JP2007197690A - Method for producing hydroxyl-terminated acrylic acid compound polymer at both ends and the polymer - Google Patents
Method for producing hydroxyl-terminated acrylic acid compound polymer at both ends and the polymer Download PDFInfo
- Publication number
- JP2007197690A JP2007197690A JP2006343947A JP2006343947A JP2007197690A JP 2007197690 A JP2007197690 A JP 2007197690A JP 2006343947 A JP2006343947 A JP 2006343947A JP 2006343947 A JP2006343947 A JP 2006343947A JP 2007197690 A JP2007197690 A JP 2007197690A
- Authority
- JP
- Japan
- Prior art keywords
- polymer
- acrylic acid
- acid compound
- hydroxyl groups
- reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Polymerization Catalysts (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
【課題】 本発明は、特別な反応試剤を用いることなく簡便なプロセスで経済的に重合体を製造することができると共に、物性を低下させる原子を含有しておらず、かつ、両末端水酸基が1級水酸基のみ或いは1級及び2級水酸基である重合体を調節しながら製造できる、両末端水酸基アクリル酸化合物重合体の製造法を提供すること、更に両末端の水酸基が1級のみ或いは1級及び2級である新規な両末端水酸基アクリル酸化合物重合体を提供することを課題とする。
【解決手段】 本発明の課題は、(1)アクリル酸化合物をOHラジカルを開始剤としてラジカル重合反応させることを特徴とする両末端に水酸基を有するアクリル酸化合物重合体の製造法、(2)過酸化水素と第一鉄塩をOHラジカル発生剤として用いる前記製造法、(3)反応溶媒にアセトニトリルと水の混合溶媒或いはエタノールと水の混合溶媒を用いる前記いずれかの製造法などにより解決される。
【選択図】 図6PROBLEM TO BE SOLVED: To produce a polymer economically by a simple process without using a special reaction reagent, and does not contain an atom that deteriorates physical properties, and has hydroxyl groups at both terminals. Provided is a method for producing a hydroxyl-terminated acrylic acid compound polymer which can be produced while controlling a polymer which is only a primary hydroxyl group or a primary and secondary hydroxyl group, and further the hydroxyl groups at both ends are only primary or primary. It is another object of the present invention to provide a novel both-end hydroxyl group acrylic acid compound polymer that is secondary and secondary.
The object of the present invention is to (1) a method for producing an acrylic acid compound polymer having hydroxyl groups at both ends, characterized by subjecting an acrylic acid compound to radical polymerization reaction using an OH radical as an initiator, and (2) Solved by the above production method using hydrogen peroxide and ferrous salt as OH radical generator, (3) any one of the above production methods using a mixed solvent of acetonitrile and water or a mixed solvent of ethanol and water as a reaction solvent. The
[Selection] Figure 6
Description
本発明は、分子両末端に水酸基を有するアクリル酸化合物重合体(両末端水酸基アクリル酸化合物重合体)の製造法、更に詳しくは、分子両末端の水酸基を1級水酸基のみ或いは1級及び2級水酸基であるように調節してしかも簡便なプロセスで経済的に重合体を製造できる、両末端水酸基アクリル酸化合物重合体の製造法、及び、該重合体に関する。なお、本発明において、1級水酸基は1級炭素原子に結合している水酸基、2級水酸基は2級炭素原子に結合している水酸基をそれぞれ表す。 The present invention relates to a process for producing an acrylic acid compound polymer having hydroxyl groups at both molecular terminals (both terminal hydroxyl group acrylic acid polymer). More specifically, the hydroxyl groups at both molecular terminals are either primary hydroxyl groups or primary and secondary. The present invention relates to a process for producing a hydroxyl-terminated acrylic acid compound polymer at both ends, which can be adjusted to be a hydroxyl group and can be produced economically by a simple process, and the polymer. In the present invention, a primary hydroxyl group represents a hydroxyl group bonded to a primary carbon atom, and a secondary hydroxyl group represents a hydroxyl group bonded to a secondary carbon atom.
分子両末端に水酸基を有するアクリル酸化合物重合体(両末端水酸基アクリル酸化合物重合体)は、両末端の水酸基の反応性を直接的に利用でき、また、水酸基を他の官能基に変換してその反応性も利用できることから、容易に線状化及び/又は網状化させて、強靭性、耐熱性、耐久性などの点で良好な物性を有する高分子化合物を得ることができるものである。例えば、ポリエステル樹脂、ポリウレタン樹脂、ポリカーボネート樹脂などの各種樹脂において、両末端水酸基アクリル酸化合物重合体として両末端水酸基アクリル酸エステル重合体を樹脂原料に用いることにより、樹脂本来の物性を損なうことなく所望の物性を向上させた樹脂を得ることができる。 An acrylic acid compound polymer having hydroxyl groups at both ends of the molecule (both end hydroxyl group acrylic acid polymer) can directly utilize the reactivity of the hydroxyl groups at both ends, and can convert hydroxyl groups to other functional groups. Since the reactivity can also be utilized, a polymer compound having good physical properties in terms of toughness, heat resistance, durability, and the like can be obtained by making it linear and / or network easily. For example, in various resins such as a polyester resin, a polyurethane resin, and a polycarbonate resin, it is desirable to use a hydroxyl-terminated acrylic acid ester polymer as both-terminal hydroxyl-acrylate compound polymer as a resin raw material without damaging the original physical properties of the resin. A resin with improved physical properties can be obtained.
近年、このような両末端水酸基アクリル酸化合物重合体(特に両末端水酸基アクリル酸エステル重合体)の製造法がその重合体と共に多数提案されている。例えば、特許文献1には、ハロゲン含有炭化水素化合物(連鎖移動剤)と重合開始剤の存在下、アクリル酸エステルを重合させてハロゲン末端テレケリックポリマーを得て、これを加水分解するか或いはジオール化合物等と反応させることによって両末端水酸基アクリル酸エステル重合体を製造する方法が開示されている。
In recent years, a number of methods for producing such a both-end hydroxyl group acrylate compound polymer (particularly both-end hydroxyl group acrylate polymer) have been proposed together with the polymer. For example,
しかし、この方法では、ハロゲン含有炭化水素化合物を用いてハロゲン末端テレケリックポリマーを一旦生成させた後に目的の重合体を製造するため、製造工程が複雑になって簡便なプロセスで経済的に重合体を製造することが困難であり、更にハロゲン含有炭化水素化合物を多量に使用するために環境面でも悪影響を及ぼすなどの問題があった。また、得られる重合体は末端水酸基が1級及び2級水酸基であり、両末端が1級水酸基であるものは得られていなかった。 However, in this method, a halogen-terminated telechelic polymer is once produced using a halogen-containing hydrocarbon compound, and then the desired polymer is produced. Therefore, the production process becomes complicated, and the polymer is economically produced by a simple process. In addition, there are problems such as adverse effects on the environment due to the use of a large amount of halogen-containing hydrocarbon compounds. Moreover, the polymer obtained has terminal hydroxyl groups of primary and secondary hydroxyl groups, and both terminals are not primary hydroxyl groups.
特許文献2には、硫黄含有ジオール化合物(連鎖移動剤)と重合開始剤を用いてアクリル酸エステルを重合させることにより、両末端水酸基アクリル酸エステル重合体を製造する方法が開示されている。しかし、この方法では、連鎖移動剤に硫黄含有ジオール化合物を用いるため、得られる重合体が硫黄原子を含有するものになってその物性(耐候性、耐熱性等)が徐々に損なわれるという問題があった。
特許文献3には、片末端に水酸基を有するビニル系重合体に重合性アルケニル基と水酸基を併せ有する化合物を反応させるか、片末端に反応性の高い炭素−ハロゲン結合を有するビニル系重合体に水酸基含有オキシアニオン化合物や水酸基含有安定化カルバニオンを反応させるか、或いは、片末端に水酸基及び他末端にハロゲン基を有するビニル系重合体のハロゲン末端同士をカップリング反応させるかなどによって、両末端水酸基アクリル酸エステル重合体を製造する方法が開示されている。
しかし、この方法では、前駆体となるビニル系重合体を製造した後に、これを前記水酸基含有化合物と反応させるか或いはカップリング反応させることにより他末端に水酸基を導入するため、製造工程が複雑になって簡便に重合体を製造することが困難であった。また、水酸基含有化合物と反応させる場合は、水酸基を有する特殊な化合物が必要であり、カップリング反応させる場合は、連結剤(ポリチオール、ポリアミン、ポリオール等)が新たに必要になり、得られる重合体にも硫黄原子が含有されて物性が徐々に損なわれるという問題が生じる場合もあった。 However, in this method, since a vinyl polymer as a precursor is produced and then this is reacted with the hydroxyl group-containing compound or a coupling reaction to introduce a hydroxyl group, the production process is complicated. Thus, it was difficult to produce a polymer simply. Moreover, when making it react with a hydroxyl-containing compound, the special compound which has a hydroxyl group is required, and when making a coupling reaction, a coupling agent (polythiol, polyamine, polyol, etc.) is newly needed, and the polymer obtained In some cases, sulfur atoms are contained and the physical properties are gradually impaired.
