conductor circuit is formed on one surface of the board, and a method for manufacturing the same.

本発明者らは、前記課題を達成するため鋭意検討した結果、導電性及び熱伝導性の高い金属粒子成分の焼結体で放熱性導体回路を選択的に厚肉で形成すること、特に、スクリーン印刷法などを利用して、セラミックス基板に対して高い密着性を有し、かつ導電性及び熱伝導性の高い粒子焼結体で構成された第1のメタライズ層と、このメタライズ層に接合し、かつガラス成分が少なく導電性及び熱伝導性の高い粒子の焼結体で構成された少なくとも1つの第2のメタライズ層とで放熱性導体回路を形成すると、放熱性、導電性、基板と放熱性導体回路との接合信頼性、高い耐久性を有するとともに、厚みが大きくても微細な導体回路パターンを形成できることを見いだし、本発明を完成した。   As a result of intensive studies to achieve the above-mentioned problems, the inventors have selectively formed a heat dissipating conductor circuit with a thick metal particle component sintered body having high conductivity and heat conductivity, in particular, Using a screen printing method, etc., the first metallized layer composed of a sintered particle having high adhesion to the ceramic substrate and having high conductivity and thermal conductivity, and bonding to the metallized layer And forming a heat dissipating conductor circuit with at least one second metallized layer composed of a sintered body of particles having a small amount of glass component and a high conductivity and heat conductivity. The present invention has been completed by finding that it has bonding reliability with a heat-dissipating conductor circuit, high durability, and that a fine conductor circuit pattern can be formed even when the thickness is large.

すなわち、本発明のセラミックス回路基板は、セラミックス基板の表面に選択的に厚膜の放熱性導体回路が形成されている。この回路基板は、基板の表面に対して選択的に厚みの大きい部位(放熱性導体回路)を有している。前記放熱性導体回路は、導電性及び熱伝導性を有する金属粒子成分の焼結体で構成され、通常、メタライズ層を形成している。   That is, in the ceramic circuit board of the present invention, a thick heat dissipation conductive circuit is selectively formed on the surface of the ceramic board. The circuit board has a portion (heat dissipating conductor circuit) that is selectively thick with respect to the surface of the board. The heat dissipating conductor circuit is composed of a sintered body of metal particle components having electrical conductivity and thermal conductivity, and usually forms a metallized layer.

放熱性導体回路は、セラミックス基板に積層された第1の導体層と、この第1の導体層に少なくとも部分的に重ねて積層された少なくとも1つの第2の導体層とで構成してもよい。このような積層構造の放熱性導体回路では、通常、第1の導体層よりも第2の導体層のガラス成分の含有量が少ない(換言すれば、金属粒子成分の含有量が多い)。このようなセラミックス回路基板では、半田を介在させることなく、放熱性導体回路を選択的に厚膜に形成できるため、放熱性、導電性、接合信頼性および耐久性に優れる。また、銅箔などの導体の貼付が不要であるため、材料コスト及びスペースを低減できる。   The heat dissipating conductor circuit may be composed of a first conductor layer laminated on a ceramic substrate and at least one second conductor layer laminated at least partially on the first conductor layer. . In the heat dissipating conductor circuit having such a laminated structure, the glass component content of the second conductor layer is usually smaller than that of the first conductor layer (in other words, the metal particle component content is high). In such a ceramic circuit board, since the heat dissipating conductor circuit can be selectively formed in a thick film without interposing solder, it is excellent in heat dissipation, conductivity, bonding reliability and durability. Moreover, since it is not necessary to attach a conductor such as a copper foil, material cost and space can be reduced.

前記金属粒子成分は、導電性及び熱伝導性の高い粒子であればよく、高い放熱性を有する成分、例えば、銅及び酸化銅から選択された少なくとも一種であってもよい。放熱性導体回路の厚みは、105〜1200μmであってもよく、第1の導体層の厚みは、5〜200μm程度であってもよく、第2の導体層の厚みは、100〜1000μm程度であってもよい。密着性及び接着信頼性を高めるため、基板と導体回路との界面には複合酸化物(金属間複合酸化物など)が介在していてもよい。   The metal particle component may be a particle having high conductivity and thermal conductivity, and may be at least one selected from components having high heat dissipation properties, for example, copper and copper oxide. The thickness of the heat dissipating conductor circuit may be 105 to 1200 μm, the thickness of the first conductor layer may be about 5 to 200 μm, and the thickness of the second conductor layer is about 100 to 1000 μm. There may be. In order to improve adhesion and adhesion reliability, a complex oxide (such as an intermetallic complex oxide) may be present at the interface between the substrate and the conductor circuit.

放熱性導体回路の構造は特に制限されず、例えば、導体回路は、セラミックス基板の表面に積層された第1の導体層と、この第1の導体層上に形成され、かつ第1の導体層よりも面積が小さな第2の導体層(又は放熱性導体層)とで導体回路を構成してもよい。また、セラミックス基板の表面には、厚みの異なる導体回路(部位によって厚みの異なる放熱性導体回路)を形成してもよい。   The structure of the heat dissipating conductor circuit is not particularly limited. For example, the conductor circuit is formed on the surface of the ceramic substrate, the first conductor layer, the first conductor layer, and the first conductor layer. You may comprise a conductor circuit with the 2nd conductor layer (or heat radiating conductor layer) whose area is smaller than this. Further, conductor circuits having different thicknesses (heat dissipating conductor circuits having different thicknesses depending on portions) may be formed on the surface of the ceramic substrate.

本発明は、セラミックス基板の表面に放熱性導体回路が形成されたセラミックス回路基板を製造する方法も包含する。この方法では、前記放熱性導体回路を、前記金属粒子成分を含むペーストを塗布し、乾燥させた後、焼成することにより形成できる。本発明の製造方法では、セラミックス基板の表面にペーストを塗布して塗布層を形成する工程と、この塗布工程で形成された塗布層を焼成して焼成層を形成する工程とを含み、塗布工程を繰り返して少なくとも部分的に重なり合う複数の層を形成し、少なくとも最終の塗布工程の後、塗布層を焼成することにより、放熱性導体回路(焼成層)を形成し、セラミックス回路基板を製造してもよい。   The present invention also includes a method for manufacturing a ceramic circuit board in which a heat dissipating conductor circuit is formed on the surface of the ceramic board. In this method, the heat dissipating conductor circuit can be formed by applying a paste containing the metal particle component, drying it, and then firing it. The manufacturing method of the present invention includes a step of applying a paste to the surface of a ceramic substrate to form a coating layer, and a step of firing the coating layer formed in this coating step to form a fired layer, To form a plurality of layers that at least partially overlap, and at least after the final coating step, the coating layer is fired to form a heat-dissipating conductor circuit (firing layer), and a ceramic circuit board is manufactured. Also good.

また、本発明の方法は、セラミックス基板の表面に第1のペーストを塗布して第1の塗布層を形成する工程と、この塗布工程で形成された塗布層に対して少なくとも部分的に重ねて第2のペーストを塗布して第2の塗布層を形成する工程と、形成された第1及び第2の塗布層を焼成して放熱性導体層(焼成層)を形成する工程とで構成してもよい。   The method of the present invention also includes a step of applying a first paste to the surface of a ceramic substrate to form a first coating layer, and at least partially overlapping the coating layer formed in this coating step. It comprises a step of applying a second paste to form a second coating layer and a step of firing the formed first and second coating layers to form a heat dissipating conductor layer (firing layer). May be.

前記塗布層は、種々の方法、例えば、スクリーン印刷法によりペーストを塗布することにより形成できる。スクリーン印刷法を利用すると、精度の高い微細なパターンを有する層を簡便に形成できる。   The coating layer can be formed by applying a paste by various methods, for example, a screen printing method. When the screen printing method is used, a layer having a fine pattern with high accuracy can be easily formed.

さらに、セラミックス基板に対して強固に接着した均一な微粒子焼結体を形成するため、最初の塗布工程で、平均一次粒子径0.003〜0.3μmの金属粒子成分を含むペーストをセラミックス基板の表面に塗布してもよい。また、最終の塗布工程で、最初の塗布工程でのペーストよりも、粒子成分に対するガラス成分の割合が少ないペーストを塗布すると、導体層の表層部でのガラス成分が少ないため、表層部表面の半田濡れ性が高く、半田実装が可能であると共に、金属成分の含有量が多いため、金属由来の高い放熱性を得ることができる。なお、最終の塗布工程で用いるペーストは、ガラス成分を含まないか又は金属粒子成分100重量部に対してガラス成分の割合が5重量部以下のペーストであってもよい。   Further, in order to form a uniform fine particle sintered body firmly adhered to the ceramic substrate, a paste containing a metal particle component having an average primary particle diameter of 0.003 to 0.3 μm is applied to the ceramic substrate in the first coating step. It may be applied to the surface. In addition, when a paste having a smaller glass component to particle component ratio than the paste in the first application step is applied in the final application step, the glass component in the surface layer portion of the conductor layer is less, so the surface layer surface solder Since the wettability is high, solder mounting is possible, and since the content of the metal component is large, a high heat dissipation property derived from metal can be obtained. Note that the paste used in the final coating step may be a paste that does not include a glass component or that has a glass component ratio of 5 parts by weight or less with respect to 100 parts by weight of a metal particle component.

なお、本明細書において、「金属粒子成分」とは導電性及び熱伝導性の高い粒子を意味する。また、焼成により形成された導体層を単に「メタライズ層」又は「焼成層」という場合がある。さらに、「放熱性導体回路」とは、導体回路のうち少なくとも表面層に、放熱性及び導電性の大きな放熱性導体層が形成された回路を意味し、導体回路全体を放熱性導体層で形成してもよい。さらには、特に言及しない限り「塗布工程」は塗布層を形成する工程を意味し、乾燥工程を含めて塗布工程という場合がある。   In the present specification, the “metal particle component” means particles having high conductivity and heat conductivity. In addition, the conductor layer formed by firing may be simply referred to as “metallized layer” or “fired layer”. Furthermore, the “heat dissipating conductor circuit” means a circuit in which a heat dissipating conductor layer having a large heat dissipating property and conductivity is formed on at least the surface layer of the conductor circuit, and the entire conductor circuit is formed of the heat dissipating conductor layer. May be. Furthermore, unless otherwise specified, the “coating step” means a step of forming a coating layer and may be referred to as a coating step including a drying step.

本発明では、セラミックス基板に厚膜に形成された放熱性導体回路を粒子焼結体で構成するため、半田層が介在することなく、放熱性、導電性に優れるだけでなく、セラミックス基板と導体回路との接合信頼性、熱応力に対する耐久性を向上できる。また、塗布工程及び焼成工程で導体回路を形成できるため、厚みの異なる導体回路を効率よく形成できるとともに、基板面積を有効に活用できる。さらに、厚みが大きくても微細な導体回路パターンを形成できる。さらには、基板の一方の面に導体回路を形成しても反りの発生を抑制できる。   In the present invention, since the heat dissipating conductor circuit formed in a thick film on the ceramic substrate is composed of the particle sintered body, the heat dissipating property and the conductivity are excellent without using a solder layer. Reliability of joining to the circuit and durability against thermal stress can be improved. Moreover, since a conductor circuit can be formed in the application | coating process and a baking process, while being able to form the conductor circuit from which thickness differs efficiently, a board | substrate area can be utilized effectively. Furthermore, a fine conductor circuit pattern can be formed even if the thickness is large. Furthermore, even if a conductor circuit is formed on one surface of the substrate, the occurrence of warpage can be suppressed.

以下に、必要により添付図面を参照しつつ本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to the accompanying drawings as necessary.

図1は本発明のセラミックス回路基板の製造方法を説明するための工程図である。この方法では、(A)セラミックス基板B表面に、金属粒子成分を含む第1のペーストを塗布、乾燥させることにより塗布層2(乾燥膜)を形成する第1の塗布工程、(B)塗布層2(乾燥膜)を焼成してメタライズ層3(焼成層又は接着性導体層)を形成する第1の焼成工程、(C)メタライズ層(焼成層)3の表面の一部に、金属粒子成分を含む第2のペーストを塗布、乾燥させることにより塗布層4(乾燥膜)を形成する第2の塗布工程、そして(D)塗布層4(乾燥膜)を焼成してメタライズ層5(焼成層又は放熱性導体層)を形成する第2の焼成工程とで構成され、セラミックス基板B上にメタライズ層5(放熱性導体層)を有する放熱性導体回路1が形成されている。   FIG. 1 is a process diagram for explaining a method of manufacturing a ceramic circuit board according to the present invention. In this method, (A) a first coating step for forming a coating layer 2 (dry film) by coating and drying a first paste containing a metal particle component on the surface of a ceramic substrate B; (B) a coating layer 2 (dry film) is fired to form a metallized layer 3 (fired layer or adhesive conductor layer), (C) a metal particle component on a part of the surface of the metallized layer (fired layer) 3 A second coating step of forming a coating layer 4 (dry film) by coating and drying a second paste containing, and (D) firing the coating layer 4 (dry film) to form a metallized layer 5 (firing layer). Or a heat-dissipating conductor layer having a metallized layer 5 (heat-dissipating conductor layer) on the ceramic substrate B.

なお、放熱性導体回路1において、焼成により形成されるメタライズ層3とメタライズ層5とは実質的に区別又は識別できない場合があるが、この例では、本発明の理解を助けるため、便宜上、メタライズ層3及びメタライズ層5として記載する。また、メタライズ層3が放熱性(高い放熱性)を有する場合があり、メタライズ層3とメタライズ層5とを放熱性の点で明確に識別できない場合があるが、便宜上、メタライズ層3及びメタライズ層5をそれぞれ接着性導体層及び放熱性導体層として記載する。なお、放熱性導体回路のうち少なくとも表層部は放熱性導体層で構成される。   In the heat-dissipating conductor circuit 1, the metallized layer 3 and the metallized layer 5 formed by firing may not be substantially distinguished or distinguished from each other, but in this example, in order to help the understanding of the present invention, the metallized layer is used for convenience. Described as layer 3 and metallization layer 5. In some cases, the metallized layer 3 may have heat dissipation (high heat dissipation), and the metallized layer 3 and the metallized layer 5 may not be clearly distinguished from the viewpoint of heat dissipation. 5 are described as an adhesive conductor layer and a heat-dissipating conductor layer, respectively. Note that at least the surface layer portion of the heat dissipating conductor circuit is composed of a heat dissipating conductor layer.

[第1の塗布工程]
前記塗布工程(A)では、第1のペーストを塗布、乾燥させることにより、塗布層2(乾燥膜)を形成する工程を有する。この塗布層2は、焼成によりメタライズ層3を形成し、導体回路としての役割、並びに基板と導体回路との接合の役割を果たす。そのため、メタライズ層3は「接着性導体層」又は導電性の高い「導体層」ということができる。
[First application step]
The coating step (A) includes a step of forming the coating layer 2 (dry film) by coating and drying the first paste. The coating layer 2 forms a metallized layer 3 by firing, and plays a role as a conductor circuit and a bonding between the substrate and the conductor circuit. Therefore, the metallized layer 3 can be referred to as an “adhesive conductor layer” or a highly conductive “conductor layer”.

