[go: up one dir, main page]

JP2007200686A - Negative electrode for lithium secondary battery and lithium secondary battery - Google Patents

Negative electrode for lithium secondary battery and lithium secondary battery Download PDF

Info

Publication number
JP2007200686A
JP2007200686A JP2006017217A JP2006017217A JP2007200686A JP 2007200686 A JP2007200686 A JP 2007200686A JP 2006017217 A JP2006017217 A JP 2006017217A JP 2006017217 A JP2006017217 A JP 2006017217A JP 2007200686 A JP2007200686 A JP 2007200686A
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
current collector
lithium secondary
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006017217A
Other languages
Japanese (ja)
Inventor
Hiroyuki Minami
博之 南
Atsushi Fukui
厚史 福井
Yasuyuki Kusumoto
靖幸 樟本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2006017217A priority Critical patent/JP2007200686A/en
Publication of JP2007200686A publication Critical patent/JP2007200686A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enhance charge discharge cycle characteristics by sufficiently bonding a negative mix layer with a negative current collector in a lithium secondary battery using a negative electrode in which the negative mix layer containing negative active material particles containing silicon and/or silicon alloy and a binder are formed on the surface of the negative current collector. <P>SOLUTION: In the lithium secondary battery equipped with a positive electrode 1, a negative electrode 2 and a nonaqueous electrolyte, the negative mix layer containing the negative active material particles containing silicon and/or silicon alloy and the binder is formed on the surface of the negative current collector by baking, and the ratio of the binder in the vicinity of the negative current collector is made 2.5 times or more that in the position far from the negative current collector. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、リチウム二次電池及びこのリチウム二次電池の負極に使用するリチウム二次電池用負極に係り、特に、ケイ素及び/又はケイ素合金を含む負極活物質粒子とバインダーとを含む負極合剤層が負極集電体の表面に形成されたリチウム二次電池用負極を用いたリチウム二次電池において、このリチウム二次電池用負極を改善して、リチウム二次電池の充放電サイクル特性を向上させた点に特徴を有するものである。   The present invention relates to a lithium secondary battery and a negative electrode for a lithium secondary battery used for a negative electrode of the lithium secondary battery, and in particular, a negative electrode mixture containing negative electrode active material particles containing silicon and / or a silicon alloy and a binder. In a lithium secondary battery using a negative electrode for a lithium secondary battery having a layer formed on the surface of the negative electrode current collector, the negative electrode for the lithium secondary battery is improved to improve the charge / discharge cycle characteristics of the lithium secondary battery. It has the characteristic in the made point.

近年、高出力,高エネルギー密度の新型二次電池として、非水電解液を用い、リチウムイオンを正極と負極との間で移動させて充放電を行うようにしたリチウム二次電池が利用されるようになった。   In recent years, lithium secondary batteries that use non-aqueous electrolyte and charge and discharge by moving lithium ions between positive and negative electrodes have been used as new secondary batteries with high output and high energy density. It became so.

ここで、このようなリチウム二次電池においては、その負極の1つとして、負極活物質にリチウムと合金化する材料を用い、この負極活物質粒子とバインダーとを含む負極合剤層を負極集電体の表面に形成したものが使用されている。   Here, in such a lithium secondary battery, as one of the negative electrodes, a material that is alloyed with lithium is used as the negative electrode active material, and the negative electrode mixture layer including the negative electrode active material particles and the binder is used as the negative electrode collector. What is formed on the surface of the electric body is used.

しかし、このように負極活物質としてリチウムと合金化する材料を用いたリチウム二次電池を充放電させた場合、リチウムを吸蔵・放出する際に、この負極活物質粒子の体積が膨張・収縮し、これにより負極活物質粒子が微粉化したり、負極活物質が集電体から剥離したりして、負極における集電性が低下し、リチウム二次電池の充放電サイクル特性が低下するという問題があった。特に、リチウム二次電池の容量を高めるために、リチウムと合金化する材料として、リチウムを吸蔵・放出する能力が大きいケイ素及び/又はケイ素合金を使用した場合、この負極活物質粒子の体積の膨張・収縮が大きくなり、充放電サイクル特性が大きく低下するという問題があった。   However, when a lithium secondary battery using a material that is alloyed with lithium as the negative electrode active material is charged and discharged in this way, the volume of the negative electrode active material particles expands and contracts when lithium is absorbed and released. Thus, the negative electrode active material particles are pulverized, or the negative electrode active material is peeled off from the current collector, so that the current collecting property in the negative electrode is lowered and the charge / discharge cycle characteristics of the lithium secondary battery are deteriorated. there were. In particular, in order to increase the capacity of the lithium secondary battery, when silicon and / or silicon alloy having a large ability to occlude and release lithium is used as a material to be alloyed with lithium, the volume of the negative electrode active material particles is expanded. -There was a problem that shrinkage was increased and charge / discharge cycle characteristics were greatly deteriorated.

そして、近年においては、リチウム二次電池用負極として、表面粗さRaが0.2μm以上になった粗面化された導電性金属箔からなる負極集電体の表面上に、ケイ素及び/又はケイ素合金を含む負極活物質粒子とバインダーを含む負極合剤層を非酸化性雰囲気下で焼結させたものを使用し、上記の負極合剤層と負極集電体との密着性を高めて、リチウム二次電池における充放電サイクル特性を向上させるようにしたものが提案されている(例えば、特許文献1参照。)。   In recent years, as a negative electrode for a lithium secondary battery, silicon and / or on the surface of a negative electrode current collector made of a roughened conductive metal foil having a surface roughness Ra of 0.2 μm or more. Using a negative electrode active material particle containing a silicon alloy and a negative electrode mixture layer containing a binder sintered in a non-oxidizing atmosphere, and improving the adhesion between the negative electrode mixture layer and the negative electrode current collector There has been proposed a battery that improves charge / discharge cycle characteristics in a lithium secondary battery (see, for example, Patent Document 1).

しかし、上記のようなリチウム二次電池用負極を用いた場合においても、上記の負極合剤層と負極集電体との密着力が必ずしも充分であるとはいえず、特に、負極活物質粒子の粒径を大きくして、負極活物質粒子を負極集電体と直接接触させ、負極活物質粒子と負極集電体との間の抵抗を低減させるようにした場合、充放電時における負極活物質粒子の体積変化による応力が負極集電体に直接作用して、負極合剤層が負極集電体から剥離しやすくなるという問題があった。
特開2002−260637号
However, even when the negative electrode for a lithium secondary battery as described above is used, the adhesion between the negative electrode mixture layer and the negative electrode current collector is not necessarily sufficient. When the negative electrode active material particles are brought into direct contact with the negative electrode current collector to reduce the resistance between the negative electrode active material particles and the negative electrode current collector, There is a problem that stress due to the volume change of the substance particles directly acts on the negative electrode current collector, and the negative electrode mixture layer is easily separated from the negative electrode current collector.
Japanese Patent Laid-Open No. 2002-260637

本発明は、ケイ素及び/又はケイ素合金を含む負極活物質粒子とバインダーとを含む負極合剤層が負極集電体の表面に形成されたリチウム二次電池用負極を用いたリチウム二次電池における上記のような問題を解決することを課題とするものである。   The present invention relates to a lithium secondary battery using a negative electrode for a lithium secondary battery in which a negative electrode mixture layer containing negative electrode active material particles containing silicon and / or a silicon alloy and a binder is formed on the surface of a negative electrode current collector. It is an object to solve the above problems.

