[go: up one dir, main page]

JP2007192235A - Control apparatus and method for spark ignition internal combustion engine - Google Patents

Control apparatus and method for spark ignition internal combustion engine Download PDF

Info

Publication number
JP2007192235A
JP2007192235A JP2007117913A JP2007117913A JP2007192235A JP 2007192235 A JP2007192235 A JP 2007192235A JP 2007117913 A JP2007117913 A JP 2007117913A JP 2007117913 A JP2007117913 A JP 2007117913A JP 2007192235 A JP2007192235 A JP 2007192235A
Authority
JP
Japan
Prior art keywords
fuel
amount
intake air
control means
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007117913A
Other languages
Japanese (ja)
Inventor
Mamoru Fujieda
護 藤枝
Toshiji Nogi
利治 野木
Takashige Oyama
宜茂 大山
Minoru Osuga
大須賀  稔
Takuya Shiraishi
拓也 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2007117913A priority Critical patent/JP2007192235A/en
Publication of JP2007192235A publication Critical patent/JP2007192235A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

【課題】
部分負荷では層状燃焼によりポンプ損失をなくして、燃費を高め、最大出力時は、予混
合燃焼により出力を大きくする。
【解決手段】
部分負荷時は燃料噴射弁13の近傍に点火源14を設け、燃料を噴射した後に混合気に
点火し、生じた火炎を燃料の噴霧でシリンダ内に拡散し、層状燃焼させる。一方、負荷が
大きくなり、層状燃焼ですす等が発生する場合は、燃料噴射を複数回にし、前半の噴射で
シリンダ内に予混合気を作り、この予混合気を後半の噴射で作った火炎を気筒内に噴射し
、予混合気を短時間で燃焼する。
【効果】
本発明により、燃焼時間が短縮し、ノックが防止でき、エンジンの圧縮比が高められ、
熱効率が上昇し、燃費が高くなる。層状吸気により未燃炭化水素の発生が防止できる。筒
内燃料噴射により、燃料の応答性が高まり運転性が向上する。
【選択図】図1
【Task】
At partial load, the pumping loss is eliminated by stratified combustion to improve fuel efficiency, and at the maximum output, the output is increased by premixed combustion.
[Solution]
At the time of partial load, an ignition source 14 is provided in the vicinity of the fuel injection valve 13 to ignite the air-fuel mixture after injecting the fuel, and the generated flame is diffused into the cylinder by fuel spray and stratified combustion is performed. On the other hand, if the load increases and soot is generated due to stratified combustion, the fuel is injected multiple times, the premixed gas is created in the cylinder by the first half, and the premixed gas is made by the second half. Is injected into the cylinder, and the premixed gas is burned in a short time.
【effect】
The invention shortens the combustion time, prevents knocking, increases the compression ratio of the engine,
Thermal efficiency increases and fuel consumption increases. The generation of unburned hydrocarbons can be prevented by stratified intake. In-cylinder fuel injection increases fuel responsiveness and improves drivability.
[Selection] Figure 1

Description

本発明は、火花点火内燃機関において、特に気筒内に直接燃料を噴射する火花点火内燃
機関の制御装置及び制御方法に関する。
The present invention relates to a spark ignition internal combustion engine, and more particularly to a control device and a control method for a spark ignition internal combustion engine that injects fuel directly into a cylinder.

内燃機関の燃料消費率を向上するには、圧縮比を高めて熱効率を上げ、燃料の濃度が低
い希薄混合気を瞬時に燃焼させる必要がある。また、決められたシリンダ容積において、
最大の出力を発生するには、シリンダに流入した空気を最大限に利用し、より多くの燃料
を効率良く燃焼する必要が有る。前者がディーゼルエンジンであり、後者がガソリンエン
ジンの燃焼方法である。本発明は火花点火内燃機関であるガソリンエンジンに関するもの
である。
In order to improve the fuel consumption rate of an internal combustion engine, it is necessary to increase the compression ratio to increase the thermal efficiency and instantly burn a lean air-fuel mixture having a low fuel concentration. In addition, in the determined cylinder volume,
In order to generate the maximum output, it is necessary to make maximum use of the air flowing into the cylinder and burn more fuel efficiently. The former is a diesel engine, and the latter is a gasoline engine combustion method. The present invention relates to a gasoline engine which is a spark ignition internal combustion engine.

図2にエンジンの燃焼状態を示す。図2(a)はガソリンエンジンの場合である。シリ
ンダ内に均一な混合気を形成し、点火プラグ14で点火し、火炎が周りに伝パン(予混合
燃焼)する。空燃比が大きくなると火炎の伝パンが遅くなり燃焼が不安定になりやすい。
そのため、絞り弁で吸入空気量を絞り、トルクの小さいときの空燃比が大きくなるのを防
止している。一方、空燃比が小さくなってもシリンダ内全体が均一な空燃比のため、多く
の空気が利用でき、すす等の発生が少ない。図2(b)は、ディーゼルエンジンの場合で
ある。シリンダ内に高温の圧縮空気を作り、その中に燃料を燃料噴射弁13で噴射する。
燃料は、高温の空気内を飛翔しながらそれぞれの燃料液滴が蒸発しシリンダの一部分で燃
焼する(層状燃焼)。このため、燃料液滴の周りより燃焼するため、燃料量が少なくても
(空燃比が大きても)燃焼できる。しかし、燃料量が多く(空燃比が小さく)なると、液
滴周りの空気が燃焼で消費されるため、空気不足になりすす等が発生しやすく、高出力時
の空気の利用率が問題となる。
FIG. 2 shows the combustion state of the engine. FIG. 2A shows the case of a gasoline engine. A uniform air-fuel mixture is formed in the cylinder and ignited by the spark plug 14, and the flame is transmitted around (premixed combustion). When the air-fuel ratio increases, the flame propagation slows down and combustion tends to become unstable.
Therefore, the intake air amount is throttled by the throttle valve to prevent the air-fuel ratio from increasing when the torque is small. On the other hand, even if the air-fuel ratio is small, the entire cylinder has a uniform air-fuel ratio, so that a large amount of air can be used and soot is not generated. FIG. 2B shows the case of a diesel engine. Hot compressed air is produced in the cylinder, and fuel is injected into the cylinder by a fuel injection valve 13.
As the fuel flies through the high-temperature air, each fuel droplet evaporates and burns in a part of the cylinder (stratified combustion). For this reason, since it burns from around the fuel droplets, it can be burned even if the amount of fuel is small (even if the air-fuel ratio is large). However, if the amount of fuel is large (the air-fuel ratio is small), the air around the droplets is consumed by combustion, so air shortage and soot are likely to occur, and the utilization rate of air at high output becomes a problem. .

図3にエンジンの空燃比とエンジンの発生するトルクとの関係を示す。図3において実
線で示したガソリンエンジンの特性は、排気対策にも依るが、大部分のトルク(運転範囲)
は、空燃比(A/F) 14.7(理論空燃比)で運転される。つまり、トルクを制御する場
合、空気量に合わせて燃料量を制御し、空燃比を一定に保っている。また、より多くのト
ルクを必要とする場合は、空燃比を小さくしてトルクを増加する。通常の運転条件では、
最小空燃比がA/F13である。それに対して、破線で示したディーゼルエンジンの場合
は、燃料量の少ない(トルクが小さい)場合は、空燃比が大きく、空燃比がトルクの増加
とともに小さくなる。空燃比が小さくなり、A/F14.7 近くなると図2(b)で示し
たように、層状燃焼のため空気不足になりやすく、すす等が発生する。このため、ガソリ
ンエンジンの方がトルクが大きい。
FIG. 3 shows the relationship between the air-fuel ratio of the engine and the torque generated by the engine. The characteristics of the gasoline engine shown by the solid line in Fig. 3 depends on exhaust measures, but most of the torque (operating range)
Is operated at an air-fuel ratio (A / F) of 14.7 (theoretical air-fuel ratio). That is, when controlling the torque, the fuel amount is controlled in accordance with the air amount, and the air-fuel ratio is kept constant. If more torque is required, the torque is increased by reducing the air-fuel ratio. Under normal operating conditions
The minimum air / fuel ratio is A / F13. On the other hand, in the case of a diesel engine indicated by a broken line, when the amount of fuel is small (torque is small), the air-fuel ratio is large, and the air-fuel ratio decreases as the torque increases. When the air-fuel ratio becomes small and approaches A / F 14.7, as shown in FIG. 2B, air shortage is likely to occur due to stratified combustion, and soot is generated. For this reason, the torque of a gasoline engine is larger.