本発明で用いるセラミックス基板Bは、特に限定されないが、例えば、金属酸化物(酸化珪素、石英、アルミナ又は酸化アルミニウム、ジルコニア、サファイア、フェライト、チタニア又は酸化チタン、酸化亜鉛、酸化ニオブ、ムライト、ベリリアなど)、金属窒化物(窒化アルミニウム、窒化ケイ素、窒化ホウ素、窒化炭素、窒化チタンなど)、金属炭化物(炭化ケイ素、炭化ホウ素、炭化チタン、炭化タングステンなど)、金属ホウ化物(ホウ化チタン、ホウ化ジルコニウムなど)、金属複酸化物[チタン酸金属塩(チタン酸バリウム、チタン酸ストロンチウム、チタン酸鉛、チタン酸ニオブ、チタン酸カルシウム、チタン酸マグネシウムなど)、ジルコン酸金属塩(ジルコン酸バリウム、ジルコン酸カルシウム、ジルコン酸鉛など)など]などのセラミックス;金属酸塩(ニオブ酸リチウム、タンタル酸リチウムなど)などの焼成可能な単結晶;ホウ珪酸ガラスなどの低温焼成ガラスなどが使用できる。セラミックス基板の形状や表面の物理的あるいは化学的な処理の有無は問わない。   The ceramic substrate B used in the present invention is not particularly limited, and examples thereof include metal oxides (silicon oxide, quartz, alumina or aluminum oxide, zirconia, sapphire, ferrite, titania or titanium oxide, zinc oxide, niobium oxide, mullite, and beryllia. Metal nitride (aluminum nitride, silicon nitride, boron nitride, carbon nitride, titanium nitride, etc.), metal carbide (silicon carbide, boron carbide, titanium carbide, tungsten carbide, etc.), metal boride (titanium boride, boron, etc.) Zirconate, etc.), metal double oxides [metal titanate (barium titanate, strontium titanate, lead titanate, niobium titanate, calcium titanate, magnesium titanate, etc.), metal zirconate (barium zirconate, Calcium zirconate, lead zirconate, etc.) ] Ceramics such as; metal salt (lithium niobate, lithium tantalate, etc.) can be fired single crystal and the like; and low-temperature sintered glasses, such as borosilicate glass may be used. It does not matter whether the shape of the ceramic substrate or the surface is physically or chemically treated.

これらのセラミックス基板のうち、酸化アルミニウム、窒化アルミニウムを材質とする焼結基板が好ましい。酸化アルミニウム基板は、京セラ(株)やニッコー(株)、日本カーバイド工業(株)などの各社から96%アルミナ基板などとして入手できる。また、窒化アルミニウム基板は、東芝ファインセラミックス(株)、旭テクノグラス(株)、トクヤマ(株)、マルワ(株)などから熱伝導率の異なるグレードが市販されており、これらの基板を好適に使用できる。   Of these ceramic substrates, a sintered substrate made of aluminum oxide or aluminum nitride is preferable. Aluminum oxide substrates can be obtained as 96% alumina substrates from companies such as Kyocera Corporation, Nikko Corporation, and Nippon Carbide Industries. Aluminum nitride substrates with different thermal conductivity are commercially available from Toshiba Fine Ceramics Co., Ltd., Asahi Techno Glass Co., Ltd., Tokuyama Co., Ltd., Maruwa Co., Ltd., etc. Can be used.

金属粒子成分としては、熱伝導性及び導電性の高い成分であり、かつ焼結可能であれば特に制限されず、通常、金属及び金属化合物(酸化物など)から選択された少なくとも一種の粒子成分が使用できる。金属粒子成分の金属種としては、例えば、周期表1B族元素(金、銀、銅など)、周期表2B族元素、周期表3B族元素(アルミニウム、ガリウム、インジウムなど)、周期表4B族元素(鉛、スズなど)、周期表2A族元素(マグネシウム)、周期表3A族元素、周期表4A族元素(ジルコニウム、チタンなど)、周期表5A族元素(バナジウム、ニオブ、タンタルなど)、周期表6A族元素(タングステン、モリブデン、クロムなど)、周期表7A族元素、周期表8族元素(鉄、コバルト、ロジウム、イリジウム、ニッケル、パラジウム、白金など)などが例示できる。これらの金属粒子成分は焼成によりメタライズ層を形成可能であればよく、タフピッチ銅、無酸素銅、銀、アルミニウムなどの金属に限らず金属化合物(例えば、銀入り銅、ジルコニウム銅などの合金、金属酸化物など、特に金属酸化物)も使用できる。さらに金属化合物は、水素化チタンなどの水素化物などであってもよい。金属粒子成分の体積抵抗率(μΩ・cm、20℃)は、例えば、50以下(例えば、1〜20、好ましくは1.5〜10、さらに好ましくは1.5〜5程度)であり、通常、1.5〜3程度である。金属粒子成分の熱伝導率(cal/s・cm・℃)は、例えば、0.2〜1、好ましくは0.4〜1、さらに好ましくは0.5〜1(例えば、0.55〜1)程度である。これらの金属粒子成分は単独で又は二種以上組み合わせて使用できる。これらの金属粒子成分のうち、熱伝導度や電気抵抗値の点から、銀、銅、アルミニウム又はこれらの化合物が好ましく、価格の点から、銅又は酸化銅の粒子が好ましい。   The metal particle component is not particularly limited as long as it is a component having high thermal conductivity and high conductivity and can be sintered, and is usually at least one particle component selected from metals and metal compounds (oxides, etc.). Can be used. Examples of the metal species of the metal particle component include periodic table group 1B elements (gold, silver, copper, etc.), periodic table group 2B elements, periodic table group 3B elements (aluminum, gallium, indium, etc.), periodic table group 4B elements. (Lead, tin, etc.), periodic table group 2A elements (magnesium), periodic table group 3A elements, periodic table group 4A elements (zirconium, titanium, etc.), periodic table group 5A elements (vanadium, niobium, tantalum, etc.), periodic table Examples include 6A group elements (tungsten, molybdenum, chromium, etc.), periodic table 7A group elements, periodic table 8 group elements (iron, cobalt, rhodium, iridium, nickel, palladium, platinum, etc.). These metal particle components are not limited to metals such as tough pitch copper, oxygen-free copper, silver, and aluminum as long as a metallized layer can be formed by firing, and metal compounds (for example, alloys containing silver, copper and zirconium copper, metals, etc. Oxides such as metal oxides can also be used. Further, the metal compound may be a hydride such as titanium hydride. The volume resistivity (μΩ · cm, 20 ° C.) of the metal particle component is, for example, 50 or less (for example, about 1 to 20, preferably about 1.5 to 10, more preferably about 1.5 to 5). About 1.5-3. The thermal conductivity (cal / s · cm · ° C.) of the metal particle component is, for example, 0.2 to 1, preferably 0.4 to 1, and more preferably 0.5 to 1 (for example, 0.55 to 1). ) These metal particle components can be used alone or in combination of two or more. Among these metal particle components, silver, copper, aluminum or a compound thereof is preferable from the viewpoint of thermal conductivity and electric resistance, and copper or copper oxide particles are preferable from the viewpoint of price.

金属粒子成分の平均一次粒子径は、0.001〜10μm程度の範囲から選択でき、通常、0.003〜1μm、好ましくは0.005〜0.5μm、さらに好ましくは0.01〜0.3μm程度である。平均一次粒子径がナノメーターサイズの小さな金属粒子成分(例えば、0.003〜0.3μm、好ましくは0.005〜0.25μm、さらに好ましくは0.01〜0.2μm程度の粒子成分)を用いると、セラミックス基板との接着強度を向上できるとともに接合信頼性を高めることができる。このような極微小の粒径を有する微粒子は、粒子サイズの大きな粒子に比べて、塗布層及び焼成層に高い均一性を付与できるとともに、比表面積の増大に伴って極めて高い反応性を有しており、セラミックス基板表面を粗化や感受性化することなく、焼成工程によりセラミックス基板表面に金属粒子成分からなる焼結体を形成でき、しかもセラミックス基板に対して強固に接着した均一な微粒子焼結体を形成できる。すなわち、微小な金属粒子成分を用いると、基板とメタライズ層との界面で反応し、複合酸化物(金属間複合酸化物など)を形成でき、両者間の密着強度を大きく向上できる。例えば、金属粒子成分として銅粒子を選択し、セラミック基板が酸化アルミニウムもしくは窒化アルミニウムである場合、適切に加熱処理することによって、基板とメタライズ層との界面にCuAlやCuAlOなどの複合酸化物を形成でき、その化学的結合力によって長期間に亘って高い接合信頼性のメタライズ層3を形成できる。なお、金属粒子成分の平均粒径が大きくなると、セラミックス基板との反応性が乏しくなり高い密着力が得られなくなる恐れがある。また、平均粒径が大きな金属粒子成分は比表面積が小さくなるため、後工程でメッキ層(特に無電解メッキ層)を形成する場合、メッキ(特に無電解メッキ)の触媒核としての能力が充分に得られないといった不具合がある。一方、平均粒径が小さすぎる金属微粒子を調製することは困難である場合が多い。なお、必要であれば、平均一次粒子径が前記ナノメーターサイズの金属粒子成分と、この平均一次粒子径よりも大きなサイズの金属粒子成分は混合して使用してもよい。 The average primary particle diameter of the metal particle component can be selected from the range of about 0.001 to 10 μm, and is usually 0.003 to 1 μm, preferably 0.005 to 0.5 μm, more preferably 0.01 to 0.3 μm. Degree. A metal particle component having a small average primary particle size of nanometer size (for example, a particle component having a diameter of about 0.003 to 0.3 μm, preferably about 0.005 to 0.25 μm, more preferably about 0.01 to 0.2 μm). If used, the adhesive strength with the ceramic substrate can be improved and the bonding reliability can be increased. Fine particles having such an extremely small particle size can impart high uniformity to the coating layer and the fired layer, and have extremely high reactivity as the specific surface area increases, compared to particles having a large particle size. It is possible to form a sintered body composed of metal particle components on the ceramic substrate surface by the firing process without roughening or sensitizing the ceramic substrate surface, and also uniform fine particle sintering firmly adhered to the ceramic substrate The body can be formed. That is, when a minute metal particle component is used, it reacts at the interface between the substrate and the metallized layer to form a complex oxide (such as an intermetallic complex oxide), and the adhesion strength between the two can be greatly improved. For example, when copper particles are selected as the metal particle component and the ceramic substrate is aluminum oxide or aluminum nitride, a composite such as CuAl 2 O 4 or CuAlO 2 is formed at the interface between the substrate and the metallized layer by appropriate heat treatment. An oxide can be formed, and the metallized layer 3 having high bonding reliability can be formed over a long period of time due to its chemical bonding strength. When the average particle size of the metal particle component is increased, the reactivity with the ceramic substrate becomes poor, and there is a possibility that high adhesion cannot be obtained. In addition, since the metal particle component having a large average particle size has a small specific surface area, when a plating layer (especially electroless plating layer) is formed in a subsequent process, the ability as a catalyst nucleus of plating (especially electroless plating) is sufficient. There is a problem that cannot be obtained. On the other hand, it is often difficult to prepare metal fine particles having an average particle size that is too small. If necessary, the metal particle component having an average primary particle size of the nanometer size and a metal particle component having a size larger than the average primary particle size may be used in combination.

前記金属粒子成分、特に微細な金属粒子成分(微粒子)は、例えば、沈殿法と称される方法、即ち金属塩溶液から還元剤を用いて直接金属粒子を析出させる方法によって得ることができる。例えば、銅微粒子は、ホルマリン、ヒドラジン、次亜リン酸ソーダ、水素化ホウ素塩などの還元剤を、銅イオンを含む水溶液に適当な条件の下で添加することにより得られる。これらの金属粒子成分は、必要により、有機脂肪酸やカップリング剤などの表面処理剤で表面処理し、金属粒子同士の凝集を防止し、分散性を改善してもよい。   The metal particle component, particularly a fine metal particle component (fine particles) can be obtained, for example, by a method called precipitation method, that is, a method of directly depositing metal particles from a metal salt solution using a reducing agent. For example, copper fine particles can be obtained by adding a reducing agent such as formalin, hydrazine, sodium hypophosphite, borohydride, etc. to an aqueous solution containing copper ions under appropriate conditions. If necessary, these metal particle components may be surface treated with a surface treatment agent such as an organic fatty acid or a coupling agent to prevent aggregation of the metal particles and improve dispersibility.

ペーストは、主剤としての金属粒子成分を含み、かつ塗布により塗膜を形成可能であればよく、通常、金属粒子成分と助剤とで構成される。助剤としてはバインダー成分、溶媒、ガラス成分などが例示できる。   The paste only needs to contain a metal particle component as a main ingredient and be capable of forming a coating film by coating, and is usually composed of a metal particle component and an auxiliary agent. Examples of the auxiliary agent include a binder component, a solvent, and a glass component.

バインダー成分としては、塗膜形成性を有し、焼成工程において分解する限り、特に制限されず、デンプンや糖類などの低分子化合物であってもよいが、樹脂を用いる場合が多い。また、バインダー成分は、水溶性又は水分散性成分であってもよく、有機溶媒に可溶な油溶性成分であってもよい。バインダー成分は、芳香環を有する芳香族成分であってもよいが、通常、非芳香族成分である場合が多い。バインダー樹脂としては、例えば、アクリル系樹脂(ポリブチルメタクリレート、ポリメチルメタクリレート、メタクリル酸メチル−(メタ)アクリル酸共重合体などの(メタ)アクリル系単量体の単独又は共重合体)、セルロース誘導体[セルロースエステル類(ニトロセルロース、酢酸セルロースなど)、セルロースエーテル類(メチルセルロース、エチルセルロース、ブチルセルロースなどのアルキルセルロース類、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロースなどのヒドロキシアルキルセルロース類、カルボキシメチルセルロースなど)など]、ポリエーテル類(ポリオキシメチレン系樹脂、ポリエチレングリコール、ポリプロピレングリコールなどのポリオキシアルキレングリコールなど)、ポリビニル類(ポリブタジエン、ポリイソプレンなどのポリジエン類、エチレン−酢酸ビニル共重合体、エチレン−(メタ)アクリル酸エステル共重合体、エチレン−(メタ)アクリル酸共重合体などのオレフィン系重合体など)、ポリアミド系樹脂(ポリアミド6、ポリアミド66、ポリアミド11などの脂肪族ポリアミド、脂環族ポリアミドなど)、ビニルアルコール系樹脂又はその誘導体(ポリビニルアルコール、ポリビニルアセタール、ポリビニルブチラールなど)、ポリビニルエーテル系樹脂(ポリアルキルビニルエーテル樹脂、アルキルビニルエーテル−無水マレイン酸共重合体など)などが例示できる。これらのバインダー成分は単独で又は二種以上組み合わせて使用できる。   The binder component is not particularly limited as long as it has a film-forming property and decomposes in the baking step, and may be a low molecular compound such as starch or saccharide, but a resin is often used. The binder component may be a water-soluble or water-dispersible component or an oil-soluble component that is soluble in an organic solvent. The binder component may be an aromatic component having an aromatic ring, but is usually a non-aromatic component in many cases. Examples of binder resins include acrylic resins (polybutyl methacrylate, polymethyl methacrylate, and (meth) acrylic monomers such as methyl methacrylate- (meth) acrylic acid copolymer) or cellulose. Derivatives [cellulose esters (nitrocellulose, cellulose acetate, etc.), cellulose ethers (alkylcelluloses such as methylcellulose, ethylcellulose, butylcellulose, hydroxyalkylcelluloses such as hydroxyethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, carboxymethylcellulose, etc. ), Etc.], polyethers (polyoxyalkylenes such as polyoxymethylene resins, polyethylene glycol and polypropylene glycol) Olefins such as recall), polyvinyls (polydienes such as polybutadiene and polyisoprene), ethylene-vinyl acetate copolymers, ethylene- (meth) acrylic acid ester copolymers, ethylene- (meth) acrylic acid copolymers, etc. Polymers), polyamide resins (polyamide 6, polyamide 66, aliphatic polyamides such as polyamide 11 and alicyclic polyamides), vinyl alcohol resins or derivatives thereof (polyvinyl alcohol, polyvinyl acetal, polyvinyl butyral, etc.), polyvinyl Examples include ether resins (polyalkyl vinyl ether resins, alkyl vinyl ether-maleic anhydride copolymers, etc.). These binder components can be used alone or in combination of two or more.

