[go: up one dir, main page]

JP2007194170A - Flat plate type solid oxide fuel cell and method for producing the same - Google Patents

Flat plate type solid oxide fuel cell and method for producing the same Download PDF

Info

Publication number
JP2007194170A
JP2007194170A JP2006013650A JP2006013650A JP2007194170A JP 2007194170 A JP2007194170 A JP 2007194170A JP 2006013650 A JP2006013650 A JP 2006013650A JP 2006013650 A JP2006013650 A JP 2006013650A JP 2007194170 A JP2007194170 A JP 2007194170A
Authority
JP
Japan
Prior art keywords
electrolyte
electrode
cell
solid oxide
electrode support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006013650A
Other languages
Japanese (ja)
Other versions
JP5051741B2 (en
Inventor
Himeko Orui
姫子 大類
Kazuhiko Nozawa
和彦 野沢
Takeshi Komatsu
武志 小松
Masayasu Arakawa
正泰 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2006013650A priority Critical patent/JP5051741B2/en
Publication of JP2007194170A publication Critical patent/JP2007194170A/en
Application granted granted Critical
Publication of JP5051741B2 publication Critical patent/JP5051741B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

【課題】セルの反りを抑制する。
【解決手段】空気極または燃料極となる電極支持体1の上に電解質2を積層し、電極支持体1と電解質2を一体焼結して、焼結後の電解質2の上に対極3を形成してセルを作製する。焼結の全過程において電解質材料の収縮率を常に電極支持体の収縮率以上とする。また、電極支持体1の厚みをDa、電解質2の厚みをDeとしたとき、電極支持体1と電解質2の厚みの比De/Daを0.001〜0.015する。
【選択図】 図1
Cell warpage is suppressed.
An electrolyte 2 is laminated on an electrode support 1 that becomes an air electrode or a fuel electrode, the electrode support 1 and the electrolyte 2 are integrally sintered, and a counter electrode 3 is formed on the sintered electrolyte 2. Form the cell. In the entire sintering process, the shrinkage rate of the electrolyte material is always equal to or higher than the shrinkage rate of the electrode support. Further, assuming that the thickness of the electrode support 1 is Da and the thickness of the electrolyte 2 is De, the ratio De / Da of the thickness of the electrode support 1 and the electrolyte 2 is 0.001 to 0.015.
[Selection] Figure 1

Description

本発明は、電極支持型の平板型固体酸化物形燃料電池に関するものであり、特にセルの信頼性および出力特性を高めるような平板型固体酸化物形燃料電池に関するものである。   The present invention relates to an electrode-supported flat solid oxide fuel cell, and more particularly to a flat solid oxide fuel cell that improves cell reliability and output characteristics.

固体酸化物形燃料電池は、他の燃料電池より高い電気変換効率・出力密度を有するため、分散電源として積極的に開発が進められている。固体酸化物形燃料電池では、電解質に固体酸化物のセラミックスを用いるため、充分高いイオン伝導性を確保するために他の燃料電池より動作温度が高い。一般的な構成材料として電解質には安定化ジルコニアを用い、空気極として希土類をドープしたランタン系複合酸化物を用い、燃料極としてニッケル−ジルコニアサーメットを用いる。電池はすべての構成部がセラミックス材料であり、異なる材料の積層構造となっている。セルの構造は大きく円筒型、平板型に分けられるが、セル性能の点から空気極または燃料極を支持体とし、薄膜電解質を形成した平板型セルが多く適用されている(例えば、非特許文献1参照)。   Solid oxide fuel cells have higher electrical conversion efficiency and power density than other fuel cells, and are therefore actively being developed as distributed power sources. In solid oxide fuel cells, since solid oxide ceramics are used as an electrolyte, the operating temperature is higher than other fuel cells in order to ensure sufficiently high ion conductivity. As a general constituent material, stabilized zirconia is used as an electrolyte, a rare earth-doped lanthanum-based composite oxide is used as an air electrode, and nickel-zirconia cermet is used as a fuel electrode. All constituent parts of the battery are ceramic materials, and have a laminated structure of different materials. The cell structure can be roughly divided into a cylindrical type and a flat plate type. From the viewpoint of cell performance, a flat plate cell in which a thin film electrolyte is formed using an air electrode or a fuel electrode as a support is widely applied (for example, non-patent literature). 1).

「燃料電池発電技術開発 固体酸化物形燃料電池の研究開発適用性拡大に関する要素研究(耐熱衝撃性平板形セル・スタックの研究)」,平成15年度〜平成16年度NEDO委託業務成果報告書,東京瓦斯株式会社,p.44,2005年"Fuel cell power generation technology development: Elemental research on expanding R & D applicability of solid oxide fuel cells (study on thermal shock-resistant flat plate cell stack)", 2003-2004 NEDO commissioned work results report, Tokyo Gas Co., Ltd., p. 44, 2005

一般に、燃料電池の単セルの起電力は1V程度と小さいため、実用に十分な出力を得るには複数のセルを接続したスタックを形成し発電を行う。平板型燃料電池のスタックでは、板状のセルと集電部材を順次重ねて圧迫してセル間の接続を行うが、電気的に良好な接続のためにはセルの平坦性が求められる。また、スタック形成時および発電時にはセルに圧縮応力がかかることになるため、平坦性が不十分である場合、セルの一部に応力が集中し、破損の原因となり、信頼性の低下を招く恐れがある。   In general, since the electromotive force of a single cell of a fuel cell is as small as about 1 V, in order to obtain a practically sufficient output, a stack in which a plurality of cells are connected is formed to generate power. In a flat type fuel cell stack, plate-like cells and current collecting members are sequentially stacked and pressed to connect the cells, but flatness of the cells is required for a good electrical connection. In addition, since compressive stress is applied to the cell during stack formation and power generation, if the flatness is insufficient, the stress may concentrate on a part of the cell, causing damage and reducing reliability. There is.