図4に燃料量と空気量との関係を示す。実線のガソリンエンジンの場合は、燃料と空気
が共に多くなり、図3の空燃比が小さくなる点で、空気の増加が小さくなる。空気量は、
シリンダの往復運動で決まる。そのためガソリンエンジンは、絞り弁で吸気管圧力を増減
し、シリンダに入る質量空気量を変化させる。このため、絞り弁開度が小さい(吸気管圧
力が小さい)部分負荷では、ポンピング損失(絞り損失)が発生し、燃費が減少する。こ
れに対しディーゼルエンジンは、空気量はほぼ一定で(絞り損失が無い)、燃料のみが増
加する。このため部分負荷の燃費が増加する。
FIG. 4 shows the relationship between the fuel amount and the air amount. In the case of a solid line gasoline engine, both the fuel and air increase, and the increase in air is reduced in that the air-fuel ratio in FIG. The air volume is
Determined by the reciprocating motion of the cylinder. For this reason, the gasoline engine changes the amount of mass air entering the cylinder by increasing or decreasing the intake pipe pressure with a throttle valve. For this reason, at a partial load where the throttle valve opening is small (intake pipe pressure is small), a pumping loss (throttle loss) occurs, and fuel consumption decreases. On the other hand, in a diesel engine, the amount of air is almost constant (no throttle loss), and only the fuel increases. For this reason, the fuel efficiency of partial load increases.

以上のように、ディーゼルエンジンは層状燃焼であるため、部分負荷の燃費は増加する
が、最大出力が小さい。これに対し、ガソリンエンジンは、予混合燃焼のため、最大出力
は大きいが、部分負荷では、ポンプ損失により燃費が減少する。
As described above, since the diesel engine is stratified combustion, the fuel efficiency of the partial load is increased, but the maximum output is small. In contrast, a gasoline engine has a large maximum output due to premixed combustion, but at a partial load, fuel consumption is reduced due to pump loss.

本発明の課題は、部分負荷では層状燃焼によりポンプ損失をなくして、燃費を高め、最
大出力時は、予混合燃焼により出力を大きくできる装置及び方法を提供することである。
An object of the present invention is to provide an apparatus and a method that can eliminate pump loss by stratified combustion at a partial load, improve fuel efficiency, and increase output by premixed combustion at the maximum output.

上記従来技術の問題を解決するために、本発明においては、部分負荷時は燃料噴射弁の
近傍に点火源を設け、燃料を噴射した後に混合気に点火し、生じた火炎を燃料の噴霧でシ
リンダ内に拡散し、層状燃焼させる。一方、負荷が大きくなり、層状燃焼ですす等が発生
する場合は、燃料噴射を複数回にし、前半の噴射でシリンダ内に予混合気を作り、この予
混合気を後半の噴射で作った火炎を気筒内に噴射し、予混合気を短時間で燃焼する。
In order to solve the above-mentioned problems of the prior art, in the present invention, an ignition source is provided in the vicinity of the fuel injection valve at the time of partial load, the mixture is ignited after the fuel is injected, and the resulting flame is sprayed with fuel. It diffuses into the cylinder and burns in layers. On the other hand, if the load increases and soot is generated due to stratified combustion, the fuel is injected multiple times, the premixed gas is created in the cylinder by the first half, and the premixed gas is made by the second half. Is injected into the cylinder, and the premixed gas is burned in a short time.

部分負荷のように燃料の噴射量が少ないときは、噴射始めと点火時期を比較的近くでき
るため、燃料はシリンダ内にあまり分散せず、比較的狭い範囲で燃焼する(層状燃焼)。
負荷の増加に合わせて噴射始めを速くすることにより混合気の形成される範囲(予混合気)
が大きくでき予混合燃焼が発生し、発生トルクが増加できる。
When the amount of fuel injection is small, such as partial load, the start of injection and the ignition timing can be made relatively close to each other, so the fuel does not disperse much in the cylinder and burns in a relatively narrow range (stratified combustion).
Range in which the mixture is formed by increasing the start of injection as the load increases (premix)
Can be increased, premixed combustion occurs, and the generated torque can be increased.

本発明により、燃焼時間が短縮し、ノックが防止でき、エンジンの圧縮比が高められ、
熱効率が上昇し、燃費が高くなる。層状吸気により未燃炭化水素の発生が防止できる。筒
内直接燃料噴射により、燃料の応答性が高まり運転性が向上する。
The invention shortens the combustion time, prevents knocking, increases the compression ratio of the engine,
Thermal efficiency increases and fuel consumption increases. The generation of unburned hydrocarbons can be prevented by stratified intake. In-cylinder direct fuel injection increases fuel responsiveness and improves drivability.

図1に本発明の第一実施例である制御システムの構成を示す。燃料タンク1より燃料ポ
ンプ2に燃料を送り、加圧する。加圧された燃料は、圧力センサ3で燃料圧を検出し、制
御回路5に圧力信号を送る。制御回路5は、あらかじめ決められた目標と比較し、設定値
以上であれば燃料ポンプ2のスピル弁4を開き燃料圧を目標圧力に制御する。加圧された
燃料は、燃料噴射弁13に送られる。制御回路5には、アクセルペダル19より運転者の
意図する信号(トルク信号)が送られる。これを受けて制御回路5は、エンジン回転数セ
ンサ10の信号を加味して一回あたりの噴射量を計算し、燃料噴射弁13の噴射弁駆動部
20に送る。これにより燃料噴射弁13が開き、燃料が燃焼室7に噴射される。この時の
燃料の噴射時期と噴射量(噴射時間)は、制御回路5で最適値に選定される。燃焼室7に
噴射された燃料は、最適な点火時期に制御回路5より点火回路22に信号が送られ、点火
回路22で高電圧が発生し、これが点火プラグ14に送られて、火花点火により点火され
る。燃焼室7の圧力が上がり、ピストン9に作用し、クランク軸16に回転力を与え、変
速機15よりデフレンシャルギア17を介して、タイヤ18a,18bを駆動して走行す
る。エンジン6の発生トルクは、燃焼室7の燃焼圧力を圧力センサ8で検出し、制御回路
5に送り、運転者の意図であるアクセルペダル19の信号と比較される。この比較結果は
、次の気筒の燃料噴射に反映される。エンジン6の空気量は、空気量検出器で計測され、
絞り弁で流量が制御される。また、空気は、吸気管27に配置されたスワール制御弁28
で気筒内に適度な乱れが生成できるように制御される。吸気弁12の弁リフトを弁リフト
制御装置11で制御する。燃焼ガスは、排気弁21より排気される。
FIG. 1 shows the configuration of a control system according to the first embodiment of the present invention. Fuel is sent from the fuel tank 1 to the fuel pump 2 and pressurized. The pressurized fuel is detected by the pressure sensor 3 and a pressure signal is sent to the control circuit 5. The control circuit 5 compares with a predetermined target, and if it is equal to or greater than the set value, opens the spill valve 4 of the fuel pump 2 and controls the fuel pressure to the target pressure. The pressurized fuel is sent to the fuel injection valve 13. A signal (torque signal) intended by the driver is sent from the accelerator pedal 19 to the control circuit 5. In response to this, the control circuit 5 calculates the injection amount per time in consideration of the signal of the engine speed sensor 10 and sends it to the injection valve drive unit 20 of the fuel injection valve 13. As a result, the fuel injection valve 13 is opened and fuel is injected into the combustion chamber 7. The fuel injection timing and the injection amount (injection time) at this time are selected as optimum values by the control circuit 5. The fuel injected into the combustion chamber 7 is sent a signal from the control circuit 5 to the ignition circuit 22 at an optimal ignition timing, and a high voltage is generated in the ignition circuit 22, which is sent to the spark plug 14, and spark ignition causes Ignited. The pressure in the combustion chamber 7 increases, acts on the piston 9, imparts rotational force to the crankshaft 16, and drives the tires 18 a and 18 b from the transmission 15 via the differential gear 17 to travel. The generated torque of the engine 6 is detected by the pressure sensor 8 by detecting the combustion pressure in the combustion chamber 7 and sent to the control circuit 5 to be compared with the signal of the accelerator pedal 19 that is intended by the driver. This comparison result is reflected in the fuel injection of the next cylinder. The air amount of the engine 6 is measured by an air amount detector,
The flow rate is controlled by a throttle valve. In addition, air is supplied to the swirl control valve 28 disposed in the intake pipe 27.
Thus, control is performed so that appropriate turbulence can be generated in the cylinder. The valve lift control device 11 controls the valve lift of the intake valve 12. The combustion gas is exhausted from the exhaust valve 21.