バインダー成分の使用量は、金属粒子成分100重量部に対して0.1〜70重量部、好ましくは1〜50重量部、さらに好ましくは2〜30重量部(例えば、5〜15重量部)程度である。   The amount of the binder component used is about 0.1 to 70 parts by weight, preferably 1 to 50 parts by weight, more preferably 2 to 30 parts by weight (for example, 5 to 15 parts by weight) with respect to 100 parts by weight of the metal particle component. It is.

溶媒の種類は特に限定されず、前記粒子の分散性や分散液の経時安定性を有し、バインダー成分を溶解可能であるとともに、セラミックス基板に対する濡れ性を有する限り、水性溶媒(水、水/アルコールなどの水と水溶性有機溶媒との混合溶媒)であってもよく油性溶媒(非水溶性有機溶媒)であってもよい。有機溶媒としては、アルコール類、炭化水素類、ケトン類、エステル類、エーテル類、アミド類などの種々の溶媒が例示できる。溶媒としては、通常、油性溶媒を用いる場合が多い。また、溶媒は、低沸点溶媒であってもよいが、通常、高沸点溶媒(特に、高沸点の有機溶剤)を用いる場合が多い。高沸点溶媒の沸点は、常圧において、125℃以上(例えば、130〜300℃)、好ましくは150℃以上(例えば、170〜250℃)程度であってもよい。高沸点溶媒の具体例としては、例えば、セロソルブ類(エチルセロソルブ、ブチルセロソルブなど)、セロソルブアセテート類(エチルセロソルブアセテート、ブチルセロソルブアセテートなど)、カルビトール類(エチルカルビトール、ブチルカルビトールなど)、カルビトールアセテート類(エチルカルビトールアセテート、ブチルカルビトールアセテートなど)、一価アルコール類[脂肪族アルコール類(ジアセトンアルコールなど)、テルペンアルコール類(テレピネオールなど)、芳香族アルコール類(メタクレゾールなどのクレゾール類、ベンジルアルコールなどのアラルキルアルコール類など)など]、多価アルコール類(ジエチレングリコール、トリエチレングリコール、テトラエチレングリコールなどのジオール類、グリセリンなどのポリオール類など)、炭化水素類[キシレン類(パラキシレンなど)、エチルベンゼンなどの芳香族炭化水素類など]、エステル類(乳酸メチル、乳酸エチル、乳酸ブチルなど)、ケトン類(イソホロン、アセトフェノンなどの同素環式ケトン類、ジメチルイミダゾリジノンなどの複素環式ケトン類など)、アミド類(ジメチルホルムアミド、ジメチルアセトアミドなど)、スルホキシド類(ジメチルスルホキシドなど)などが例示できる。これらの溶媒は単独で又は二種以上混合して使用できる。   The type of the solvent is not particularly limited, and an aqueous solvent (water, water / water / water) may be used as long as it has dispersibility of the particles and stability over time of the dispersion, can dissolve the binder component, and has wettability to the ceramic substrate. It may be a mixed solvent of water such as alcohol and a water-soluble organic solvent) or may be an oil-based solvent (non-water-soluble organic solvent). Examples of the organic solvent include various solvents such as alcohols, hydrocarbons, ketones, esters, ethers and amides. As the solvent, an oily solvent is usually used in many cases. The solvent may be a low boiling point solvent, but usually a high boiling point solvent (especially a high boiling point organic solvent) is often used. The boiling point of the high boiling point solvent may be about 125 ° C. or higher (for example, 130 to 300 ° C.), preferably about 150 ° C. or higher (for example, 170 to 250 ° C.) at normal pressure. Specific examples of the high boiling point solvent include cellosolves (such as ethyl cellosolve and butyl cellosolve), cellosolve acetates (such as ethyl cellosolve acetate and butyl cellosolve acetate), carbitols (such as ethyl carbitol and butyl carbitol), and carbitol. Acetates (such as ethyl carbitol acetate and butyl carbitol acetate), monohydric alcohols [aliphatic alcohols (such as diacetone alcohol), terpene alcohols (such as terpineol), aromatic alcohols (cresols such as metacresol) Aralkyl alcohols such as benzyl alcohol)], polyhydric alcohols (diols such as diethylene glycol, triethylene glycol, tetraethylene glycol, etc.) Polyols such as phosphorus), hydrocarbons [xylenes (such as paraxylene), aromatic hydrocarbons such as ethylbenzene], esters (such as methyl lactate, ethyl lactate, butyl lactate), ketones (isophorone, Examples include homocyclic ketones such as acetophenone, heterocyclic ketones such as dimethylimidazolidinone), amides (such as dimethylformamide and dimethylacetamide), and sulfoxides (such as dimethylsulfoxide). These solvents can be used alone or in admixture of two or more.

溶媒の使用量は、ペーストを塗布可能な粘度に調整できる限り特に制限されず、金属粒子成分、ガラス成分及びバインダー成分の総量100重量部に対して1〜500重量部、好ましくは5〜300重量部、さらに好ましくは10〜250重量部程度であり、10〜100重量部(例えば、15〜25重量部)程度であってもよい。   The amount of the solvent used is not particularly limited as long as the viscosity can be adjusted so that the paste can be applied, and is 1 to 500 parts by weight, preferably 5 to 300 parts by weight with respect to 100 parts by weight of the total amount of the metal particle component, the glass component and the binder component. Parts, more preferably about 10 to 250 parts by weight, and may be about 10 to 100 parts by weight (for example, 15 to 25 parts by weight).

ガラス成分は、焼成により形成された膜の平滑化、セラミックス基板Bと導体回路(メタライズ層3)との間の密着力の向上に寄与し、しかも高い接着信頼性を維持するうえで重要になる。ガラス成分の軟化点は、金属粒子成分の焼成温度よりも低く、かつバインダー成分の熱分解温度よりも高いのが望ましい。そのため、ガラス成分の軟化点は、金属粒子成分の種類、バインダー成分の種類などに応じて200〜1000℃程度の範囲から選択でき、通常、250〜900℃、好ましくは300〜800℃、さらに好ましくは350〜700℃程度である。粒子として銅微粒子及び銅酸化物微粒子から選択された少なくとも一種の粒子を選択した場合、ガラス成分は、概ね、300〜600℃(例えば、400〜500℃)程度の軟化点を有するのが好ましい。   The glass component contributes to smoothing the film formed by firing, improving the adhesion between the ceramic substrate B and the conductor circuit (metallized layer 3), and is important for maintaining high adhesion reliability. . The softening point of the glass component is desirably lower than the firing temperature of the metal particle component and higher than the thermal decomposition temperature of the binder component. Therefore, the softening point of the glass component can be selected from the range of about 200 to 1000 ° C. depending on the type of the metal particle component, the type of the binder component, etc., and is usually 250 to 900 ° C., preferably 300 to 800 ° C., more preferably. Is about 350-700 degreeC. When at least one kind of particle selected from copper fine particles and copper oxide fine particles is selected as the particles, the glass component preferably has a softening point of about 300 to 600 ° C. (for example, 400 to 500 ° C.).

ガラス成分は、粉末状の形態で使用する場合が多く、粉末状ガラス成分の平均一次粒子径は、通常、0.1〜10μm(例えば、1〜10μm)程度の範囲である。なお、ペーストの塗布手段としてスクリーン印刷を用いる場合は、200メッシュ以上のメッシュパス粒度(0.074mm以下の粒度)を有するものが好ましい。   The glass component is often used in a powdery form, and the average primary particle size of the powdery glass component is usually in the range of about 0.1 to 10 μm (for example, 1 to 10 μm). In addition, when screen printing is used as the paste applying means, those having a mesh pass particle size of 200 mesh or more (particle size of 0.074 mm or less) are preferable.

ガラス成分の組成は、鉛を含まないものが有害物質を用いないという観点から好ましいうえ、後工程で無電解めっきを施す場合、めっき液を侵す危険性が無いといった利点がある。ガラス成分は、少なくとも網目形成酸化物(SiO、B、GeO、Vなどの単結合強度の強い酸化物)を含んでおり、単結合強度が小さく単独ではガラス形成能のない網目修飾酸化物(CaO、MgO、SrO、BaO、La、SnO、LiOなど)、単結合強度が中間的な中間酸化物(ZnO、Bi、TiO、ZrO、Alなど)から選択された少なくとも一種の酸化物を含んでいてもよい。ガラス成分は、SiO及び/又はBを含んでいる場合が多い。代表的なガラス成分の組成を具体的に挙げると、SiO−B−ZnO系、SiO−B−Bi系、SiO−B−TiO系、SiO−B−ZrO系、SiO−B−CaO系、SiO−B−MgO系、SiO−B−Al系、B−ZnO−Bi系、B−Bi系などが例示できる。これらのガラス成分は単独で又は二種以上組み合わせて使用できる。 The composition of the glass component is preferable from the viewpoint that no lead is used, and there is an advantage that there is no risk of attacking the plating solution when electroless plating is performed in a subsequent process. The glass component contains at least network-forming oxides (oxides with strong single bond strength such as SiO 2 , B 2 O 3 , GeO 2 , V 2 O 5 ), and the single bond strength is small and glass forming ability alone. Network modified oxides (CaO, MgO, SrO, BaO, La 2 O 3 , SnO 2 , Li 2 O, etc.) without an intermediate oxide (ZnO, Bi 2 O 3 , TiO 2 , ZrO 2 , Al 2 O 3, etc.) may be included. The glass component often contains SiO 2 and / or B 2 O 3 . Specific examples of the composition of typical glass components include SiO 2 —B 2 O 3 —ZnO, SiO 2 —B 2 O 3 —Bi 2 O 3 , and SiO 2 —B 2 O 3 —TiO 2. , SiO 2 —B 2 O 3 —ZrO system, SiO 2 —B 2 O 3 —CaO system, SiO 2 —B 2 O 3 —MgO system, SiO 2 —B 2 O 3 —Al 2 O 3 system, B 2 Examples thereof include an O 3 —ZnO—Bi 2 O 3 system and a B 2 O 3 —Bi 2 O 3 system. These glass components can be used alone or in combination of two or more.

第1及び第2のペーストにおいて、ガラス成分の含有量は、金属粒子成分100重量部に対して、0〜10重量部程度の範囲から選択でき、通常、1〜8重量部、好ましくは2〜6重量部程度である。ガラス成分の添加量が10重量部を超えると、焼成後のメタライズ層3内に残存するガラス成分が多くなるため、導体回路の電気抵抗値が上昇する傾向がある。   In 1st and 2nd paste, content of a glass component can be selected from the range of about 0-10 weight part with respect to 100 weight part of metal particle components, Usually, 1-8 weight part, Preferably it is 2-2 weight part. About 6 parts by weight. When the added amount of the glass component exceeds 10 parts by weight, the amount of the glass component remaining in the metallized layer 3 after firing increases, and the electrical resistance value of the conductor circuit tends to increase.

第1のペーストにおいて、ガラス成分の含有量は、セラミックス基板に対する焼成層の密着性を向上させるため、金属粒子成分100重量部に対して、0.25〜10重量部(例えば、1〜10重量部)、好ましくは3〜9重量部(例えば、4〜8重量部)程度であり、通常、3〜7重量部程度である。ガラス成分の含有量が少なすぎるとセラミックス基板との密着性を向上させることが困難である。   In the first paste, the glass component content is 0.25 to 10 parts by weight (for example, 1 to 10 parts by weight) with respect to 100 parts by weight of the metal particle component in order to improve the adhesion of the fired layer to the ceramic substrate. Part), preferably about 3 to 9 parts by weight (for example, 4 to 8 parts by weight), and usually about 3 to 7 parts by weight. When there is too little content of a glass component, it will be difficult to improve adhesiveness with a ceramic substrate.

ペーストは、さらに必要であれば、粘度調整剤、分散剤、分散安定剤、レベリング剤などの添加剤を含んでいてもよい。   The paste may further contain additives such as a viscosity modifier, a dispersant, a dispersion stabilizer, and a leveling agent, if necessary.

上記各成分を混合(又は混合分散)してペーストを調製し、セラミックス基板の少なくとも一方の表面(片面又は両面)に、全面又はパターン形状(所定領域又はライン状など)に塗布し、次いで、所定の温度で乾燥することによって塗布層2を形成できる。ペーストの塗布方法は、特に制限されず、スクリーン印刷法、フレキソ印刷法、グラビア印刷法、スタンピング法、キャスト法、ディップ法、スピンコート法、電気泳動法、スプレー法、インクジェット法などの種々の方法が採用できる。   A paste is prepared by mixing (or mixing and dispersing) each of the above components, and is applied to at least one surface (one side or both sides) of the ceramic substrate over the entire surface or a pattern shape (predetermined region or line shape, etc.). The coating layer 2 can be formed by drying at a temperature of. The paste application method is not particularly limited, and various methods such as a screen printing method, a flexographic printing method, a gravure printing method, a stamping method, a casting method, a dipping method, a spin coating method, an electrophoresis method, a spray method, and an ink jet method are used. Can be adopted.