特許文献4には、ヨウ素含有芳香族化合物(連鎖移動剤)を用いてアクリル酸エステルを重合させ、次いで得られた重合体に水酸基含有アミン化合物を反応させることにより、新規な両末端水酸基アクリル酸エステル重合体を製造する方法が開示されている。しかし、この方法も製造工程が複雑になり、また、得られる重合体には窒素原子が含有されて物性が徐々に損なわれるという問題があった。
特許文献5には、特殊な有機金属触媒の存在下でアクリル酸エステルを重合させ、重合終了時にラクトンを加えてこのラクトンをブロック共重合させた後、アルコールを加えて重合を停止させることにより、末端ヒドロキシル化アクリル系重合体を製造する方法が開示されている。しかし、この方法では、特殊な触媒を用いる上に製造工程が複雑になるなどの問題があり、得られる重合体も片末端は水酸基(2級水酸基)であるが他末端は不明であり、両末端が水酸基(特に1級水酸基)であるものを得ることは困難であった。
In
特許文献6には、ジクロロアクリル酸メチルにアクリル酸ブチルを塩化第一銅及び2,2’−ビピリジンの存在下で反応させ、次いでアリルアルコールと大過剰の塩化第一銅又は零価の銅を加えて反応させることにより、両末端が1級水酸基であるアクリル酸エステル重合体を製造する方法が開示されている。しかし、この方法は、ジクロロアクリル酸メチルを出発物質として連鎖反応を行なった後にアリルアルコールを反応させて目的物を得るものであり、更にアクリル酸ブチル以外の反応原料(ジクロロアクリル酸メチル、アリルアルコール)や多量の銅化合物又は銅を使用するため、製造工程が複雑になるだけでなく銅の後処理も必要になって、簡便なプロセスで経済的に重合体を製造することが困難なものであった。
前述のように、従来の分子両末端に水酸基を有するアクリル酸化合物重合体(両末端水酸基アクリル酸化合物重合体)の製造法はいずれも満足できるものではなかった。本発明は、このような状況に鑑み、前述のような諸問題を解決して両末端水酸基アクリル酸化合物重合体を製造できる方法を提供することを課題とする。 As described above, none of the conventional methods for producing an acrylic acid compound polymer having hydroxyl groups at both ends of a molecule (both end hydroxyl group acrylic acid compound polymers) is satisfactory. In view of such circumstances, an object of the present invention is to provide a method capable of solving the above-described problems and producing a both-end hydroxyl group acrylic acid compound polymer.
即ち、本発明は、特別な反応試剤を用いることなく簡便なプロセスで経済的に重合体を製造することができると共に、物性を低下させる原子を含有しておらず、かつ、両末端水酸基が1級水酸基のみ或いは1級及び2級水酸基である重合体を調節しながら製造できる、両末端水酸基アクリル酸化合物重合体の製造法を提供することを課題とする。更に、両末端の水酸基が1級のみ或いは1級及び2級である新規な両末端水酸基アクリル酸化合物重合体を提供することも課題とする。 That is, according to the present invention, a polymer can be produced economically by a simple process without using a special reaction reagent, does not contain an atom that lowers the physical properties, and both terminal hydroxyl groups are one. It is an object of the present invention to provide a method for producing a both-end hydroxyl group acrylic acid compound polymer which can be produced while controlling a polymer which is only a primary hydroxyl group or a primary and secondary hydroxyl group. It is another object of the present invention to provide a novel both-end hydroxyl group acrylic acid compound polymer in which both end hydroxyl groups are only primary or primary and secondary.
本発明の課題は、以下の発明により解決される。
1.アクリル酸化合物をOHラジカルを開始剤としてラジカル重合反応させることを特徴とする、両末端に水酸基を有するアクリル酸化合物重合体の製造法。
2.過酸化水素と第一鉄塩をOHラジカル発生剤として用いる、前記第1発明の両末端に水酸基を有するアクリル酸化合物重合体の製造法。
The problems of the present invention are solved by the following invention.
1. A method for producing an acrylic acid compound polymer having hydroxyl groups at both ends, wherein an acrylic acid compound is subjected to a radical polymerization reaction using an OH radical as an initiator.
2. The method for producing an acrylic acid compound polymer having hydroxyl groups at both ends according to the first invention, wherein hydrogen peroxide and a ferrous salt are used as an OH radical generator.
3.反応溶媒にアセトニトリルと水の混合溶媒を用いる、前記第1又は第2発明の両末端に水酸基を有するアクリル酸化合物重合体の製造法。
4.アクリル酸化合物が下式(1)で表され、両末端に水酸基を有するアクリル酸化合物重合体が下式(2)で表される、前記第3発明の両末端に水酸基を有するアクリル酸化合物重合体の製造法。但し、式中、Rは置換基を有していてもよい炭化水素基又は水素原子を表し、x、yは1以上の整数を表す。
3. The method for producing an acrylic acid compound polymer having a hydroxyl group at both ends of the first or second invention, wherein a mixed solvent of acetonitrile and water is used as a reaction solvent.
4). An acrylic acid compound having a hydroxyl group at both ends of the third invention, wherein the acrylic acid compound is represented by the following formula (1), and an acrylic acid compound polymer having a hydroxyl group at both ends is represented by the following formula (2): Manufacturing method of coalescence. However, in formula, R represents the hydrocarbon group or hydrogen atom which may have a substituent, and x, y represents an integer greater than or equal to 1.
5.反応溶媒としてエタノールと水の混合溶媒を用いる、前記第1又は第2発明の両末端に水酸基を有するアクリル酸化合物重合体の製造法。
6.アクリル酸化合物が前記式(1)で表され、両末端に水酸基を有するアクリル酸化合物重合体が下式(3)で表される、前記第5発明の両末端に水酸基を有するアクリル酸化合物重合体の製造法。但し、式中、Rは前記と同様であり、zは2以上の整数を表す。
5). The method for producing an acrylic acid compound polymer having a hydroxyl group at both ends of the first or second invention, wherein a mixed solvent of ethanol and water is used as a reaction solvent.
6). An acrylic acid compound having a hydroxyl group at both ends of the fifth invention, wherein the acrylic acid compound is represented by the formula (1), and an acrylic acid compound polymer having a hydroxyl group at both ends is represented by the following formula (3): Manufacturing method of coalescence. However, in the formula, R is the same as described above, and z represents an integer of 2 or more.
7.反応装置にスタティックミキサーを用いる、前記第1〜第6発明のいずれかの両末端に水酸基を有するアクリル酸化合物重合体の製造法。 7). The manufacturing method of the acrylic acid compound polymer which has a hydroxyl group in the both ends of either of the said 1st-6th invention using a static mixer for a reaction apparatus.
8.前記式(2)で表される両末端に水酸基を有するアクリル酸化合物重合体。但し、式中、R、x、yは前記と同様である。
9.前記式(3)で表される両末端に水酸基を有するアクリル酸化合物重合体。但し、式中、R、zは前記と同様である。
8). An acrylic acid compound polymer having hydroxyl groups at both ends represented by the formula (2). However, in the formula, R, x, and y are the same as described above.
9. An acrylic acid compound polymer having hydroxyl groups at both ends represented by the formula (3). However, in the formula, R and z are the same as described above.
本発明により、従来の分子両末端に水酸基を有するアクリル酸化合物重合体(両末端水酸基アクリル酸化合物重合体)の製造法が有する諸問題を解決して両末端水酸基アクリル酸化合物重合体を製造することができる。 According to the present invention, the problems of the conventional method for producing an acrylic acid compound polymer having hydroxyl groups at both ends of a molecule (both ends hydroxyl group acrylic acid compound polymer) are solved, and a both-end hydroxyl group acrylic acid compound polymer is produced. be able to.
即ち、本発明により、特別の反応試剤(連鎖移動剤、連結剤、有機金属触媒等)を用いることなく、重合体の物性を低下させる原子(硫黄原子、窒素原子等)を導入することなく、また、特別の環境対策を必要とすることなく、原料化合物のみが関与する反応により、両末端水酸基アクリル酸化合物重合体を簡便なプロセスで経済的に製造できる。更に、両末端の水酸基を調節して、末端水酸基が1級水酸基のみ或いは1級及び2級水酸基である両末端水酸基アクリル酸化合物重合体を容易に製造できるようになり、両末端の水酸基が1級のみ或いは1級及び2級である新規な両末端水酸基アクリル酸化合物重合体を提供することも可能になる。 That is, according to the present invention, without using a special reaction reagent (chain transfer agent, linking agent, organometallic catalyst, etc.), without introducing atoms (sulfur atom, nitrogen atom, etc.) that lower the physical properties of the polymer, In addition, the hydroxyl group acrylic acid compound polymer at both ends can be produced economically by a simple process by a reaction involving only the raw material compound without requiring special environmental measures. Furthermore, by adjusting the hydroxyl groups at both ends, it becomes possible to easily produce a hydroxyl polymer compound having both terminal hydroxyl groups in which the terminal hydroxyl groups are only primary hydroxyl groups or primary and secondary hydroxyl groups. It is also possible to provide a novel both-end hydroxyl group acrylic acid compound polymer that is only the first grade or the first and second grades.
以下、本発明を詳しく説明する。
本発明で使用されるアクリル酸化合物は前記式(1)で表され、前記式中、Rは置換基を有していてもよい炭化水素基又は水素原子を表す。アクリル酸化合物としては、アクリル酸エステルとアクリル酸が挙げられるが、その中では、Rが前者の炭化水素基であるアクリル酸エステルが好ましく、その炭化水素基が有していてもよい置換基は反応に関与しないものである。
Hereinafter, the present invention will be described in detail.
The acrylic acid compound used in the present invention is represented by the formula (1). In the formula, R represents a hydrocarbon group or a hydrogen atom which may have a substituent. Examples of acrylic acid compounds include acrylic acid esters and acrylic acid. Among them, acrylic acid esters in which R is the former hydrocarbon group are preferred, and the substituents that the hydrocarbon group may have are It is not involved in the reaction.
前記炭化水素基としては、炭素数1〜12(好ましくは1〜6)の直鎖又は分岐アルキル基、炭素数3〜10(好ましくは5〜8)のシクロアルキル基、炭素数7〜14(好ましくは7〜12)のアラルキル基、炭素数6〜14(好ましくは6〜10)のアリール基が挙げられ、これらは、反応に関与しない置換基(アルキル基、アリール基、ハロゲン原子、アルコキシ基、水酸基、アミノ基、エポキシ基等)を有していてもよく、また、反応に関与しないヘテロ原子(酸素原子等)を炭素鎖の内部に含んでいてもよい。 As said hydrocarbon group, a C1-C12 (preferably 1-6) linear or branched alkyl group, a C3-C10 (preferably 5-8) cycloalkyl group, C7-C14 ( Preferably, an aralkyl group having 7 to 12) and an aryl group having 6 to 14 carbon atoms (preferably 6 to 10 carbon atoms) are included, and these include a substituent that does not participate in the reaction (an alkyl group, an aryl group, a halogen atom, an alkoxy group). , A hydroxyl group, an amino group, an epoxy group, etc.), and a hetero atom (oxygen atom, etc.) that does not participate in the reaction may be included in the carbon chain.