図5に燃焼室の縦断面図により、本発明の第一実施例を説明する。エンジンヘッド25
に形成された副燃焼室23に燃料噴射弁13,点火プラグ14を設置する。この時の燃料
噴射弁13と点火プラグ14の位置関係は燃料噴射弁13の噴霧の下流側に点火プラグ
14が設置されるのが良い。これは、点火プラグ14で形成した火炎核を噴霧で燃焼室7
やピストン9に設置したキャビティ24に分散しやすい。しかし、点火プラグ14が噴霧
に近過ぎると点火プラグ14が噴霧で濡れて点火不良を引き起こす場合もあり位置関係が
重要である。また、副燃焼室23の出口部26を絞ることにより、火炎核の噴出速度を調
整できる。この場合でも、絞り過ぎると圧力損失を生じ熱効率が低下する。
A first embodiment of the present invention will be described with reference to a longitudinal sectional view of the combustion chamber in FIG. Engine head 25
A fuel injection valve 13 and a spark plug 14 are installed in the auxiliary combustion chamber 23 formed in the above. The positional relationship between the fuel injection valve 13 and the ignition plug 14 at this time is preferably such that the ignition plug 14 is installed on the downstream side of the spray of the fuel injection valve 13. This is because the flame kernel formed by the spark plug 14 is sprayed into the combustion chamber 7.
And easily dispersed in the cavity 24 installed in the piston 9. However, if the spark plug 14 is too close to the spray, the spark plug 14 may get wet with the spray and cause ignition failure, so the positional relationship is important. Moreover, the ejection speed of the flame kernel can be adjusted by narrowing the outlet portion 26 of the auxiliary combustion chamber 23. Even in this case, if the pressure is excessively reduced, pressure loss is caused and the thermal efficiency is lowered.

図6に空燃比A/Fと排気(HC,NOx)の関係を示す。燃料の噴射時期がクランク
角90°の場合はNOxのピーク値がA/F16近くである。このようなNOxの排出量
の変化は、均一混合気の場合に見られる傾向である。噴射時期がクランク角90°と吸気
行程の中盤までは噴射された噴霧がピストンの動きや吸気による気筒内の空気の流れによ
り気筒内全体に分散するためである。噴射時期が大きくなるにつれてNOxのピーク値の
発生空燃比が大きくなる。それと同時にNOxの発生がなだらかになって来る。また、
HCの排出量も変化する。噴射時期90°と噴射時期180°を比較するとA/F15近
くのHCは、噴射時期90°が3800ppmC,噴射時期180°が6500ppmCである
。このように同じ空燃比でHCが異なるのは、燃焼しているところの空燃比が異なるため
である。つまり、噴射時期180°の方が実際に燃焼している場所の空燃比が小さいため
である。このため、空燃比が大きくなった場合噴射時期が90°の場合が小さい空燃比で
燃焼不良(失火)を起こしている。このように噴射時期を大きくすると安定して(HCが
増加しない)燃焼する空燃比が大きくなるのは、噴射時期が大きくなると点火時期に近く
なり、燃料が分散しにくくなり層状混合気となるためである。このように噴射時期を選定
することにより、均一混合気と層状混合気が自由に形成できる。そこで、エンジントルク
が小さいときは、噴射時期を大きくして点火時期に近かづける。トルクが大きくなるに従
って噴射時期を小さくし均一混合気に近づける。
FIG. 6 shows the relationship between the air-fuel ratio A / F and the exhaust gas (HC, NOx). When the fuel injection timing is 90 ° crank angle, the peak value of NOx is close to A / F16. Such a change in the NOx emission amount tends to be observed in the case of a uniform air-fuel mixture. This is because the spray sprayed is dispersed throughout the cylinder due to the movement of the piston and the flow of air in the cylinder due to the intake air until the injection timing is 90 ° and the middle of the intake stroke. As the injection timing increases, the generated air-fuel ratio of the NOx peak value increases. At the same time, the generation of NOx becomes gentle. Also,
HC emissions also change. Comparing the injection timing 90 ° and the injection timing 180 °, the HC near A / F 15 is 3800 ppmC at the injection timing 90 ° and 6500 ppmC at the injection timing 180 °. The reason why the HC is different at the same air-fuel ratio is that the air-fuel ratio at which the combustion is performed is different. That is, the air-fuel ratio of the place where the combustion is actually performed is smaller at the injection timing of 180 °. For this reason, when the air-fuel ratio becomes large, combustion failure (misfire) occurs at a small air-fuel ratio when the injection timing is 90 °. The reason why the air-fuel ratio for stable combustion (HC does not increase) increases when the injection timing is increased as described above is that the ignition timing becomes closer to the ignition timing when the injection timing increases, and the fuel becomes difficult to disperse and becomes a stratified mixture. It is. By selecting the injection timing in this way, a uniform mixture and a stratified mixture can be freely formed. Therefore, when the engine torque is small, the injection timing is increased to approach the ignition timing. As the torque increases, the injection timing is decreased to approach a uniform mixture.