ペーストの塗布方法として、スクリーン印刷法を選択すると、簡便に微細なパターンを形成することができ、作業性や経済性の面からも好ましい。すなわち、適切なメッシュスクリーンやメタルマスクを用い、一度の印刷で形成できる膜の厚みを調整したり、配線パターンを高密度化することができるため、経済性や作業性を考慮してパターンを設定可能であり、本発明においても非常に有用である。また、金属箔をエッチングして回路を形成する方法に比べて、微細な回路を形成することができる。   When the screen printing method is selected as the paste application method, a fine pattern can be easily formed, which is preferable from the viewpoint of workability and economy. In other words, by using an appropriate mesh screen or metal mask, the thickness of the film that can be formed by one printing can be adjusted, and the wiring pattern can be densified, so the pattern is set in consideration of economy and workability. It is possible and is very useful in the present invention. In addition, a fine circuit can be formed as compared with a method of forming a circuit by etching a metal foil.

塗膜の乾燥条件は、特に制限されず、例えば、乾燥温度100〜180℃(例えば、130〜170℃)、乾燥時間10〜30分程度であってもよい。   The drying conditions of the coating film are not particularly limited, and may be, for example, a drying temperature of 100 to 180 ° C. (for example, 130 to 170 ° C.) and a drying time of about 10 to 30 minutes.

[第1の焼成工程]
前記塗布層2(乾燥膜)を形成した後、(B)塗布層2(乾燥膜)を焼成してメタライズ層3(焼成層)を形成する。この焼成工程により、セラミックス基板B表面に金属粒子成分の焼結体からなるメタライズ層3(焼成層又は接着性導体層)を形成できる。
[First firing step]
After forming the coating layer 2 (dry film), (B) the coating layer 2 (dry film) is fired to form the metallized layer 3 (fired layer). By this firing step, the metallized layer 3 (fired layer or adhesive conductor layer) made of a sintered body of metal particle components can be formed on the surface of the ceramic substrate B.

焼成雰囲気は、焼成温度などに応じて選択でき、空気雰囲気、酸化ガス雰囲気、不活性ガス雰囲気(窒素、ヘリウムガス、アルゴンなど)、還元ガス雰囲気、又はこれらの雰囲気を組み合わせた雰囲気から所望に応じて選択できる。焼成は、金属粒子成分の融点未満の温度で行われる。また、塗布層2がガラス成分を含む場合にはガラス成分の軟化点より高い温度で焼成される。焼成温度は、金属粒子成分の種類などに応じて、例えば、500〜1500℃程度の範囲から選択でき、通常、600〜1300℃、好ましくは700〜1200℃程度である。このような焼成により、金属粒子成分がセラミックス基板Bに強固に接着する。特に、前記のように、適切な加熱処理を行うことにより、セラミックス基材との界面に複合酸化物を形成でき、その化学的結合力によって長期的な接合信頼性に優れたメタライズ層3を形成することができる。   The firing atmosphere can be selected according to the firing temperature, etc., and can be selected from an air atmosphere, an oxidizing gas atmosphere, an inert gas atmosphere (nitrogen, helium gas, argon, etc.), a reducing gas atmosphere, or a combination of these atmospheres as desired. Can be selected. Firing is performed at a temperature below the melting point of the metal particle component. Moreover, when the coating layer 2 contains a glass component, it is baked at a temperature higher than the softening point of the glass component. The firing temperature can be selected from the range of about 500 to 1500 ° C., for example, depending on the type of the metal particle component, and is usually about 600 to 1300 ° C., preferably about 700 to 1200 ° C. By such firing, the metal particle component is firmly bonded to the ceramic substrate B. In particular, as described above, by performing an appropriate heat treatment, a composite oxide can be formed at the interface with the ceramic substrate, and the metallized layer 3 having excellent long-term bonding reliability is formed by its chemical bonding force. can do.

具体的には、金属粒子成分として銅及び酸化銅から選択された少なくとも一種の粒子を用いる場合、窒素雰囲気下、加熱温度600以上1083℃未満(例えば、750〜1050℃、好ましくは800〜1000℃)、昇温降温時間も含めて加熱時間1〜2時間程度の条件で焼成することができる。   Specifically, when at least one kind of particles selected from copper and copper oxide is used as the metal particle component, the heating temperature is 600 or more and less than 1083 ° C. (for example, 750 to 1050 ° C., preferably 800 to 1000 ° C.) in a nitrogen atmosphere. ), And can be baked under conditions of heating time of about 1 to 2 hours including temperature rising / falling time.

なお、焼成後のメタライズ層3の厚みは、1〜250μm程度の範囲から選択でき、通常、5〜200μm、好ましくは10〜150μm、さらに好ましくは15〜100μm(例えば、15〜50μm)程度であってもよい。このような厚みのメタライズ層3を形成すると、微細なパターンが形成可能であり、基板面積を有効に活用できる。   The thickness of the metallized layer 3 after firing can be selected from a range of about 1 to 250 μm, and is usually about 5 to 200 μm, preferably 10 to 150 μm, and more preferably about 15 to 100 μm (for example, 15 to 50 μm). May be. When the metallized layer 3 having such a thickness is formed, a fine pattern can be formed and the substrate area can be effectively utilized.

[第2の塗布工程]
メタライズ層(焼成層)3を形成した後、(C)メタライズ層3の表面の少なくとも一部に重ねて、金属粒子成分を含む第2のペーストを、前記と同様にして塗布、乾燥させることにより第2の塗布層(乾燥膜)4を形成する。この第2の塗布層4は、導体回路の役割、並びに半導体などから発生する熱を放熱する役割を果たすメタライズ層5を形成する。そのため、メタライズ層5は「放熱性導体層」ということができる。
[Second application step]
After the metallized layer (fired layer) 3 is formed, (C) a second paste containing a metal particle component is applied and dried in the same manner as described above so as to overlap at least part of the surface of the metallized layer 3. A second coating layer (dry film) 4 is formed. The second coating layer 4 forms a metallized layer 5 that serves as a conductor circuit and radiates heat generated from a semiconductor or the like. Therefore, the metallized layer 5 can be referred to as a “heat dissipating conductor layer”.

第2のペーストの金属粒子成分としては、前記と同様の導電性及び熱伝導性の高い粒子が使用できる。また、ペーストの成分は、前記と同様に、バインダー成分、溶媒、ガラス成分などの助剤や添加剤を含んでいてもよい。なお、第2のペーストにおいて、ガラス成分の含有量が多いと、半田濡れ性を阻害したり、放熱性が損なわれることがある。そのため、第2のペーストは、第1のペーストに比べて、金属粒子成分に対する割合が少ない場合が多い。例えば、第2のペーストは、ガラス成分を含まないか、又は金属粒子成分100重量部に対してガラス成分を5重量以下(例えば、0〜5重量部、好ましくは0.5〜4.5重量部、さらに好ましくは1〜3.5重量部程度)の割合で用いるのが好ましい。ガラス成分の含有量を低減することにより、メタライズ層5の表面の半田濡れ性を向上させ、半導体の半田実装が可能となると共に、金属粒子成分の含有量が多くなるため高い放熱特性を実現できる。   As the metal particle component of the second paste, particles having high conductivity and heat conductivity similar to those described above can be used. Moreover, the component of the paste may contain auxiliary agents and additives such as a binder component, a solvent, and a glass component as described above. In addition, when there is much content of a glass component in a 2nd paste, solder wettability may be inhibited or heat dissipation may be impaired. Therefore, the second paste often has a smaller ratio to the metal particle component than the first paste. For example, the second paste does not contain a glass component, or 5 parts by weight or less (for example, 0 to 5 parts by weight, preferably 0.5 to 4.5 parts by weight) of the glass component with respect to 100 parts by weight of the metal particle component. Parts, more preferably about 1 to 3.5 parts by weight). By reducing the content of the glass component, the solder wettability of the surface of the metallized layer 5 can be improved, the semiconductor can be mounted by soldering, and a high heat dissipation characteristic can be realized because the content of the metal particle component is increased. .

[第2の焼成工程]
第2の塗布層を形成した後、(D)塗布層(乾燥膜)4を焼成してメタライズ層(焼成膜又は放熱性導体層)5を形成する。この焼成により、メタライズ層3の表面の少なくとも一部に金属粒子成分の焼結体からなるメタライズ層(又は放熱性導体層)5が一体化した放熱性導体回路1を形成することができる。例えば、焼成により、メタライズ層3とメタライズ層5との間に明確な界面がなくなり、メタライズ層3とメタライズ層5とが一体化した放熱性導体回路1を形成できる。そして、メタライズ層3とメタライズ層5とが半田層を介在することなく一体化しているため、放熱性及び導電性が高く、しかも接合信頼性に優れたセラミックス回路基板を提供できる。なお、焼成は、前記第1の焼成工程と同様にして行うことができる。具体的には、金属粒子成分として銅及び酸化銅から選択された少なくとも一種の粒子を用いる場合、窒素雰囲気下、加熱温度600以上1083℃未満(例えば、750〜1050℃、好ましくは800〜1000℃)、昇温降温時間も含めて加熱時間1〜2時間程度の条件で焼成することができる。
[Second firing step]
After forming the second coating layer, (D) the coating layer (dry film) 4 is fired to form a metallized layer (fired film or heat-dissipating conductor layer) 5. By this firing, the heat dissipating conductor circuit 1 in which the metallizing layer (or heat dissipating conductor layer) 5 made of a sintered body of the metal particle component is integrated with at least a part of the surface of the metallizing layer 3 can be formed. For example, by firing, there is no clear interface between the metallized layer 3 and the metallized layer 5, and the heat dissipating conductor circuit 1 in which the metallized layer 3 and the metallized layer 5 are integrated can be formed. Since the metallized layer 3 and the metallized layer 5 are integrated without interposing a solder layer, it is possible to provide a ceramic circuit board having high heat dissipation and electrical conductivity and excellent bonding reliability. Note that the firing can be performed in the same manner as in the first firing step. Specifically, when at least one kind of particles selected from copper and copper oxide is used as the metal particle component, the heating temperature is 600 or more and less than 1083 ° C. (for example, 750 to 1050 ° C., preferably 800 to 1000 ° C.) in a nitrogen atmosphere. ), And can be baked under conditions of heating time of about 1 to 2 hours including temperature rising / falling time.

焼成後のメタライズ層(放熱性導体層)5の厚みは、100〜1000μm、好ましくは120〜800μm(例えば、150〜750μm)、さらに好ましくは200〜500μm程度であってもよい。このような厚みのメタライズ層5を形成すると、放熱性及び導電性が高く、大電流用途に使用できる。   The thickness of the metallized layer (heat dissipating conductor layer) 5 after firing may be about 100 to 1000 μm, preferably 120 to 800 μm (for example, 150 to 750 μm), more preferably about 200 to 500 μm. When the metallized layer 5 having such a thickness is formed, heat dissipation and conductivity are high, and it can be used for large current applications.

なお、メタライズ層3及びメタライズ層5とで構成された放熱性導体回路1全体の厚みは、放熱性を損なわない厚膜であればよく、例えば、100〜2000μm(例えば、105〜1200μm)程度の範囲から選択でき、通常、120〜1500μm、好ましくは150〜1000μm(例えば、175〜800μm)、さらに好ましくは200〜750μm(例えば、250〜500μm)程度である。このような放熱性導体回路は放熱性及び導電性が高く、大電流を供給可能である。さらに、放熱性導体回路の表面は半田との親和性が高く、半田実装が可能であり、しかもメッキ層を形成することができるため、半導体チップを効率よく実装できる。   The total thickness of the heat dissipating conductor circuit 1 composed of the metallized layer 3 and the metallized layer 5 may be a thick film that does not impair the heat dissipating property, and is, for example, about 100 to 2000 μm (for example, 105 to 1200 μm). It can be selected from the range, and is usually 120 to 1500 μm, preferably 150 to 1000 μm (for example, 175 to 800 μm), more preferably about 200 to 750 μm (for example, 250 to 500 μm). Such a heat dissipating conductor circuit has high heat dissipation and conductivity, and can supply a large current. Furthermore, since the surface of the heat dissipating conductor circuit has high affinity with solder, solder mounting is possible, and a plating layer can be formed, so that semiconductor chips can be mounted efficiently.

前記図1に示す例では、塗布工程と焼成工程とを繰り返して放熱性導体回路1を形成しているが、(B)第1の焼成工程は必ずしも(A)第1の塗布工程と(C)第2の塗布工程との間で行う必要はなく、例えば、(C)第2の塗布工程の後で焼成することにより、(B)第1の焼成工程と(D)第2の焼成工程とを同時に行うこともできる。例えば、図2に示されるように、(A)セラミックス基板Bの表面に第1のペーストを塗布して第1の塗布層2を形成する第1の塗布工程、(C)第1の塗布工程で形成された塗布層2に対して少なくとも部分的に重ねて第2のペーストを塗布して第2の塗布層を形成する第2の塗布工程を経た後、(B)(D)第1の塗布層2と第2の塗布層4とで構成された積層塗布層を焼成する焼成工程とを経ることにより放熱性導体回路1を形成してもよい。この方法では、単一の焼成工程で導体層(接着性導体層及び放熱性導体層)を形成できるので、放熱性導体回路を簡便に形成できる。   In the example shown in FIG. 1, the heat-dissipating conductor circuit 1 is formed by repeating the coating process and the baking process, but (B) the first baking process is not necessarily (A) the first coating process and (C ) There is no need to carry out between the second coating step, for example, (B) the first baking step and (D) the second baking step by baking after (C) the second coating step. Can be performed simultaneously. For example, as shown in FIG. 2, (A) a first application process in which a first paste is applied to the surface of a ceramic substrate B to form a first application layer 2; (C) a first application process. (B) (D) first after passing through the 2nd application process which forms the 2nd application layer by applying the 2nd paste at least partially overlapping with application layer 2 formed by (1) The heat-dissipating conductor circuit 1 may be formed by going through a firing step of firing a laminated coating layer composed of the coating layer 2 and the second coating layer 4. In this method, since a conductor layer (an adhesive conductor layer and a heat dissipating conductor layer) can be formed by a single firing step, a heat dissipating conductor circuit can be easily formed.