前記アルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基等が挙げられ、それぞれ各異性体を含む。また、前記シクロアルキル基としては、シクロペンチル基、シクロへキシル基、シクロヘプチル基等が挙げられ、前記アラルキル基としては、ベンジル基、フェネチル基等が挙げられ、前記アリール基としては、フェニル基、トリル基等が挙げられる。 Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, and a dodecyl group, and each isomer is included. Examples of the cycloalkyl group include a cyclopentyl group, a cyclohexyl group, and a cycloheptyl group. Examples of the aralkyl group include a benzyl group and a phenethyl group. Examples of the aryl group include a phenyl group, And a tolyl group.
その他、反応に関与しない置換基を有する炭化水素基として、例えば、2−エチルヘキシル基、2−メトキシエチル基、3−メトキシブチル基、2−ヒドロキシエチル基、2−ヒドロキシプロピル基、2−アミノエチル基、グリシジル基や、
パーフルオロメチル基、トリフルオロメチルメチル基、ジパーフルオロメチルメチル基、2−パーフルオロメチル−2−パーフルオロエチルメチル基や、
2−パーフルオロエチル基、2−トリフルオロメチルエチル基、2−パーフルオロエチルエチル基、2−パーフルオロエチル−2−パーフルオロブチルエチル基、2−パーフルオロヘキシルエチル基、2−パーフルオロデシルエチル基、2−パーフルオロヘキサデシルエチル基等が挙げられる。
Other examples of the hydrocarbon group having a substituent that does not participate in the reaction include 2-ethylhexyl group, 2-methoxyethyl group, 3-methoxybutyl group, 2-hydroxyethyl group, 2-hydroxypropyl group, 2-aminoethyl. Groups, glycidyl groups,
Perfluoromethyl group, trifluoromethylmethyl group, diperfluoromethylmethyl group, 2-perfluoromethyl-2-perfluoroethylmethyl group,
2-perfluoroethyl group, 2-trifluoromethylethyl group, 2-perfluoroethylethyl group, 2-perfluoroethyl-2-perfluorobutylethyl group, 2-perfluorohexylethyl group, 2-perfluorodecyl Examples include an ethyl group and a 2-perfluorohexadecylethyl group.
アクリル酸エステルとして、具体的には、Rとして前記各炭化水素基を有するものなどが挙げられ、更にγ−(アクリロイルオキシプロピル)トリメトキシシランやアクリル酸のエチレンオキサイド付加物なども挙げることができる。これらアクリル酸エステルの中では、アクリル酸メチル、アクリル酸エチル、アクリル酸n−ブチルが好ましい。 Specific examples of the acrylate ester include those having each of the above-mentioned hydrocarbon groups as R, and also γ- (acryloyloxypropyl) trimethoxysilane and ethylene oxide adducts of acrylic acid. . Among these acrylate esters, methyl acrylate, ethyl acrylate, and n-butyl acrylate are preferable.
本発明で開始剤として使用されるOHラジカルは、OHラジカル発生剤を用いて発生させることができる。OHラジカル発生剤は、OHラジカル発生能を有する化合物(又は化合物系)であれば特に制限されないが、中でも過酸化水素を分解してOHラジカルを発生させる化合物系が好ましく挙げられる。このような化合物系には、例えば、第一鉄塩を用いるフェントン反応、電極上での電気分解反応、チタニア触媒上での分解反応などにおける汎用的化合物の組合せが挙げられ、その中では、簡便性及び経済性の面から、過酸化水素と第一鉄塩の系、特に過酸化水素と硫酸第一鉄の系が好ましい。 The OH radical used as an initiator in the present invention can be generated using an OH radical generator. The OH radical generator is not particularly limited as long as it is a compound (or compound system) having the ability to generate OH radicals. Among them, a compound system that decomposes hydrogen peroxide to generate OH radicals is preferable. Examples of such a compound system include a combination of general-purpose compounds in a Fenton reaction using a ferrous salt, an electrolysis reaction on an electrode, a decomposition reaction on a titania catalyst, and the like. From the viewpoints of safety and economy, a system of hydrogen peroxide and ferrous salt, particularly a system of hydrogen peroxide and ferrous sulfate is preferred.
ラジカル発生剤の量は、OHラジカルを発生させて反応を進行させることができる範囲であれば特に制限されないが、例えば、アクリル酸化合物に対して0.5〜500モル%、更には5〜200モル%の範囲であることが好ましい。また、過酸化水素と第一鉄塩の使用割合は、OHラジカルを発生させる通常の割合であればよく、例えば、第一鉄塩/過酸化水素がモル基準で0.5〜3.0、好ましくは1.0〜2.0程度であればよい。 The amount of the radical generator is not particularly limited as long as the reaction can proceed by generating OH radicals. For example, the amount is 0.5 to 500 mol%, more preferably 5 to 200 mol with respect to the acrylic acid compound. It is preferably in the range of mol%. Further, the use ratio of hydrogen peroxide and ferrous salt may be a normal ratio that generates OH radicals, for example, ferrous salt / hydrogen peroxide is 0.5 to 3.0 on a molar basis, Preferably, it may be about 1.0 to 2.0.
本発明では、両末端に水酸基を有するアクリル酸化合物重合体(両末端水酸基アクリル酸化合物重合体)は、前記アクリル酸化合物を、OHラジカルを開始剤として(前記OHラジカル発生剤を用いてOHラジカルを発生させて)ラジカル重合反応させることにより製造される。このとき、反応温度は−10〜80℃、更には0〜40℃の範囲であることが好ましい。また、反応溶媒を用いることが好ましく、その量はアクリル酸化合物に対して1〜200容量倍程度であればよい。 In the present invention, the acrylic acid compound polymer having hydroxyl groups at both ends (both end hydroxyl acrylic compound polymer) is obtained by using the acrylic acid compound as an initiator (using the OH radical generator as an OH radical). To produce a radical polymerization reaction. At this time, the reaction temperature is preferably −10 to 80 ° C., more preferably 0 to 40 ° C. Moreover, it is preferable to use a reaction solvent, and the amount may be about 1 to 200 times the volume of the acrylic acid compound.
前記反応溶媒としては、反応に不活性であってアクリル酸化合物及びOHラジカル発生剤を溶解して均一系を形成するものが好ましい。OHラジカル発生剤が過酸化水素と第一鉄塩の系である場合、反応溶媒は水と有機溶媒の混合溶媒であることが好ましく、その割合は反応に支障のない限り特に制限されない。この有機溶媒としては、例えば、メタノール、エタノール、イソプロパノール、t−ブタノール、アセトニトリル、テトラヒドロフラン、1,4−ジオキサン、アセトンなどが挙げられる。この中では、アセトニトリル−水の混合溶媒、エタノール−水の混合溶媒が好ましく挙げられる。 The reaction solvent is preferably one that is inert to the reaction and dissolves the acrylic acid compound and the OH radical generator to form a homogeneous system. When the OH radical generator is a system of hydrogen peroxide and ferrous salt, the reaction solvent is preferably a mixed solvent of water and an organic solvent, and the ratio is not particularly limited as long as the reaction is not hindered. Examples of the organic solvent include methanol, ethanol, isopropanol, t-butanol, acetonitrile, tetrahydrofuran, 1,4-dioxane, acetone and the like. In this, the mixed solvent of acetonitrile-water and the mixed solvent of ethanol-water are mentioned preferably.
前記ラジカル重合反応は、OHラジカル発生剤が過酸化水素と第一鉄塩の系である場合であれば、例えば、ラジカル発生剤の一成分(第一鉄塩)の水溶液と、ラジカル発生剤の他成分(過酸化水素)及びアクリル酸化合物及び前記反応溶媒の混合溶液とを接触混合することにより、或いは、第一鉄塩の水溶液と、過酸化水素及び前記反応溶媒の混合溶液と、アクリル酸化合物及び前記反応溶媒の混合溶液とを接触混合することにより行なうことができる。反応終了後、重合体は、デカンテーション、抽出、遠心分離等の操作を適宜行なうことにより反応混合物から分離される。 In the radical polymerization reaction, if the OH radical generator is a system of hydrogen peroxide and ferrous salt, for example, an aqueous solution of one component (ferrous salt) of the radical generator and a radical generator Contact mixture of other components (hydrogen peroxide) and an acrylic acid compound and the reaction solvent, or an aqueous solution of ferrous salt, a mixed solution of hydrogen peroxide and the reaction solvent, and acrylic acid It can be carried out by contact-mixing a compound and a mixed solution of the reaction solvent. After completion of the reaction, the polymer is separated from the reaction mixture by appropriately performing operations such as decantation, extraction, and centrifugation.
反応装置としては、両末端水酸基アクリル酸化合物重合体以外の重合体(特に分岐重合体)の生成を10重量以下に抑制できるようにラジカル重合反応(上記両液の接触混合)を短時間で行なうことができるものが好ましく、例えば、スタティックミキサーが好適に挙げられる。スタティックミキサーは市販のものを用いることができ、前記両液を供給してエレメント挿入部で効率よく接触混合できるものであればよい。反応時間(滞留時間)、両液の供給速度、エレメント挿入部の内径及び長さ、エレメントの種類(又は形状)及び数などは、分岐重合体等の生成を前記のように抑えて目的物を効率よく生成させるように適宜調節される。例えば、反応温度が室温なら滞留時間は0.1秒〜10秒程度であればよい。 As a reaction apparatus, a radical polymerization reaction (contact mixing of the above two liquids) is performed in a short time so that the production of a polymer (particularly a branched polymer) other than the both-end hydroxyl group acrylic acid compound polymer can be suppressed to 10 wt. What can be performed is preferable, for example, a static mixer is mentioned suitably. As the static mixer, a commercially available one can be used as long as it can supply both the liquids and efficiently contact and mix at the element insertion portion. The reaction time (residence time), the supply speed of both liquids, the inner diameter and length of the element insertion part, the type (or shape) and number of elements, etc., suppress the formation of branched polymers and the like as described above. It adjusts suitably so that it may produce | generate efficiently. For example, if the reaction temperature is room temperature, the residence time may be about 0.1 seconds to 10 seconds.