図7に第二実施例を燃焼室の縦断面図で示す。本実施例は、燃料噴射弁13を燃焼室7
に突出し燃料を気筒内に広く分散するように噴射口が穿孔されている。このような場合は
、ピストンが低くなる下死点近くで燃料を噴射すると気筒壁面に燃料が直接あたり、壁面
流が作られる。このような状態では、良好な燃焼は期待できない。そのため、このように
噴霧が広い噴射弁場合はキャビティ24が上死点近くに有り、燃料がこのキャビティ24
内に吹き込めるようなタイミングで吹く必要が有る。その一例として燃料の噴射を図8に
示すように複数回に分けて噴射することができる。クランク角0度近くで前噴射を行い均
一混合気を作る。点火時期近くで噴射する後噴射で火種を作り前噴射で形成した均一混合
気を急速に燃焼させる。噴射量の調整は後噴射でも、前噴射でもできるので、最適状態で
噴射できる。このように、前,後二回に分ける場合は、図5に示した噴射角度が小さい噴
射弁であっても有効である。
FIG. 7 shows a second embodiment in a longitudinal sectional view of the combustion chamber. In this embodiment, the fuel injection valve 13 is connected to the combustion chamber 7.
The injection port is perforated so that the fuel is widely dispersed in the cylinder. In such a case, when fuel is injected near the bottom dead center where the piston is lowered, the fuel directly hits the cylinder wall surface, and a wall surface flow is created. In such a state, good combustion cannot be expected. Therefore, in the case of such an injection valve with a wide spray, the cavity 24 is near the top dead center, and the fuel is contained in the cavity 24.
It is necessary to blow at the timing that can be blown into. As an example, fuel injection can be performed in a plurality of times as shown in FIG. Pre-injection is performed at a crank angle near 0 degrees to create a uniform mixture. A homogeneous mixture formed by pre-injection is rapidly burned by making a fire type by post-injection that is injected near the ignition timing. Since the injection amount can be adjusted by either post-injection or pre-injection, injection can be performed in an optimum state. In this way, when dividing into two times before and after, it is effective even with the injection valve having a small injection angle shown in FIG.

図9に前噴射,後噴射する場合の燃料噴射時間の計算のフローチャートを示す。ステッ
プ101でアクセル開度α、エンジン回転数Neを読み込む。この時空気量を測定してい
る場合は、空気量Qaを追加してもよい。ステップ102で燃料量Qfを計算する。ステ
ップ103でQf>Qf1の判定をする。NOの場合は、ステップ109に進み、無効噴
射量Qxを加えて噴射時間Tp2を算出する。ステップ110でTp2を後噴射の時期に
噴射して完了する。ステップ103がYesの場合は、ステップ104に進み、最小噴射量
Qf0を減算して、Qf2を算出する。ステップ105でQf2に無効噴射量Qxを加え
て噴射時間Tp1を算出する。Tp1を前噴射の時期で噴射する。ステップ107でQf0
にQxを加えてTp2を算出し、Tp2を後噴射の時期に噴射する。このように、前,後
噴射ともそれぞれ無効噴射量Qxを追加する必要が有る。
FIG. 9 shows a flowchart for calculating the fuel injection time in the case of pre-injection and post-injection. In step 101, the accelerator opening α and the engine speed Ne are read. If the air amount is measured at this time, the air amount Qa may be added. In step 102, the fuel amount Qf is calculated. In step 103, Qf> Qf1 is determined. In the case of NO, the process proceeds to step 109, and the injection time Tp2 is calculated by adding the invalid injection amount Qx. In step 110, Tp2 is injected at the time of post-injection. If step 103 is Yes, the process proceeds to step 104, where Qf2 is calculated by subtracting the minimum injection amount Qf0. In step 105, the injection time Tp1 is calculated by adding the invalid injection amount Qx to Qf2. Tp1 is injected at the timing of the previous injection. In step 107, Qf0
Qp is added to calculate Tp2, and Tp2 is injected at the time of post-injection. Thus, it is necessary to add the invalid injection amount Qx for each of the front and rear injections.

図10に燃料圧力の制御装置を示す。燃料タンク1より燃料ポンプ2燃料が送られる。
燃料ポンプ2は、モータ30で駆動され、加圧した燃料を高圧配管34に送る。高圧配管
34には噴射弁13a〜13d,アキュームレータ33,燃料圧力センサ3,リリーフ弁
32が配設されている。リリーフ弁33は、ガスがダンパとして封入されており燃料圧力
が高くなるとアキュームレータ内に燃料が流入する。圧力が下がると燃料を高圧配管34
に送り出す。リリーフ弁32は、燃料が高くなり過ぎた場合に燃料を流失させて、圧力上
昇を防止する。燃料圧力センサ3は、圧力に比例した信号を制御回路5に送り燃料ポンプ
2の電磁スピル装置4に送り燃料ポンプ2の吐出量を制御し、燃料圧力を制御する。また
、モータ30のコントローラ31に信号をおくり、燃料ポンプ30の回転数を制御して、
燃料圧力を制御する。本実施例は、電磁スピル装置4とコントローラ31の両方設置した
がどちらか一つでも燃料圧力は、制御できる。しかし、燃料ポンプ2をエンジンにて駆動
する場合はモータ30は無いので電磁スピル装置4だけとなる。
FIG. 10 shows a fuel pressure control device. Fuel from the fuel tank 1 is sent from the fuel pump 2.
The fuel pump 2 is driven by a motor 30 and sends pressurized fuel to the high-pressure pipe 34. The high-pressure pipe 34 is provided with injection valves 13a to 13d, an accumulator 33, a fuel pressure sensor 3, and a relief valve 32. In the relief valve 33, gas is sealed as a damper, and when the fuel pressure increases, the fuel flows into the accumulator. When the pressure drops, the fuel is fed into the high-pressure pipe 34.
To send. The relief valve 32 prevents the pressure from rising by causing the fuel to flow away when the fuel becomes too high. The fuel pressure sensor 3 sends a signal proportional to the pressure to the control circuit 5, sends it to the electromagnetic spill device 4 of the fuel pump 2, controls the discharge amount of the fuel pump 2, and controls the fuel pressure. In addition, a signal is sent to the controller 31 of the motor 30 to control the number of revolutions of the fuel pump 30,
Control fuel pressure. In this embodiment, both the electromagnetic spill device 4 and the controller 31 are installed, but the fuel pressure can be controlled by either one. However, when the fuel pump 2 is driven by the engine, the motor 30 is not provided, so that only the electromagnetic spill device 4 is provided.

図11にEGRの制御系統図を示す。空気は、空気流量計35,絞り弁37,吸気管
27よりエンジン6に入り、排気となり排気管41に排出される。排気管41には、触媒
39が有る。ここでEGRが必要になると、制御装置5よりEGR弁38に信号を送り
EGR弁を開く。また絞り弁アクチェータ36に信号を送り、絞り弁37を閉し吸気管
27の圧力を大気圧より低くする。すると、吸気管圧力に比例して排気が排気管41から
吸気管27にEGR弁38を介して流れる。この時の排気の流量は、吸気管圧力に比例す
るので、この吸気管圧力を吸気管圧力センサ40で検出し、制御回路5に送り、絞り弁ア
クチェータ36で絞り弁37の開度を調節する。絞り弁37の開度を制御すれば吸気管
27の圧力が制御でき、EGR量がフィードバック制御により正確に制御できる。
FIG. 11 shows an EGR control system diagram. Air enters the engine 6 through the air flow meter 35, the throttle valve 37, and the intake pipe 27, becomes exhaust, and is discharged to the exhaust pipe 41. The exhaust pipe 41 has a catalyst 39. Here, when EGR is required, a signal is sent from the control device 5 to the EGR valve 38 to open the EGR valve. Further, a signal is sent to the throttle valve actuator 36, the throttle valve 37 is closed, and the pressure in the intake pipe 27 is made lower than the atmospheric pressure. Then, the exhaust gas flows from the exhaust pipe 41 to the intake pipe 27 via the EGR valve 38 in proportion to the intake pipe pressure. Since the flow rate of the exhaust gas at this time is proportional to the intake pipe pressure, this intake pipe pressure is detected by the intake pipe pressure sensor 40, sent to the control circuit 5, and the throttle valve actuator 36 adjusts the opening of the throttle valve 37. . If the opening degree of the throttle valve 37 is controlled, the pressure of the intake pipe 27 can be controlled, and the EGR amount can be accurately controlled by feedback control.