すなわち、本発明は、上記のようなリチウム二次電池において、ケイ素及び/又はケイ素合金を含む負極活物質粒子を用いた負極合剤層と負極集電体との密着力をさらに向上させ、負極活物質粒子の粒径を大きくした場合においても、負極合剤層が負極集電体に充分に密着されて、リチウム二次電池の充放電サイクル特性が向上されるようにすることを課題とするものである。   That is, the present invention further improves the adhesion between the negative electrode mixture layer using the negative electrode active material particles containing silicon and / or silicon alloy and the negative electrode current collector in the lithium secondary battery as described above. Even when the particle size of the active material particles is increased, the negative electrode mixture layer is sufficiently adhered to the negative electrode current collector to improve the charge / discharge cycle characteristics of the lithium secondary battery. Is.

本発明におけるリチウム二次電池用負極においては、上記のような課題を解決するため、ケイ素及び/又はケイ素合金を含む負極活物質粒子とバインダーとを含む負極合剤層が負極集電体の表面に焼成により形成されたリチウム二次電池用負極において、上記の負極集電体の近傍におけるバインダーの割合が負極集電体から離れた位置におけるバインダーの割合の2.5倍以上になるようにした。   In the negative electrode for a lithium secondary battery according to the present invention, in order to solve the above problems, a negative electrode mixture layer containing negative electrode active material particles containing silicon and / or a silicon alloy and a binder is provided on the surface of the negative electrode current collector. In the negative electrode for a lithium secondary battery formed by firing, the binder ratio in the vicinity of the negative electrode current collector was set to be 2.5 times or more of the binder ratio in a position away from the negative electrode current collector. .

ここで、上記のようなリチウム二次電池用負極を製造するにあたっては、ケイ素及び/又はケイ素合金を含む負極活物質粒子とバインダーとを含む負極合剤スラリーを負極集電体の表面に塗布して負極合剤層を形成し、これを圧延させて焼結させるようにする。そして、上記のように負極合剤層を負極集電体の表面に焼結させるにあたっては、負極合剤層におけるバインダーや負極集電体が酸化されないように、非酸化性雰囲気下で焼結させることが好ましい。   Here, in manufacturing the negative electrode for a lithium secondary battery as described above, a negative electrode mixture slurry containing negative electrode active material particles containing silicon and / or a silicon alloy and a binder is applied to the surface of the negative electrode current collector. Thus, a negative electrode mixture layer is formed, which is rolled and sintered. When the negative electrode mixture layer is sintered on the surface of the negative electrode current collector as described above, sintering is performed in a non-oxidizing atmosphere so that the binder and the negative electrode current collector in the negative electrode mixture layer are not oxidized. It is preferable.

ここで、上記のように負極集電体の近傍におけるバインダーの割合が負極集電体から離れた位置におけるバインダーの割合の2.5倍以上になるようにするにあたっては、上記の負極合剤スラリーを作製するにあたり、負極活物質粒子とバインダーとを含む負極合剤に加える溶媒の割合を多くし、負極合剤スラリーの粘度を低くして負極集電体の表面に塗布させるようにすることができる。このようにすると、負極合剤スラリーを負極集電体の表面に塗布した直後に、バインダーを含んだ溶液が負極集電体の近傍に流動して乾燥され、負極集電体の近傍におけるバインダーの割合が負極集電体から離れた位置よりも高くなる。なお、上記の負極合剤スラリーの粘度はバインダーの種類などによって異なり、特に限定されないが、一般的には25℃において100mPa・S以下が好ましく、25mPa・S以下がより好ましい。   Here, when the ratio of the binder in the vicinity of the negative electrode current collector is 2.5 times or more of the ratio of the binder in the position away from the negative electrode current collector as described above, the above negative electrode mixture slurry In order to make the negative electrode active material particles and the binder, the proportion of the solvent added to the negative electrode mixture is increased, and the viscosity of the negative electrode mixture slurry is lowered to be applied to the surface of the negative electrode current collector. it can. In this way, immediately after the negative electrode mixture slurry is applied to the surface of the negative electrode current collector, the solution containing the binder flows and is dried in the vicinity of the negative electrode current collector. The ratio is higher than the position away from the negative electrode current collector. The viscosity of the negative electrode mixture slurry varies depending on the type of the binder and is not particularly limited, but is generally preferably 100 mPa · S or less, more preferably 25 mPa · S or less at 25 ° C.

また、負極集電体の近傍におけるバインダーの割合が負極集電体から離れた位置よりも多くなるようにするにあたっては、バインダー濃度が高い負極合剤スラリーを負極集電体の表面に塗布した後、その上からこれよりもバインダー濃度が低い負極合剤スラリーを塗布させるようにすることも、また負極集電体の表面に予めバインダーのみをコーティングした後に、負極活物質粒子とバインダーとを含む負極合剤スラリーを塗布させるようにすることもできる。   In addition, in order to make the ratio of the binder in the vicinity of the negative electrode current collector larger than the position away from the negative electrode current collector, a negative electrode mixture slurry having a high binder concentration is applied to the surface of the negative electrode current collector. It is also possible to apply a negative electrode mixture slurry having a binder concentration lower than that from above, or to coat the surface of the negative electrode current collector in advance with only a binder, and then the negative electrode containing negative electrode active material particles and a binder It is also possible to apply a mixture slurry.

ここで、本発明において使用する上記の負極集電体としては、その表面粗さRaが0.2μm以上のものを用いることが好ましい。このように表面粗さRaが0.2μm以上の負極集電体を用い、この負極集電体の上に負極合剤層を形成すると、負極合剤層におけるバインダーによるアンカー効果が大きく得られて、この負極集電体と負極合剤層との密着性が大きく向上する。   Here, as said negative electrode collector used in this invention, it is preferable to use that whose surface roughness Ra is 0.2 micrometer or more. Thus, when the negative electrode current collector having a surface roughness Ra of 0.2 μm or more is used and the negative electrode mixture layer is formed on the negative electrode current collector, the anchor effect by the binder in the negative electrode mixture layer is greatly obtained. The adhesion between the negative electrode current collector and the negative electrode mixture layer is greatly improved.

そして、上記のように表面粗さRaが0.2μm以上になった負極集電体を得るにあたっては、この負極集電体の表面を粗面化処理させるようにする。   Then, when obtaining the negative electrode current collector having a surface roughness Ra of 0.2 μm or more as described above, the surface of the negative electrode current collector is roughened.

ここで、このように負極集電体の表面を粗面化処理する方法としては、例えば、めっき法、気相成長法、エッチング法、研磨法等を用いることができる。   Here, as a method for roughening the surface of the negative electrode current collector in this way, for example, a plating method, a vapor phase growth method, an etching method, a polishing method, or the like can be used.

そして、めっき法としては、電解めっき法や無電解めっき法を用いることができる。また、気相成長法としては、スパッタリング法、CVD法、蒸着法等を用いることができる。また、エッチング法としては、物理的エッチング法や化学的エッチング法を用いることができる。また、研磨法としては、サンドペーパーによる研磨やブラスト法による研磨等を行うことができる。   As a plating method, an electrolytic plating method or an electroless plating method can be used. Further, as the vapor phase growth method, a sputtering method, a CVD method, an evaporation method, or the like can be used. As an etching method, a physical etching method or a chemical etching method can be used. In addition, as a polishing method, polishing by sandpaper, polishing by a blast method, or the like can be performed.