一般に、電極支持型の平板型固体酸化物形燃料電池は、空気極または燃料極を電極支持体とし、この電極支持体と電解質を積層して一体焼結した後に電解質面上に対極を形成して作製する。しかし、異種材料のセラミックスの一体焼結過程では次の二つの要因により界面に応力が発生し、この応力によりセルに割れや反りが発生することがある。応力の発生要因の一つは焼結時の材料間の収縮挙動の違いであり、もう一つは焼結後の降温過程における材料間の熱膨張率の違いである。それぞれの寸法変化は、焼結時の材料間の収縮挙動の違いによるものが10〜25%程度であるのに対して、焼結後の降温過程における材料間の熱膨張率の違いによるものが1〜2%程度である。したがって、焼結時の材料間の収縮挙動の違いがセルの反りや割れに大きな影響を及ぼすと考えられる。   In general, an electrode-supported flat-plate solid oxide fuel cell uses an air electrode or a fuel electrode as an electrode support, laminates this electrode support and an electrolyte, and integrally sinters them, and then forms a counter electrode on the electrolyte surface. To make. However, in the integrated sintering process of ceramics of different materials, stress is generated at the interface due to the following two factors, and this stress may cause cracking and warping in the cell. One of the causes of stress is the difference in shrinkage behavior between materials during sintering, and the other is the difference in coefficient of thermal expansion between materials in the temperature lowering process after sintering. Each dimensional change is about 10 to 25% due to the difference in shrinkage behavior between materials during sintering, whereas it is due to the difference in thermal expansion coefficient between materials in the temperature lowering process after sintering. It is about 1-2%. Therefore, it is considered that the difference in shrinkage behavior between materials during sintering has a great influence on cell warpage and cracking.

こうした割れや反りの抑制のためには、原理的には各材料粉末の焼結挙動の一致、すなわち焼結中の全過程における各材料粉末の収縮率の一致が有効と考えられる。しかし、セルを構成する電解質は緻密性が求められ、一方の電極基板には良好なガス拡散のために多孔質性が求められるため、材料粉末の収縮率の完全な一致は難しい。それは、一般に緻密な焼結体の作製には高い焼結性(すなわち、収縮率大)の粉末が使用され、多孔質焼結体の形成には低い焼結性(収縮率小)の粉末が使用されるためである。また、焼結終了後の収縮率が一致しても、焼結過程における収縮挙動にずれがあると、焼結体の割れや反りの原因になることが有る。   In order to suppress such cracks and warpage, in principle, it is considered effective to match the sintering behavior of each material powder, that is, to match the shrinkage rate of each material powder in the entire process during sintering. However, since the electrolyte constituting the cell is required to be dense, and one electrode substrate is required to be porous for good gas diffusion, it is difficult to completely match the shrinkage rates of the material powders. In general, powders with high sinterability (ie, high shrinkage) are used for the production of dense sintered bodies, and powders with low sinterability (low shrinkage) are used to form porous sintered bodies. Because it is used. In addition, even if the shrinkage rates after the completion of sintering coincide with each other, if there is a deviation in the shrinkage behavior in the sintering process, the sintered body may be cracked or warped.

セルの割れや反りは、電極支持体と電解質の厚みの割合によっても影響を受ける。通常は電解質材料と電極材料では電解質材料の方が高い焼結性(収縮率大)の材料を使用するが、焼結時の応力の抑制のためには収縮率が大きい電解質の厚みに対して電極支持体の厚みを十分大きくすることが有効である。しかし、非特許文献1に記載されているように、単に厚みを変えるだけではセルの反りを十分に抑制することはできず、セルの現実的な厚みの範囲ではmmオーダーの反りが生じる。このようなセルの反りは、実用サイズの大面積セル作製において特に影響が顕著となるため、改善の必要があった。   Cell cracking and warping are also affected by the ratio of the thickness of the electrode support to the electrolyte. In general, electrolyte materials and electrode materials use materials with higher sinterability (larger shrinkage), but in order to suppress stress during sintering, the thickness of the electrolyte has a higher shrinkage rate. It is effective to sufficiently increase the thickness of the electrode support. However, as described in Non-Patent Document 1, it is not possible to sufficiently suppress cell warping simply by changing the thickness, and warpage in the mm order occurs in the range of the actual thickness of the cell. Such cell warpage has a particularly significant effect in the production of a large-sized cell having a practical size, and therefore needs to be improved.

本発明は、上記課題を解決するためになされたもので、セルの反りを抑制することができる平板型固体酸化物形燃料電池およびその作製方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a flat-plate solid oxide fuel cell capable of suppressing cell warpage and a method for manufacturing the same.

本発明の平板型固体酸化物形燃料電池およびその作製方法は、空気極または燃料極となる電極支持体の上に電解質を積層して一体焼結する焼結の過程において、電解質の収縮率を常に電極支持体の収縮率以上とすることを特徴とするものである。
焼成時の電極支持体と電解質との収縮率の差は3%〜8%であることが好ましい。
また、本発明の平板型固体酸化物形燃料電池およびその作製方法は、電極支持体の厚みをDa、電解質の厚みをDeとしたとき、電極支持体と電解質の厚みの比De/Daが0.001〜0.015であることを特徴とするものである。
The flat plate solid oxide fuel cell of the present invention and the method for producing the same, in the process of sintering by laminating an electrolyte on an electrode support serving as an air electrode or a fuel electrode and integrally sintering the electrolyte, It is characterized in that the shrinkage rate is always greater than or equal to the contraction rate of the electrode support.
The difference in shrinkage between the electrode support and the electrolyte during firing is preferably 3% to 8%.
Further, in the flat solid oxide fuel cell and the manufacturing method thereof according to the present invention, when the thickness of the electrode support is Da and the thickness of the electrolyte is De, the ratio De / Da between the electrode support and the electrolyte is 0. 0.001 to 0.015.

本発明によれば、次の効果が得られる。従来、電極支持型の平板型固体酸化物形燃料電池ではセルの反りの抑制が必要であるが、セル焼結時の電極支持体と電解質の収縮特性の違いからセルに反りが生じ、反りの抑制のためには、材料粉末の焼結特性の厳密な調整が必要とされてきた。また、反りの抑制のためには電極支持体の厚みを電解質に対して大きくすることが有効であることがわかっているが、これだけでは現実的なセルの厚みの範囲では反りの抑制に限界があった。本発明では、電極支持体および電解質の焼結特性を調整し、焼結の全過程において電解質の収縮率を常に電極支持体の収縮率以上とすることにより、セルの反りを抑制し、セルの破損を回避することができる。これにより、従来の平板型固体酸化物形燃料電池ではmmオーダーの反りがあったものが、セルの反りを1/10以下に抑制することができ、セルの集電状態が改善されたことにより、出力特性を大きく向上させることができる。また、セルの平坦性が向上することにより、スタック時のセルの破損が抑制されるため、セルスタックの信頼性が向上する。   According to the present invention, the following effects can be obtained. Conventionally, in electrode-supported flat solid oxide fuel cells, it is necessary to suppress cell warpage, but due to the difference in shrinkage characteristics between the electrode support and the electrolyte during cell sintering, the cell warps and warps. For the suppression, it has been necessary to strictly adjust the sintering characteristics of the material powder. In addition, it is known that it is effective to increase the thickness of the electrode support relative to the electrolyte in order to suppress the warp. However, with this alone, there is a limit to the suppression of the warp within the practical cell thickness range. there were. In the present invention, the sintering characteristics of the electrode support and the electrolyte are adjusted, and the shrinkage rate of the electrolyte is always equal to or greater than the shrinkage rate of the electrode support in the entire sintering process, thereby suppressing the warpage of the cell. Damage can be avoided. As a result, the conventional flat type solid oxide fuel cell has a warpage of mm order, but the warpage of the cell can be suppressed to 1/10 or less, and the current collection state of the cell is improved. The output characteristics can be greatly improved. Further, since the flatness of the cells is improved, the damage of the cells at the time of stacking is suppressed, so that the reliability of the cell stack is improved.