両末端水酸基アクリル酸化合物重合体は以上のようにして製造されるが、この重合体の両末端の水酸基はいずれも1級水酸基であるか、或いは、一方が1級水酸基で他方が2級水酸基である。また、数平均分子量(GPCによる;ポリスチレン換算)は好ましくは200〜10000、更に好ましくは300〜10000、特に好ましくは500〜5000である。数平均分子量が200を切るとアクリル酸化合物重合体本来の特性が発現されにくくなり、10000を超えるとハンドリングが困難になる。重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn;分子量分布)は1〜10、更には1〜5、特に1〜3の範囲であることが好ましい。 The both-end hydroxyl group acrylic acid compound polymer is produced as described above. The hydroxyl groups at both ends of this polymer are either primary hydroxyl groups, or one is a primary hydroxyl group and the other is a secondary hydroxyl group. It is. The number average molecular weight (by GPC; polystyrene conversion) is preferably 200 to 10,000, more preferably 300 to 10,000, and particularly preferably 500 to 5,000. When the number average molecular weight is less than 200, the original characteristics of the acrylic acid compound polymer are hardly expressed, and when it exceeds 10,000, handling becomes difficult. The ratio (M w / M n ; molecular weight distribution) of the weight average molecular weight (M w ) to the number average molecular weight (M n ) is preferably 1 to 10, more preferably 1 to 5, and particularly preferably 1 to 3.
両末端の水酸基は反応溶媒を選択することにより前記のように調節されて、対応する重合体をそれぞれ得ることができる。例えば、両末端水酸基がいずれも1級である重合体は前記式(2)で表され、好ましくはアセトニトリル−水の混合溶媒を反応溶媒に用いることにより得ることができ、両末端水酸基が1級及び2級(一方が1級で他方が2級)である重合体は前記式(3)で表され、好ましくはエタノール−水の混合溶媒を反応溶媒に用いることにより得られる。 The hydroxyl groups at both ends are adjusted as described above by selecting the reaction solvent, and the corresponding polymers can be obtained. For example, a polymer in which both terminal hydroxyl groups are primary is represented by the above formula (2), and preferably can be obtained by using a mixed solvent of acetonitrile and water as a reaction solvent. And a polymer that is secondary (one is primary and the other is secondary) is represented by the formula (3), and is preferably obtained by using a mixed solvent of ethanol and water as a reaction solvent.
なお、前記式(2)で表される両末端水酸基アクリル酸化合物重合体において、x、yは括弧内の構造単位の繰り返し数をそれぞれ表す1以上の正の整数であり、x+yの範囲を満たす限りその大小に特に制限はない。ここで、x+yは、2以上(好ましくは2以上100以下)の整数であり、数平均分子量に関連付けられる。また、前記式(3)で表される両末端水酸基アクリル酸化合物重合体において、zは括弧内の構造単位の繰り返し数を表す1以上の正の整数(好ましくは1以上100以下)であり、数平均分子量に関連付けられる。 In the both-end hydroxyl group acrylic acid compound polymer represented by the formula (2), x and y are each a positive integer of 1 or more representing the number of repeating structural units in parentheses, and satisfy the range of x + y. As long as the size is not limited. Here, x + y is an integer of 2 or more (preferably 2 or more and 100 or less) and is related to the number average molecular weight. Moreover, in the both-end hydroxyl group acrylic acid compound polymer represented by the formula (3), z is a positive integer of 1 or more (preferably 1 or more and 100 or less) representing the number of repeating structural units in parentheses. It is related to the number average molecular weight.
次に、実施例を挙げて本発明を具体的に説明する。なお、重合体の収率は仕込みモノマーに対して求め(重量基準)、その他の評価は以下のように行なった。 Next, the present invention will be specifically described with reference to examples. The polymer yield was determined with respect to the charged monomer (weight basis), and other evaluations were performed as follows.
1)分子構造:1H−NMR及び13C−NMRスペクトルにより同定した。1H−NMR及び13C−NMRは以下の条件で測定した。
・装置:JNMAL400(JEOL)
・溶媒:ジメチルスルホキシド−d(テトラメチルシラン入り)
・温度:室温
1) Molecular structure: Identified by 1 H-NMR and 13 C-NMR spectra. 1 H-NMR and 13 C-NMR were measured under the following conditions.
・ Device: JNMAL400 (JEOL)
・ Solvent: Dimethyl sulfoxide-d (with tetramethylsilane)
・ Temperature: Room temperature
2)末端水酸基:J.Am.Chem.Soc.,88,1323(1966)に基づいて帰属した19F−NMRスペクトルから、末端水酸基の級数を判別した。19F−NMRは以下の条件で測定した。
・装置:JNMAL400(JEOL)
・溶媒:アセトン−d
・基準物質:トリフルオロ酢酸
・温度:室温
2) Terminal hydroxyl group: Am. Chem. Soc. , 88, 1323 (1966), the series of terminal hydroxyl groups was determined from the 19 F-NMR spectrum assigned. 19 F-NMR was measured under the following conditions.
・ Device: JNMAL400 (JEOL)
Solvent: acetone-d
-Reference material: trifluoroacetic acid-Temperature: room temperature
3)平均分子量:GPCにより標準ポリスチレン換算法で測定した。また、カラムを変更して標準ポリ−n−ブチルアクリレート換算法でも測定した。
・装置:LC−10AVP(Shimadzu)
・カラム:KF−805L(Shodex)×2本(標準ポリスチレン換算法)、KF−803L(Shodex)×2本(標準ポリ−n−ブチルアクリレート換算法)
・溶媒:テトラヒドロフラン(流速1.0ml/min)
・試料濃度:0.2重量%
・温度:40℃
・検出器:示差屈折計
3) Average molecular weight: measured by standard polystyrene conversion method by GPC. Moreover, it changed also by the column and changed also with the standard poly-n-butylacrylate conversion method.
・ Device: LC-10AVP (Shimadzu)
Column: KF-805L (Shodex) x 2 (standard polystyrene conversion method), KF-803L (Shodex) x 2 (standard poly-n-butyl acrylate conversion method)
Solvent: tetrahydrofuran (flow rate 1.0 ml / min)
Sample concentration: 0.2% by weight
・ Temperature: 40 ℃
・ Detector: Differential refractometer
4)分子量:TOF−MSにより以下の条件で測定した。
・装置:T−100LC(JEOL)
・イオン源:APCI
4) Molecular weight: Measured by TOF-MS under the following conditions.
・ Device: T-100LC (JEOL)
・ Ion source: APCI
〔実施例1〕<アクリル酸エチル/エタノール−水系>
300mL容フラスコに硫酸第一鉄七水和物13.9g(0.0500mol)を入れ、これに水200mLを加えて水溶液(A液)を調製し、もう一つの300mL容フラスコに、31.6重量%過酸化水素水5.40g(0.0502mol)、水125mL、エタノール75mL、アクリル酸エチル5.07g(0.0506mol)を順次加えて混合液(B液)を調製した。次いで、チュービングポンプ(内径4mm、長さ700mmのチューブ2本を備える)により、室温下、A液とB液を両液の合流部に取り付けたスタティックミキサー(直径4mm、長さ50mm、エレメント12個)にそれぞれのフラスコから流速40mL/minで同時に流してミキサー内で混合(重合反応)させた。
[Example 1] <Ethyl acrylate / ethanol-water system>
1300 g (0.0500 mol) of ferrous sulfate heptahydrate was placed in a 300 mL flask, and 200 mL of water was added thereto to prepare an aqueous solution (solution A). In another 300 mL flask, 31.6 g A liquid mixture (Liquid B) was prepared by sequentially adding 5.40 g (0.0502 mol) of a weight% hydrogen peroxide solution, 125 mL of water, 75 mL of ethanol, and 5.07 g (0.0506 mol) of ethyl acrylate. Next, a static mixer (4 mm in diameter, 50 mm in length, 12 elements) in which A liquid and B liquid were attached to the confluence of both liquids at room temperature by a tubing pump (equipped with 2 tubes with an inner diameter of 4 mm and a length of 700 mm) ) Were simultaneously flown from each flask at a flow rate of 40 mL / min and mixed (polymerization reaction) in a mixer.
反応後、得られた褐色懸濁液中の固形物を濾過して濾液を濃縮し、濃縮物に水を加えて油状物を洗浄した。水洗後の油状物にエタノールを加えて溶解し、濃縮と水洗を2回繰り返して油状物を単離し、単離後の油状物を60℃で15時間減圧乾燥して淡黄色粘性液体(重合体)2.95gを得た。重合体の収率は58%、数平均分子量はポリスチレン換算で727(分子量分布2.6)、ポリ−n−ブチルアクリレート換算で604(分子量分布3.0)であった。また、後述(実施例4)のように各種測定を行なったところ(測定結果を図1〜5に示す)、この重合体は、一方の末端水酸基が1級水酸基で他方の末端水酸基が2級水酸基である前記式(3)で表される構造を有していた(但し、R=C2H5、z=5)。 After the reaction, the solid in the obtained brown suspension was filtered, the filtrate was concentrated, and water was added to the concentrate to wash the oil. Ethanol is added to dissolve the oily substance after washing, and the oily substance is isolated by repeating concentration and washing twice, and the oily substance after isolation is dried under reduced pressure at 60 ° C. for 15 hours to give a pale yellow viscous liquid (polymer). ) 2.95 g was obtained. The polymer yield was 58%, the number average molecular weight was 727 (molecular weight distribution 2.6) in terms of polystyrene, and 604 (molecular weight distribution 3.0) in terms of poly-n-butyl acrylate. Moreover, when various measurements were performed as described later (Example 4) (measurement results are shown in FIGS. 1 to 5), this polymer has one terminal hydroxyl group and the other terminal hydroxyl group is secondary. It had a structure represented by the above formula (3) which is a hydroxyl group (provided that R = C 2 H 5 , z = 5).