図12に本発明の第三実施例を示す。空気は絞り弁213によって調整され、吸気管
214を介して、エンジンに吸入される。吸気弁208のリフトは形状の異なるカム203
を切り替えることによって変化させることができる。カムの切り替えはロッカーアーム
210を油圧制御弁202で切り替えることによって行う。油圧制御弁202は例えば電
磁ソレノイドで行う。絞り弁はモータ212によって開度を制御する。エンジンには気筒
内圧力を検出するセンサ220を取り付ける。また、気筒内に燃料を直接噴射する噴射弁
204を取り付ける。排気管には排気の空燃比を検出するセンサ205を取り付ける。排
気管には触媒を取り付ける。触媒は酸素過多の条件でもNOxを除去できるものが望まし
い。また、理論空燃比条件では、HC,CO,NOxを同時に除去できる三元触媒に機能
が必要である。また、排気の1部は排気管流量を制御する弁215,218によって、制
御される。これによって、燃焼温度を低下させ、NOxを低減する。これら、各制御弁は
制御装置201で制御される。燃費を低減するためには、吸気管内の圧力を大気圧に近付
け、ポンピング損失を小さくすることが望ましい。そのため、絞り弁212はなるべく全
開状態とする。しかし、配管216から排気還流を行う場合では、吸気管内の圧力を排気
管内の圧力より小さくする必要があるので、絞り弁を閉じる。
FIG. 12 shows a third embodiment of the present invention. The air is adjusted by the throttle valve 213 and is sucked into the engine via the intake pipe 214. The lift of the intake valve 208 is different in cam 203
It can be changed by switching. The cam is switched by switching the rocker arm 210 with the hydraulic control valve 202. The hydraulic control valve 202 is performed by an electromagnetic solenoid, for example. The opening of the throttle valve is controlled by the motor 212. A sensor 220 for detecting the in-cylinder pressure is attached to the engine. An injection valve 204 that directly injects fuel into the cylinder is attached. A sensor 205 for detecting the air-fuel ratio of the exhaust is attached to the exhaust pipe. A catalyst is attached to the exhaust pipe. A catalyst that can remove NOx even under excessive oxygen conditions is desirable. Further, under the theoretical air-fuel ratio condition, a function is required for the three-way catalyst that can simultaneously remove HC, CO, and NOx. Further, a part of the exhaust is controlled by valves 215 and 218 that control the exhaust pipe flow rate. This lowers the combustion temperature and reduces NOx. These control valves are controlled by the control device 201. In order to reduce fuel consumption, it is desirable to reduce the pumping loss by bringing the pressure in the intake pipe close to atmospheric pressure. Therefore, the throttle valve 212 is fully opened as much as possible. However, when exhaust gas recirculation is performed from the pipe 216, the throttle valve is closed because the pressure in the intake pipe needs to be smaller than the pressure in the exhaust pipe.

図13に本発明の第三実施例の動作を示す。運転条件に応じて図13のように吸気弁カ
ムのリフトを変化させる。空気量が多く必要なときには吸気弁のリフトをAのようにする
。空気量が少ないときには吸気弁のリフトをリフトB,リフトCのように変化させる。リ
フトを変化させることによって、排気弁とのオーバラップも変化させる。高出力運転時に
は、排気弁と吸気弁のオーバラップ期間を大きくする。このようにして、吸気弁のリフト
によって、空気量を変化させることができる。
FIG. 13 shows the operation of the third embodiment of the present invention. The lift of the intake valve cam is changed as shown in FIG. 13 according to the operating conditions. When a large amount of air is required, the intake valve lift is set to A. When the amount of air is small, the lift of the intake valve is changed to lift B and lift C. By changing the lift, the overlap with the exhaust valve is also changed. During high output operation, the overlap period of the exhaust valve and intake valve is increased. In this way, the amount of air can be changed by the lift of the intake valve.

図14にロッカーアーム221,223,224とカム225,226,227の構成
の1例を示す。ロッカーアーム223とカム225で駆動し、吸気弁を往復運動させる。
ロッカーアーム226とカム224は固定されておらず、自由な状態になっている。カム
を切り替えるときには、ロッカーアーム224とカム226で駆動し、吸気弁を往復運動
させる。ロッカーアーム223とカム225は固定されておらず、自由な状態になってい
る。このようにすることによって、カムを切り替えることができる。この例では、カムの
リフトを変化させるようにしたが、カムの形状を変えて、開弁及び閉弁の時期を同時に制
御しても良い。
FIG. 14 shows an example of the configuration of the rocker arms 221, 223, 224 and the cams 225, 226, 227. Driven by the rocker arm 223 and the cam 225, the intake valve is reciprocated.
The rocker arm 226 and the cam 224 are not fixed and are in a free state. When switching the cam, it is driven by the rocker arm 224 and the cam 226 to reciprocate the intake valve. The rocker arm 223 and the cam 225 are not fixed and are in a free state. In this way, the cam can be switched. In this example, the lift of the cam is changed. However, the timing of opening and closing the valve may be controlled simultaneously by changing the shape of the cam.

図15にアクセル開度とエンジン回転数に対するカムの選択のマップを示す。この例で
はカムの切り替えを3段階に選んだ。エンジン回転数が低く、アクセル開度が小さいとき
にはリフトの小さいカムAを選ぶ。エンジン回転数及びアクセル開度が大きくなるのに従
って、リフトの大きいカムに切り替える。
FIG. 15 shows a map of cam selection with respect to the accelerator opening and the engine speed. In this example, cam switching was selected in three stages. When the engine speed is low and the accelerator opening is small, the cam A having a small lift is selected. As the engine speed and accelerator opening increase, the cam is switched to a larger lift.

図16にエンジントルクとエンジン回転数に対するカムの選択のマップを示す。この例
ではカムの切り替えを3段階に選んだ。エンジントルクはアクセル開度に対してあらかじ
め決めた目標トルクとする。エンジン回転数が低く、エンジンが小さいときにはリフトの
小さいカムAを選ぶ。エンジン回転数及びエンジントルクが大きくなるのに従って、リフ
トの大きいカムに切り替える。
FIG. 16 shows a map of cam selection with respect to engine torque and engine speed. In this example, cam switching was selected in three stages. The engine torque is a target torque determined in advance with respect to the accelerator opening. When the engine speed is low and the engine is small, the cam A having a small lift is selected. As the engine speed and engine torque increase, the cam is switched to a cam with a higher lift.

図17に空燃比A/Fの切り替え時の吸入空気量の制御方法を示す。絞り弁全開やリフ
トの大きいカムを選定すると、空燃比を小さくすると燃料量が多くなり、軸トルクが大き
くなる。空燃比が16付近はNOxの排出量が多くなりやすいので、空燃比を18から
15にスキップさせる。このとき、空気量をそのままにして、空燃比を15に切り替える
と燃料量が多くなり、Cのように軸トルクが増大し、違和感を感じる。そこで、空燃比を
切り替えるときには、空気量を少なくして、燃料量の増大を防止し、軸トルクがAからB
のように変化させ、ショックを少なくする。空気量の調整は絞り弁またはカムの切り替え
で行う。絞り弁で行うと吸気管内の圧力が小さくなり、ポンピング損失が大きくなるので
、できる限り、カムの切り替えで行うのが良い。また、軸トルクが小さくなり、例えば空
燃比を70以上にしても、目標の軸トルクにならない場合もカムまたは絞り弁で空気量を
調整する。
FIG. 17 shows a method of controlling the intake air amount when switching the air-fuel ratio A / F. If a throttle valve is fully opened or a cam with a large lift is selected, the amount of fuel increases and the shaft torque increases as the air-fuel ratio decreases. When the air-fuel ratio is around 16, the amount of NOx emission tends to increase, so the air-fuel ratio is skipped from 18 to 15. At this time, if the air-fuel ratio is switched to 15 while leaving the air amount as it is, the amount of fuel increases, the shaft torque increases like C, and a sense of incongruity is felt. Therefore, when switching the air-fuel ratio, the air amount is reduced to prevent the fuel amount from increasing, and the shaft torque is changed from A to B.
Change to reduce the shock. The air volume is adjusted by switching the throttle valve or cam. When the throttle valve is used, the pressure in the intake pipe is reduced, and the pumping loss is increased. Further, even if the shaft torque becomes small, for example, even if the air-fuel ratio is set to 70 or more, even if the target shaft torque is not reached, the air amount is adjusted with a cam or a throttle valve.