また、本発明では、電極支持体と電解質の厚みの比を限定することにより、セルの反りをさらに抑制することができる。   Moreover, in this invention, the curvature of a cell can be further suppressed by limiting the ratio of the thickness of an electrode support body and electrolyte.

[第1の実施の形態]
以下、本発明の実施の形態について図面を参照して説明する。図1は本発明の第1の実施の形態に係る平板型固体酸化物形燃料電池のセルの構成を示す断面図である。
平板型固体酸化物形燃料電池のセルは、電極支持体1と、電極支持体1上に形成された電解質2と、電解質2上に形成された、電極支持体1の対極3とから構成される。電極支持体1が空気極の場合は対極3が燃料極、電極支持体1が燃料極の場合は対極3が空気極である。図1のようなセルを用いて燃料電池スタックを構成するには、セルと集電部材(セパレータ)とを交互に積層すればよい。
[First Embodiment]
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view showing the configuration of a cell of a flat plate type solid oxide fuel cell according to a first embodiment of the present invention.
A flat solid oxide fuel cell includes an electrode support 1, an electrolyte 2 formed on the electrode support 1, and a counter electrode 3 of the electrode support 1 formed on the electrolyte 2. The When the electrode support 1 is an air electrode, the counter electrode 3 is a fuel electrode, and when the electrode support 1 is a fuel electrode, the counter electrode 3 is an air electrode. In order to configure a fuel cell stack using cells as shown in FIG. 1, cells and current collecting members (separators) may be alternately stacked.

本実施の形態では、図1のような電極支持型セルの作製における電極支持体材料と電解質材料の焼結特性が焼結体に及ぼす影響を見るため、電解質材料の焼結性を変えて電極支持体1と電解質2の一体焼結を行い、電極支持体1と電解質2とからなるハーフセルを作製した。ハーフセルの構成材料としては、電解質2の材料として平均粒径が0.1〜0.5μm、比表面積が7〜17m2/gの安定化ジルコニア(ZrO2−Y23、以下、YSZと略する)を用い、空気極(電極支持体1)の材料として平均粒経が1.7〜1.9μm、比表面積が5〜7m2/gのペロブスカイト構造の複合酸化物であるLa(Sr)MnO3(以下、LSMと略する)を用いた。 In this embodiment, in order to see the effect of the sintering characteristics of the electrode support material and the electrolyte material on the sintered body in the production of the electrode support type cell as shown in FIG. The support 1 and the electrolyte 2 were integrally sintered to prepare a half cell composed of the electrode support 1 and the electrolyte 2. As the constituent material of the half cell, as the material of the electrolyte 2, stabilized zirconia (ZrO 2 —Y 2 O 3 , hereinafter referred to as YSZ) having an average particle diameter of 0.1 to 0.5 μm and a specific surface area of 7 to 17 m 2 / g. La (Sr), which is a complex oxide having a perovskite structure with an average particle size of 1.7 to 1.9 μm and a specific surface area of 5 to 7 m 2 / g as a material for the air electrode (electrode support 1). ) MnO 3 (hereinafter abbreviated as LSM) was used.

ハーフセルは以下の手順で作製した。まず、ドクターブレード法により厚みが20〜50μmの電解質2のシートを作製すると共に、ドクターブレード法により厚みが300〜600μmの空気極(電極支持体1)のシートを複数作製する。空気極シートが乾燥した後に、空気極の厚みが1mm程度になるまで複数の空気極シートを積層し、この空気極の上に電解質2の単シートを積層して、ホットプレスする。ホットプレス後の積層体を適宜切り出し焼結して、ハーフセルを作製した。   The half cell was produced by the following procedure. First, a sheet of the electrolyte 2 having a thickness of 20 to 50 μm is produced by the doctor blade method, and a plurality of sheets of the air electrode (electrode support 1) having a thickness of 300 to 600 μm are produced by the doctor blade method. After the air electrode sheet is dried, a plurality of air electrode sheets are stacked until the thickness of the air electrode reaches about 1 mm, and a single sheet of the electrolyte 2 is stacked on the air electrode and hot-pressed. The laminated body after hot pressing was appropriately cut out and sintered to prepare a half cell.

本実施の形態では、電解質2の焼結性(すなわち、焼結過程における収縮率の特性)が異なる3種類のハーフセルを作製した。収縮率は、元の寸法をL、焼結による収縮量をΔLとしたとき、ΔL/Lで求められる。以下、焼結性が異なる3種類の電解質2をYSZ1,YSZ2,YSZ3と記す。焼結性が異なる3種類の電解質YSZ1〜YSZ3を作製するには、原材料のYSZ粉末の熱処理を行い、このときの熱処理の温度を変えればよい。熱処理の温度は、YSZ3,YSZ2,YSZ1の順番で高いものとする。   In the present embodiment, three types of half cells having different sinterability of the electrolyte 2 (that is, characteristics of shrinkage rate in the sintering process) were produced. The shrinkage rate is obtained by ΔL / L where L is the original dimension and ΔL is the amount of shrinkage due to sintering. Hereinafter, three types of electrolytes 2 having different sinterability will be referred to as YSZ1, YSZ2, and YSZ3. In order to produce three types of electrolytes YSZ1 to YSZ3 having different sinterability, heat treatment of the raw material YSZ powder may be performed, and the temperature of the heat treatment at this time may be changed. The temperature of heat processing shall be high in order of YSZ3, YSZ2, YSZ1.

空気極(電極支持体1)および各電解質YSZ1〜YSZ3の焼結挙動を図2に示す。図2の横軸は焼結中の温度、縦軸は熱膨張率である。図2においては、熱膨張率が負側にいくほど収縮率が大きいことになる。図2によると、電解質YSZ1〜YSZ3は、全般に収縮率が大きく、1000〜1200℃より高温で急激に大きく収縮し、空気極は、1100℃以上からゆっくりと焼結し、温度に対する収縮率の傾きが小さい。   The sintering behavior of the air electrode (electrode support 1) and the electrolytes YSZ1 to YSZ3 is shown in FIG. The horizontal axis in FIG. 2 is the temperature during sintering, and the vertical axis is the coefficient of thermal expansion. In FIG. 2, the shrinkage rate increases as the coefficient of thermal expansion goes to the negative side. According to FIG. 2, the electrolytes YSZ1 to YSZ3 generally have a large shrinkage rate, and rapidly shrink at a temperature higher than 1000 to 1200 ° C., and the air electrode sinters slowly from 1100 ° C. The inclination is small.