このような製造方法により、選択的に厚みが高い部位(厚膜部)を有し、金属粒子成分の焼結体からなる放熱性導体回路1を形成したセラミックス回路基板を得ることができる。具体的には、セラミックス基板B表面には、メタライズ層3とメタライズ層5との間に明確な界面が存在せず両者が一体化した放熱性導体回路1が形成されており、またセラミックス基板Bと導体回路(メタライズ層)3との界面には複合酸化物(金属間複合酸化物)が存在して化学的結合力により密接に接合している。そのため、半田を介在させることなく、選択的に厚膜の放熱性導体回路1を形成可能であり、放熱性及び導電性を向上できるとともに、接合信頼性及び耐久性が高く、微細なパターンを有する放熱性導体回路1を形成できる。さらに、第1の塗布層2と第2の塗布層4を形成するペーストの組成を調整することにより、放熱性導体回路1に種々の機能を付与できる。例えば、第1の塗布層2によりセラミックス基板Bに対する接着性の高いメタライズ層(接着性導体層)3を形成し、第2の塗布層4によりメタライズ層3に対して密着性が高く、しかも放熱性の高いメタライズ層(放熱性導体層)5を形成すると、セラミックス基板Bに対した高い密着性を有するとともに放熱性に優れた放熱性導体回路1を形成できる。特に、メタライズ層5の厚みを大きくすると、放熱性を向上できる。さらには、基板Bの所望部のみ厚膜とした放熱性導体回路1を形成できるため、不必要な厚みの部位を削減でき、材料コストを低減できる。   By such a manufacturing method, a ceramic circuit board having a selectively thick portion (thick film portion) and having a heat radiating conductor circuit 1 made of a sintered body of metal particle components can be obtained. Specifically, on the surface of the ceramic substrate B, there is no clear interface between the metallized layer 3 and the metallized layer 5, and the heat dissipating conductor circuit 1 in which both are integrated is formed. A complex oxide (intermetallic complex oxide) exists at the interface between the conductor circuit (metallized layer) 3 and the conductor circuit (metallized layer) 3 and is intimately bonded by a chemical bonding force. Therefore, it is possible to selectively form a thick-film heat-dissipating conductor circuit 1 without interposing solder, and the heat-dissipation and conductivity can be improved, and the bonding reliability and durability are high and have a fine pattern. The heat dissipating conductor circuit 1 can be formed. Furthermore, by adjusting the composition of the paste that forms the first coating layer 2 and the second coating layer 4, various functions can be imparted to the heat dissipating conductor circuit 1. For example, the metallized layer (adhesive conductor layer) 3 having high adhesion to the ceramic substrate B is formed by the first coating layer 2, the adhesiveness to the metallized layer 3 is high by the second coating layer 4, and heat dissipation. When the highly metallized layer (heat dissipating conductor layer) 5 is formed, the heat dissipating conductor circuit 1 having high adhesion to the ceramic substrate B and excellent in heat dissipation can be formed. In particular, when the thickness of the metallized layer 5 is increased, heat dissipation can be improved. Furthermore, since the heat dissipating conductor circuit 1 having a thick film only at a desired portion of the substrate B can be formed, unnecessary thickness portions can be reduced, and the material cost can be reduced.

本発明の方法では、セラミックス基板の表面にペーストを塗布し、乾燥させた後、焼成して厚膜の放熱性導体回路を選択的に形成すればよい。この方法において、厚膜の放熱性導体回路は、セラミックス基板の表面にペーストを一回塗布し、形成された厚膜の塗布層を一回焼成して焼成層(放熱性導体回路)を形成してもよく、前記図1に示すように、塗布工程と焼成工程で構成されたサイクルを繰り返すことにより放熱性導体回路を形成してもよい。さらに、前記図2に示すように、生産性及び経済性などの観点から、複数の塗布工程で塗布層を形成する場合、最終の塗布工程の後、塗布層を焼成し、放熱性導体回路を形成してもよい。例えば、塗布工程を繰り返して少なくとも部分的に重なり合う複数の層(複数の塗布層や、焼成層と塗布層とで構成された複数の層など)を形成し、少なくとも最終の塗布工程の後、塗布層を焼成することにより、厚膜の放熱性導体回路を形成してもよい。   In the method of the present invention, the paste may be applied to the surface of the ceramic substrate, dried, and then fired to selectively form a thick film heat-dissipating conductor circuit. In this method, a thick film heat dissipating conductor circuit is obtained by applying paste once to the surface of a ceramic substrate and firing the formed thick film coating layer once to form a fired layer (heat dissipating conductor circuit). Alternatively, as shown in FIG. 1, the heat dissipating conductor circuit may be formed by repeating a cycle composed of a coating process and a baking process. Furthermore, as shown in FIG. 2, from the viewpoint of productivity and economy, when forming a coating layer in a plurality of coating steps, after the final coating step, the coating layer is baked to provide a heat-dissipating conductor circuit. It may be formed. For example, the coating process is repeated to form a plurality of layers that overlap at least partially (such as a plurality of coating layers or a plurality of layers composed of a fired layer and a coating layer), and are applied after at least the final coating process. A thick film heat dissipating conductor circuit may be formed by firing the layer.

さらに、各メタライズ層を形成するための塗布層は、単一の塗布工程ではなく複数の塗布工程で形成してもよい。例えば、厚みの大きなメタライズ層3を形成する場合、ペーストを塗布し乾燥する工程を複数回繰り返して必要な厚みの塗布層2を形成した後、焼成してもよい。また、塗布層の積層中(例えば、複数の塗布層を形成する間)に焼成を1又は複数回行うことにより、セラミックス基板との接合性を確保しつつ厚みの高いメタライズ層を形成することもできる。例えば、ペーストを塗布し乾燥して焼成する工程を複数回繰り返すことにより、所望の厚みのメタライズ層を形成することができる。なお、第1のペーストを用いて複数の塗布層を形成する場合、金属粒子成分に対するガラス成分の割合を表層側の塗布層に行くにつれて段階的に又は連続的に減少させてもよい。   Furthermore, the coating layer for forming each metallized layer may be formed by a plurality of coating steps instead of a single coating step. For example, when forming the metallized layer 3 having a large thickness, the step of applying and drying the paste may be repeated a plurality of times to form the coating layer 2 having a required thickness, and then fired. In addition, by performing firing one or more times during the lamination of the coating layers (for example, during the formation of a plurality of coating layers), it is possible to form a metallized layer having a high thickness while ensuring bonding with the ceramic substrate. it can. For example, a metallized layer having a desired thickness can be formed by repeating a process of applying a paste, drying, and baking a plurality of times. In addition, when forming a some application layer using a 1st paste, you may reduce in steps or continuously as the ratio of the glass component with respect to a metal particle component goes to the application layer of the surface layer side.

また、厚みの大きなメタライズ層5を形成する場合、ペーストを塗布し乾燥する工程を複数回繰り返して所望の厚みの塗布層4を形成した後、焼成することができる。また、前記メタライズ層3と同様に、塗布層の積層中(例えば、塗布層を形成する間)に焼成を1又は複数回行うことにより、セラミックス基板又はメタライズ層3との接合性を確保しつつ厚みの大きなメタライズ層を形成することができる。例えば、ペーストを塗布し乾燥して焼成する工程を複数回繰り返すことにより、厚みの大きなメタライズ層を形成することができる。なお、第2のペーストを用いて複数の塗布層を形成する場合、金属粒子成分に対するガラス成分の割合を表層側の塗布層に行くにつれて段階的に又は連続的に減少させてもよい。   Moreover, when forming the metallized layer 5 with a large thickness, the process of applying and drying the paste is repeated a plurality of times to form the coating layer 4 with a desired thickness, and then fired. Similarly to the metallized layer 3, firing is performed one or more times during the lamination of the coating layer (for example, while the coating layer is formed), thereby ensuring the bonding property with the ceramic substrate or the metallized layer 3. A metallized layer having a large thickness can be formed. For example, a metallized layer having a large thickness can be formed by repeating a process of applying a paste, drying, and baking a plurality of times. In addition, when forming a some coating layer using a 2nd paste, you may reduce in steps or continuously as the ratio of the glass component with respect to a metal particle component goes to the surface layer side coating layer.

さらに、複数の塗布層を形成する方法において、ペーストの組成を調整することにより、例えば、少なくとも最初の塗布工程でセラミックス基板との接合性に優れた導体層(接着性導体層)を形成可能な塗布層を形成したり、少なくとも最終の塗布工程で、放熱性に優れた導体層(放熱性導体層)を形成可能な塗布層を形成することができる。例えば、最終の塗布工程で、最初の塗布工程でのペーストよりも、粒子成分に対するガラス成分の割合が少ないペースト(ガラス成分を含まないか又は粒子成分100重量部に対してガラス成分の割合が5重量部以下のペースト)を塗布することにより、放熱性に優れた回路基板を形成できる。   Furthermore, in the method of forming a plurality of coating layers, by adjusting the composition of the paste, for example, it is possible to form a conductor layer (adhesive conductor layer) excellent in bondability with a ceramic substrate at least in the first coating step. It is possible to form a coating layer or to form a coating layer capable of forming a conductor layer having excellent heat dissipation (heat dissipating conductor layer) at least in the final coating step. For example, in the final coating step, a paste having a smaller ratio of glass component to particle component than the paste in the first coating step (containing no glass component or having a glass component ratio of 5 to 100 parts by weight of the particle component). By applying a weight part or less paste), a circuit board having excellent heat dissipation can be formed.

放熱性導体回路の構造は、セラミックス基板に対する接着性や耐久性、放熱性などに応じて種々の設計が可能であり、例えば、図3(a)(b)(c)に示すような種々の構造又はパターンが例示できる。また、これらの導体回路の構造及びパターンを組み合わせて、同じセラミックス基板上に混在させて形成することも可能である。   The structure of the heat dissipating conductor circuit can be variously designed according to the adhesiveness to the ceramic substrate, the durability, the heat dissipating property, etc. For example, various structures as shown in FIGS. 3 (a), (b) and (c) are possible. A structure or a pattern can be illustrated. Moreover, it is also possible to combine the structures and patterns of these conductor circuits and mix them on the same ceramic substrate.

図3(a)に示す放熱性導体回路1の構造は、セラミックス基板Bの表面に所定の線幅で形成されたメタライズ層(線幅の広い第1の導体層)3と、このメタライズ層3の上に形成され、かつメタライズ層3よりも線幅が小さく厚みの大きなメタライズ層(線幅の小さな第2の導体層又は放熱性導体層)5とで構成されている。すなわち、セラミックス回路基板では、メタライズ層5とメタライズ層3との接合面積に対して、セラミックス基板Bとメタライズ層3との接合面積が大きく、しかも厚膜のメタライズ層5の積層により放熱性導体回路1を形成し、放熱性導体回路1において同一配線の一部を厚膜としている。   The structure of the heat dissipating conductor circuit 1 shown in FIG. 3A includes a metallized layer (first conductor layer having a wide line width) 3 formed on the surface of the ceramic substrate B with a predetermined line width, and the metallized layer 3. And a metallized layer (second conductor layer or heat dissipating conductor layer having a small line width) 5 having a smaller line width and a larger thickness than the metallized layer 3. That is, in the ceramic circuit board, the bonding area between the ceramic substrate B and the metallized layer 3 is larger than the bonding area between the metallized layer 5 and the metallized layer 3. 1 and part of the same wiring in the heat dissipating conductor circuit 1 is a thick film.

セラミックス回路基板では、導体回路1は厚みが大きい部位、具体的には厚さ100μm以上の部位では一般に熱応力の集中が起こり易い。しかし、上記構造のセラミックス回路基板では、メタライズ層5とメタライズ層3との接合面積に対して、セラミックス基板Bとメタライズ層3との接合面積を大きくしているため、熱応力の集中を回避できる利点がある。なお、このような構造の放熱性導体回路1を、従来の金属箔のエッチングによって形成することは困難である。   In a ceramic circuit board, concentration of thermal stress generally tends to occur at a portion where the conductor circuit 1 is thick, specifically, at a thickness of 100 μm or more. However, in the ceramic circuit board having the structure described above, since the bonding area between the ceramic substrate B and the metallized layer 3 is larger than the bonding area between the metallized layer 5 and the metallized layer 3, concentration of thermal stress can be avoided. There are advantages. It is difficult to form the heat dissipating conductor circuit 1 having such a structure by etching a conventional metal foil.

放熱性導体層の厚みや形成部位は放熱性を損なわない限り特に制限されないが、放熱性を向上させるためには、放熱性導体層の厚みを大きくするのが有利である。また、放熱性の高い放熱性導体層は、放熱性が必要とされる所定部位に形成するのが有利である。図3(b)に示す放熱性導体回路1の構造は、同一のセラミックス基板Bに、メタライズ層3のみの導体回路1aと、メタライズ層3の表面にメタライズ層5を積層した導体回路1bとで構成されており、メタライズ層3とメタライズ層5とを積層した導体回路1bにおいて、メタライズ層3の線幅とメタライズ層5の線幅とが等しく形成されている。すなわち、セラミックス回路基板において、厚みの異なる配線の導体回路1a,1bを並存させている。このようなセラミックス回路基板では、部位によって発熱量の異なる導体回路1を有する場合、必要に応じて、発熱量の大きい部位にのみメタライズ層5を形成できる。なお、導体回路1a及び導体回路1bのうち少なくとも一方は放熱性導体回路を形成すればよく、例えば、導体回路1aと導体回路1bとは互いに相対的に厚みの異なる厚膜の放熱性導体回路を形成してもよく、一方の導体回路1aは回路基板の用途などに応じて接続用導体回路などを形成してもよい。   The thickness and formation site of the heat dissipating conductor layer are not particularly limited as long as the heat dissipating property is not impaired, but in order to improve the heat dissipating property, it is advantageous to increase the thickness of the heat dissipating conductor layer. Moreover, it is advantageous to form the heat dissipating conductor layer having a high heat dissipating property at a predetermined portion where heat dissipating property is required. The structure of the heat dissipating conductor circuit 1 shown in FIG. 3B includes a conductor circuit 1a having only the metallized layer 3 on the same ceramic substrate B, and a conductor circuit 1b in which the metallized layer 5 is laminated on the surface of the metallized layer 3. In the conductor circuit 1 b configured by laminating the metallized layer 3 and the metallized layer 5, the line width of the metallized layer 3 is equal to the line width of the metallized layer 5. That is, in the ceramic circuit board, the conductor circuits 1a and 1b having different thicknesses are arranged side by side. In such a ceramic circuit board, in the case where the conductor circuit 1 having a different calorific value is provided depending on the part, the metallized layer 5 can be formed only in a part having a large calorific value, if necessary. Note that at least one of the conductor circuit 1a and the conductor circuit 1b may form a heat dissipating conductor circuit. For example, the conductor circuit 1a and the conductor circuit 1b are formed of heat dissipating conductor circuits having different thicknesses from each other. One conductor circuit 1a may form a connection conductor circuit or the like according to the use of the circuit board.