〔実施例2〕<アクリル酸エチル/アセトニトリル−水系>
100mL容フラスコに硫酸第一鉄七水和物5.58g(0.0201mol)を入れ、これに水80mLを加えて水溶液(A液)を調製し、もう一つの100mL容フラスコに、30.8重量%過酸化水素水2.20g(0.0204mol)、アセトニトリル80mL、アクリル酸エチル2.08g(0.0208mol)を順次加えて混合液(B液)を調製した。次いで、実施例1と同様にA液とB液を同時に流してミキサー内で混合(重合反応)させた。
[Example 2] <Ethyl acrylate / acetonitrile-water system>
Into a 100 mL flask, 5.58 g (0.0201 mol) of ferrous sulfate heptahydrate was added, and 80 mL of water was added thereto to prepare an aqueous solution (solution A). In another 100 mL flask, 30.8 A liquid mixture (Liquid B) was prepared by sequentially adding 2.20 g (0.0204 mol) of a weight% hydrogen peroxide solution, 80 mL of acetonitrile, and 2.08 g (0.0208 mol) of ethyl acrylate. Next, the liquid A and the liquid B were simultaneously flown in the same manner as in Example 1 and mixed (polymerization reaction) in a mixer.
反応後、実施例1と同様に操作して淡黄色粘性液体(重合体)0.941gを得た。重合体の収率は45%、数平均分子量はポリスチレン換算で529(分子量分布2.1)、ポリ−n−ブチルアクリレート換算で655(分子量分布1.7)であった。また、後述のように各種測定を行なったところ、この重合体は、両方の末端水酸基が1級水酸基である前記式(2)で表される構造を有していた(但し、R=C2H5、x+y=5)。 After the reaction, the same operation as in Example 1 was performed to obtain 0.941 g of a pale yellow viscous liquid (polymer). The yield of the polymer was 45%, the number average molecular weight was 529 (molecular weight distribution 2.1) in terms of polystyrene, and 655 (molecular weight distribution 1.7) in terms of poly-n-butyl acrylate. Further, when various measurements were performed as described later, this polymer had a structure represented by the above formula (2) in which both terminal hydroxyl groups were primary hydroxyl groups (provided that R = C 2 H 5, x + y = 5 ).
〔実施例3〕<アクリル酸n−ブチル/エタノール−水系>
500mL容フラスコに硫酸第一鉄七水和物55.6g(0.2001mol)を入れ、これに水370mLを加えて水溶液(A液)を調製し、もう一つの500mL容フラスコに、31.6重量%過酸化水素水22.0g(0.204mol)、エタノール349mL、アクリル酸n−ブチル25.6g(0.200mol)を順次加えて混合液(B液)を調製した。次いで、実施例1と同様にA液とB液を同時に流してミキサー内で混合(重合反応)させた。
[Example 3] <N-butyl acrylate / ethanol-water system>
In a 500 mL flask, 55.6 g (0.2001 mol) of ferrous sulfate heptahydrate was added, and 370 mL of water was added thereto to prepare an aqueous solution (solution A). In another 500 mL flask, 31.6 g A mixed solution (liquid B) was prepared by sequentially adding 22.0 g (0.204 mol) of a weight% hydrogen peroxide solution, 349 mL of ethanol, and 25.6 g (0.200 mol) of n-butyl acrylate. Next, the liquid A and the liquid B were simultaneously flown in the same manner as in Example 1 and mixed (polymerization reaction) in a mixer.
反応後、実施例1と同様に操作して淡黄色粘性液体(重合体)8.52gを得た。重合体の収率は33%、数平均分子量はポリスチレン換算で720(分子量分布2.3)であった。また、後述のように各種測定を行なったところ、この重合体は、一方の末端水酸基が1級水酸基で他方の末端水酸基が2級水酸基である前記式(3)で表される構造を有していた(但し、R=C4H9、z=6)。 After the reaction, the same operation as in Example 1 was carried out to obtain 8.52 g of a pale yellow viscous liquid (polymer). The polymer yield was 33% and the number average molecular weight was 720 (molecular weight distribution 2.3) in terms of polystyrene. When various measurements were performed as described later, this polymer had a structure represented by the above formula (3) in which one terminal hydroxyl group was a primary hydroxyl group and the other terminal hydroxyl group was a secondary hydroxyl group. (However, R = C 4 H 9 , z = 6).
〔実施例4〕<アクリル酸n−ブチル/アセトニトリル−水系>
5L容ガラス瓶に硫酸第一鉄七水和物348g(1.25mol)を入れ、これに水4.8Lを加えて水溶液(A液)を調製し、もう一つの5L容ガラス瓶に、34.2重量%過酸化水素水62.2g(0.625mol)、アセトニトリル4.6L、アクリル酸n−ブチル321g(2.50mol)を順次加えて混合液(B液)を調製した。次いで、実施例1と同様にA液とB液を同時に流してミキサー内で混合(重合反応)させた。
Example 4 <N-butyl acrylate / acetonitrile-water system>
348 g (1.25 mol) of ferrous sulfate heptahydrate was placed in a 5 L glass bottle, and 4.8 L of water was added thereto to prepare an aqueous solution (solution A). In another 5 L glass bottle, 34.2 A liquid mixture (liquid B) was prepared by sequentially adding 62.2 g (0.625 mol) of a weight% hydrogen peroxide solution, 4.6 L of acetonitrile, and 321 g (2.50 mol) of n-butyl acrylate. Next, the liquid A and the liquid B were simultaneously flown in the same manner as in Example 1 and mixed (polymerization reaction) in a mixer.
反応後、実施例1と同様に操作して淡黄色粘性液体(重合体)37.1gを得た。重合体の収率は12%、数平均分子量はポリスチレン換算で740(分子量分布1.7)、ポリ−n−ブチルアクリレート換算で727(分子量分布1.7)であった。また、1H−NMR、13C−NMR、13C−NMR(DEPT135°)、19F−NMR、GPC、TOF−MSの測定結果を図6〜11に示す。なお、19F−NMRは、得られた重合体を次のように末端トリフルオロ酢酸エステル化して測定した。その結果、この重合体は、両末端の水酸基が1級水酸基である前記式(2)で表される構造を有していた(但し、R=C4H9、x+y=6)。 After the reaction, the same operation as in Example 1 was performed to obtain 37.1 g of a pale yellow viscous liquid (polymer). The polymer yield was 12%, the number average molecular weight was 740 (molecular weight distribution 1.7) in terms of polystyrene, and 727 (molecular weight distribution 1.7) in terms of poly-n-butyl acrylate. Also shown 1 H-NMR, 13 C- NMR, 13 C-NMR (DEPT135 °), 19 F-NMR, GPC, the measurement results of the TOF-MS in FIG. 6-11. In addition, 19 F-NMR was measured by converting the obtained polymer into a terminal trifluoroacetic acid ester as follows. As a result, this polymer had a structure represented by the above formula (2) in which the hydroxyl groups at both ends are primary hydroxyl groups (provided that R = C 4 H 9 , x + y = 6).
<末端トリフルオロ酢酸エステル化>
滴下ロートを備えた50mL容フラスコに、前記重合体0.500g(2量体基準で0.00172mol)とジクロロメタン20mLを入れて撹拌混合した。次いで、滴下ロートからトリフルオロ酢酸無水物2.40g(0.0114mol)を室温下でゆっくり滴下し、同温度で15時間撹拌した。反応終了後、溶媒を留去して60℃下で15時間減圧乾燥し、淡黄色粘性液体0.556gを得た。この淡黄色粘性液体を19F−NMR測定に供した。
<Terminal trifluoroacetate esterification>
In a 50 mL flask equipped with a dropping funnel, 0.500 g of the polymer (0.00172 mol based on the dimer) and 20 mL of dichloromethane were stirred and mixed. Next, 2.40 g (0.0114 mol) of trifluoroacetic anhydride was slowly dropped from the dropping funnel at room temperature, and the mixture was stirred at the same temperature for 15 hours. After completion of the reaction, the solvent was distilled off and dried under reduced pressure at 60 ° C. for 15 hours to obtain 0.556 g of a pale yellow viscous liquid. This pale yellow viscous liquid was subjected to 19 F-NMR measurement.
〔実施例5〕<アクリル酸n−ブチル/アセトニトリル−水系>
500mL容フラスコに硫酸第一鉄七水和物16.7g(0.0601mol)を入れ、これに水295mLを加えて水溶液(A液)を調製し、もう一つの500mL容フラスコに、34.2重量%過酸化水素水5.00g(0.0503mol)、水144mL、アセトニトリル150mLを順次加えて混合液(B液)を調製し、更にもう一つの500mL容フラスコに、アクリル酸n−ブチル25.6g(0.200mol)とアセトニトリル271mlを加えて混合液(C液)を調製した。次いで、チュービングポンプ(内径4mm、長さ700mmのチューブ3本を備える)により、室温下、A液、B液、C液を3液の合流部に取り付けたスタティックミキサー(直径4mm、長さ50mm、エレメント12個)にそれぞれのフラスコから流速40mL/minで同時に流してミキサー内で混合(重合反応)させた。
[Example 5] <N-butyl acrylate / acetonitrile-water system>
16.7 g (0.0601 mol) of ferrous sulfate heptahydrate was placed in a 500 mL flask, and 295 mL of water was added thereto to prepare an aqueous solution (solution A). In another 500 mL flask, 34.2 A mixed solution (solution B) was prepared by sequentially adding 5.00 g (0.0503 mol) of a weight% hydrogen peroxide solution, 144 mL of water, and 150 mL of acetonitrile. Further, n-butyl acrylate was added to another 500 mL flask. 6 g (0.200 mol) and 271 ml of acetonitrile were added to prepare a mixed solution (solution C). Next, a static mixer (diameter: 4 mm, length: 50 mm, length: 4 mm, length: 50 mm, with three tubes of A liquid, B liquid, and C liquid at room temperature by a tubing pump (equipped with 3 tubes with an inner diameter of 4 mm and a length of 700 mm). 12 elements) were simultaneously flowed from each flask at a flow rate of 40 mL / min and mixed (polymerization reaction) in a mixer.