電解質材料の中でYSZ1が最も低い温度から収縮が始まるのに対し、YSZ2,YSZ3はより高温から収縮し、空気極材料のLSMに焼結挙動が近づいているように見える。また、電解質YSZ1は空気極よりも常に大きい収縮率を示し、電解質YSZ2は1100〜1200℃の付近で空気極よりも収縮率が僅かに小さくなり、電解質YSZ3は1100〜1300℃付近で空気極よりも収縮率が大幅に小さくなる。すなわち、電解質YSZ2,YSZ3は、全般的には空気極よりも収縮率が大きいが、一部の温度範囲で空気極よりも収縮率が小さくなる逆転現象が生じる。   While YSZ1 starts shrinking from the lowest temperature among the electrolyte materials, YSZ2 and YSZ3 shrink from higher temperatures, and it seems that the sintering behavior approaches the LSM of the air electrode material. Further, the electrolyte YSZ1 always shows a larger shrinkage rate than the air electrode, the electrolyte YSZ2 has a slightly smaller shrinkage rate than the air electrode in the vicinity of 1100 to 1200 ° C., and the electrolyte YSZ3 has a shrinkage rate near 1100 to 1300 ° C. than the air electrode. However, the shrinkage rate is significantly reduced. That is, the electrolytes YSZ2 and YSZ3 generally have a larger shrinkage rate than the air electrode, but a reversal phenomenon occurs in which the shrinkage rate is smaller than the air electrode in some temperature ranges.

3種類のハーフセルを焼結したときの電解質YSZ1〜YSZ3の収縮開始温度、電解質YSZ1〜YSZ3と空気極との収縮率差(電解質の収縮率−空気極の収縮率)、および焼結後のハーフセルの状態を表1に示す。   The shrinkage start temperature of the electrolytes YSZ1 to YSZ3 when the three types of half cells are sintered, the difference in shrinkage between the electrolytes YSZ1 to YSZ3 and the air electrode (electrolytic shrinkage-air electrode shrinkage), and the half cell after sintering Table 1 shows the state.

Figure 2007194170
Figure 2007194170

収縮率差は1300℃における値である。空気極との収縮率差が小さく、また一部の温度範囲で空気極よりも収縮率が小さくなる電解質YSZ2,YSZ3を使用したハーフセルでは、破損が確認されたが、各温度で空気極よりも収縮率が大きい電解質YSZ1を使用したハーフセルでは、破損は観測されなかった。   The shrinkage difference is a value at 1300 ° C. In the half cell using the electrolytes YSZ2 and YSZ3 where the shrinkage rate difference with the air electrode is small and the shrinkage rate is smaller than the air electrode in a part of the temperature range, damage was confirmed, but at each temperature, In the half cell using the electrolyte YSZ1 having a large shrinkage rate, no damage was observed.

このように焼結後のハーフセルの状態が分かれた理由は、空気極と電解質YSZ1〜YSZ3の厚みの割合が関係していると考えられる。異種材料を積層したセラミックスの一体焼結では、収縮率が大きい材料により異種材料間の界面に応力が発生すると考えられる。また、収縮率が大きい方の材料が薄いときには、もう一方の材料との間にある程度の収縮率差が存在しても、材料間の応力は小さく抑えられると考えられる。しかし、厚みの大きい材料の方が収縮率が大きい場合は界面に大きな応力が発生すると考えられる。空気極と電解質の積層体では、空気極の厚みが電解質に比べて大きいため、空気極の収縮率が電解質よりも大きくなると、電解質の収縮率が空気極に比べて大きいときよりも、大きな応力が発生すると考えられる。前述のように、電解質YSZ2,YSZ3については、空気極の収縮率の方が大きくなる温度範囲が存在するため、この電解質YSZ2,YSZ3を使用したハーフセルで空気極と電解質YSZ2,YSZ3との間の界面に大きな応力が発生し、この応力によりハーフセルが破損したと考えられる。   The reason why the state of the half cell after sintering is divided is considered to be related to the ratio of the thickness of the air electrode and the electrolytes YSZ1 to YSZ3. In the integrated sintering of ceramics laminated with different materials, it is considered that stress is generated at the interface between different materials due to the material having a large shrinkage rate. Further, when the material having the larger shrinkage rate is thin, it is considered that the stress between the materials can be kept small even if there is a certain amount of shrinkage rate difference with the other material. However, it is considered that a larger stress is generated at the interface when the material having a larger thickness has a larger shrinkage rate. In the laminate of the air electrode and the electrolyte, the thickness of the air electrode is larger than that of the electrolyte.Therefore, when the shrinkage rate of the air electrode is larger than that of the electrolyte, the stress is larger than when the shrinkage rate of the electrolyte is larger than that of the air electrode. Is considered to occur. As described above, the electrolytes YSZ2 and YSZ3 have a temperature range in which the contraction rate of the air electrode is larger. Therefore, in the half cell using the electrolytes YSZ2 and YSZ3, between the air electrode and the electrolytes YSZ2 and YSZ3. It is considered that a large stress was generated at the interface, and the half cell was damaged by this stress.

以上により、電極支持型のセルの一体焼結では、厚みの薄い電解質材料が焼結中の全過程において電極支持体材料よりも常に収縮率が大きいことが望ましいことが分かる。なお、焼結中の全過程において電解質材料と電極支持体材料の収縮率が一致することが理想であるが、このような完全な一致は実際には困難なので、現実的には電解質材料が電極支持体材料よりも収縮率が大きければよい。   From the above, it can be seen that in the integral sintering of the electrode support type cell, it is desirable that the electrolyte material with a small thickness always has a larger shrinkage rate than the electrode support material in the entire process during the sintering. Although it is ideal that the shrinkage rate of the electrolyte material and the electrode support material match during the entire process during sintering, such a perfect match is actually difficult. It is sufficient that the shrinkage rate is larger than that of the support material.

[第2の実施の形態]
次に、本発明の第2の実施の形態について説明する。本実施の形態では、電解質2の材料として平均粒径が0.4〜0.7μm、比表面積が10〜12m2/gのスカンジア安定化ジルコニア(Zr(Sc,Al23)O2、以下、SASZと略する)を用い、燃料極(電極支持体1)の材料としてSASZと酸化ニッケルの混合体を用いた。
[Second Embodiment]
Next, a second embodiment of the present invention will be described. In the present embodiment, the material of the electrolyte 2 is scandia-stabilized zirconia (Zr (Sc, Al 2 O 3 ) O 2 having an average particle diameter of 0.4 to 0.7 μm and a specific surface area of 10 to 12 m 2 / g, Hereinafter, SASZ was used, and a mixture of SASZ and nickel oxide was used as the material for the fuel electrode (electrode support 1).