また、この負極集電体の材料としては、例えば、銅、ニッケル、鉄、チタン、コバルト等の金属又はこれらの合金を用いることができ、特に、銅元素を含む金属箔を用いることが好ましく、更に好ましくは、銅箔又は銅合金箔を用いるようにする。また、上記の銅元素を含む金属箔としては、銅以外の金属元素から成る金属箔の表面に銅元素を含む層を形成したものであってもよい。   Moreover, as a material of the negative electrode current collector, for example, a metal such as copper, nickel, iron, titanium, cobalt, or an alloy thereof can be used, and in particular, a metal foil containing a copper element is preferably used. More preferably, a copper foil or a copper alloy foil is used. Moreover, as said metal foil containing a copper element, the layer containing a copper element may be formed in the surface of the metal foil which consists of metal elements other than copper.

また、上記の負極集電体の厚みは特に限定されないが、通常、10μm〜100μmの範囲のものが使用される。   In addition, the thickness of the negative electrode current collector is not particularly limited, but usually a thickness in the range of 10 μm to 100 μm is used.

また、上記の負極集電体の表面粗さRaの上限も特に限定されるものではないが、負極集電体の厚みが10μm〜100μmの範囲にあることが好ましいので、実質的には表面粗さRaの上限は10μm以下になる。   Further, the upper limit of the surface roughness Ra of the negative electrode current collector is not particularly limited, but the thickness of the negative electrode current collector is preferably in the range of 10 μm to 100 μm. The upper limit of Ra is 10 μm or less.

また、上記の負極集電体としては、その表面粗さRaと局部山頂の平均間隔Sとが100Ra≧Sの関係を有することが好ましい。ここで、表面粗さRa及び局部山頂の平均間隔Sは、日本工業規格(JIS B 0601−1994)に規定されるものであり、例えば、表面粗さ計により測定することができる。   Moreover, as said negative electrode collector, it is preferable that the surface roughness Ra and the average space | interval S of a local peak have the relationship of 100Ra> = S. Here, the surface roughness Ra and the average distance S between the local peaks are defined by Japanese Industrial Standards (JIS B 0601-1994), and can be measured by, for example, a surface roughness meter.

また、この本発明において用いる負極活物質粒子は、上記のようにケイ素及び/又はケイ素合金を含むものであればよく、ケイ素及び/又はケイ素合金以外に、リチウムと合金化する材料を含むものであってもよい。ここで、リチウムと合金化する材料としては、例えば、ゲルマニウム、錫、鉛、亜鉛、マグネシウム、ナトリウム、アルミニウム、ガリウム、インジウム及びこれらの合金等を用いることができる。但し、この負極における容量を高めるためには、負極活物質粒子として上記のケイ素及び/又はケイ素合金だけを用いることが好ましく、特に、ケイ素を用いることが好ましい。   In addition, the negative electrode active material particles used in the present invention only need to contain silicon and / or a silicon alloy as described above, and contain a material that is alloyed with lithium in addition to silicon and / or a silicon alloy. There may be. Here, as a material to be alloyed with lithium, for example, germanium, tin, lead, zinc, magnesium, sodium, aluminum, gallium, indium, and alloys thereof can be used. However, in order to increase the capacity of the negative electrode, it is preferable to use only the above silicon and / or silicon alloy as the negative electrode active material particles, and it is particularly preferable to use silicon.

ここで、上記のケイ素合金としては、ケイ素と他の1種以上の元素と固溶体、ケイ素と他の1種以上の元素との金属間化合物、ケイ素と他の1種以上の元素との共晶合金等を用いることができる。また、このような合金の作製方法としては、アーク溶解法、液体急冷法、メカニカルアロイング法、スパッタリング法、化学気相成長法、焼成法等を用いることができる。   Here, examples of the silicon alloy include a solid solution of silicon and one or more other elements, an intermetallic compound of silicon and one or more other elements, and a eutectic of silicon and one or more other elements. An alloy or the like can be used. As a method for producing such an alloy, an arc melting method, a liquid quenching method, a mechanical alloying method, a sputtering method, a chemical vapor deposition method, a firing method, or the like can be used.

また、上記の負極活物質粒子の平均粒径は特に限定されないが、その粒径が大きくなるほど、負極活物質粒子と負極集電体との間の抵抗が低減される一方、充放電時における負極活物質粒子の体積変化による応力が負極集電体に直接作用して、負極合剤層が負極集電体から剥離しやすくなるため、負極活物質粒子の平均粒径が20μm以下であることが好ましい。一方、負極活物質粒子の粒径が小さくなりすぎると、単位重量あたりの負極活物質粒子の表面積が増大して、非水電解液と接触する面積が増大し、不可逆反応が増加して容量低下を招くため、負極活物質粒子の平均粒径が0.3μm以上であることが好ましい。   Further, the average particle diameter of the negative electrode active material particles is not particularly limited, but as the particle diameter increases, the resistance between the negative electrode active material particles and the negative electrode current collector is reduced, while the negative electrode during charge and discharge is reduced. Since the stress due to the volume change of the active material particles directly acts on the negative electrode current collector, and the negative electrode mixture layer easily peels from the negative electrode current collector, the average particle size of the negative electrode active material particles may be 20 μm or less. preferable. On the other hand, when the particle size of the negative electrode active material particles becomes too small, the surface area of the negative electrode active material particles per unit weight increases, the area in contact with the non-aqueous electrolyte increases, the irreversible reaction increases, and the capacity decreases. Therefore, the average particle diameter of the negative electrode active material particles is preferably 0.3 μm or more.

また、上記の負極合剤層の負極集電体に対する密着性を高めるためには、この負極合剤層に用いるバインダーとして、熱可塑性樹脂を用いることが好ましく、より好ましくはポリイミドを用いるようにする。   In order to improve the adhesion of the negative electrode mixture layer to the negative electrode current collector, a thermoplastic resin is preferably used as the binder used in the negative electrode mixture layer, and more preferably polyimide is used. .

また、この負極合剤層における導電性を高めて、負極における集電性を高めるため、この負極合剤層中に導電性粉末を添加させることができる。   Moreover, in order to improve the electroconductivity in this negative mix layer and to improve the current collection property in a negative electrode, electroconductive powder can be added in this negative mix layer.

ここで、上記の導電性粉末としては、上記の負極集電体と同様の材質のものを用いることが好ましく、具体的には、銅、ニッケル、鉄、チタン、コバルト等の金属や、これらの合金や、これらの混合物を用いることができる。なお、負極合剤層に添加させる導電性粉末の平均粒径は特に限定されるものではないが、一般に100μm以下であることが好ましく、更に好ましくは50μm以下、最も好ましくは10μm以下のものを用いるようにする。   Here, as the conductive powder, it is preferable to use the same material as the negative electrode current collector, specifically, metals such as copper, nickel, iron, titanium, cobalt, An alloy or a mixture thereof can be used. The average particle size of the conductive powder added to the negative electrode mixture layer is not particularly limited, but generally it is preferably 100 μm or less, more preferably 50 μm or less, and most preferably 10 μm or less. Like that.