反応後、実施例1と同様に操作して淡黄色粘性液体(重合体)2.78gを得た。重合体の収率は11%、数平均分子量はポリスチレン換算で611(分子量分布1.7)であった。また、前述のように各種測定を行なったところ、この重合体は、両方の末端水酸基が1級水酸基である前記式(2)で表される構造を有していた(但し、R=C4H9、x+y=5)。 After the reaction, the same operation as in Example 1 was performed to obtain 2.78 g of a pale yellow viscous liquid (polymer). The yield of the polymer was 11%, and the number average molecular weight was 611 (molecular weight distribution 1.7) in terms of polystyrene. Further, when various measurements were performed as described above, this polymer had a structure represented by the above formula (2) in which both terminal hydroxyl groups were primary hydroxyl groups (provided that R = C 4 H 9, x + y = 5 ).
〔実施例6〕<アクリル酸n−ブチル/アセトニトリル−水系>
5L容フラスコに硫酸第一鉄七水和物55.6g(0.200mol)を入れ、これに水2Lを加えて水溶液(A液)を調製し、もう一つの5L容フラスコに、30.9重量%過酸化水素水22.1g(0.201mol)、アセトニトリル1.95L、アクリル酸n−ブチル25.6g(0.200mol)を順次加えて混合液(B液)を調製した。次いで、チュービングポンプ(内径4mm、長さ1.4mのチューブ2本を備える)により、室温下、A液とB液を両液の合流部に取り付けたスタティックミキサー(直径4mm、長さ50mm、エレメント12個)にそれぞれのフラスコから流速100mL/minで同時に流してミキサー内で混合(重合反応)させ、n−ヘキサン4L張った10L容ビーカーに反応液を落下させた。反応後、得られた褐色懸濁液中に食塩400gを導入し、アセトニトリル相を分液した。分液後、モノマーがなくなるまでn−ヘキサン洗浄を繰り返し、その後ジエチルエーテルで抽出、硫酸マグネシウムで乾燥を施し、溶媒を留去して淡黄色粘性液体(重合体)10.4gを得た。この時の転化率は50%、重合体の収率は41%であった。なお、転化率はミキサーの出口部から混合液22gを採取し、仕込みモノマー濃度(0.05mol/l=0.71wt%)と反応後のモノマー濃度(GC内部標準検量線法から算出)との比から求めた。得られた重合体の数平均分子量はポリスチレン換算で527(分子量分布2.3)、GPCカラムをShodex:KF−402.5HQ×2本に変更後、ポリ−n−ブチルアクリレート換算で678(分子量分布1.4)であった。この重合体は、両方の末端水酸基が1級水酸基である前記式(2)で表される構造を有していた(但し、R=C4H9、x+y=5)。
[Example 6] <n-butyl acrylate / acetonitrile-water system>
A 5 L flask was charged with 55.6 g (0.200 mol) of ferrous sulfate heptahydrate, and 2 L of water was added thereto to prepare an aqueous solution (solution A). In another 5 L flask, 30.9 g A liquid mixture (Liquid B) was prepared by sequentially adding 22.1 g (0.201 mol) by weight of hydrogen peroxide, 1.95 L of acetonitrile, and 25.6 g (0.200 mol) of n-butyl acrylate. Next, a static mixer (4 mm in diameter, 50 mm in length, element, in which liquid A and liquid B were attached to the junction of both liquids at room temperature by a tubing pump (equipped with 2 tubes with an inner diameter of 4 mm and a length of 1.4 m). 12) were simultaneously flown from each flask at a flow rate of 100 mL / min and mixed in a mixer (polymerization reaction), and the reaction solution was dropped into a 10 L beaker filled with 4 L of n-hexane. After the reaction, 400 g of sodium chloride was introduced into the obtained brown suspension, and the acetonitrile phase was separated. After separation, n-hexane washing was repeated until no monomer was present, followed by extraction with diethyl ether and drying with magnesium sulfate. The solvent was distilled off to obtain 10.4 g of a pale yellow viscous liquid (polymer). The conversion rate at this time was 50%, and the yield of the polymer was 41%. In addition, 22 g of liquid mixture is extract | collected from the exit part of a mixer, and the conversion rate is the monomer density | concentration (0.05 mol / l = 0.71 wt%) with the monomer density | concentration (calculated from GC internal standard calibration curve method) after reaction. It was calculated from the ratio. The number average molecular weight of the obtained polymer was 527 (molecular weight distribution 2.3) in terms of polystyrene, and after changing the GPC column to Shodex: KF-402.5HQ × 2, it was 678 (molecular weight in terms of poly-n-butyl acrylate). Distribution 1.4). This polymer had a structure represented by the above formula (2) in which both terminal hydroxyl groups were primary hydroxyl groups (provided that R = C 4 H 9 , x + y = 5).
〔実施例7〕<アクリル酸n−ブチル/アセトニトリル−水系>
流速200mL/min以外は実施例6と同様に混合、後処理操作を行い、淡黄色粘性液体(重合体)10.1gを得た。この時の転化率は52%、重合体の収率は39%であった。得られた重合体の数平均分子量はポリスチレン換算で505(分子量分布1.8)、GPCカラムをShodex:KF−402.5HQ×2本に変更後、ポリ−n−ブチルアクリレート換算で645(分子量分布1.3)であった。この重合体は、両方の末端水酸基が1級水酸基である前記式(2)で表される構造を有していた(但し、R=C4H9、x+y=5)。
[Example 7] <N-butyl acrylate / acetonitrile-water system>
Except for the flow rate of 200 mL / min, mixing and post-treatment operations were performed in the same manner as in Example 6 to obtain 10.1 g of a pale yellow viscous liquid (polymer). The conversion rate at this time was 52%, and the yield of the polymer was 39%. The number average molecular weight of the obtained polymer was 505 (molecular weight distribution 1.8) in terms of polystyrene, and after changing the GPC column to Shodex: KF-402.5HQ × 2, it was 645 (molecular weight in terms of poly-n-butyl acrylate). Distribution 1.3). This polymer had a structure represented by the above formula (2) in which both terminal hydroxyl groups were primary hydroxyl groups (provided that R = C 4 H 9 , x + y = 5).
〔実施例8〕<アクリル酸n−ブチル/アセトニトリル−水系>
5L容フラスコに硫酸第一鉄七水和物11.1g(0.0400mol)を入れ、これに水2Lを加えて水溶液(A液)を調製し、もう一つの5L容フラスコに、30.9重量%過酸化水素水4.41g(0.0401mol)、アセトニトリル1.99L、アクリル酸n−ブチル5.13g(0.0400mol)を順次加えて混合液(B液)を調製した。次いで、チュービングポンプ(内径4mm、長さ1.4mのチューブ2本を備える)により、室温下、A液とB液を両液の合流部に取り付けたスタティックミキサー(直径4mm、長さ50mm、エレメント12個)にそれぞれのフラスコから流速200mL/minで同時に流してミキサー内で混合(重合反応)させ、n−ヘキサン4L張った10L容ビーカーに反応液を落下させた。反応後、得られた褐色懸濁液中に食塩400gを導入し、アセトニトリル相を分液した。分液後、モノマーがなくなるまでn−ヘキサン洗浄を繰り返し、その後ジエチルエーテルで抽出、硫酸マグネシウムで乾燥を施し、溶媒を留去して淡黄色粘性液体(重合体)0.72gを得た。この時の転化率は30%、重合体の収率は14%であった。なお、転化率はミキサーの出口部から混合液25gを採取し、仕込みモノマー濃度(0.01mol/l=0.14wt%)と反応後のモノマー濃度(GC内部標準検量線法から算出)との比から求めた。得られた重合体の数平均分子量はポリスチレン換算で277(分子量分布1.8)、GPCカラムをShodex:KF−402.5HQ×2本に変更後、ポリ−n−ブチルアクリレート換算で412(分子量分布1.3)であった。この重合体は、両方の末端水酸基が1級水酸基である前記式(2)で表される構造を有していた(但し、R=C4H9、x+y=3)。
[Example 8] <N-butyl acrylate / acetonitrile-water system>
11.1 g (0.0400 mol) of ferrous sulfate heptahydrate was placed in a 5 L flask, and 2 L of water was added thereto to prepare an aqueous solution (solution A). A liquid mixture (Liquid B) was prepared by sequentially adding 4.41 g (0.0401 mol) of a weight% hydrogen peroxide solution, 1.99 L of acetonitrile, and 5.13 g (0.0400 mol) of n-butyl acrylate. Next, a static mixer (4 mm in diameter, 50 mm in length, element, in which liquid A and liquid B were attached to the junction of both liquids at room temperature by a tubing pump (equipped with 2 tubes with an inner diameter of 4 mm and a length of 1.4 m). 12) were simultaneously flown from each flask at a flow rate of 200 mL / min and mixed in a mixer (polymerization reaction), and the reaction solution was dropped into a 10 L beaker filled with 4 L of n-hexane. After the reaction, 400 g of sodium chloride was introduced into the obtained brown suspension, and the acetonitrile phase was separated. After separation, n-hexane washing was repeated until no monomer was present, followed by extraction with diethyl ether and drying with magnesium sulfate, and the solvent was distilled off to obtain 0.72 g of a pale yellow viscous liquid (polymer). The conversion rate at this time was 30%, and the yield of the polymer was 14%. In addition, 25 g of liquid mixture was extract | collected from the exit part of a mixer, and the conversion rate was prepared monomer concentration (0.01 mol / l = 0.14 wt%) and monomer concentration after reaction (calculated from GC internal standard calibration curve method). It was calculated from the ratio. The number average molecular weight of the obtained polymer was 277 (molecular weight distribution 1.8) in terms of polystyrene, and after changing the GPC column to Shodex: KF-402.5HQ × 2, 412 (molecular weight in terms of poly-n-butyl acrylate) Distribution 1.3). This polymer had a structure represented by the above formula (2) in which both terminal hydroxyl groups are primary hydroxyl groups (provided that R = C 4 H 9 , x + y = 3).