ハーフセルは以下の手順で作製した。まず、燃料極グリーン体上にSASZの電解質スラリーをスクリーンプリント法により形成する。そして、燃料極と電解質を一体焼結してハーフセルを作製した。本実施の形態では、燃料極の酸化ニッケルに焼結性が異なる2種類のNiO粉末を使用して、2種類のハーフセルを作製した。以下、焼結性が異なる2種類のNiO粉末をNiO1,NiO2と記す。酸化ニッケルNiO1,NiO2の平均粒径、比表面積、および燃料極と電解質との収縮率差(電解質の収縮率−燃料極の収縮率)を表2に示す。   The half cell was produced by the following procedure. First, an SASZ electrolyte slurry is formed on the fuel electrode green body by screen printing. Then, the fuel electrode and the electrolyte were integrally sintered to produce a half cell. In the present embodiment, two kinds of half cells were produced using two kinds of NiO powders having different sinterability as nickel oxide of the fuel electrode. Hereinafter, two types of NiO powders having different sinterability are referred to as NiO1 and NiO2. Table 2 shows the average particle diameters, specific surface areas of nickel oxides NiO1 and NiO2, and the difference in shrinkage between the fuel electrode and the electrolyte (electrolytic shrinkage-fuel electrode shrinkage).

Figure 2007194170
Figure 2007194170

収縮率差は1300℃における値である。酸化ニッケルNiO1,NiO2のどちらを使用した燃料極の場合でも、収縮率は収縮の始まる温度から電解質の方が燃料極よりも大きく、酸化ニッケルNiO1を使用した燃料極の方がより収縮率が大きく、電解質の収縮率に近い。ここで、図1に示すように、燃料極(電極支持体1)の厚みをDa、電解質2の厚みをDeとする。燃料極の厚みを変えることにより、燃料極と電解質の厚みの比De/Daを0.012〜0.024に調整し、このときのハーフセルの反りを1300℃付近(1300〜1350℃)で測定した。ハーフセルの反りの測定結果を図3に示す。   The shrinkage difference is a value at 1300 ° C. In the case of the fuel electrode using either nickel oxide NiO1 or NiO2, the shrinkage rate is higher in the electrolyte than in the fuel electrode from the temperature at which shrinkage starts, and in the fuel electrode using nickel oxide NiO1, the shrinkage rate is higher. Close to the electrolyte shrinkage. Here, as shown in FIG. 1, the thickness of the fuel electrode (electrode support 1) is Da, and the thickness of the electrolyte 2 is De. By changing the thickness of the fuel electrode, the ratio De / Da of the fuel electrode and the electrolyte is adjusted to 0.012 to 0.024, and the warpage of the half cell at this time is measured around 1300 ° C. (1300 to 1350 ° C.). did. The measurement result of the half cell warpage is shown in FIG.

図3の横軸は燃料極(電極支持体1)と電解質2の厚みの比De/Da、縦軸はハーフセルの反り(Warp)である。Warpは、図4のようにして測定した。測定は外径が60mmのハーフセルで行った。図3におけるNiO1は燃料極としてSASZと酸化ニッケルNiO1を使用したハーフセルを意味し、NiO2は燃料極としてSASZと酸化ニッケルNiO2を使用したハーフセルを意味する。   In FIG. 3, the horizontal axis represents the ratio De / Da of the thickness of the fuel electrode (electrode support 1) and the electrolyte 2, and the vertical axis represents the half cell warp. Warp was measured as shown in FIG. The measurement was performed with a half cell having an outer diameter of 60 mm. In FIG. 3, NiO1 means a half cell using SASZ and nickel oxide NiO1 as the fuel electrode, and NiO2 means a half cell using SASZ and nickel oxide NiO2 as the fuel electrode.

どちらの燃料極でも比De/Daが小さくなるほどハーフセルの反りが小さくなる傾向を示したが、より収縮率の小さい燃料極(NiO2)の方が反りが小さい傾向を示した。このことは、第1の実施の形態において、空気極よりも常に大きい収縮率を示す電解質YSZ1を使用したハーフセルで破損が起きなかったことと一致する。すなわち、電解質と燃料極では、電解質の方が収縮率が大きく、短時間で焼結が完了する。これに対して、燃料極は電解質の収縮が完了した後でも焼結が進行するため、電解質と燃料極の界面に応力が発生する。   In either fuel electrode, the warpage of the half cell tended to decrease as the ratio De / Da decreased, but the fuel electrode (NiO 2) having a smaller shrinkage rate tended to have a smaller warpage. This coincides with the fact that in the first embodiment, no damage occurred in the half cell using the electrolyte YSZ1 that always shows a larger contraction rate than the air electrode. That is, in the electrolyte and the fuel electrode, the electrolyte has a larger shrinkage rate, and the sintering is completed in a short time. On the other hand, since the fuel electrode is sintered even after the electrolyte contraction is completed, stress is generated at the interface between the electrolyte and the fuel electrode.

厚みの大きい材料の収縮率が大きいほど焼結体にかかる応力が大きくなるため、焼結体の反りが大きくなると考えられる。すなわち、収縮率の大きな燃料極(NiO1)よりも収縮率の小さい燃料極(NiO2)の方がセルの反りの抑制の観点から好ましい(電解質との収縮率差3%〜8%)。一方、燃料極の収縮率が小さくなり、電解質と燃料極の収縮率差が大きくなりすぎてもセルの破損や電解質のリークの原因になる。これまでに発明者は、電解質と燃料極の収縮率差が8%を超えると、燃料極と電解質の一体焼結時に、燃料極の低い収縮率のために電解質の緻密化が阻害され、電解質のリークの割合が増大することを確認している。以上の結果より、電解質が十分に薄い場合にはむしろ燃料極側は許容の範囲(電解質との収縮率差が3〜8%)においては収縮率が電解質よりも小さい方がセルの反りの抑制の観点からは望ましいと考えられる。
なお、本実施の形態では、電極支持体1が燃料極である場合について説明したが、電極支持体1が空気極である場合も同様に適用することができる。
It is considered that the warping of the sintered body increases because the stress applied to the sintered body increases as the shrinkage ratio of the thick material increases. That is, a fuel electrode (NiO2) having a small shrinkage rate is more preferable than a fuel electrode (NiO1) having a large shrinkage rate from the viewpoint of suppressing cell warpage (a shrinkage rate difference of 3% to 8% with respect to the electrolyte). On the other hand, even if the contraction rate of the fuel electrode decreases and the difference in contraction rate between the electrolyte and the fuel electrode becomes too large, cell damage or electrolyte leakage may occur. So far, the inventor has found that when the difference in shrinkage between the electrolyte and the fuel electrode exceeds 8%, the densification of the electrolyte is hindered due to the low shrinkage of the fuel electrode during the integral sintering of the fuel electrode and the electrolyte. It has been confirmed that the rate of leakage increases. From the above results, when the electrolyte is sufficiently thin, rather, the fuel electrode side is within the allowable range (the difference in shrinkage from the electrolyte is 3 to 8%). From this point of view, it is considered desirable.
Although the case where the electrode support 1 is a fuel electrode has been described in the present embodiment, the present invention can be similarly applied to the case where the electrode support 1 is an air electrode.