そして、前記のように負極合剤層を焼結させるにあたっては、負極合剤層中におけるバインダーが負極集電体に熱融着されて、充分なアンカー効果が得られるようにするため、バインダーのガラス転移温度より20℃以上高い温度で焼結させることが好ましい。但し、焼結させる温度が高くなりすぎて、上記のバインダーが分解すると、負極合剤層中における負極活物質間の密着性や、負極合剤層と負極集電体との密着性が低減されるため、上記のバインダーが分解しない温度で焼結させることが好ましく、例えば、バインダーとしてポリイミドを用いる場合には、ポリイミドが完全に分解しない600℃以下で焼結させることが好ましい。   In sintering the negative electrode mixture layer as described above, the binder in the negative electrode mixture layer is thermally fused to the negative electrode current collector to obtain a sufficient anchor effect. Sintering is preferably performed at a temperature 20 ° C. or more higher than the glass transition temperature. However, if the sintering temperature becomes too high and the binder is decomposed, the adhesion between the negative electrode active material in the negative electrode mixture layer and the adhesion between the negative electrode mixture layer and the negative electrode current collector are reduced. Therefore, it is preferable to sinter at a temperature at which the above binder does not decompose. For example, when polyimide is used as the binder, it is preferable to sinter at 600 ° C. or less at which the polyimide does not completely decompose.

また、上記の負極集電体として銅箔を用いた場合において、焼結させる温度が高くなりすぎると、銅の結晶性が変化するなどにより、負極集電体の強度が大きく低下するため、好ましくは500℃以下で、さらに好ましくは450℃以下で焼結させるようにする。   In addition, in the case of using a copper foil as the negative electrode current collector, if the sintering temperature is too high, the strength of the negative electrode current collector is greatly reduced due to a change in crystallinity of copper, etc. Is sintered at 500 ° C. or lower, more preferably 450 ° C. or lower.

また、前記のように負極合剤層と負極集電体との密着性を高めるためには、バインダーのガラス転移温度より20℃以上高い温度で焼結させることが好ましいため、負極集電体に銅箔を用いた場合、バインダーとしては、ガラス転移温度が450℃以下のものを用いることが好ましい。   Further, as described above, in order to improve the adhesion between the negative electrode mixture layer and the negative electrode current collector, it is preferable to sinter at a temperature 20 ° C. higher than the glass transition temperature of the binder. When copper foil is used, it is preferable to use a binder having a glass transition temperature of 450 ° C. or lower.

また、本発明のリチウム二次電池においては、正極と負極と非水電解質とを備えたリチウム二次電池において、その負極に上記のリチウム二次電池用負極を用いるようにした。   In the lithium secondary battery of the present invention, in the lithium secondary battery including the positive electrode, the negative electrode, and the nonaqueous electrolyte, the above-described negative electrode for a lithium secondary battery is used as the negative electrode.

ここで、本発明のリチウム二次電池において使用する非水電解質は特に限定されず、一般に使用されているものを用いることかでき、例えば、非水系溶媒に溶質を溶解させた非水電解液や、ポリエチレンオキシド,ポリアクリロニトリル等のポリマー電解質に上記の非水電解液を含浸させたゲル状ポリマー電解質や、LiI,Li3N等の無機固体電解質を用いることができる。 Here, the nonaqueous electrolyte used in the lithium secondary battery of the present invention is not particularly limited, and any commonly used one can be used. For example, a nonaqueous electrolyte obtained by dissolving a solute in a nonaqueous solvent, Further, a gel polymer electrolyte obtained by impregnating the above-mentioned non-aqueous electrolyte into a polymer electrolyte such as polyethylene oxide or polyacrylonitrile, or an inorganic solid electrolyte such as LiI or Li 3 N can be used.

また、上記の非水系溶媒についても特に限定されず、一般に使用されているものを用いることかでき、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等の環状カーボネートと、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート等の鎖状カーボネートとの混合溶媒や、環状カーボネートと1,2−ジメトキシエタン、1,2−ジエトキシエタン等のエーテル系溶媒との混合溶媒を使用することができる。   Further, the above non-aqueous solvent is not particularly limited, and those commonly used can be used. For example, cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl A mixed solvent of a chain carbonate such as carbonate or a mixed solvent of a cyclic carbonate and an ether solvent such as 1,2-dimethoxyethane or 1,2-diethoxyethane can be used.

また、上記の溶質についても特に限定されず、一般に使用されているものを用いることができ、例えば、LiPF6,LiBF4,LiCF3SO3,LiN(CF3SO22,LiN(C25SO22,LiN(CF3SO2)(C49SO2),LiC(CF3SO23,LiC(C25SO23,LiAsF6,LiClO4,Li210Cl10,Li212Cl12や、これらの混合物等を用いることができる。 Further, the solute is not particularly limited, and those commonly used can be used. For example, LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2) 2, LiN (CF 3 SO 2) (C 4 F 9 SO 2), LiC (CF 3 SO 2) 3, LiC (C 2 F 5 SO 2) 3, LiAsF 6, LiClO 4, Li 2 B 10 Cl 10 , Li 2 B 12 Cl 12 , a mixture thereof, or the like can be used.

また、正極に使用する正極活物質についても特に限定されず、一般に使用されているものを用いることができ、例えば、LiCoO2,LiNiO2,LiMn24,LiMnO2,LiCo0.5Ni0.52,LiNi0.7Co0.2Mn0.12等のリチウム含有遷移金属酸化物や、MnO2などのリチウムを含有していない金属酸化物等を用いることができる。 Further, there is no particular limitation on the positive electrode active material used in the positive electrode, in general there can be used those which are used, for example, LiCoO 2, LiNiO 2, LiMn 2 O 4, LiMnO 2, LiCo 0.5 Ni 0.5 O 2 , LiNi 0.7 Co 0.2 Mn 0.1 O 2 and other lithium-containing transition metal oxides, MnO 2 and other metal oxides not containing lithium, and the like can be used.

本発明におけるリチウム二次電池用負極においては、前記のようにケイ素及び/又はケイ素合金を含む負極活物質粒子とバインダーとを含む負極合剤層を負極集電体の表面に焼成により形成するにあたり、負極集電体の近傍におけるバインダーの割合が負極集電体から離れた位置におけるバインダーの割合の2.5倍以上になるようにしたため、負極集電体に対する負極合剤層の密着性が向上し、平均粒径の大きい負極活物質粒子を用いた場合においても、負極合剤層が負極集電体から剥離するのが充分に抑制されるようになった。   In the negative electrode for a lithium secondary battery according to the present invention, as described above, the negative electrode mixture layer containing negative electrode active material particles containing silicon and / or a silicon alloy and a binder is formed on the surface of the negative electrode current collector by firing. The adhesion ratio of the negative electrode mixture layer to the negative electrode current collector is improved because the binder ratio in the vicinity of the negative electrode current collector is more than 2.5 times the binder ratio at a position away from the negative electrode current collector. However, even when negative electrode active material particles having a large average particle diameter are used, the negative electrode mixture layer is sufficiently suppressed from peeling from the negative electrode current collector.

また、本発明におけるリチウム二次電池においては、上記のようなリチウム二次電池用負極を用いたため、このリチウム二次電池を充放電させた場合にも、上記の負極合剤層が負極集電体から剥離するのが充分に防止されて、リチウム二次電池におけるサイクル寿命が向上した。   Further, in the lithium secondary battery according to the present invention, since the negative electrode for a lithium secondary battery as described above is used, the negative electrode mixture layer is also used as a negative electrode current collector even when the lithium secondary battery is charged and discharged. Separation from the body was sufficiently prevented, and the cycle life of the lithium secondary battery was improved.