図3(c)に示す放熱性導体回路1の構造では、同一のセラミックス基板Bに、メタライズ層3のみの導体回路1aと、メタライズ層3とメタライズ層5とを積層した複数の放熱性導体回路1b,1cとが形成され、積層構造を有する複数の放熱性導体回路1b,1cでは、メタライズ層(放熱性導体層)5が異なる厚みに形成されている。すなわち、セラミックス回路基板では、それぞれ厚みの異なる配線の導体回路1a,1b,1cを並存させている。このようなセラミックス回路基板では、部位によって発熱量の異なる導体回路1を有する場合、必要に応じて、発熱量の大きい部位にのみメタライズ層5を形成できるとともに、発熱の大きさに応じて厚みの異なるメタライズ層5を形成できる。なお、導体回路1a,1b,1cのうち少なくとも1つの導体回路が放熱性導体回路を形成すればよく、例えば、導体回路1a,1b,1cはそれぞれ互いに相対的に厚みの異なる厚膜の放熱性導体回路を形成してもよく、導体回路1aは回路基板の用途などに応じて接続用導体回路などを形成してもよく、導体回路1b,1cは相対的に厚みの異なる厚膜の放熱性導体回路を形成してもよい。   In the structure of the heat dissipating conductor circuit 1 shown in FIG. 3 (c), a plurality of heat dissipating conductor circuits in which the conductor circuit 1a having only the metallized layer 3, the metallized layer 3, and the metallized layer 5 are laminated on the same ceramic substrate B. In the plurality of heat dissipating conductor circuits 1b and 1c having a laminated structure, the metallized layers (heat dissipating conductor layers) 5 are formed in different thicknesses. That is, in the ceramic circuit board, conductor circuits 1a, 1b, and 1c having different thicknesses are arranged side by side. In such a ceramic circuit board, when the conductor circuit 1 having a different calorific value is provided depending on the part, the metallized layer 5 can be formed only in a part where the calorific value is large as necessary, Different metallized layers 5 can be formed. It is sufficient that at least one of the conductor circuits 1a, 1b, and 1c forms a heat dissipating conductor circuit. For example, each of the conductor circuits 1a, 1b, and 1c has a thick film having a relatively different thickness. A conductor circuit may be formed, the conductor circuit 1a may form a connection conductor circuit or the like according to the use of the circuit board, and the conductor circuits 1b and 1c are heat radiation properties of thick films having relatively different thicknesses. A conductor circuit may be formed.

なお、単一又は積層構造の塗布層の厚みは、焼成に伴う膜厚の減少を考慮して所定の厚みに形成すればよい。   In addition, what is necessary is just to form the thickness of the coating layer of a single or laminated structure into predetermined thickness in consideration of the reduction | decrease in the film thickness accompanying baking.

本発明のセラミックス回路基板において、厚膜の放熱性導体回路は、セラミックス基板の表面に選択的に形成すればよい。すなわち、セラミックス回路基板は、メッキ層の形成部位、半導体チップの実装部位などに対応して、基板の表面に対して選択的に厚みが高い部位(放熱性導体回路部)を有する。また、放熱性導体回路は、導体回路の少なくとも表面層に形成され、かつ放熱性及び導電性の大きな放熱性導体層で構成すればよく、放熱性導体回路全体を放熱性導体層で形成してもよい。   In the ceramic circuit board of the present invention, the thick heat dissipation conductor circuit may be selectively formed on the surface of the ceramic substrate. That is, the ceramic circuit board has a portion (heat dissipating conductor circuit portion) that is selectively thick with respect to the surface of the substrate, corresponding to the formation portion of the plating layer, the mounting portion of the semiconductor chip, and the like. The heat dissipating conductor circuit may be formed of at least a surface layer of the conductor circuit and a heat dissipating conductor layer having a large heat dissipating property and conductivity, and the entire heat dissipating conductor circuit may be formed of the heat dissipating conductor layer. Also good.

なお、セラミックス基板と導体回路との界面には必ずしも複合酸化物(金属間複合酸化物など)を介在させる必要はないが、セラミックス基板と導体回路との密着性及び接着信頼性を向上させるためには、両者間に複合酸化物が介在するのが好ましい。   Note that it is not always necessary to interpose a complex oxide (such as intermetallic complex oxide) at the interface between the ceramic substrate and the conductor circuit, but in order to improve the adhesion and adhesion reliability between the ceramic substrate and the conductor circuit. It is preferable that a complex oxide intervenes between them.

放熱性導体回路の構造は特に制限されず、放熱性導体回路を構成する各層が区別又は識別可能であれば、単層構造、積層構造であってもよい。前記のように、放熱性導体回路を構成する各層を識別することは困難な場合が多い。前記各層が物理的又は化学的特性により識別可能である場合、前記放熱性導体回路全体の厚みにおいて、基板に対する接着性を向上させるための接着性導体層(前記メタライズ層3)と放熱性を向上させるための放熱性導体層(前記メタライズ層5)との厚み割合は、例えば、前者/後者=1/99〜50/50、好ましくは2/98〜30/70、さらに好ましくは5/95〜20/80程度であってもよい。   The structure of the heat dissipating conductor circuit is not particularly limited, and may be a single layer structure or a laminated structure as long as each layer constituting the heat dissipating conductor circuit can be distinguished or identified. As described above, it is often difficult to identify each layer constituting the heat dissipating conductor circuit. When each layer is identifiable by physical or chemical characteristics, heat dissipation is improved with an adhesive conductor layer (metallized layer 3) for improving adhesion to the substrate in the entire thickness of the heat dissipation conductor circuit. The thickness ratio with the heat dissipating conductor layer (the metallized layer 5) is, for example, the former / the latter = 1/99 to 50/50, preferably 2/98 to 30/70, more preferably 5/95 to It may be about 20/80.

放熱性導体回路の表面は平坦であってもよく、同じ厚みに形成してもよく、断面形状において連続的又は階段状の段差のある構造(例えば、ピラミッド状又は凸状などの形態で、底部に比べて頂部が幅狭の構造など)であってもよい。また、放熱性導体回路は、セラミックス基板の表面に積層された第1の導体層と、この第1の導体層上に形成され、かつ第1の導体層よりも面積が小さな第2の導体層とで構成してもよい。例えば、図1及び図2に示すように、放熱性導体回路は、セラミックス基板の表面に所定の幅で積層された第1の導体層(例えば、線幅の広い第1の導体層)と、この第1の導体層上に所定の線幅で形成された第2の導体層(又は放熱性導体層、例えば、線幅の狭い第2の導体層)とで構成してもよい。さらに、積層構造又は段差構造を有する放熱性導体回路において、各導体層は互いに少なくとも部分的に重ねて積層されている場合が多く、例えば、セラミックス基板に積層された第1の導体層と、この第1の導体層に少なくとも部分的に重ねて積層された少なくとも1つの第2の導体層とで放熱性導体回路を構成してもよい。さらには、第1の導体層に比べて面積が小さな第2の導体層は、前記のように、断面形状において線幅による面積比が小さくてもよく、平面形状において第1の導体層の所定部位(又は領域)に形成された所定のパターン(平面四角形状などの多角形状、円形状、ドット状など)の面積比が小さくてもよい。例えば、複数の導体層の積層構造において、底部の層に比べて上部の層が、段階的に又は連続的に線幅が小さくてもよく、ピラミッド状又は凸状の形態で段階的又は連続的に面積が小さく形成されていてもよい。   The surface of the heat-dissipating conductor circuit may be flat, may be formed with the same thickness, and has a continuous or stepped step structure in the cross-sectional shape (for example, in the form of a pyramid or a convex, the bottom Or a structure having a narrower top than the other. The heat dissipating conductor circuit includes a first conductor layer laminated on the surface of the ceramic substrate, and a second conductor layer formed on the first conductor layer and having a smaller area than the first conductor layer. You may comprise. For example, as shown in FIGS. 1 and 2, the heat dissipating conductor circuit includes a first conductor layer (for example, a first conductor layer having a wide line width) laminated on the surface of the ceramic substrate with a predetermined width; You may comprise with the 2nd conductor layer (or heat radiating conductor layer, for example, 2nd conductor layer with a narrow line | wire width) formed with the predetermined | prescribed line | wire width on this 1st conductor layer. Furthermore, in a heat dissipating conductor circuit having a laminated structure or a step structure, each conductor layer is often laminated at least partially on top of each other, for example, a first conductor layer laminated on a ceramic substrate, The heat dissipating conductor circuit may be constituted by at least one second conductor layer laminated at least partially on the first conductor layer. Further, as described above, the second conductor layer having a smaller area than the first conductor layer may have a smaller area ratio due to the line width in the cross-sectional shape, and the predetermined shape of the first conductor layer in the planar shape may be small. The area ratio of a predetermined pattern (polygonal shape such as a planar quadrilateral shape, circular shape, dot shape, etc.) formed in a part (or region) may be small. For example, in a laminated structure of a plurality of conductor layers, the line width of the upper layer may be smaller stepwise or continuously than the bottom layer, and stepwise or continuous in a pyramidal or convex form. The area may be small.

さらに、セラミックス基板の表面には、厚みの異なる放熱性導体回路を形成してもよく、放熱性導体層(又は放熱性導体回路)の厚みはセラミックス基板の部位によって異なっていてもよい。例えば、図3(c)に示されるように、放熱性及び導電性が高く、厚みの異なる複数の放熱性導体層を導体回路に形成してもよい。   Further, heat dissipating conductor circuits having different thicknesses may be formed on the surface of the ceramic substrate, and the thickness of the heat dissipating conductor layer (or heat dissipating conductor circuit) may vary depending on the portion of the ceramic substrate. For example, as shown in FIG. 3C, a plurality of heat dissipating conductor layers having high heat dissipation and conductivity and different thicknesses may be formed in the conductor circuit.

このような構造の放熱性導体回路において、セラミックス基板に対する密着性と放熱性とを高いレベルで両立させるため、第1の導体層よりも第2の導体層でのガラス成分の含有量は少ない(換言すれば、金属粒子成分の含有量が多い)場合が多い。   In the heat dissipating conductor circuit having such a structure, the content of the glass component in the second conductor layer is smaller than that in the first conductor layer in order to achieve both high adhesion and heat dissipation to the ceramic substrate ( In other words, the content of the metal particle component is often high).

本発明のセラミックス回路基板は、放熱性が高く、大電流を流すことができるため、半導体(半導体チップ)を実装して電気・電子機器の基板として利用するのに有用である。半導体の実装形態は特に制限されず、セラミックス回路基板の構造や回路パターンなどに応じて種々の形態で半導体(半導体チップ)を実装できる。図4は、本発明のセラミックス回路基板を大電流用途に適用した実装形態の一例を示す概略図である。   Since the ceramic circuit board of the present invention has high heat dissipation and can flow a large current, it is useful for mounting a semiconductor (semiconductor chip) and using it as a board for electrical / electronic devices. The semiconductor mounting form is not particularly limited, and the semiconductor (semiconductor chip) can be mounted in various forms according to the structure of the ceramic circuit board, the circuit pattern, and the like. FIG. 4 is a schematic view showing an example of a mounting form in which the ceramic circuit board of the present invention is applied to a large current application.

この例では、セラミックス回路基板として、同一のセラミックス基板Bの一方の面に、メタライズ層3で構成された単一層の導体回路1aと、メタライズ層3にメタライズ層5が積層された積層構造を有する複数の導体回路1b,1cとが形成されており、積層構造を有する複数の導体回路1b,1cは、メタライズ層5の厚みの小さな放熱性導体回路1bと、メタライズ層5の厚みが大きな複数の放熱性導体回路1cとで構成されている。すなわち、セラミックス基板Bの表面には、メタライズ層3とメタライズ層5とを所望に応じて積層した厚みの異なる導体回路1a,1b,1cが形成されている。このような回路基板では、発熱量・電流量に応じて厚みの異なる導体回路1a,1b,1cを形成でき、放熱性導体回路1cをメッキ処理してメッキ層13を形成したり、半田12を用いて半導体(半導体チップ)11を実装できる。なお、導体回路1aも放熱性導体回路を形成してもよく、回路基板の用途などに応じて導体回路1aは配線用などの導体回路を構成してもよい。   In this example, the ceramic circuit board has a laminated structure in which a single-layer conductor circuit 1a composed of the metallized layer 3 and the metallized layer 5 are laminated on the metallized layer 3 on one surface of the same ceramic substrate B. A plurality of conductor circuits 1b and 1c are formed, and the plurality of conductor circuits 1b and 1c having a laminated structure include a heat dissipating conductor circuit 1b having a small metallized layer 5 thickness and a plurality of metallized layer 5 having a large thickness. It is comprised with the heat-radiating conductor circuit 1c. That is, on the surface of the ceramic substrate B, conductor circuits 1a, 1b, and 1c having different thicknesses in which the metallized layer 3 and the metallized layer 5 are laminated as desired are formed. In such a circuit board, conductor circuits 1a, 1b, and 1c having different thicknesses can be formed according to the amount of heat generated and the amount of current, and the heat radiating conductor circuit 1c is plated to form the plating layer 13 or the solder 12 The semiconductor (semiconductor chip) 11 can be mounted by using it. The conductor circuit 1a may also form a heat dissipating conductor circuit, and the conductor circuit 1a may constitute a conductor circuit for wiring or the like depending on the use of the circuit board.

この例では、厚みの大きな放熱性導体回路1cのメタライズ層5の表面に半田12を介して半導体チップ11を実装し、この放熱性導体回路1cに隣接し、かつ厚みの大きな放熱性導体回路1cのメタライズ層5をメッキ処理(例えば、Niメッキ処理)してメッキ層13を形成し、半導体チップ11とメッキ層13とをボンディングワイヤー14により接続している。なお、メタライズ層5は半田12との濡れ性に優れているため、半導体チップ11の実装性に優れている。また、メッキ処理は必ずしも必要ではないが、メタライズ層5はメッキ性にも優れるため、導体回路1の表面にはメッキ層13を容易に形成できる。なお、メッキ層は無電解メッキ法で形成する場合が多い。   In this example, the semiconductor chip 11 is mounted on the surface of the metallized layer 5 of the heat dissipation conductor circuit 1c having a large thickness via the solder 12, and the heat dissipation conductor circuit 1c having a large thickness adjacent to the heat dissipation conductor circuit 1c. The metallized layer 5 is plated (for example, Ni plated) to form a plated layer 13, and the semiconductor chip 11 and the plated layer 13 are connected by a bonding wire 14. Since the metallized layer 5 is excellent in wettability with the solder 12, the semiconductor chip 11 is excellent in mountability. In addition, although a plating process is not necessarily required, the metallized layer 5 is also excellent in plating properties, so that the plated layer 13 can be easily formed on the surface of the conductor circuit 1. The plating layer is often formed by an electroless plating method.

本発明のセラミックス回路基板は、半導体(半導体チップ)を実装して電気・電子機器の基板として利用するのに有用である。   The ceramic circuit board of the present invention is useful for mounting a semiconductor (semiconductor chip) and using it as a board of an electric / electronic device.

以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。   Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.

実施例1
メタライズ層3の形成用銅ペーストとして、平均一次粒子径0.1μmの銅微粒子を含む銅粉(粒度分布幅0.01〜5μm)100重量部に対して、アクリル系バインダー樹脂8重量部、テルピネオール16重量部、ガラス粉末6重量部を含む銅ペーストを調製した。また、メタライズ層5の形成用銅ペーストとして、平均一次粒子径5μmの銅粉100重量部に対して、アクリル系バインダー樹脂6重量部、テレピネオール12重量部、ガラス粉末3重量部を含む銅ペーストを調製した。セラミックス基板として、窒化アルミニウム基板(厚みt=0.635mm,170W/m・K)を用いた。
Example 1
As a copper paste for forming the metallized layer 3, 8 parts by weight of an acrylic binder resin and terpineol with respect to 100 parts by weight of copper powder (particle size distribution width: 0.01 to 5 μm) containing copper fine particles having an average primary particle size of 0.1 μm A copper paste containing 16 parts by weight and 6 parts by weight of glass powder was prepared. Further, as a copper paste for forming the metallized layer 5, a copper paste containing 6 parts by weight of an acrylic binder resin, 12 parts by weight of terpineol, and 3 parts by weight of glass powder with respect to 100 parts by weight of copper powder having an average primary particle diameter of 5 μm. Prepared. As the ceramic substrate, an aluminum nitride substrate (thickness t = 0.635 mm, 170 W / m · K) was used.