[第3の実施の形態]
次に、本発明の第3の実施の形態について説明する。第2の実施の形態における電極支持体1と電解質2の厚みの比をさらに小さくすることにより、セルの反りの抑制が可能である。本実施の形態では、セルの作製を以下の通り行った。燃料極(電極支持体1)の酸化ニッケルには前記のNiO2を使用した。厚みが1〜2mmのNiO−SASZの燃料極グリーン体上にSASZの電解質スラリーをスクリーンプリント法により10〜20μm程度の厚みに形成し、これを焼結してハーフセルを作製した。焼結後の燃料極(電極支持体1)の厚みは1〜2mm、電解質2の厚みは5〜15μmとなる。
[Third Embodiment]
Next, a third embodiment of the present invention will be described. By further reducing the thickness ratio of the electrode support 1 and the electrolyte 2 in the second embodiment, cell warpage can be suppressed. In the present embodiment, the cell was manufactured as follows. The above-mentioned NiO2 was used for the nickel oxide of the fuel electrode (electrode support 1). An electrolyte slurry of SASZ was formed on a NiO-SASZ fuel electrode green body having a thickness of 1 to 2 mm to a thickness of about 10 to 20 μm by a screen printing method, and this was sintered to prepare a half cell. The sintered fuel electrode (electrode support 1) has a thickness of 1 to 2 mm, and the electrolyte 2 has a thickness of 5 to 15 μm.

このようにして作製したハーフセルの反りを測定した結果を前記の図3に示してある。図3におけるNiO2’が本実施の形態で作製したハーフセルの反りを示している。第2の実施の形態と同様に、ハーフセルの外径は60mmである。この測定結果によれば、燃料極(電極支持体1)と電解質2の厚みの比De/Daを0.01以下にすることにより、ハーフセルの反りを100μm以下に抑制できることが分かる。   FIG. 3 shows the result of measuring the warpage of the half cell thus produced. NiO 2 ′ in FIG. 3 indicates the warpage of the half cell produced in the present embodiment. Similar to the second embodiment, the outer diameter of the half cell is 60 mm. According to this measurement result, it is understood that the warpage of the half cell can be suppressed to 100 μm or less by setting the ratio De / Da of the thickness of the fuel electrode (electrode support 1) and the electrolyte 2 to 0.01 or less.

また、より大口径なセルも同様に作製することが可能である。燃料極としてSASZと酸化ニッケルNiO2を使用した外径100mmのハーフセルの反りの測定結果を図5に示す。図5によると、外径が100mmのハーフセルにおいても、燃料極と電解質2の厚みの比De/Daを0.01より小さくすることで、ハーフセルの反りを100μm前後まで抑制できることが分かる。   A larger-diameter cell can also be produced in the same manner. FIG. 5 shows the measurement results of the warpage of a half cell having an outer diameter of 100 mm using SASZ and nickel oxide NiO 2 as the fuel electrode. As can be seen from FIG. 5, even in a half cell having an outer diameter of 100 mm, the warp of the half cell can be suppressed to around 100 μm by making the ratio De / Da of the thickness of the fuel electrode and the electrolyte 2 smaller than 0.01.

図3の結果から、燃料極(電極支持体1)と電解質2の厚みの比De/Daが0に近づけばセルの反りの値も0に近づくことが分かる。しかし、実際には比De/Daを0にすることはできない。比De/Daを小さくするためには、電解質の厚みDeをできるだけ小さく、燃料極の厚みDaをできるだけ大きくする必要がある。De,Daはそれぞれ電解質の強度的な観点と、電極内のガス拡散性およびセルの体積出力密度の観点とから実際に取り得る値の限界があり、実用上の下限値として比De/Daは0.001程度と考えられる。   From the results of FIG. 3, it can be seen that when the ratio De / Da of the thickness of the fuel electrode (electrode support 1) and the electrolyte 2 approaches 0, the value of cell warpage also approaches 0. However, the ratio De / Da cannot actually be set to zero. In order to reduce the ratio De / Da, it is necessary to make the electrolyte thickness De as small as possible and the fuel electrode thickness Da as large as possible. De and Da each have a limit of values that can actually be taken from the viewpoint of the strength of the electrolyte, the gas diffusivity in the electrode, and the volume output density of the cell. As a practical lower limit, the ratio De / Da is It is considered to be about 0.001.

[第4の実施の形態]
第2、第3の実施の形態で作製したハーフセルの電解質2上にLaNi(Fe)O3からなる空気極(対極3)を形成して、図1のようなセルを作製した。セルの反りの発電出力への影響を見るために、燃料極と電解質2の厚みの比De/Daを変えて、反りの大きさが異なるセルを作製し、セルの発電特性を測定した。測定は外径が60mmのセルで行い、耐熱性合金製のホルダーを使用した。セルをこのホルダーに設置し、燃料ガスと酸化剤ガスの混合を防ぐためにガラスによりセルとホルダー間のシールを行った。空気極面に耐熱性の導電性ペーストを塗布して上部ホルダーを設置し、ホルダーを固定するために上部より加重を加えた。このようにしてセッティングしたホルダーを電気炉に設置し、800℃において空気と純水素をセルに供給し、発電を行った。
[Fourth Embodiment]
An air electrode (counter electrode 3) made of LaNi (Fe) O 3 was formed on the electrolyte 2 of the half cell produced in the second and third embodiments to produce a cell as shown in FIG. In order to see the influence of the cell warpage on the power generation output, cells having different warp sizes were produced by changing the ratio De / Da of the thickness of the fuel electrode and the electrolyte 2, and the power generation characteristics of the cell were measured. The measurement was performed in a cell having an outer diameter of 60 mm, and a heat-resistant alloy holder was used. The cell was installed in this holder, and the cell and the holder were sealed with glass to prevent mixing of fuel gas and oxidant gas. A heat-resistant conductive paste was applied to the air electrode surface, an upper holder was installed, and a weight was applied from above to fix the holder. The holder set in this way was installed in an electric furnace, and air and pure hydrogen were supplied to the cell at 800 ° C. to generate electricity.