以下、本発明に係るリチウム二次電池用負極及びこのリチウム二次電池用負極を用いたリチウム二次電池について実施例を挙げて具体的に説明すると共に、この実施例に係るリチウム二次電池においてはサイクル寿命が向上することを、比較例を挙げて明らかにする。なお、本発明に係るリチウム二次電池用負極及びリチウム二次電池は下記の実施例に示したものに限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施できるものである。   Hereinafter, the negative electrode for a lithium secondary battery according to the present invention and the lithium secondary battery using the negative electrode for a lithium secondary battery will be specifically described with reference to examples, and in the lithium secondary battery according to the examples, Shows that the cycle life is improved by giving a comparative example. In addition, the negative electrode for lithium secondary batteries and the lithium secondary battery according to the present invention are not limited to those shown in the following examples, and can be implemented with appropriate modifications without departing from the scope of the invention. .

(実施例1)
実施例1においては、下記のようにして作製した負極と正極と非水電解液とを用いるようにした。
Example 1
In Example 1, a negative electrode, a positive electrode, and a nonaqueous electrolytic solution prepared as described below were used.

[負極の作製]
負極活物質粒子に平均粒径が15μmのケイ素粉末(純度99.9%)を、バインダーにポリイミドを用い、上記の負極活物質粒子とバインダーと溶媒のN−メチル−2−ピロリドンとが9:1:9.2の重量比になるように混合させて負極合剤スラリーを調製した。ここで、このようにして調製した負極合剤スラリーは、25℃の粘度が12.3mPa・Sであった。
[Production of negative electrode]
Silicon powder (purity 99.9%) having an average particle diameter of 15 μm is used as the negative electrode active material particles, polyimide is used as the binder, and the above-mentioned negative electrode active material particles, the binder, and the solvent N-methyl-2-pyrrolidone are 9: A negative electrode mixture slurry was prepared by mixing at a weight ratio of 1: 9.2. Here, the negative electrode mixture slurry thus prepared had a viscosity at 25 ° C. of 12.3 mPa · S.

また、負極集電体としては、厚みが18μmで引張強度が900N/mm2の圧延銅合金箔の両面を、銅で電解処理して粗面化させ、厚みが21μm、表面粗さRaが0.2μmになったものを用いた。 Further, as the negative electrode current collector, both surfaces of a rolled copper alloy foil having a thickness of 18 μm and a tensile strength of 900 N / mm 2 were roughened by electrolytic treatment with copper, the thickness was 21 μm, and the surface roughness Ra was 0. .2 μm was used.

そして、この負極集電体の両面に上記の負極合剤スラリーを塗布し、これを乾燥させて負極集電体の両面に負極合剤層を形成し、これを380mm×52mmの長方形状に切り抜き、圧延ローラにより圧延させた後、これをアルゴン雰囲気下において400℃で1時間焼結させて負極を作製した。   Then, the negative electrode mixture slurry is applied to both surfaces of the negative electrode current collector, and dried to form a negative electrode mixture layer on both surfaces of the negative electrode current collector, which is cut into a 380 mm × 52 mm rectangular shape. After being rolled by a rolling roller, this was sintered at 400 ° C. for 1 hour in an argon atmosphere to produce a negative electrode.

そして、上記のようにして作製した負極の断面を走査型電子顕微鏡(SEM)により観察し、その結果を図1に示すと共に、この図1に基づいて、負極集電体から6.0μmの範囲における負極集電体近傍と、負極合剤層の表面から6.0μmの範囲における負極集電体から離れた位置とにおいて、それぞれ幅60μmの面積にある負極活物質粒子の部分とバインダーの部分とをコントラストから識別し、負極活物質粒子とバインダーとの合計に対するバインダーの割合を求めた。   And the cross section of the negative electrode produced as mentioned above was observed with the scanning electron microscope (SEM), and while showing the result in FIG. 1, based on this FIG. 1, the range of 6.0 micrometers from a negative electrode electrical power collector is shown. In the vicinity of the negative electrode current collector and the position away from the negative electrode current collector in the range of 6.0 μm from the surface of the negative electrode mixture layer, the negative electrode active material particle portion and the binder portion each having an area of 60 μm width Was determined from the contrast, and the ratio of the binder to the total of the negative electrode active material particles and the binder was determined.

この結果、負極集電体近傍におけるバインダーの割合Aは31.5%、負極集電体から離れた位置におけるバインダーの割合Bは4.6%であり、負極集電体から離れた位置におけるバインダーの割合Bに対する負極集電体の近傍におけるバインダーの割合Aの倍率(A/B)は6.8倍になっていた。   As a result, the binder ratio A in the vicinity of the negative electrode current collector was 31.5%, the binder ratio B in the position away from the negative electrode current collector was 4.6%, and the binder in the position away from the negative electrode current collector. The ratio (A / B) of the binder ratio A in the vicinity of the negative electrode current collector to the ratio B of 6.8 was 6.8 times.

[正極の作製]
正極活物質を作製するにあたっては、Li2Co3とCoCo3とを用い、Li:Coの原子比が1:1になるように秤量して、これらを乳鉢で混合し、これを直径17mmの金型でプレスして加圧成形した後、これを空気中において、800℃の温度で24時間焼成してLiCoO2の焼成体を製造し、このLiCoO2の焼成体を乳鉢で粉砕して、平均粒径が20μmになったLiCoO2粉末を得た。
[Production of positive electrode]
In producing the positive electrode active material, Li 2 Co 3 and CoCo 3 were used and weighed so that the atomic ratio of Li: Co was 1: 1, and these were mixed in a mortar. after by press pressure molding in a mold, which in air, and calcined at a temperature of 800 ° C. 24 hours to produce a sintered body of LiCoO 2, a sintered body of this LiCoO 2 was pulverized in a mortar, LiCoO 2 powder having an average particle size of 20 μm was obtained.

そして、このLiCoO2粉末からなる正極活物質粒子94重量部に対して、導電剤の人工黒鉛粉末3重量部と、結着剤のポリフッ化ビニリデンを3重量部含む5重量%のN−メチル−2−ピロリドン溶液を混合させて、正極合剤スラリーを調製した。 Then, 5 parts by weight of N-methyl-containing 3 parts by weight of an artificial graphite powder as a conductive agent and 3 parts by weight of polyvinylidene fluoride as a binder with respect to 94 parts by weight of the positive electrode active material particles made of this LiCoO 2 powder. A 2-pyrrolidone solution was mixed to prepare a positive electrode mixture slurry.

次いで、この正極合剤スラリーをアルミニウム箔からなる正極集電体の両面に塗布し、これを乾燥させて圧延した後、402mm×50mmの大きさに切り抜いて、正極集電体の両面に正極合剤層が形成された正極を作製した。   Next, this positive electrode mixture slurry was applied to both surfaces of a positive electrode current collector made of aluminum foil, dried and rolled, and then cut into a size of 402 mm × 50 mm, and the positive electrode current collector was cut on both surfaces of the positive electrode current collector. A positive electrode on which an agent layer was formed was produced.

[非水電解液の作製]
非水電解液を作製するにあたっては、エチレンカーボネートとジエチレンカーボネートとを3:7の体積比で混合させた混合溶媒に、LiPF6を1モル/リットルの濃度になるように溶解させ、さらに25℃において10分間二酸化炭素を吹き込み、二酸化炭素を飽和量となるまで溶解させて、非水電解液を作製した。
[Preparation of non-aqueous electrolyte]
In preparing the non-aqueous electrolyte, LiPF 6 was dissolved in a mixed solvent in which ethylene carbonate and diethylene carbonate were mixed at a volume ratio of 3: 7 to a concentration of 1 mol / liter, and further 25 ° C. Then, carbon dioxide was blown in for 10 minutes, and carbon dioxide was dissolved until the saturation amount was reached to prepare a non-aqueous electrolyte.