図18に燃料量と軸トルクの関係を示す。燃料量を多くすると軸トルクを大きくできる
ので、燃料量によって軸トルクを制御できる。
FIG. 18 shows the relationship between the fuel amount and the shaft torque. Since the shaft torque can be increased by increasing the amount of fuel, the shaft torque can be controlled by the amount of fuel.

図19に本発明の第四実施例を示す。アクセル開度α及びエンジン回転数Nなどエンジ
ン状態を検出するエンジン状態検出部301、それから燃料噴射量Qfを計算する燃料噴
射量計算部302によって燃料噴射量Qfを求める。充填効率マップ303に基づいて
304でエンジンの空気量を計算し、各カムの空気量を求めて空燃比を計算する。305
で空燃比が可燃範囲であるかを判定し、306でカムの選定、及び、307で絞り弁開度
の決定を行う。空気量が多過ぎる場合には、混合気が希薄状態になってしまうのでリフト
の少ないカムに切り替える。筒内噴射では気筒内の混合気を直接制御するので、希薄混合
気の限界を従来の吸気ポート噴射システムに比べて、大きくできるので、燃料量で制御で
きる軸トルクの範囲が広い。そのため、空気量を従来のように微細に制御しなくても燃料
量で軸トルクを制御できる。
FIG. 19 shows a fourth embodiment of the present invention. The fuel injection amount Qf is obtained by an engine state detection unit 301 that detects the engine state such as the accelerator opening degree α and the engine speed N, and then a fuel injection amount calculation unit 302 that calculates the fuel injection amount Qf. Based on the charging efficiency map 303, the air amount of the engine is calculated at 304, the air amount of each cam is obtained, and the air-fuel ratio is calculated. 305
In step 306, it is determined whether the air-fuel ratio is within the combustible range. In step 306, the cam is selected, and in step 307, the throttle valve opening is determined. If the amount of air is too large, the air-fuel mixture becomes lean, so switch to a cam with less lift. In-cylinder injection directly controls the air-fuel mixture in the cylinder. Therefore, the limit of the lean air-fuel mixture can be made larger than that of the conventional intake port injection system, so that the range of shaft torque that can be controlled by the fuel amount is wide. Therefore, the shaft torque can be controlled by the fuel amount without finely controlling the air amount as in the prior art.

図20に本発明の第五実施例を示す。311でアクセル開度を検出し、312で目標ト
ルクを決定する。目標トルクから燃料量計算手段313で燃料量を決定する。軸トルクに
対して空燃比をあらかじめ決めておくと、空気量Qaを求めることができる。316で空
燃比を判定し、空燃比が18以上である場合には、318で絞り弁を全開として、トルク
検出手段319でエンジンのトルクを検出し、目標トルクになるように燃料噴射量を制御
する。一方、空燃比が18以下の場合には321で目標の空燃比になるように空気量を制
御する。空気量はたとえば絞り弁開度またはカムのリフトで行う。ここで、322の空気
量センサで空気量を検出し、目標の空気量になるように空気量を制御してもよい。
FIG. 20 shows a fifth embodiment of the present invention. The accelerator opening is detected at 311 and the target torque is determined at 312. The fuel amount is determined by the fuel amount calculation means 313 from the target torque. If the air-fuel ratio is determined in advance with respect to the shaft torque, the air amount Qa can be obtained. In 316, the air-fuel ratio is determined. If the air-fuel ratio is 18 or more, the throttle valve is fully opened in 318, the torque of the engine is detected by the torque detecting means 319, and the fuel injection amount is controlled so as to reach the target torque. To do. On the other hand, when the air-fuel ratio is 18 or less, the air amount is controlled so as to reach the target air-fuel ratio at 321. The amount of air is determined by, for example, throttle valve opening or cam lift. Here, the air amount may be detected by the air amount sensor 322, and the air amount may be controlled so as to become the target air amount.

図21に目標空燃比のマップを示す。軸トルクの増大とともに空燃比を小さくするが、
B点では空燃比16をスキップするように空燃比をC点に切り替える。さらにトルクを大
きくするときには空燃比を小さくして、D点に向かうようにする。空燃比をさらに小さく
すると混合気が濃い状態になりすぎる。そのため、この領域では空気量を検出し、空燃比
制御を行うのが望ましい。
FIG. 21 shows a map of the target air-fuel ratio. As the shaft torque increases, the air-fuel ratio decreases.
At point B, the air-fuel ratio is switched to point C so that the air-fuel ratio 16 is skipped. When the torque is further increased, the air-fuel ratio is decreased so as to be directed to point D. If the air-fuel ratio is further reduced, the air-fuel mixture becomes too rich. For this reason, it is desirable to perform air-fuel ratio control by detecting the air amount in this region.

図22にエンジン回転数Nと吸入空気量Qaに対する絞り弁開度θthの関係を示す。
絞り弁で空気量を制御する場合には、吸入空気量に対するマップから絞り弁開度を求める
。さらに精密な制御を行うときには空気量を検出し、フィードバックをかける。
FIG. 22 shows the relationship between the throttle valve opening θth and the engine speed N and the intake air amount Qa.
When the air amount is controlled by the throttle valve, the throttle valve opening is obtained from the map for the intake air amount. When more precise control is performed, the amount of air is detected and feedback is applied.

図23,図24に本発明の第六実施例を示す。空燃比が18以上の場合、混合気が希薄
すぎて運転性,排気浄化性が低下する場合があるので、燃焼変動を検出し、空気量を少な
くするように、絞り弁開度またはカムリフトを設定する。
23 and 24 show a sixth embodiment of the present invention. If the air-fuel ratio is 18 or more, the air-fuel mixture may be too lean and the operability and exhaust purification may be reduced, so the throttle valve opening or cam lift is set to detect combustion fluctuations and reduce the amount of air. To do.

図25に本発明の第七実施例を示す。エンジンのシリンダガスケット231に電極234
を埋め込み電極232から高電圧を加える。ガスケットにはネジ止め用の穴233が開い
ている。
FIG. 25 shows a seventh embodiment of the present invention. Engine cylinder gasket 231 and electrode 234
A high voltage is applied from the embedded electrode 232. The gasket has a hole 233 for screwing.

図26に図25の縦断面図を示す。電極238と239の間に高電圧が点火コイルより
加えられ、火花放電する。これによって気筒壁面近く及び多点から混合気に点火が行われ
るので、燃焼速度がおおきくなる。また、壁面近くから燃焼させるので、壁面近くのいわ
ゆるクエンチ領域が少なくなり、未燃焼炭化水素が少なくなり、かつノッキングが発生し
にくくなる。ガスケット上下面には絶縁層235及び237を設ける。電極239がアー
スである場合には絶縁層237はなくても良い。
FIG. 26 is a longitudinal sectional view of FIG. A high voltage is applied between the electrodes 238 and 239 from the ignition coil, causing a spark discharge. As a result, the air-fuel mixture is ignited from the cylinder wall surface and from multiple points, so that the combustion speed increases. Moreover, since combustion is performed from near the wall surface, so-called quench regions near the wall surface are reduced, unburned hydrocarbons are reduced, and knocking is less likely to occur. Insulating layers 235 and 237 are provided on the upper and lower surfaces of the gasket. In the case where the electrode 239 is grounded, the insulating layer 237 may not be provided.