セルの発電特性を測定した結果を図6に示す。図6の横軸はセルの反り、縦軸は電力である。図6によると、セルの反りが小さくなるほど発電出力が大きくなる傾向を示した。単セルの実用的な出力を10Wと考えると、セルの反りを150μm以下に抑制したセルでは、目標値10W以上の出力が得られることが確認された。図3から、セルの反りを150μm以下にするためには、燃料極と電解質2の厚みの比De/Daが0.015より小さければよいことが分かる。   The results of measuring the power generation characteristics of the cell are shown in FIG. In FIG. 6, the horizontal axis represents cell warpage, and the vertical axis represents power. According to FIG. 6, the power generation output tends to increase as the warpage of the cell decreases. Assuming that the practical output of a single cell is 10 W, it was confirmed that an output with a target value of 10 W or more can be obtained in a cell in which the warpage of the cell is suppressed to 150 μm or less. From FIG. 3, it can be seen that the ratio De / Da of the thickness of the fuel electrode to the electrolyte 2 should be smaller than 0.015 in order to make the cell warpage 150 μm or less.

従来の電極支持型の平板型セルでは、セルの反りが数百μm〜mmオーダで存在し、この結果セルを積層して発電を行う際に電極面方向の集電が十分に行えず、発電出力が不十分であった。本発明のセルの構成材料の焼結収縮特性と構成材料の厚みの調整により、セルの反りを150μm以下に抑制することで、スタック化の際のセルとホルダーの接触が良好となり、集電抵抗が減少するために、発電出力を向上させることができる。   In a conventional electrode-supported flat plate cell, the warpage of the cell exists on the order of several hundred μm to mm. As a result, when the cells are stacked to generate power, current collection in the electrode surface direction cannot be sufficiently performed, The output was insufficient. By adjusting the sintering shrinkage characteristics of the constituent material of the cell of the present invention and the thickness of the constituent material, the cell warpage is suppressed to 150 μm or less, so that the contact between the cell and the holder during stacking is improved, and the current collecting resistance Therefore, the power generation output can be improved.

本発明は、平板型固体酸化物形燃料電池に適用することができる。   The present invention can be applied to a flat plate solid oxide fuel cell.

本発明の第1の実施の形態に係る平板型固体酸化物形燃料電池のセルの構成を示す断面図である。It is sectional drawing which shows the structure of the cell of the flat type solid oxide fuel cell which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態における空気極および電解質の焼結挙動を示す図である。It is a figure which shows the sintering behavior of the air electrode and electrolyte in the 1st Embodiment of this invention. 電解質と燃料極の厚みの比と、外径60mmのハーフセルの反りとの関係を示す図である。It is a figure which shows the relationship between the ratio of the thickness of an electrolyte and a fuel electrode, and the curvature of a half cell with an outer diameter of 60 mm. ハーフセルの反りの測定方法を示す断面図である。It is sectional drawing which shows the measuring method of the curvature of a half cell. 電解質と燃料極の厚みの比と、外径100mmのハーフセルの反りとの関係を示す図である。It is a figure which shows the relationship between the ratio of the thickness of an electrolyte and a fuel electrode, and the curvature of a half cell with an outer diameter of 100 mm. セルの反りと発電出力との関係を示す図である。It is a figure which shows the relationship between the curvature of a cell, and an electric power generation output.

符号の説明Explanation of symbols

1…電極支持体、2…電解質、3…対極。   DESCRIPTION OF SYMBOLS 1 ... Electrode support body, 2 ... Electrolyte, 3 ... Counter electrode.

Claims (6)

空気極または燃料極となる電極支持体の上に電解質を積層して一体焼結したセルを有する平板型固体酸化物形燃料電池において、
前記電解質の前記焼結の過程における収縮率は、常に前記電極支持体の収縮率以上であることを特徴とする平板型固体酸化物形燃料電池。
In a flat plate type solid oxide fuel cell having a cell in which an electrolyte is laminated and sintered integrally on an electrode support serving as an air electrode or a fuel electrode,
A flat plate solid oxide fuel cell characterized in that the shrinkage rate of the electrolyte during the sintering process is always equal to or higher than the shrinkage rate of the electrode support.
請求項1記載の平板型固体酸化物形燃料電池において、
前記焼成時の前記電極支持体と前記電解質との収縮率の差が3%〜8%であることを特徴とする平板型固体酸化物形燃料電池。
The flat plate type solid oxide fuel cell according to claim 1,
A flat solid oxide fuel cell, wherein a difference in shrinkage between the electrode support and the electrolyte during firing is 3% to 8%.
請求項1記載の平板型固体酸化物形燃料電池において、
前記電極支持体の厚みをDa、前記電解質の厚みをDeとしたとき、前記電極支持体と前記電解質の厚みの比De/Daが0.001〜0.015であることを特徴とする平板型固体酸化物形燃料電池。
The flat plate type solid oxide fuel cell according to claim 1,
A flat plate type characterized in that a ratio De / Da between the electrode support and the electrolyte is 0.001 to 0.015, where Da is the thickness of the electrode support and De is the thickness of the electrolyte. Solid oxide fuel cell.
空気極または燃料極となる電極支持体の上に電解質を積層する工程と、前記電極支持体と前記電解質を一体焼結する焼結工程と、前記焼結後の電解質の上に対極を形成してセルを作製する工程とを有する平板型固体酸化物形燃料電池の作製方法において、
前記電解質の前記焼結の過程における収縮率は、常に前記電極支持体の収縮率以上であることを特徴とする平板型固体酸化物形燃料電池の作製方法。
A step of laminating an electrolyte on an electrode support serving as an air electrode or a fuel electrode, a sintering step of integrally sintering the electrode support and the electrolyte, and forming a counter electrode on the sintered electrolyte. In a method for producing a flat plate solid oxide fuel cell having a step of producing a cell,
A method for producing a flat plate solid oxide fuel cell, wherein the shrinkage rate of the electrolyte in the sintering process is always equal to or higher than the shrinkage rate of the electrode support.
請求項4記載の平板型固体酸化物形燃料電池の作製方法において、
前記焼成時の前記電極支持体と前記電解質との収縮率の差が3%〜8%であることを特徴とする平板型固体酸化物形燃料電池の作製方法。
In the manufacturing method of the flat type solid oxide fuel cell according to claim 4,
A method for producing a flat plate solid oxide fuel cell, wherein the difference in shrinkage between the electrode support and the electrolyte during firing is 3% to 8%.
請求項4記載の平板型固体酸化物形燃料電池の作製方法において、
前記電極支持体の厚みをDa、前記電解質の厚みをDeとしたとき、前記電極支持体と前記電解質の厚みの比De/Daが0.001〜0.015であることを特徴とする平板型固体酸化物形燃料電池の作製方法。
In the manufacturing method of the flat type solid oxide fuel cell according to claim 4,
A flat plate type characterized in that a ratio De / Da between the electrode support and the electrolyte is 0.001 to 0.015, where Da is the thickness of the electrode support and De is the thickness of the electrolyte. A method for producing a solid oxide fuel cell.
JP2006013650A 2006-01-23 2006-01-23 Fabrication method of flat plate type solid oxide fuel cell Active JP5051741B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006013650A JP5051741B2 (en) 2006-01-23 2006-01-23 Fabrication method of flat plate type solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006013650A JP5051741B2 (en) 2006-01-23 2006-01-23 Fabrication method of flat plate type solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JP2007194170A true JP2007194170A (en) 2007-08-02
JP5051741B2 JP5051741B2 (en) 2012-10-17