そして、リチウム二次電池を作製するにあたっては、図2(A),(B)に示すように、上記の正極1にアルミニウムからなる正極集電タブ1aを取り付けると共に、上記の負極2にニッケルからなる負極集電タブ2aを取り付け、この正極1と負極2とがポリエチレン製多孔質体からなるセパレータ3を介して対向するように捲回して電極体10を作製した。   And in producing a lithium secondary battery, as shown to FIG. 2 (A), (B), while attaching the positive electrode current collection tab 1a which consists of aluminum to said positive electrode 1, from said nickel to said negative electrode 2 A negative electrode current collecting tab 2a was attached, and the positive electrode 1 and the negative electrode 2 were wound so as to face each other with a separator 3 made of a polyethylene porous body, to produce an electrode body 10.

次いで、図3に示すように、上記の電極体10をアルミニウムラミネートフィルムで構成された外装体20内に挿入させると共に、この外装体20内に上記の非水電解液を加え、その後、上記の正極集電タブ1aと負極集電タブ2aとを外部に取り出すようにして、上記の外装体20の開口部を封口させた。   Next, as shown in FIG. 3, the electrode body 10 is inserted into the exterior body 20 made of an aluminum laminate film, and the nonaqueous electrolyte is added to the exterior body 20. The opening of the outer package 20 was sealed so that the positive electrode current collecting tab 1a and the negative electrode current collecting tab 2a were taken out.

(比較例1)
比較例1においては、上記の実施例1における負極の作製において、負極合剤スラリーを調製するにあたり、上記の負極活物質粒子とバインダーと溶媒のN−メチル−2−ピロリドンとが9:1:5.6の重量比になるようにし、それ以外は、上記の実施例1の場合と同様にしてリチウム二次電池を作製した。なお、上記のように調製した負極合剤スラリーは、25℃の粘度が30.0mPa・Sであった。
(Comparative Example 1)
In Comparative Example 1, in preparing the negative electrode in Example 1 above, the negative electrode active material particles, the binder, and the solvent N-methyl-2-pyrrolidone were 9: 1 in preparing the negative electrode mixture slurry: A lithium secondary battery was fabricated in the same manner as in Example 1 except that the weight ratio was 5.6. The negative electrode mixture slurry prepared as described above had a viscosity at 25 ° C. of 30.0 mPa · S.

そして、この比較例1において作製した負極の断面を走査型電子顕微鏡(SEM)により観察し、その結果を図4に示すと共に、この図4に基づいて、上記の実施例1と同様に、負極集電体から6.0μmの範囲における負極集電体近傍と、負極合剤層の表面から6.0μmの範囲における負極集電体から離れた位置とにおいて、それぞれ幅60μmの面積にある負極活物質粒子の部分とバインダーの部分とをコントラストから識別し、負極活物質粒子とバインダーとの合計に対するバインダーの割合を求めた。   And the cross section of the negative electrode produced in this comparative example 1 was observed with the scanning electron microscope (SEM), and while showing the result in FIG. 4, based on this FIG. 4, similarly to said Example 1, a negative electrode In the vicinity of the negative electrode current collector in the range of 6.0 μm from the current collector and the position away from the negative electrode current collector in the range of 6.0 μm from the surface of the negative electrode mixture layer, the negative electrode actives each having an area of 60 μm in width. The material particle portion and the binder portion were identified from the contrast, and the ratio of the binder to the total of the negative electrode active material particles and the binder was determined.

この結果、負極集電体近傍におけるバインダーの割合Aは12.4%、負極集電体から離れた位置におけるバインダーの割合Bは5.3%であり、負極集電体から離れた位置におけるバインダーの割合Bに対する負極集電体の近傍におけるバインダーの割合Aの倍率(A/B)は2.3倍になっていた。   As a result, the binder ratio A in the vicinity of the negative electrode current collector was 12.4%, the binder ratio B in the position away from the negative electrode current collector was 5.3%, and the binder in the position away from the negative electrode current collector. The ratio (A / B) of the binder ratio A in the vicinity of the negative electrode current collector with respect to the ratio B of 2.3 was 2.3 times.

次に、上記のようにして作製した実施例1及び比較例1の各リチウム二次電池を、25℃の雰囲気中において、電流値1000mAで4.2Vまで充電させた後、電流値1000mAで2.75Vまで放電し、これを1サイクルとして充放電を繰り返して行い、放電容量が1サイクル目の放電容量の80%に達するまでのサイクル数を測定し、これをサイクル寿命とした。そして、実施例1のリチウム二次電池のサイクル寿命を100とした指数で、その結果を下記の表1に示した。   Next, the lithium secondary batteries of Example 1 and Comparative Example 1 manufactured as described above were charged to 4.2 V at a current value of 1000 mA in an atmosphere at 25 ° C., and then 2 at a current value of 1000 mA. The battery was discharged up to .75 V and charged and discharged repeatedly as one cycle, and the number of cycles until the discharge capacity reached 80% of the discharge capacity at the first cycle was determined as the cycle life. The results are shown in Table 1 below with an index with the cycle life of the lithium secondary battery of Example 1 as 100.

この結果、負極集電体から離れた位置におけるバインダーの割合Bに対する負極集電体の近傍におけるバインダーの割合Aの倍率が2.5倍よりも大きくなった負極を用いた実施例1のリチウム二次電池は、負極集電体から離れた位置におけるバインダーの割合Bに対する負極集電体の近傍におけるバインダーの割合Aの倍率が2.5倍よりも小さくなった負極を用いた比較例1のリチウム二次電池に比べてサイクル寿命が大きく向上していた。   As a result, the lithium secondary battery of Example 1 using the negative electrode in which the ratio of the binder ratio A in the vicinity of the negative electrode current collector to the binder ratio B at a position away from the negative electrode current collector was larger than 2.5 times. The secondary battery was a lithium of Comparative Example 1 using a negative electrode in which the ratio of the binder ratio A in the vicinity of the negative electrode current collector to the negative electrode current collector B at a position away from the negative electrode current collector was smaller than 2.5 times. The cycle life was greatly improved compared to the secondary battery.

これは、前記のように負極集電体の近傍におけるバインダーの割合が負極集電体から離れた位置におけるバインダーの割合の2.5倍以上になるように、負極集電体の近傍におけるバインダーの量を多くした結果、負極合剤層と負極集電体との密着性が大きく増加したためであると考えられる。   This is because the binder in the vicinity of the negative electrode current collector is not less than 2.5 times the ratio of the binder in the position away from the negative electrode current collector as described above. As a result of increasing the amount, it is considered that the adhesion between the negative electrode mixture layer and the negative electrode current collector greatly increased.

(実施例2)
実施例2においては、上記の実施例1における負極の作製において、負極活物質粒子に平均粒径が25μmのケイ素粉末(純度99.9%)を用い、それ以外は、上記の実施例1の場合と同様にしてリチウム二次電池を作製した。
(Example 2)
In Example 2, in the production of the negative electrode in Example 1 above, silicon powder (purity 99.9%) having an average particle size of 25 μm was used as the negative electrode active material particles, and otherwise, the negative electrode active material particles of Example 1 above were used. A lithium secondary battery was produced in the same manner as in the case.

(実施例3)
実施例3においては、上記の実施例1における負極の作製において、負極活物質粒子に平均粒径が0.1μmのケイ素粉末(純度99.9%)を用い、それ以外は、上記の実施例1の場合と同様にしてリチウム二次電池を作製した。
(Example 3)
In Example 3, in the production of the negative electrode in Example 1 above, silicon powder (purity 99.9%) having an average particle size of 0.1 μm was used as the negative electrode active material particles, and otherwise, the above Example In the same manner as in the case of No. 1, a lithium secondary battery was produced.