〔実施例9〕<アクリル酸n−ブチル/アセトニトリル−水系>
5L容フラスコに硫酸第一鉄七水和物55.6g(0.200mol)を入れ、これに水2Lを加えて水溶液(A液)を調製し、もう一つの5L容フラスコに、30.9重量%過酸化水素水22.1g(0.201mol)、アセトニトリル0.95L、水1L、アクリル酸n−ブチル25.6g(0.200mol)を順次加えて混合液(B液)を調製した。次いで、チュービングポンプ(内径4mm、長さ1.4mのチューブ2本を備える)により、室温下、A液とB液を両液の合流部に取り付けたスタティックミキサー(直径4mm、長さ50mm、エレメント12個)にそれぞれのフラスコから流速200mL/minで同時に流してミキサー内で混合(重合反応)させ、n−ヘキサン4L張った10L容ビーカーに反応液を落下させた。反応後、得られた褐色懸濁液中に食塩600g、アセトニトリル1Lを導入し、アセトニトリル相を分液した。分液後、モノマーがなくなるまでn−ヘキサン洗浄を繰り返し、その後ジエチルエーテルで抽出、硫酸マグネシウムで乾燥を施し、溶媒を留去して淡黄色粘性液体(重合体)15.2gを得た。この時の転化率は66%、重合体の収率は59%であった。なお、転化率はミキサーの出口部から混合液24gを採取し、仕込みモノマー濃度(0.05mol/l=0.67wt%)と反応後のモノマー濃度(GC内部標準検量線法から算出)との比から求めた。得られた重合体の数平均分子量はポリスチレン換算で689(分子量分布9.0)、GPCカラムをShodex:KF−402.5HQ×2本に変更後、ポリ−n−ブチルアクリレート換算で801(分子量分布2.1)であった。この重合体は、両方の末端水酸基が1級水酸基である前記式(2)で表される構造を有していた(但し、R=C4H9、x+y=6)。
[Example 9] <N-butyl acrylate / acetonitrile-water system>
A 5 L flask was charged with 55.6 g (0.200 mol) of ferrous sulfate heptahydrate, and 2 L of water was added thereto to prepare an aqueous solution (solution A). In another 5 L flask, 30.9 g A liquid mixture (liquid B) was prepared by sequentially adding 22.1 g (0.201 mol) by weight of hydrogen peroxide, 0.95 L of acetonitrile, 1 L of water, and 25.6 g (0.200 mol) of n-butyl acrylate. Next, a static mixer (4 mm in diameter, 50 mm in length, element, in which liquid A and liquid B were attached to the junction of both liquids at room temperature by a tubing pump (equipped with 2 tubes with an inner diameter of 4 mm and a length of 1.4 m). 12) were simultaneously flown from each flask at a flow rate of 200 mL / min and mixed in a mixer (polymerization reaction), and the reaction solution was dropped into a 10 L beaker filled with 4 L of n-hexane. After the reaction, 600 g of sodium chloride and 1 L of acetonitrile were introduced into the resulting brown suspension, and the acetonitrile phase was separated. After liquid separation, washing with n-hexane was repeated until the monomer disappeared, followed by extraction with diethyl ether and drying with magnesium sulfate, and the solvent was distilled off to obtain 15.2 g of a pale yellow viscous liquid (polymer). The conversion rate at this time was 66%, and the yield of the polymer was 59%. In addition, 24 g of liquid mixture was extract | collected from the exit part of a mixer, and the conversion rate was prepared monomer concentration (0.05 mol / l = 0.67 wt%) and the monomer concentration after reaction (calculated from GC internal standard calibration curve method). It was calculated from the ratio. The number average molecular weight of the obtained polymer was 689 (molecular weight distribution 9.0) in terms of polystyrene, and after changing the GPC column to Shodex: KF-402.5HQ × 2, it was 801 (molecular weight in terms of poly-n-butyl acrylate). Distribution 2.1). This polymer had a structure represented by the formula (2) in which both terminal hydroxyl groups were primary hydroxyl groups (provided that R = C 4 H 9 , x + y = 6).
〔実施例10〕<アクリル酸n−ブチル/アセトニトリル−水系>
n−ヘキサン3.4L張った10L容ビーカーに、飽和炭酸水素ナトリウム水溶液600mLを加えてここへ反応液を落下させた以外は、実施例9と同様に行い、淡黄色粘性液体(重合体)14.5gを得た。この時の転化率は69%、重合体の収率は57%であった。得られた重合体の数平均分子量はポリスチレン換算で744(分子量分布18.7)、GPCカラムをShodex:KF−402.5HQ×2本に変更後、ポリ−n−ブチルアクリレート換算で934(分子量分布3.5)であった。この重合体は、両方の末端水酸基が1級水酸基である前記式(2)で表される構造を有していた(但し、R=C4H9、x+y=7)。
[Example 10] <N-butyl acrylate / acetonitrile-water system>
A pale yellow viscous liquid (polymer) 14 was prepared in the same manner as in Example 9 except that 600 mL of a saturated aqueous sodium hydrogen carbonate solution was added to a 10 L beaker filled with 3.4 L of n-hexane and the reaction solution was dropped here. .5 g was obtained. The conversion rate at this time was 69%, and the yield of the polymer was 57%. The number average molecular weight of the obtained polymer was 744 (molecular weight distribution 18.7) in terms of polystyrene, 934 (molecular weight in terms of poly-n-butyl acrylate) after changing the GPC column to Shodex: KF-402.5HQ × 2. Distribution 3.5). This polymer had a structure represented by the above formula (2) in which both terminal hydroxyl groups were primary hydroxyl groups (provided that R = C 4 H 9 , x + y = 7).
〔実施例11〕<アクリル酸n−ブチル/アセトニトリル−水系>
5L容フラスコに硫酸第一鉄七水和物33.4g(0.120mol)を入れ、これに水2Lを加えて水溶液(A液)を調製し、もう一つの5L容フラスコに、30.9重量%過酸化水素水13.3g(0.121mol)、アセトニトリル1.97L、アクリル酸n−ブチル15.4g(0.120mol)を順次加えて混合液(B液)を調製した。次いで、チュービングポンプ(内径4mm、長さ1.4mのチューブ2本を備える)により、室温下、A液とB液を両液の合流部に取り付けたスタティックミキサー(直径4mm、長さ50mm、エレメント12個)にそれぞれのフラスコから流速200mL/minで同時に流してミキサー内で混合(重合反応)させ、n−ヘキサン3.4L、飽和炭酸水素ナトリウム400mL張った10L容ビーカーに反応液を落下させた。反応後、得られた褐色懸濁液中に食塩400gを導入し、アセトニトリル相を分液した。分液後、モノマーがなくなるまでn−ヘキサン洗浄を繰り返し、その後ジエチルエーテルで抽出、硫酸マグネシウムで乾燥を施し、溶媒を留去して淡黄色粘性液体(重合体)10.4gを得た。この時の転化率は50%、重合体の収率は41%であった。なお、転化率はミキサーの出口部から混合液24gを採取し、仕込みモノマー濃度(0.03mol/l=0.43wt%)と反応後のモノマー濃度(GC内部標準検量線法から算出)との比から求めた。得られた重合体の数平均分子量はポリスチレン換算で395(分子量分布3.1)、GPCカラムをShodex:KF−402.5HQ×2本に変更後、ポリ−n−ブチルアクリレート換算で636(分子量分布1.7)であった。この重合体は、両方の末端水酸基が1級水酸基である前記式(2)で表される構造を有していた(但し、R=C4H9、x+y=5)。
[Example 11] <N-butyl acrylate / acetonitrile-water system>
33.4 g (0.120 mol) of ferrous sulfate heptahydrate was placed in a 5 L flask, and 2 L of water was added thereto to prepare an aqueous solution (liquid A). In another 5 L flask, 30.9 g A mixed liquid (liquid B) was prepared by sequentially adding 13.3 g (0.121 mol) of a weight% hydrogen peroxide solution, 1.97 L of acetonitrile, and 15.4 g (0.120 mol) of n-butyl acrylate. Next, a static mixer (4 mm in diameter, 50 mm in length, element, in which liquid A and liquid B were attached to the junction of both liquids at room temperature by a tubing pump (equipped with 2 tubes with an inner diameter of 4 mm and a length of 1.4 m). 12) were simultaneously flown from each flask at a flow rate of 200 mL / min and mixed in a mixer (polymerization reaction), and the reaction solution was dropped into a 10 L beaker filled with 3.4 L of n-hexane and 400 mL of saturated sodium bicarbonate. . After the reaction, 400 g of sodium chloride was introduced into the obtained brown suspension, and the acetonitrile phase was separated. After separation, n-hexane washing was repeated until no monomer was present, followed by extraction with diethyl ether and drying with magnesium sulfate. The solvent was distilled off to obtain 10.4 g of a pale yellow viscous liquid (polymer). The conversion rate at this time was 50%, and the yield of the polymer was 41%. In addition, 24 g of liquid mixture is extract | collected from the exit part of a mixer, and the conversion rate is the monomer concentration (0.03 mol / l = 0.43 wt%) and monomer concentration after reaction (calculated from GC internal standard calibration curve method). It was calculated from the ratio. The number average molecular weight of the obtained polymer was 395 (molecular weight distribution 3.1) in terms of polystyrene, the GPC column was changed to Shodex: KF-402.5HQ × 2, and then 636 (molecular weight in terms of poly-n-butyl acrylate). Distribution 1.7). This polymer had a structure represented by the above formula (2) in which both terminal hydroxyl groups were primary hydroxyl groups (provided that R = C 4 H 9 , x + y = 5).