[放熱性の評価]
窒化アルミニウム基板の表面に、メタライズ層3形成用銅ペーストをスクリーン印刷により塗布し、150℃で20分間乾燥した後、窒素雰囲気下、900℃で60分間焼成して銅粒子焼結体からなるメタライズ層3(12mm×12mm、厚み20μm)を形成した。次いで、メタライズ層3の一部に重ねて、メタライズ層5形成用銅ペーストをスクリーン印刷により塗布し、150℃で20分間乾燥した後、窒素雰囲気下、900℃で60分間焼成して銅粒子焼結体からなるメタライズ層5(10mm×10mm、厚み280μm)を形成することにより、最厚部位の厚みが300μmの導体回路を形成したセラミックス回路基板を作製した。
[Evaluation of heat dissipation]
A copper paste for forming the metallized layer 3 is applied to the surface of the aluminum nitride substrate by screen printing, dried at 150 ° C. for 20 minutes, and then fired at 900 ° C. for 60 minutes in a nitrogen atmosphere, thereby forming a metallized layer comprising a copper particle sintered body. Layer 3 (12 mm × 12 mm, thickness 20 μm) was formed. Next, a copper paste for forming the metallized layer 5 is applied by screen printing so as to overlap with a part of the metallized layer 3, dried at 150 ° C. for 20 minutes, and then fired at 900 ° C. for 60 minutes in a nitrogen atmosphere to burn copper particles. By forming a metallized layer 5 (10 mm × 10 mm, thickness 280 μm) made of a bonded body, a ceramic circuit board on which a conductor circuit having a thickness of 300 μm at the thickest part was formed.

このセラミックス回路基板を試料とし、レーザーフラッシュ法を用いて放熱性を評価した。そして、導体回路を形成していない基板面へレーザーを照射し、反対側の導体回路表面への熱伝導を測定したところ、熱拡散率は0.85cm/秒であった。 Using this ceramic circuit board as a sample, the heat dissipation was evaluated using a laser flash method. And when the laser beam was irradiated to the board | substrate surface in which the conductor circuit is not formed and the heat conduction to the conductor circuit surface of the other side was measured, the thermal diffusivity was 0.85 cm < 2 > / sec.

[信頼性の評価]
窒化アルミニウム基板の表面に、メタライズ層3形成用銅ペーストをスクリーン印刷により塗布し、150℃で20分間乾燥した後、窒素雰囲気下、900℃で60分間焼成して銅粒子焼結体からなるメタライズ層3(2.2mm×2.2mm、厚み20μm)を形成した。次いで、メタライズ層3の一部に重ねて、メタライズ層5形成用銅ペーストをスクリーン印刷により塗布し、150℃で20分間乾燥した後、窒素雰囲気下、900℃で60分間焼成して銅粒子焼結体からなるメタライズ層5(2mm×2mm、厚み280μm)を形成することにより、最厚部位の厚みが300μmの導体回路を形成したセラミックス回路基板を得た。続いて、導体回路(メタライズ層5)表面に、錫鉛共晶のクリーム半田を厚さ150μmに塗布し、錫めっき軟銅線を導体回路(メタライズ層5)表面に接するように半田付けし、信頼性の評価用試料を調製した。
[Reliability evaluation]
A copper paste for forming the metallized layer 3 is applied to the surface of the aluminum nitride substrate by screen printing, dried at 150 ° C. for 20 minutes, and then fired at 900 ° C. for 60 minutes in a nitrogen atmosphere, thereby forming a metallized layer comprising a copper particle sintered body. Layer 3 (2.2 mm × 2.2 mm, thickness 20 μm) was formed. Next, a copper paste for forming the metallized layer 5 is applied by screen printing so as to overlap with a part of the metallized layer 3, dried at 150 ° C. for 20 minutes, and then fired at 900 ° C. for 60 minutes in a nitrogen atmosphere to burn copper particles. By forming a metallized layer 5 (2 mm × 2 mm, thickness 280 μm) made of a bonded body, a ceramic circuit board on which a conductor circuit having a thickness of 300 μm at the thickest part was obtained. Subsequently, tin-lead eutectic cream solder is applied to the surface of the conductor circuit (metallized layer 5) to a thickness of 150 μm, and the tin-plated annealed copper wire is soldered so as to be in contact with the surface of the conductor circuit (metalized layer 5). A sample for sex evaluation was prepared.

前記試料に対して、−40℃への冷却と125℃への加熱とで1サイクルを構成する熱衝撃試験を1000サイクル繰り返した。試験後の試料をダイヤモンドカッターで切断し、断面観察したところ導体回路と基板の界面及び基板内部にクラックは発生していなかった。   The sample was subjected to 1000 cycles of a thermal shock test comprising 1 cycle of cooling to −40 ° C. and heating to 125 ° C. When the sample after the test was cut with a diamond cutter and observed in cross section, no crack was generated at the interface between the conductor circuit and the substrate and inside the substrate.

実施例2
窒化アルミニウム基板を96%アルミナ基板に代える以外、実施例1と同様にして試料を作製し、前記放熱性評価、信頼性評価を実施したところ、熱拡散率は0.099cm/秒であり、熱衝撃試験の結果も実施例1と同様にクラックの発生は見られなかった。
Example 2
A sample was prepared in the same manner as in Example 1 except that the aluminum nitride substrate was replaced with a 96% alumina substrate, and the heat dissipation evaluation and reliability evaluation were performed. The thermal diffusivity was 0.099 cm 2 / sec. As for the result of the thermal shock test, the occurrence of cracks was not observed as in Example 1.

比較例1
96%アルミナ基板(厚みt=0.635mm)の表面に、メタライズ層3形成用銅ペーストをスクリーン印刷により塗布し、150℃で20分間乾燥した後、窒素雰囲気下、900℃で60分間焼成して銅粒子焼結体からなるメタライズ層3(12mm×12mm、厚み20μm)を形成した。次いで、メタライズ層3の上部に半田を介して銅箔(厚さ300μm、10mm×10mm)を接合した試料を作製し、放熱性評価用の試料とした。実施例1同様に熱拡散率を測定したところ0.089cm/秒であった。
Comparative Example 1
A copper paste for forming metallized layer 3 is applied to the surface of a 96% alumina substrate (thickness t = 0.635 mm) by screen printing, dried at 150 ° C. for 20 minutes, and then baked at 900 ° C. for 60 minutes in a nitrogen atmosphere. Then, a metallized layer 3 (12 mm × 12 mm, thickness 20 μm) made of a copper particle sintered body was formed. Next, a sample in which a copper foil (thickness: 300 μm, 10 mm × 10 mm) was joined to the upper portion of the metallized layer 3 via solder was used as a sample for heat dissipation evaluation. When the thermal diffusivity was measured in the same manner as in Example 1, it was 0.089 cm 2 / sec.

比較例2
厚さ300μmの銅箔の接合された銅貼り窒化アルミニウム基板を、塩化第2鉄を用いて2mm幅パターンにエッチングし、錫鉛共晶のクリーム半田を厚さ150μmに塗布して、錫めっき軟銅線をメタライズ層表面に接するように半田付けし、試料を調製した。この試料について、−40℃への冷却と125℃への加熱とで1サイクルを構成する熱衝撃試験を1000サイクル繰り返した。試験後の試料をダイヤモンドカッターで切断し,断面観察したところ基板内部に応力集中のためと認められるクラックが生じていた。
Comparative Example 2
A copper-plated aluminum nitride substrate bonded with a copper foil having a thickness of 300 μm is etched into a 2 mm width pattern using ferric chloride, a tin-lead eutectic cream solder is applied to a thickness of 150 μm, and tin-plated annealed copper A sample was prepared by soldering the wire so as to be in contact with the surface of the metallized layer. About this sample, the thermal shock test which comprises 1 cycle by cooling to -40 degreeC and heating to 125 degreeC was repeated 1000 cycles. After the test, the sample was cut with a diamond cutter, and the cross section was observed. As a result, cracks were observed inside the substrate due to stress concentration.

上記のように、実施例1および2で得られた試料は、比較例1よりも放熱性は高いだけでなく、比較例2よりも接合信頼性に優れる。このように、本発明のセラミックス回路基板は、放熱性、接合信頼性ともに優れていることが確認できた。   As described above, the samples obtained in Examples 1 and 2 not only have higher heat dissipation than Comparative Example 1, but also have better bonding reliability than Comparative Example 2. Thus, it was confirmed that the ceramic circuit board of the present invention was excellent in both heat dissipation and bonding reliability.

図1は本発明のセラミックス回路基板の製造方法を説明するための工程図である。FIG. 1 is a process diagram for explaining a method of manufacturing a ceramic circuit board according to the present invention. 図2は本発明のセラミックス回路基板の製造方法の他の例を示す工程図である。FIG. 2 is a process diagram showing another example of the method for manufacturing a ceramic circuit board according to the present invention. 図3(a)(b)(c)はそれぞれ導体回路の構造の一例を示す概略図である。FIGS. 3A, 3B and 3C are schematic views showing examples of the structure of the conductor circuit. 図4はセラミックス回路基板への実装形態の一例を示す概略図である。FIG. 4 is a schematic view showing an example of a mounting form on a ceramic circuit board.

符号の説明Explanation of symbols

1…放熱性導体回路
1a,1b,1c…導体回路
2…第1の塗布層
3…第1のメタライズ層
4…第2の塗布層
5…第2のメタライズ層
DESCRIPTION OF SYMBOLS 1 ... Heat-radiating conductor circuit 1a, 1b, 1c ... Conductor circuit 2 ... 1st coating layer 3 ... 1st metallization layer 4 ... 2nd coating layer 5 ... 2nd metallization layer

Claims (18)

セラミックス基板の表面に、選択的に厚膜の放熱性導体回路が形成された回路基板であって、前記放熱性導体回路が、導電性及び熱伝導性を有する金属粒子成分の焼結体で構成されているセラミックス回路基板。   A circuit board in which a thick heat dissipation conductor circuit is selectively formed on the surface of a ceramic substrate, wherein the heat dissipation conductor circuit is composed of a sintered body of metal particle components having electrical conductivity and thermal conductivity Ceramic circuit board. 金属粒子成分が、金属及び金属酸化物から選択された少なくとも一種の粒子成分で構成されている請求項1記載のセラミックス回路基板。   The ceramic circuit board according to claim 1, wherein the metal particle component is composed of at least one particle component selected from a metal and a metal oxide. 金属粒子成分が、銅及び酸化銅から選択された少なくとも一種である請求項1記載のセラミックス回路基板。   The ceramic circuit board according to claim 1, wherein the metal particle component is at least one selected from copper and copper oxide. 放熱性導体回路が、セラミックス基板に積層された第1の導体層と、この第1の導体層に少なくとも部分的に重ねて積層された少なくとも1つの第2の導体層とで構成されている請求項1記載のセラミックス回路基板。   The heat dissipating conductor circuit is composed of a first conductor layer laminated on a ceramic substrate and at least one second conductor layer laminated at least partially on the first conductor layer. The ceramic circuit board according to Item 1. 第1の導体層よりも第2の導体層でのガラス成分の含有量が少ない請求項4記載のセラミックス回路基板。   The ceramic circuit board according to claim 4, wherein the content of the glass component in the second conductor layer is less than that in the first conductor layer. 放熱性導体回路の厚みが105〜1200μmである請求項1記載のセラミックス回路基板。   The ceramic circuit board according to claim 1, wherein the thickness of the heat dissipating conductor circuit is 105 to 1200 μm. 第1の導体層の厚みが5〜200μmである請求項4又は5記載のセラミックス回路基板。   The ceramic circuit board according to claim 4 or 5, wherein the first conductor layer has a thickness of 5 to 200 µm. 第2の導体層の厚みが100〜1000μmである請求項4又は5記載のセラミックス回路基板。   The ceramic circuit board according to claim 4 or 5, wherein the thickness of the second conductor layer is 100 to 1000 µm. 基板と導体回路との界面に複合酸化物が介在する請求項1記載のセラミックス回路基板。   The ceramic circuit board according to claim 1, wherein a complex oxide is present at an interface between the board and the conductor circuit. 放熱性導体回路が、セラミックス基板の表面に積層された第1の導体層と、この第1の導体層上に形成され、かつ第1の導体層よりも面積が小さな第2の導体層とで構成されている請求項1記載のセラミックス回路基板。   A heat dissipating conductor circuit is composed of a first conductor layer laminated on the surface of the ceramic substrate, and a second conductor layer formed on the first conductor layer and having a smaller area than the first conductor layer. The ceramic circuit board according to claim 1, which is configured. セラミックス基板の表面に、厚みの異なる放熱性導体回路が形成されている請求項1記載のセラミックス回路基板。   The ceramic circuit board according to claim 1, wherein heat-radiating conductor circuits having different thicknesses are formed on the surface of the ceramic board. セラミックス基板の表面に、選択的に厚膜の放熱性導体回路が形成された回路基板を製造する方法であって、前記放熱性導体回路を、導電性及び熱伝導性を有する金属粒子成分を含むペーストを塗布し、乾燥させた後、焼成して形成するセラミックス回路基板の製造方法。   A method of manufacturing a circuit board in which a thick heat dissipation conductor circuit is selectively formed on a surface of a ceramic substrate, wherein the heat dissipation conductor circuit includes a metal particle component having electrical conductivity and thermal conductivity. A method for producing a ceramic circuit board, wherein a paste is applied, dried, and then fired. セラミックス基板の表面にペーストを塗布して塗布層を形成する工程と、この塗布工程で形成された塗布層を焼成して焼成層を形成する工程とを含み、塗布工程を繰り返して少なくとも部分的に重なり合う複数の層を形成し、少なくとも最終の塗布工程の後、塗布層を焼成する請求項12記載の製造方法。   Including a step of applying a paste to the surface of the ceramic substrate to form a coating layer, and a step of firing the coating layer formed in this coating step to form a fired layer, and at least partially repeating the coating step The manufacturing method according to claim 12, wherein a plurality of overlapping layers are formed and the coating layer is baked at least after the final coating step. セラミックス基板の表面に第1のペーストを塗布して第1の塗布層を形成する工程と、この塗布工程で形成された塗布層に対して少なくとも部分的に重ねて第2のペーストを塗布して第2の塗布層を形成する工程と、形成された第1及び第2の塗布層を焼成して放熱性導体層を形成する工程とで構成されている請求項12記載の製造方法。   Applying a first paste on the surface of the ceramic substrate to form a first application layer, and applying a second paste at least partially overlapping the application layer formed in the application process; The manufacturing method of Claim 12 comprised by the process of forming a 2nd coating layer, and the process of baking the formed 1st and 2nd coating layer and forming a heat-radiating conductor layer. スクリーン印刷法によりペーストを塗布する請求項12〜14のいずれかに記載の製造方法。   The manufacturing method according to claim 12, wherein the paste is applied by a screen printing method. 最初の塗布工程で、平均一次粒子径0.003〜0.3μmの金属粒子成分を含むペーストを塗布する請求項13又は14記載の製造方法。   The manufacturing method of Claim 13 or 14 which apply | coats the paste containing a metal particle component with an average primary particle diameter of 0.003-0.3 micrometer at the first application | coating process. 最終の塗布工程で、最初の塗布工程でのペーストよりも、金属粒子成分に対するガラス成分の割合が少ないペーストを塗布する請求項13又は14記載の製造方法。   The manufacturing method of Claim 13 or 14 which apply | coats the paste with a smaller ratio of the glass component with respect to a metal particle component in the last application | coating process than the paste in the first application | coating process. 最終の塗布工程で、ガラス成分を含まないか又は金属粒子成分100重量部に対してガラス成分の割合が5重量部以下のペーストを塗布する請求項13又は14記載の製造方法。   The manufacturing method of Claim 13 or 14 which apply | coats the paste which does not contain a glass component in the last application | coating process, or the ratio of a glass component is 5 weight part or less with respect to 100 weight part of metal particle components.
JP2006020697A 2006-01-30 2006-01-30 Ceramics circuit board and its manufacturing method Pending JP2007201346A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006020697A JP2007201346A (en) 2006-01-30 2006-01-30 Ceramics circuit board and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006020697A JP2007201346A (en) 2006-01-30 2006-01-30 Ceramics circuit board and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2007201346A true JP2007201346A (en) 2007-08-09