そして、上記の実施例2及び実施例3において作製した負極についても、上記の実施例1と同様にして、負極集電体近傍におけるバインダーの割合Aと、負極集電体から離れた位置におけるバインダーの割合Bを求めて、負極集電体から離れた位置におけるバインダーの割合Bに対する負極集電体の近傍におけるバインダーの割合Aの倍率(A/B)を算出し、その結果を下記の表2に示した。   And also about the negative electrode produced in said Example 2 and Example 3, similarly to said Example 1, the ratio A of the binder in the negative electrode collector vicinity, and the binder in the position away from the negative electrode collector. The ratio (A / B) of the ratio A of the binder in the vicinity of the negative electrode current collector to the ratio B of the binder at a position away from the negative electrode current collector was calculated, and the result is shown in Table 2 below. It was shown to.

また、上記のようにして作製した実施例2,3の各リチウム二次電池についても、前記の実施例1のリチウム二次電池と同様にして、充放電を繰り返して行い、放電容量が1サイクル目の放電容量の80%に達するまでのサイクル数を測定し、上記の実施例1のリチウム二次電池のサイクル寿命を100とした指数で、各リチウム二次電池のサイクル寿命を下記の表2に示した。   In addition, each of the lithium secondary batteries of Examples 2 and 3 manufactured as described above was repeatedly charged and discharged in the same manner as the lithium secondary battery of Example 1, and the discharge capacity was 1 cycle. The number of cycles to reach 80% of the discharge capacity of the eye was measured, and the cycle life of each lithium secondary battery was shown in the following Table 2 as an index with the cycle life of the lithium secondary battery of Example 1 as 100. It was shown to.

この結果、負極活物質粒子に平均粒径が25μmのケイ素粉末を用いた実施例2のリチウム二次電池及び負極活物質粒子に平均粒径が0.1μmのケイ素粉末を用いた実施例3のリチウム二次電池は、負極活物質粒子に平均粒径が15μmのケイ素粉末を用いた実施例1のリチウム二次電池に比べてサイクル寿命が低下していた。   As a result, the lithium secondary battery of Example 2 using silicon powder having an average particle size of 25 μm as negative electrode active material particles and Example 3 using silicon powder having an average particle size of 0.1 μm as negative electrode active material particles. The cycle life of the lithium secondary battery was lower than that of the lithium secondary battery of Example 1 using silicon powder having an average particle size of 15 μm as the negative electrode active material particles.

これは、前記のように平均粒径が20μmを超える粒径の大きい負極活物質粒子を用いると、充放電時における負極活物質粒子の体積変化による応力が負極集電体に直接作用して、負極合剤層が負極集電体から剥離しやすくなったためであり、また平均粒径が0.3μm未満の粒径の小さい負極活物質粒子を用いると、非水電解液と接触する面積が増大し、不可逆反応が増加して容量低下を招いたためであると考えられる。   This is because, as described above, when negative electrode active material particles having a large average particle diameter exceeding 20 μm are used, stress due to volume change of the negative electrode active material particles during charge / discharge directly acts on the negative electrode current collector, This is because the negative electrode mixture layer is easily peeled off from the negative electrode current collector, and when negative electrode active material particles having an average particle size of less than 0.3 μm are used, the area in contact with the non-aqueous electrolyte increases. However, this is considered to be because the irreversible reaction increased and the capacity was reduced.

本発明の実施例1において作製した負極の状態を示した図である。It is the figure which showed the state of the negative electrode produced in Example 1 of this invention. 本発明の実施例1及び比較例1において作製した電極体の概略平面図及び部分断面説明図である。It is the schematic plan view and partial cross-section explanatory drawing of the electrode body produced in Example 1 and Comparative Example 1 of this invention. 本発明の実施例1及び比較例1において作製したリチウム二次電池の概略平面図である。It is a schematic plan view of the lithium secondary battery produced in Example 1 and Comparative Example 1 of the present invention. 比較例1において作製した負極の状態を示した図である。6 is a view showing a state of a negative electrode produced in Comparative Example 1. FIG.

符号の説明Explanation of symbols

1 正極
1a 正極集電タブ
2 負極
2a 負極集電タブ
3 セパレータ
10 電極体
20 外装体
DESCRIPTION OF SYMBOLS 1 Positive electrode 1a Positive electrode current collection tab 2 Negative electrode 2a Negative electrode current collection tab 3 Separator 10 Electrode body 20 Exterior body

Claims (7)

ケイ素及び/又はケイ素合金を含む負極活物質粒子とバインダーとを含む負極合剤層が負極集電体の表面に焼成により形成されたリチウム二次電池用負極において、上記の負極集電体の近傍におけるバインダーの割合が負極集電体から離れた位置におけるバインダーの割合の2.5倍以上であることを特徴とするリチウム二次電池用負極。   In the negative electrode for a lithium secondary battery in which a negative electrode mixture layer containing negative electrode active material particles containing silicon and / or a silicon alloy and a binder is formed on the surface of the negative electrode current collector by firing, in the vicinity of the negative electrode current collector A negative electrode for a lithium secondary battery, wherein the binder ratio in the battery is at least 2.5 times the binder ratio at a position away from the negative electrode current collector. 請求項1に記載したリチウム二次電池用負極において、上記の負極合剤層が金属箔からなる負極集電体の表面に非酸化性雰囲気下で焼結されて形成されていることを特徴とするリチウム二次電池用負極。   2. The negative electrode for a lithium secondary battery according to claim 1, wherein the negative electrode mixture layer is formed by sintering in a non-oxidizing atmosphere on a surface of a negative electrode current collector made of a metal foil. A negative electrode for a lithium secondary battery. 請求項1又は請求項2に記載したリチウム二次電池用負極において、上記の負極合剤層におけるバインダーがポリイミドであることを特徴とするリチウム二次電池用負極。   The negative electrode for a lithium secondary battery according to claim 1 or 2, wherein the binder in the negative electrode mixture layer is a polyimide. 請求項1〜請求項3の何れか1項に記載したリチウム二次電池用負極において、上記の負極活物質粒子の平均粒径が0.3μm〜20μmの範囲であることを特徴とするリチウム二次電池用負極。   The negative electrode for a lithium secondary battery according to any one of claims 1 to 3, wherein the average particle diameter of the negative electrode active material particles is in the range of 0.3 µm to 20 µm. Negative electrode for secondary battery. 請求項1〜請求項4の何れか1項に記載したリチウム二次電池用負極において、上記の負極集電体が、銅又は銅合金の箔、表面に銅又は銅合金の層が形成された金属箔から選択される1種であることを特徴とするリチウム二次電池用負極。   The negative electrode for a lithium secondary battery according to any one of claims 1 to 4, wherein the negative electrode current collector is a copper or copper alloy foil, and a copper or copper alloy layer is formed on the surface. A negative electrode for a lithium secondary battery, which is one type selected from metal foils. 請求項5に記載したリチウム二次電池用負極において、上記の負極集電体が、電解銅箔、電解銅合金箔、表面に電解銅が設けられた金属箔及び表面に電解銅合金が設けられた金属箔から選択される1種であることを特徴とするリチウム二次電池用負極。   6. The negative electrode for a lithium secondary battery according to claim 5, wherein the negative electrode current collector comprises an electrolytic copper foil, an electrolytic copper alloy foil, a metal foil provided with electrolytic copper on the surface, and an electrolytic copper alloy provided on the surface. A negative electrode for a lithium secondary battery, wherein the negative electrode is one selected from metal foils. 正極と負極と非水電解質とを備えたリチウム二次電池において、上記の負極に請求項1〜6の何れか1項に記載したリチウム二次電池用負極を用いたことを特徴とするリチウム二次電池。   A lithium secondary battery comprising a positive electrode, a negative electrode, and a nonaqueous electrolyte, wherein the negative electrode for a lithium secondary battery according to any one of claims 1 to 6 is used as the negative electrode. Next battery.
JP2006017217A 2006-01-26 2006-01-26 Negative electrode for lithium secondary battery and lithium secondary battery Pending JP2007200686A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006017217A JP2007200686A (en) 2006-01-26 2006-01-26 Negative electrode for lithium secondary battery and lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006017217A JP2007200686A (en) 2006-01-26 2006-01-26 Negative electrode for lithium secondary battery and lithium secondary battery