本発明の第一実施例を示し、本制御システムの構成を示す概念図。The conceptual diagram which shows the 1st Example of this invention and shows the structure of this control system. エンジンの燃焼室内の燃焼状態を示す概念図。The conceptual diagram which shows the combustion state in the combustion chamber of an engine. 空燃比と発生トルクとの相関図。The correlation diagram of an air fuel ratio and generated torque. 燃料量と空気量との相関図。The correlation diagram of the amount of fuel and the amount of air. 燃焼室の縦断面図。The longitudinal cross-sectional view of a combustion chamber. 空燃比A/Fと排気中のHC,NOxの相関図。The correlation diagram of air-fuel ratio A / F and HC and NOx in exhaust. 本発明の第二実施例を示し、図5と同様燃焼室の縦断面図。The 2nd Example of this invention is shown, and the longitudinal cross-sectional view of a combustion chamber is similar to FIG. 燃料噴射時期を表すチャート図。The chart showing fuel injection time. 燃料噴射時間の計算のフローチャート図。The flowchart figure of calculation of fuel injection time. 燃料圧力の制御装置のブロック図。The block diagram of the control apparatus of fuel pressure. EGRの制御系統を表す概念図。The conceptual diagram showing the control system of EGR. 本発明の第三実施例を示し、本制御システムの構成を示す概念図。The conceptual diagram which shows the 3rd Example of this invention and shows the structure of this control system. 吸気弁の動作を示すタイムチャート図。The time chart figure which shows the operation | movement of an intake valve. ロッカーアームの構成を示す斜視図。The perspective view which shows the structure of a rocker arm. エンジン回転数とアクセル開度とカムの選択のマップ図。The map figure of selection of an engine speed, an accelerator opening, and a cam. エンジン回転数とエンジントルクとカムの選択のマップ図。The map figure of selection of an engine speed, an engine torque, and a cam. 空燃比A/Fと軸トルクとの相関図。The correlation diagram of air fuel ratio A / F and shaft torque. 燃料量と軸トルクとの相関図。The correlation diagram of fuel amount and shaft torque. 本発明の第四実施例を示す、本制御システムのブロック図。The block diagram of this control system which shows 4th Example of this invention. 本発明の第五実施例を示す、本制御システムのブロック図。The block diagram of this control system which shows the 5th Example of this invention. 目標空燃比のエンジントルクに対するマップ図。The map figure with respect to the engine torque of a target air fuel ratio. エンジン回転数と吸入空気量に対する絞り弁開度の相関図。The correlation diagram of throttle valve opening with respect to engine speed and intake air amount. 本発明の第六実施例を示す、本制御システムのブロック図。The block diagram of this control system which shows the 6th Example of this invention. 図23と同様、本制御システムのブロック図。The block diagram of this control system like FIG. 本発明の第七実施例を示し、エンジンのシリンダガスケットの構成を示す上面図。The top view which shows 7th Example of this invention and shows the structure of the cylinder gasket of an engine. 図25の縦断面図。The longitudinal cross-sectional view of FIG.

符号の説明Explanation of symbols

1…燃料タンク、2…燃料ポンプ、3…燃料圧力センサ、4…電磁スピル装置、5…制
御回路、6…エンジン、7…燃焼室、8…燃焼圧力センサ、9…ピストン、12…吸気弁
、13…燃料噴射弁、14…点火プラグ、19…アクセルペダル、21…排気弁、24…
キャビティ、28…スワールコントロール弁。
DESCRIPTION OF SYMBOLS 1 ... Fuel tank, 2 ... Fuel pump, 3 ... Fuel pressure sensor, 4 ... Electromagnetic spill device, 5 ... Control circuit, 6 ... Engine, 7 ... Combustion chamber, 8 ... Combustion pressure sensor, 9 ... Piston, 12 ... Intake valve , 13 ... Fuel injection valve, 14 ... Spark plug, 19 ... Accelerator pedal, 21 ... Exhaust valve, 24 ...
Cavity, 28 ... Swirl control valve.

Claims (8)