Family

ID=38455596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006020697A Pending JP2007201346A (en) 2006-01-30 2006-01-30 Ceramics circuit board and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2007201346A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009133214A (en) * 2007-11-28 2009-06-18 Ibiden Co Ltd Exhaust pipe
JP2011023691A (en) * 2009-07-16 2011-02-03 Samsung Electro-Mechanics Co Ltd Ceramic substrate and method of manufacturing the same
JP2013135054A (en) * 2011-12-26 2013-07-08 Kyocera Corp Circuit board and electronic device including the same
KR20140095083A (en) * 2011-11-03 2014-07-31 세람테크 게엠베하 Circuit board made of ain with copper structures
JP2015109299A (en) * 2013-12-03 2015-06-11 株式会社ノリタケカンパニーリミテド Heat dissipation board
JP2016031998A (en) * 2014-07-28 2016-03-07 株式会社ノリタケカンパニーリミテド Heat dissipation circuit board
JP2016031999A (en) * 2014-07-28 2016-03-07 株式会社ノリタケカンパニーリミテド Heat dissipation circuit board
JP2016507902A (en) * 2013-02-07 2016-03-10 セラムテック ゲゼルシャフト ミット ベシュレンクテル ハフツングCeramTec GmbH Multi-level metal coating on the ceramic substrate
DE102016206865A1 (en) 2015-04-27 2016-10-27 Mitsubishi Electric Corporation Semiconductor device
CN107180904A (en) * 2017-05-12 2017-09-19 广东工业大学 A kind of ultraviolet LED packaging
WO2017195572A1 (en) * 2016-05-09 2017-11-16 株式会社村田製作所 Ceramic electronic component
JP2019087586A (en) * 2017-11-02 2019-06-06 三菱マテリアル株式会社 METHOD OF MANUFACTURING INSULATED CIRCUIT BOARD, METHOD OF MANUFACTURING INSULATED CIRCUIT BOARD WITH HEATSINK, AND INSULATED CIRCUIT BOARD, INSULATED CIRCUIT BOARD WITH HEATSINK, AND METHOD OF MANUFACTURING LAMINATED STRUCTURE OF INSULATED CIRCUIT BOARD
JP2019125720A (en) * 2018-01-17 2019-07-25 スタンレー電気株式会社 Electronic device and method of manufacturing the same
JP2019145740A (en) * 2018-02-23 2019-08-29 株式会社ノリタケカンパニーリミテド Heat radiation substrate
CN110248465A (en) * 2019-06-20 2019-09-17 天津荣事顺发电子有限公司 A thick-film and copper-clad integrated ceramic circuit board and its preparation method
WO2020021853A1 (en) * 2018-07-26 2020-01-30 Jx金属株式会社 Semiconductor device
JPWO2021005683A1 (en) * 2019-07-08 2021-01-14
CN112236855A (en) * 2018-12-10 2021-01-15 富士电机株式会社 Semiconductor device with a plurality of semiconductor chips
KR102293181B1 (en) * 2020-08-27 2021-08-25 주식회사 코멧네트워크 Ceramic circuit board for power module of double-faced cooling, manufacturing method thereof, power module of double-faced cooling with the same
JP2021122068A (en) * 2016-08-25 2021-08-26 太陽誘電株式会社 Method for manufacturing multilayer ceramic capacitor
KR20220109171A (en) * 2021-01-28 2022-08-04 주식회사 알엔투세라믹스 Ceramic circuit board with cooling fin for power module of double-faced cooling, manufacturing method thereof, power module of double-faced cooling with the same
WO2022162875A1 (en) * 2021-01-29 2022-08-04 サンケン電気株式会社 Semiconductor power module
CN115176341A (en) * 2020-02-28 2022-10-11 西门子股份公司 Electronic module, method for producing an electronic module and industrial installation
WO2023282598A1 (en) * 2021-07-09 2023-01-12 주식회사 아모센스 Ceramic substrate and manufacturing method thereof
WO2023089804A1 (en) 2021-11-22 2023-05-25 三菱電機株式会社 Magnetic ceramic substrate, substrate manufacturing method, and circulator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6347992A (en) * 1986-08-15 1988-02-29 松下電工株式会社 Manufacture of ceramic wiring board
JPH06196831A (en) * 1992-12-24 1994-07-15 Tokin Corp Manufacture of conductive pattern for aln substrate
JP2003243804A (en) * 2002-02-14 2003-08-29 Mitsuboshi Belting Ltd Method of manufacturing thick film circuit board by use of copper conductor paste

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6347992A (en) * 1986-08-15 1988-02-29 松下電工株式会社 Manufacture of ceramic wiring board
JPH06196831A (en) * 1992-12-24 1994-07-15 Tokin Corp Manufacture of conductive pattern for aln substrate
JP2003243804A (en) * 2002-02-14 2003-08-29 Mitsuboshi Belting Ltd Method of manufacturing thick film circuit board by use of copper conductor paste

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8201584B2 (en) 2007-11-28 2012-06-19 Ibiden Co., Ltd. Exhaust pipe
JP2009133214A (en) * 2007-11-28 2009-06-18 Ibiden Co Ltd Exhaust pipe
JP2011023691A (en) * 2009-07-16 2011-02-03 Samsung Electro-Mechanics Co Ltd Ceramic substrate and method of manufacturing the same
KR102029901B1 (en) * 2011-11-03 2019-10-08 세람테크 게엠베하 Circuit board made of ain with copper structures
KR20140095083A (en) * 2011-11-03 2014-07-31 세람테크 게엠베하 Circuit board made of ain with copper structures
JP2014532996A (en) * 2011-11-03 2014-12-08 セラムテック ゲゼルシャフト ミット ベシュレンクテル ハフツングCeramTec GmbH Circuit board made of AlN having a copper structure
JP2013135054A (en) * 2011-12-26 2013-07-08 Kyocera Corp Circuit board and electronic device including the same
JP2016507902A (en) * 2013-02-07 2016-03-10 セラムテック ゲゼルシャフト ミット ベシュレンクテル ハフツングCeramTec GmbH Multi-level metal coating on the ceramic substrate
US10568214B2 (en) 2013-02-07 2020-02-18 Ceramtec Gmbh Method for producing multi-level metalization on a ceramic substrate
JP2015109299A (en) * 2013-12-03 2015-06-11 株式会社ノリタケカンパニーリミテド Heat dissipation board
JP2016031998A (en) * 2014-07-28 2016-03-07 株式会社ノリタケカンパニーリミテド Heat dissipation circuit board
JP2016031999A (en) * 2014-07-28 2016-03-07 株式会社ノリタケカンパニーリミテド Heat dissipation circuit board
DE102016206865A1 (en) 2015-04-27 2016-10-27 Mitsubishi Electric Corporation Semiconductor device
DE102016206865B4 (en) 2015-04-27 2021-07-29 Mitsubishi Electric Corporation Semiconductor device
US9583407B2 (en) 2015-04-27 2017-02-28 Mitsubishi Electric Corporation Semiconductor device
WO2017195572A1 (en) * 2016-05-09 2017-11-16 株式会社村田製作所 Ceramic electronic component
US20190059162A1 (en) * 2016-05-09 2019-02-21 Murata Manufacturing Co., Ltd. Ceramic electronic component
JPWO2017195572A1 (en) * 2016-05-09 2019-02-28 株式会社村田製作所 Ceramic electronic components
US12022622B2 (en) 2016-05-09 2024-06-25 Murata Manufacturing Co., Ltd. Ceramic electronic component
JP2021122068A (en) * 2016-08-25 2021-08-26 太陽誘電株式会社 Method for manufacturing multilayer ceramic capacitor
CN107180904A (en) * 2017-05-12 2017-09-19 广东工业大学 A kind of ultraviolet LED packaging
JP2019087586A (en) * 2017-11-02 2019-06-06 三菱マテリアル株式会社 METHOD OF MANUFACTURING INSULATED CIRCUIT BOARD, METHOD OF MANUFACTURING INSULATED CIRCUIT BOARD WITH HEATSINK, AND INSULATED CIRCUIT BOARD, INSULATED CIRCUIT BOARD WITH HEATSINK, AND METHOD OF MANUFACTURING LAMINATED STRUCTURE OF INSULATED CIRCUIT BOARD
JP7024331B2 (en) 2017-11-02 2022-02-24 三菱マテリアル株式会社 A method for manufacturing an insulated circuit board, a method for manufacturing an insulated circuit board with a heat sink, and a method for manufacturing a laminated structure of an insulated circuit board.
JP2019125720A (en) * 2018-01-17 2019-07-25 スタンレー電気株式会社 Electronic device and method of manufacturing the same
JP7022595B2 (en) 2018-01-17 2022-02-18 スタンレー電気株式会社 Electronic devices and their manufacturing methods
JP7046643B2 (en) 2018-02-23 2022-04-04 株式会社ノリタケカンパニーリミテド Heat dissipation board
JP2019145740A (en) * 2018-02-23 2019-08-29 株式会社ノリタケカンパニーリミテド Heat radiation substrate
JP2020017671A (en) * 2018-07-26 2020-01-30 Jx金属株式会社 Semiconductor device
WO2020021853A1 (en) * 2018-07-26 2020-01-30 Jx金属株式会社 Semiconductor device
CN112236855A (en) * 2018-12-10 2021-01-15 富士电机株式会社 Semiconductor device with a plurality of semiconductor chips
CN110248465B (en) * 2019-06-20 2024-03-19 上海铠琪科技有限公司 Thick film and copper-clad integrated ceramic circuit board and preparation method thereof
CN110248465A (en) * 2019-06-20 2019-09-17 天津荣事顺发电子有限公司 A thick-film and copper-clad integrated ceramic circuit board and its preparation method
WO2021005683A1 (en) * 2019-07-08 2021-01-14 株式会社Fuji Circuit pattern creating system, and method for creating circuit pattern
JPWO2021005683A1 (en) * 2019-07-08 2021-01-14
JP7455833B2 (en) 2019-07-08 2024-03-26 株式会社Fuji Circuit pattern creation system and circuit pattern creation method
CN115176341A (en) * 2020-02-28 2022-10-11 西门子股份公司 Electronic module, method for producing an electronic module and industrial installation
KR102293181B1 (en) * 2020-08-27 2021-08-25 주식회사 코멧네트워크 Ceramic circuit board for power module of double-faced cooling, manufacturing method thereof, power module of double-faced cooling with the same
WO2022045694A1 (en) * 2020-08-27 2022-03-03 주식회사 코멧네트워크 Ceramic circuit board for dual-side cooling power module, method for preparing same, and dual-side cooling power module having same
KR102557990B1 (en) * 2021-01-28 2023-07-21 주식회사 알엔투세라믹스 Ceramic circuit board with cooling fin for power module of double-faced cooling, manufacturing method thereof, power module of double-faced cooling with the same
KR20220109171A (en) * 2021-01-28 2022-08-04 주식회사 알엔투세라믹스 Ceramic circuit board with cooling fin for power module of double-faced cooling, manufacturing method thereof, power module of double-faced cooling with the same
WO2022162875A1 (en) * 2021-01-29 2022-08-04 サンケン電気株式会社 Semiconductor power module
WO2023282598A1 (en) * 2021-07-09 2023-01-12 주식회사 아모센스 Ceramic substrate and manufacturing method thereof
WO2023089804A1 (en) 2021-11-22 2023-05-25 三菱電機株式会社 Magnetic ceramic substrate, substrate manufacturing method, and circulator

Similar Documents

Publication Publication Date Title
JP2007201346A (en) Ceramics circuit board and its manufacturing method
EP2720520B1 (en) Circuit board and electronic device provided with same
JP5677585B2 (en) Circuit board and electronic device having the same
JP2014156393A (en) Silver paste composition for electroless nickel and gold plating
KR20210107699A (en) Method for manufacturing ceramic-copper composite, ceramic circuit board, power module and ceramic-copper composite
JP4980439B2 (en) Method for manufacturing metallized ceramic substrate
JP4372669B2 (en) Device mounting substrate manufacturing method
JP6774898B2 (en) Double-sided wiring board with through electrodes and its manufacturing method
JPH04212441A (en) Ceramic wiring board
JP6114001B2 (en) Conductive paste, circuit board and electronic device
JP3538549B2 (en) Wiring board and method of manufacturing the same
JP5806030B2 (en) Circuit board and electronic device having the same
JP2009253196A (en) Manufacturing method of wiring substrate
JP6215150B2 (en) Heat dissipation board
JP4544837B2 (en) Copper paste for ceramic wiring board, ceramic wiring board, and method for manufacturing ceramic wiring board
JPH05226515A (en) Aluminum nitride substrate having metallized layer and the metallizing method thereof
JP5743916B2 (en) Circuit board and electronic device having the same
JP2002084051A (en) Metallized copper composition, low-temperature sintered ceramic wiring board, and method of manufacturing the same
JP5840945B2 (en) Circuit board and electronic device having the same
JPH08293654A (en) Formation of metal film on ceramic base material and metal-coated ceramic structure
JP2013118119A (en) Conductive paste, and low-temperature-baked ceramic multilayer substrate with the same
JP2512497B2 (en) Conductor paste composition
CN107112291A (en) Circuit substrate and the electronic installation for possessing it
JPH0723273B2 (en) Method for metallizing aluminum nitride substrate
JP4295409B2 (en) Manufacturing method of ceramic circuit board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110105

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110628