Family

ID=38449689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006013650A Active JP5051741B2 (en) 2006-01-23 2006-01-23 Fabrication method of flat plate type solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP5051741B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010267515A (en) * 2009-05-15 2010-11-25 Nippon Telegr & Teleph Corp <Ntt> Half cell for solid oxide fuel cell, solid oxide fuel cell, and method for producing half cell for solid oxide fuel cell
JP2010282896A (en) * 2009-06-05 2010-12-16 Nippon Telegr & Teleph Corp <Ntt> Solid oxide fuel cell
JP2010282817A (en) * 2009-06-04 2010-12-16 Nippon Telegr & Teleph Corp <Ntt> Method for producing flat solid oxide fuel cell
JP2012146579A (en) * 2011-01-13 2012-08-02 Noritake Co Ltd Material for anode support, and method for manufacturing anode support
WO2019171900A1 (en) * 2018-03-06 2019-09-12 住友電気工業株式会社 Electrolyte layer-anode composite member, and cell structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07296838A (en) * 1994-04-28 1995-11-10 Kyocera Corp Fuel cell manufacturing method
JP2003173802A (en) * 2001-12-04 2003-06-20 Ngk Spark Plug Co Ltd Solid electrolyte fuel cell and its manufacturing method
JP2004259641A (en) * 2003-02-27 2004-09-16 Nippon Telegr & Teleph Corp <Ntt> Operating method of solid oxide fuel cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07296838A (en) * 1994-04-28 1995-11-10 Kyocera Corp Fuel cell manufacturing method
JP2003173802A (en) * 2001-12-04 2003-06-20 Ngk Spark Plug Co Ltd Solid electrolyte fuel cell and its manufacturing method
JP2004259641A (en) * 2003-02-27 2004-09-16 Nippon Telegr & Teleph Corp <Ntt> Operating method of solid oxide fuel cell

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010267515A (en) * 2009-05-15 2010-11-25 Nippon Telegr & Teleph Corp <Ntt> Half cell for solid oxide fuel cell, solid oxide fuel cell, and method for producing half cell for solid oxide fuel cell
JP2010282817A (en) * 2009-06-04 2010-12-16 Nippon Telegr & Teleph Corp <Ntt> Method for producing flat solid oxide fuel cell
JP2010282896A (en) * 2009-06-05 2010-12-16 Nippon Telegr & Teleph Corp <Ntt> Solid oxide fuel cell
JP2012146579A (en) * 2011-01-13 2012-08-02 Noritake Co Ltd Material for anode support, and method for manufacturing anode support
WO2019171900A1 (en) * 2018-03-06 2019-09-12 住友電気工業株式会社 Electrolyte layer-anode composite member, and cell structure
JPWO2019171900A1 (en) * 2018-03-06 2021-02-12 住友電気工業株式会社 Electrolyte layer-anode composite and cell structure
JP7156360B2 (en) 2018-03-06 2022-10-19 住友電気工業株式会社 Electrolyte layer-anode composites and cell structures

Also Published As

Publication number Publication date
JP5051741B2 (en) 2012-10-17

Similar Documents

Publication Publication Date Title
KR20080033153A (en) Self-supporting ceramic membranes and electrochemical cells and electrochemical cell stacks comprising the same
US6534211B1 (en) Fuel cell having an air electrode with decreased shrinkage and increased conductivity
JP2002175814A (en) Manufacturing method of fuel electrode for solid electrolyte type fuel cell, the solid electrolyte type fuel cell and its manufacturing method
JP5051741B2 (en) Fabrication method of flat plate type solid oxide fuel cell
WO2008032862A2 (en) Electrolyte electrode assembly and method for producing the same
JP3149849B2 (en) Solid oxide fuel cell
JP6044717B2 (en) CERAMIC SUBSTRATE FOR ELECTROCHEMICAL DEVICE, PROCESS FOR PRODUCING THE SAME, FUEL CELL AND FUEL CELL STACK
JP5284876B2 (en) Method for producing flat solid oxide fuel cell
JP4864171B1 (en) Solid oxide fuel cell
JP4984802B2 (en) Solid electrolyte fuel cell separator
JP5362979B2 (en) Method for producing solid oxide fuel cell
KR20110126786A (en) Solid oxide fuel cell using metal foam support and manufacturing method
KR101154505B1 (en) Unit cell for fuel cell and manufacturing method thereof
JP6748518B2 (en) Method for manufacturing electrochemical reaction cell
JP2009009738A (en) Solid electrolyte fuel cell and its manufacturing method
JP2012142241A (en) Method for manufacturing single cell for solid oxide fuel cell
KR102109730B1 (en) Method for fabricating solid oxide fuel cell
KR101207122B1 (en) Porous-metal supported sofc and methods for manufacturing the same
JP6993162B2 (en) Electrochemical reaction single cell and electrochemical reaction cell stack
JP6965041B2 (en) Electrochemical reaction single cell and electrochemical reaction cell stack
JP5502365B2 (en) Half cell for solid oxide fuel cell, solid oxide fuel cell, and method for producing half cell for solid oxide fuel cell
JP2008140549A (en) Current collector for cell stack of fuel cell and direct flame type fuel cell using it
JP2020128324A (en) Ceramic green sheet, method for producing ceramic sintered body, and method for producing electrochemical reaction single cell
JP6808396B2 (en) Electrochemical reaction single cell and electrochemical reaction cell stack
JP2014007127A (en) Method for manufacturing single cell for solid oxide fuel cell, single cell for solid oxide fuel cell, and solid oxide fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111129

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20111212

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20120210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120719

R150 Certificate of patent or registration of utility model

Ref document number: 5051741

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350