〔実施例12〕<アクリル酸n−ブチル/アセトニトリル−水系>
5L容フラスコに硫酸第一鉄七水和物89.0g(0.320mol)を入れ、これに水2Lを加えて水溶液(A液)を調製し、もう一つの5L容フラスコに、30.9重量%過酸化水素水35.3g(0.321mol)、アセトニトリル1.92L、アクリル酸n−ブチル41.1g(0.321mol)を順次加えて混合液(B液)を調製した。次いで、チュービングポンプ(内径4mm、長さ1.4mのチューブ2本を備える)により、室温下、A液とB液を両液の合流部に取り付けたスタティックミキサー(直径4mm、長さ50mm、エレメント12個)にそれぞれのフラスコから流速200mL/minで同時に流してミキサー内で混合(重合反応)させ、n−ヘキサン3.4L、飽和炭酸水素ナトリウム600mL張った10L容ビーカーに反応液を落下させた。反応後、得られた褐色懸濁液中に食塩400gを導入し、アセトニトリル相を分液した。分液後、モノマーがなくなるまでn−ヘキサン洗浄を繰り返し、その後ジエチルエーテルで抽出、硫酸マグネシウムで乾燥を施し、溶媒を留去して淡黄色粘性液体(重合体)14.9gを得た。この時の転化率は46%、重合体の収率は36%であった。なお、転化率はミキサーの出口部から混合液24gを採取し、仕込みモノマー濃度(0.08mol/l=1.13wt%)と反応後のモノマー濃度(GC内部標準検量線法から算出)との比から求めた。得られた重合体の数平均分子量はポリスチレン換算で471(分子量分布2.2)、GPCカラムをShodex:KF−402.5HQ×2本に変更後、ポリ−n−ブチルアクリレート換算で711(分子量分布1.4)であった。この重合体は、両方の末端水酸基が1級水酸基である前記式(2)で表される構造を有していた(但し、R=C4H9、x+y=5)。
[Example 12] <N-butyl acrylate / acetonitrile-water system>
A 5 L flask was charged with 89.0 g (0.320 mol) of ferrous sulfate heptahydrate, and 2 L of water was added thereto to prepare an aqueous solution (solution A). In another 5 L flask, 30.9 g A mixed liquid (liquid B) was prepared by sequentially adding 35.3 g (0.321 mol) of a weight% hydrogen peroxide solution, 1.92 L of acetonitrile, and 41.1 g (0.321 mol) of n-butyl acrylate. Next, a static mixer (4 mm in diameter, 50 mm in length, element, in which liquid A and liquid B were attached to the junction of both liquids at room temperature by a tubing pump (equipped with 2 tubes with an inner diameter of 4 mm and a length of 1.4 m). 12) were simultaneously flown from each flask at a flow rate of 200 mL / min and mixed in a mixer (polymerization reaction), and the reaction solution was dropped into a 10 L beaker filled with 3.4 L of n-hexane and 600 mL of saturated sodium bicarbonate. . After the reaction, 400 g of sodium chloride was introduced into the obtained brown suspension, and the acetonitrile phase was separated. After the separation, n-hexane washing was repeated until the monomer disappeared, followed by extraction with diethyl ether and drying with magnesium sulfate, and the solvent was distilled off to obtain 14.9 g of a pale yellow viscous liquid (polymer). The conversion rate at this time was 46%, and the yield of the polymer was 36%. In addition, 24 g of liquid mixture is extract | collected from the exit part of a mixer, and the conversion rate is the monomer concentration (0.08 mol / l = 1.13 wt%) and monomer concentration after reaction (calculated from GC internal standard calibration curve method). It was calculated from the ratio. The number average molecular weight of the obtained polymer was 471 (molecular weight distribution 2.2) in terms of polystyrene, the GPC column was changed to Shodex: KF-402.5HQ × 2, and then 711 (molecular weight in terms of poly-n-butyl acrylate). Distribution 1.4). This polymer had a structure represented by the above formula (2) in which both terminal hydroxyl groups were primary hydroxyl groups (provided that R = C 4 H 9 , x + y = 5).
両末端に水酸基を有するアクリル酸化合物重合体は、その水酸基を他の官能基に容易に変換することが可能であり、また、水酸基の反応性を利用して重合体を更に線状化又は網状化することも可能であるので、強靭性、耐熱性、耐候性、耐久性などで良好な物性を有する高分子化合物とすることができる。従って、このような両末端に水酸基を有する重合体は、各種樹脂原料として用いた場合、材料の物性を損なう未反応物がなく、全ての重合体が樹脂架橋構造の中に確実に組み込まれるため、ポリエステル樹脂、ポリウレタン樹脂、ポリカーボネート樹脂等の各種樹脂の原料、塗料、粘接着剤、シーリング材、ウレタンフォーム等の反応性希釈剤の原料などとして非常に有用である。 An acrylic acid compound polymer having a hydroxyl group at both ends can easily convert the hydroxyl group to another functional group, and further makes the polymer linear or network-like by utilizing the reactivity of the hydroxyl group. Therefore, a high molecular compound having good physical properties such as toughness, heat resistance, weather resistance, and durability can be obtained. Therefore, when such a polymer having hydroxyl groups at both ends is used as various resin raw materials, there is no unreacted material that impairs the physical properties of the material, and all polymers are reliably incorporated into the resin cross-linked structure. It is very useful as a raw material for various resins such as polyester resins, polyurethane resins and polycarbonate resins, and as a raw material for reactive diluents such as paints, adhesives, sealing materials and urethane foams.
特に両末端に1級水酸基を有するアクリル酸化合物重合体は、1級水酸基の反応性が2級水酸基や3級水酸基と比べて高く樹脂架橋構造を形成することが容易であるので未反部位を低減させることができ、また、1級水酸基を介して形成される架橋部位(エステル結合、アミド結合等)が2級水酸基や3級水酸基を介して形成される結合よりも炭素−酸素結合が開裂しにくいため、耐久性、耐候性、耐熱性などの高い樹脂を得ることができる利点を有する。 In particular, an acrylic acid compound polymer having primary hydroxyl groups at both ends has a higher reactivity of primary hydroxyl groups than secondary and tertiary hydroxyl groups, and it is easy to form a resin cross-linked structure. In addition, the cross-linked site (ester bond, amide bond, etc.) formed through the primary hydroxyl group can be cleaved more than the bond formed through the secondary hydroxyl group or tertiary hydroxyl group. Therefore, there is an advantage that a resin having high durability, weather resistance, heat resistance and the like can be obtained.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006343947A JP2007197690A (en) | 2005-12-26 | 2006-12-21 | Method for producing hydroxyl-terminated acrylic acid compound polymer at both ends and the polymer |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005371416 | 2005-12-26 | ||
JP2006343947A JP2007197690A (en) | 2005-12-26 | 2006-12-21 | Method for producing hydroxyl-terminated acrylic acid compound polymer at both ends and the polymer |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007197690A true JP2007197690A (en) | 2007-08-09 |
Family
ID=38452587
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006343947A Pending JP2007197690A (en) | 2005-12-26 | 2006-12-21 | Method for producing hydroxyl-terminated acrylic acid compound polymer at both ends and the polymer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007197690A (en) |
-
2006
- 2006-12-21 JP JP2006343947A patent/JP2007197690A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4964763B2 (en) | Method for removing sulfur-containing end groups | |
US9452978B2 (en) | Chain transfer agent and emulsion polymerization using the same | |
EP2065408A1 (en) | Hyperbranched polymer and process for production thereof | |
EP2766375A1 (en) | Preparation of novel fluorocompounds, methods of preparation and compositions made therefrom | |
US10619023B2 (en) | Green chemistry method of synthesizing polymer structures that can function as a built-in antioxidant | |
CN102985449B (en) | Containing the compound of '-aziridino | |
KR960000038B1 (en) | Novel polymerizable vinyl monomers and vinyl resins prepared therefrom | |
CN111954686A (en) | Sulfur-containing polymer and phosphorus-containing polymer, and production method thereof | |
JP5946758B2 (en) | Alkoxysilyl group-containing azo compound and method for producing the same | |
Boyer et al. | Study of the synthesis of graft copolymers by a reactive process. Influence of the copolymer structure on the adhesion of polypropylene onto poly (vinylidene fluoride) | |
JP2007197690A (en) | Method for producing hydroxyl-terminated acrylic acid compound polymer at both ends and the polymer | |
JP6127521B2 (en) | Process for producing block copolymer | |
JP2010013566A (en) | Polymer containing terminal functional group, preparation method thereof and composition comprising the polymer | |
WO1999062965A1 (en) | Process for producing polymer, the polymer, and curable composition comprising the polymer | |
JP4490269B2 (en) | Method for producing comb or star copolymers using epoxy-functionalized nitroxyl ethers | |
WO2015012258A1 (en) | Composition, curable composition, production method therefor, and cured product | |
JP2010065202A (en) | Amphiphilic itaconic acid ester and polymer thereof | |
Cheng et al. | Facile synthesis of block copolymers from a cinnamate derivative by combination of AGET ATRP and click chemistry | |
CN106496567B (en) | A kind of organosilicon trithioester for reversible addition-fragmentation chain transfer radical polymerization and preparation method and application thereof | |
CN113272334B (en) | Iodine transfer polymerization method and composition thereof | |
US4133813A (en) | Cyclic nitrile carbonate-containing compounds | |
JPH06322089A (en) | Method for producing azo group-containing polymer | |
JP2024060390A (en) | Composition and method for producing the same | |
Jaye | Mild polymerization methods for the synthesis of modular fluoropolymers | |
JP2025513069A (en) | Preparation and method of making amine-containing polybutadiene polymers |