燃料を火花点火機関の燃焼室に直接噴射する燃料噴射手段と、
前記燃焼室内の混合気に点火する点火手段と、
前記火花点火機関の出力トルクを検出するトルク検出手段と、
前記燃焼室への吸入空気を導入する弁手段と、
前記燃料噴射手段から噴射される燃料の燃料量と噴射時期とを制御する燃料制御手段と、
前記点火手段の点火時期を制御する点火時期制御手段と、
前記燃焼室への吸入空気量を制御する吸入空気量制御手段とからなる火花点火内燃機関の制御装置において、
前記トルク検出手段が検出した出力トルクの値があらかじめ定められた値に近づくように、前記燃料制御手段は燃料量を変化させ、前記吸入空気量制御手段は吸入空気量を変化させて、空燃比を変化させるとともに、
前記燃料噴射手段の近傍に前記点火手段を設け、
部分負荷時は燃料を噴射した後に混合気に点火し、生じた火炎を燃料の噴霧でシリンダ
内に拡散して燃焼させ、
負荷が大きくなり層状燃焼ですす等が発生する場合は、燃料噴射を複数回に分け、前半
の噴射でシリンダ内に予混合気を作り、この予混合気を後半の噴射で作った火炎を気筒内
に噴射して予混合気を燃焼させることを特徴とする火花点火内燃機関の制御装置。
Fuel injection means for directly injecting fuel into the combustion chamber of a spark ignition engine;
Ignition means for igniting the air-fuel mixture in the combustion chamber;
Torque detecting means for detecting an output torque of the spark ignition engine;
Valve means for introducing intake air into the combustion chamber;
Fuel control means for controlling the amount of fuel injected from the fuel injection means and the injection timing;
Ignition timing control means for controlling the ignition timing of the ignition means;
In a control apparatus for a spark ignition internal combustion engine comprising intake air amount control means for controlling the intake air amount into the combustion chamber,
The fuel control means changes the fuel amount so that the value of the output torque detected by the torque detection means approaches a predetermined value, and the intake air amount control means changes the intake air amount to change the air-fuel ratio. And changing
The ignition means is provided in the vicinity of the fuel injection means,
At the time of partial load, after fuel is injected, the mixture is ignited, and the resulting flame is diffused into the cylinder with fuel spray and burned.
If the load increases and stratified combustion causes soot, etc., the fuel injection is divided into multiple times, a premixed gas is created in the cylinder by the first half of the injection, and a flame made from this premixed gas by the latter half of the injection is A control device for a spark ignition internal combustion engine, wherein the premixed gas is burned by being injected into the spark ignition.
請求項1の記載において、前記吸入空気量制御手段は吸入空気量を一定として、前記燃
料制御手段は燃料量を変化させ、空燃比を変化させることを特徴とする火花点火内燃機関
の制御装置。
2. The control device for a spark ignition internal combustion engine according to claim 1, wherein the intake air amount control means makes the intake air amount constant, and the fuel control means changes the fuel amount and changes the air-fuel ratio.
請求項1の記載において、前記吸入空気量制御手段は吸入空気量をステップ状に変化さ
せて、前記燃料制御手段は燃料量を変化させ、空燃比を変化させることを特徴とする火花
点火内燃機関の制御装置。
2. The spark ignition internal combustion engine according to claim 1, wherein the intake air amount control means changes the intake air amount stepwise, and the fuel control means changes the fuel amount and changes the air-fuel ratio. Control device.
請求項1の記載において、前記吸入空気量制御手段は吸入空気量を定められた関数に従
って変化させて、前記燃料制御手段は燃料量を変化させ、空燃比を変化させることを特徴
とする火花点火内燃機関の制御装置。
2. The spark ignition according to claim 1, wherein the intake air amount control means changes the intake air amount according to a predetermined function, and the fuel control means changes the fuel amount and changes the air-fuel ratio. Control device for internal combustion engine.
燃料噴射手段は燃料を火花点火機関の燃焼室に直接噴射し、
点火手段は前記燃焼室内の混合気に点火し、
トルク検出手段は前記火花点火機関の出力トルクを検出し、
弁手段は前記燃焼室へ吸入空気を導入し、
燃料制御手段は前記燃料噴射手段から噴射される燃料の燃料量と噴射時期とを制御し、
点火時期制御手段は前記点火手段の点火時期を制御し、
吸入空気量制御手段は前記燃焼室への吸入空気量を制御する火花点火内燃機関の制御方
法において、
前記トルク検出手段が検出した出力トルクの値があらかじめ定められた値に近づくよう
に、前記燃料制御手段は燃料量を変化させ、前記吸入空気量制御手段は吸入空気量を変化
させ、空燃比を変化させるとともに、
前記燃料噴射手段の近傍に前記点火手段を設け、
部分負荷時は燃料を噴射した後に混合気に点火し、生じた火炎を燃料の噴霧でシリンダ
内に拡散して燃焼させ、
負荷が大きくなり層状燃焼ですす等が発生する場合は、燃料噴射を複数回に分け、前半
の噴射でシリンダ内に予混合気を作り、この予混合気を後半の噴射で作った火炎を気筒内
に噴射して予混合気を燃焼させることを特徴とする火花点火内燃機関の制御方法。
The fuel injection means injects fuel directly into the combustion chamber of the spark ignition engine,
The ignition means ignites the air-fuel mixture in the combustion chamber,
Torque detection means detects the output torque of the spark ignition engine,
The valve means introduces intake air into the combustion chamber,
The fuel control means controls the amount of fuel injected from the fuel injection means and the injection timing,
The ignition timing control means controls the ignition timing of the ignition means,
In the control method of the spark ignition internal combustion engine for controlling the intake air amount to the combustion chamber,
The fuel control means changes the fuel amount so that the output torque value detected by the torque detection means approaches a predetermined value, the intake air amount control means changes the intake air amount, and the air-fuel ratio is adjusted. As well as change
The ignition means is provided in the vicinity of the fuel injection means,
At the time of partial load, after fuel is injected, the mixture is ignited, and the resulting flame is diffused into the cylinder with fuel spray and burned.
If the load increases and stratified combustion causes soot, etc., the fuel injection is divided into multiple times, a premixed gas is created in the cylinder by the first half of the injection, and a flame made from this premixed gas by the latter half of the injection is A control method for a spark ignition internal combustion engine, wherein the premixed gas is burned by being injected into the spark ignition.
請求項5の記載において、前記吸入空気量制御手段は吸入空気量を一定として、前記燃
料制御手段は燃料量を変化させ、空燃比を変化させることを特徴とする火花点火内燃機関
の制御方法。
6. The spark ignition internal combustion engine control method according to claim 5, wherein the intake air amount control means sets the intake air amount constant, and the fuel control means changes the fuel amount and changes the air-fuel ratio.
請求項5の記載において、前記吸入空気量制御手段は吸入空気量をステップ状に変化さ
せて、前記燃料制御手段は燃料量を変化させ、空燃比を変化させることを特徴とする火花
点火内燃機関の制御方法。
6. The spark ignition internal combustion engine according to claim 5, wherein the intake air amount control means changes the intake air amount stepwise, and the fuel control means changes the fuel amount and changes the air-fuel ratio. Control method.
請求項5の記載において、前記吸入空気量制御手段は吸入空気量を定められた関数に従
って変化させて、前記燃料制御手段は燃料量を変化させ、空燃比を変化させることを特徴
とする火花点火内燃機関の制御方法。
6. The spark ignition according to claim 5, wherein the intake air amount control means changes the intake air amount according to a predetermined function, and the fuel control means changes the fuel amount and changes the air-fuel ratio. A method for controlling an internal combustion engine.
JP2007117913A 2007-04-27 2007-04-27 Control apparatus and method for spark ignition internal combustion engine Pending JP2007192235A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007117913A JP2007192235A (en) 2007-04-27 2007-04-27 Control apparatus and method for spark ignition internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007117913A JP2007192235A (en) 2007-04-27 2007-04-27 Control apparatus and method for spark ignition internal combustion engine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004210914A Division JP2004286038A (en) 2004-07-20 2004-07-20 Control device and method for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2007192235A true JP2007192235A (en) 2007-08-02

Family

ID=38448107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007117913A Pending JP2007192235A (en) 2007-04-27 2007-04-27 Control apparatus and method for spark ignition internal combustion engine

Country Status (1)

Country Link
JP (1) JP2007192235A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013100766A (en) * 2011-11-08 2013-05-23 Fuji Heavy Ind Ltd Fuel injection control device of engine
JP2018155149A (en) * 2017-03-16 2018-10-04 トヨタ自動車株式会社 Internal combustion engine
WO2024004117A1 (en) * 2022-06-30 2024-01-04 日産自動車株式会社 Method and device for controlling injection amount of cylinder direct injection-type spark ignition internal combustion engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013100766A (en) * 2011-11-08 2013-05-23 Fuji Heavy Ind Ltd Fuel injection control device of engine
JP2018155149A (en) * 2017-03-16 2018-10-04 トヨタ自動車株式会社 Internal combustion engine
US10378428B2 (en) 2017-03-16 2019-08-13 Toyota Jidosha Kabushiki Kaisha Internal combustion engine
WO2024004117A1 (en) * 2022-06-30 2024-01-04 日産自動車株式会社 Method and device for controlling injection amount of cylinder direct injection-type spark ignition internal combustion engine

Similar Documents

Publication Publication Date Title
KR100377645B1 (en) Apparatus and method for controlling internal combustion engine
US6966295B2 (en) Compression ignition internal combustion engine
US7194996B2 (en) Internal combustion engine and method for auto-ignition operation of said engine
JP3500951B2 (en) Non-throttle compression-ignition internal combustion engine and control method thereof
US20040154582A1 (en) Combustion control device and method for engine
KR101016924B1 (en) Fuel injection control device and fuel injection method of internal combustion engine
JP4715753B2 (en) Internal combustion engine
JP4126971B2 (en) INTERNAL COMBUSTION ENGINE OPERATED BY COMPRESSED SELF-IGNITION OF MIXED AIR AND CONTROL METHOD FOR INTERNAL COMBUSTION ENGINE
KR20010024363A (en) Catalyst light-off method and device for direct injection engine
JP6191837B2 (en) Engine control device
CN107429625B (en) Fuel injection control device for direct injection engine
JP4297288B2 (en) Control method of ignition timing of premixed compression ignition engine
JP4161789B2 (en) Fuel injection control device
EP1031711B1 (en) Compression-ignition type engine
JP4117799B2 (en) Control method of ignition timing of premixed compression ignition engine
JP2009036086A (en) Direct injection engine and method for controlling the same
JP4631725B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP3873560B2 (en) Combustion control device for internal combustion engine
JP2007192235A (en) Control apparatus and method for spark ignition internal combustion engine
JP4274063B2 (en) Control device for internal combustion engine
JP3635670B2 (en) Control apparatus and method for spark ignition internal combustion engine
CN116733651A (en) internal combustion engine
JP2007192234A (en) Control apparatus and method for spark ignition internal combustion engine
JP2004286038A (en) Control device and method for internal combustion engine
JP2006002719A (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070514

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090407