Publications (1)

Publication Number Publication Date
JP2007200686A true JP2007200686A (en) 2007-08-09

Family

ID=38455087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006017217A Pending JP2007200686A (en) 2006-01-26 2006-01-26 Negative electrode for lithium secondary battery and lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2007200686A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011520214A (en) * 2008-03-25 2011-07-14 エイ 123 システムズ,インク. High energy high power electrodes and batteries
JP2011258407A (en) * 2010-06-09 2011-12-22 Furukawa Battery Co Ltd:The Lithium ion secondary battery negative electrode and lithium ion secondary battery
WO2012066980A1 (en) * 2010-11-17 2012-05-24 三井金属鉱業株式会社 Copper foil for lithium ion secondary battery negative electrode collector, lithium ion secondary battery negative electrode material, and method for selecting lithium ion secondary battery negative electrode collector
JP2012204181A (en) * 2011-03-25 2012-10-22 National Institute Of Advanced Industrial & Technology Electrode and method for forming electrode
JP2013191529A (en) * 2012-02-16 2013-09-26 Hitachi Chemical Co Ltd Composite material, method for manufacturing composite material, electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
KR20150013176A (en) 2012-05-22 2015-02-04 미쓰이금속광업주식회사 Copper foil, negative electrode current collector, and negative electrode material for non-aqueous secondary battery
US10109856B2 (en) 2013-09-27 2018-10-23 Sanyo Electric Co., Ltd. Negative electrode for nonaqueous electrolyte secondary batteries

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000011997A (en) * 1998-06-19 2000-01-14 Fuji Photo Film Co Ltd Nonaqueous secondary battery and manufacture thereof
JP2004022433A (en) * 2002-06-19 2004-01-22 Sanyo Electric Co Ltd Negative electrode for lithium secondary battery, and lithium secondary battery
JP2004235057A (en) * 2003-01-31 2004-08-19 Sanyo Electric Co Ltd Negative electrode for lithium secondary battery, and the battery
JP2005317309A (en) * 2004-04-28 2005-11-10 Sanyo Electric Co Ltd Lithium secondary battery
JP2006019309A (en) * 2005-08-09 2006-01-19 Ube Ind Ltd Non-aqueous secondary battery and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000011997A (en) * 1998-06-19 2000-01-14 Fuji Photo Film Co Ltd Nonaqueous secondary battery and manufacture thereof
JP2004022433A (en) * 2002-06-19 2004-01-22 Sanyo Electric Co Ltd Negative electrode for lithium secondary battery, and lithium secondary battery
JP2004235057A (en) * 2003-01-31 2004-08-19 Sanyo Electric Co Ltd Negative electrode for lithium secondary battery, and the battery
JP2005317309A (en) * 2004-04-28 2005-11-10 Sanyo Electric Co Ltd Lithium secondary battery
JP2006019309A (en) * 2005-08-09 2006-01-19 Ube Ind Ltd Non-aqueous secondary battery and manufacturing method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011520214A (en) * 2008-03-25 2011-07-14 エイ 123 システムズ,インク. High energy high power electrodes and batteries
US9299966B2 (en) 2008-03-25 2016-03-29 A123 Systems Llc High energy high power electrodes and batteries
JP2011258407A (en) * 2010-06-09 2011-12-22 Furukawa Battery Co Ltd:The Lithium ion secondary battery negative electrode and lithium ion secondary battery
WO2012066980A1 (en) * 2010-11-17 2012-05-24 三井金属鉱業株式会社 Copper foil for lithium ion secondary battery negative electrode collector, lithium ion secondary battery negative electrode material, and method for selecting lithium ion secondary battery negative electrode collector
CN103210533A (en) * 2010-11-17 2013-07-17 三井金属矿业株式会社 Copper foil for lithium ion secondary battery negative electrode collector, lithium ion secondary battery negative electrode material, and method for selecting lithium ion secondary battery negative electrode collector
JP2012204181A (en) * 2011-03-25 2012-10-22 National Institute Of Advanced Industrial & Technology Electrode and method for forming electrode
JP2013191529A (en) * 2012-02-16 2013-09-26 Hitachi Chemical Co Ltd Composite material, method for manufacturing composite material, electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
KR20150013176A (en) 2012-05-22 2015-02-04 미쓰이금속광업주식회사 Copper foil, negative electrode current collector, and negative electrode material for non-aqueous secondary battery
US10396363B2 (en) 2012-05-22 2019-08-27 Mitsui Mining & Smelting Co., Ltd. Copper foil, negative electrode current collector and negative electrode material for non-aqueous secondary battery
US10109856B2 (en) 2013-09-27 2018-10-23 Sanyo Electric Co., Ltd. Negative electrode for nonaqueous electrolyte secondary batteries

Similar Documents

Publication Publication Date Title
JP5219340B2 (en) Negative electrode for lithium secondary battery, method for producing the same, and lithium secondary battery
JP4027255B2 (en) Negative electrode for lithium secondary battery and method for producing the same
US8343657B2 (en) Negative electrode for lithium secondary battery, method of manufacturing the electrode, and lithium secondary battery
JP4212392B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery
JP4497904B2 (en) Lithium secondary battery and manufacturing method thereof
JP5219339B2 (en) Lithium secondary battery
JP4225727B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery
KR101209338B1 (en) Lithium Secondary Battery
JP2007149604A (en) Negative electrode for lithium secondary battery and lithium secondary battery
JP2002216746A (en) Negative electrode for lithium secondary battery and its manufacturing method
JP2005150039A (en) Lithium secondary battery
JP2004235057A (en) Negative electrode for lithium secondary battery, and the battery
JP2007200686A (en) Negative electrode for lithium secondary battery and lithium secondary battery
JP4953583B2 (en) Lithium secondary battery
JP4744076B2 (en) Lithium secondary battery and manufacturing method thereof
JP4953557B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery
JP2002373647A (en) Electrode for lithium secondary battery and the lithium secondary battery
KR20070116162A (en) Nonaqueous electrolyte secondary battery
JP2008235083A (en) Negative electrode for lithium secondary battery, and lithium secondary cell
JP4436624B2 (en) Lithium secondary battery
JP5268223B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery
JP2007273120A (en) Lithium secondary battery
JP2007227239A (en) Anode for a lithium secondary battery and lithium secondary cell
JP2006092928A (en) Negative electrode for lithium secondary battery and lithium secondary battery
JP2008124036A (en) Negative electrode for lithium secondary battery and lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120113

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120402

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120412

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20120615