[go: up one dir, main page]

JP2007189873A - Inrush current protection circuit - Google Patents

Inrush current protection circuit Download PDF

Info

Publication number
JP2007189873A
JP2007189873A JP2006007747A JP2006007747A JP2007189873A JP 2007189873 A JP2007189873 A JP 2007189873A JP 2006007747 A JP2006007747 A JP 2006007747A JP 2006007747 A JP2006007747 A JP 2006007747A JP 2007189873 A JP2007189873 A JP 2007189873A
Authority
JP
Japan
Prior art keywords
circuit
power supply
current
inrush current
limiting resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006007747A
Other languages
Japanese (ja)
Inventor
Tetsuhiko Kobayashi
哲彦 小林
Munetaka Takahashi
宗孝 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKUSHU DENSO KK
Original Assignee
TOKUSHU DENSO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKUSHU DENSO KK filed Critical TOKUSHU DENSO KK
Priority to JP2006007747A priority Critical patent/JP2007189873A/en
Publication of JP2007189873A publication Critical patent/JP2007189873A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Inverter Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inrush current protection circuit that is capable of fully limiting the inrush current during starting, and is capable of maximally eliminating the wasteful elements from a power source and supply line, after start up. <P>SOLUTION: An inrush current limiting circuit 100 has a main power source VV for supplying power source to a load circuit via a current limitation resistor RS; a large-capacity capacitor C60 connected to the load circuit 70, in parallel with respect to the power source; a switching circuit SW1 connected to the current limitation resistor in parallel; and a charging state monitoring circuit 20 which switches the switching circuit to an on-state by driving a switching control circuit PH1, when voltages at both ends of the current limitation resistor become smaller than the threshold, after the detecting of the voltages. Accordingly, efficient supplying of the power source to the load circuit can be made without limitations by the current limitation resistor after starting, even if a considerably large current limitation resistor is used, in order to suppress the peak value of the inrush current during starting. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、突入電流保護回路に関し、とくに、電流制限抵抗を介して電源を負荷回路に供給する主電源と、電源供給に対して負荷回路に並列に接続された大容量コンデンサとを有する突入電流保護回路に関するものである。   The present invention relates to an inrush current protection circuit, and more particularly, an inrush current having a main power source that supplies power to a load circuit via a current limiting resistor, and a large-capacitance capacitor connected in parallel to the load circuit with respect to the power supply. The present invention relates to a protection circuit.

図3はこの種の突入電流保護回路の従来例を示す回路図である。この回路においては、抵抗R1とダイオードD1とが比較用の基準電圧を生成し、誤差増幅器IC1が抵抗R2と電流制限抵抗RSとの接続点の電圧を基準電圧と比較し、その比較結果に基づいてトランジスタQ1を制御して、電流制限抵抗RSの両端の電圧を一定にするように制御している(特許文献1)。
特開平5−146143号公報
FIG. 3 is a circuit diagram showing a conventional example of this type of inrush current protection circuit. In this circuit, the resistor R1 and the diode D1 generate a reference voltage for comparison, and the error amplifier IC1 compares the voltage at the connection point between the resistor R2 and the current limiting resistor RS with the reference voltage, and based on the comparison result. Thus, the transistor Q1 is controlled so that the voltage across the current limiting resistor RS is kept constant (Patent Document 1).
JP-A-5-146143

上記したような従来の突入電流保護回路は、一定電圧の電源が負荷回路に供給されるように、簡潔な回路で巧みに制御している。しかし、起動時の突入電流はできるだけ小さくするが、起動時以外では電流制限抵抗は使用したくないという要望に応えるには、上記の回路は電流制限抵抗RSを取り除くことができないので不都合であった。   The conventional inrush current protection circuit as described above is skillfully controlled with a simple circuit so that a constant voltage power supply is supplied to the load circuit. However, although the inrush current at start-up is made as small as possible, the above circuit is inconvenient because it cannot remove the current-limit resistor RS in order to meet the demand for not using the current-limit resistor except at the start-up. .

本発明は、上記従来の問題を解決するために成されたものであって、起動時には突入電流を充分に制限し、起動時以降では電源供給ラインから無駄な要素をできるだけ排除でき、主電源からできるだけ直接的に負荷回路側に電源を供給することができる突入電流保護回路を提供することを目的としている。   The present invention has been made in order to solve the above-described conventional problems. The inrush current is sufficiently limited at start-up, and unnecessary elements can be eliminated from the power supply line as much as possible after start-up. An object of the present invention is to provide an inrush current protection circuit capable of supplying power to the load circuit side as directly as possible.

前述した課題を解決するために、本発明は、電流制限抵抗を介して電源を負荷回路に供給する主電源と、電源供給に対する負荷回路に並列に接続された大容量コンデンサとを有する突入電流保護回路において、電流制限抵抗に並列に接続されたスイッチング回路と、電源供給開始後における電流制限抵抗の両端の電圧を検出し、その電圧がしきい値以下になったときスイッチング回路をオン状態に切り替える充電状態監視回路を備えた構成としている。   In order to solve the above-described problem, the present invention provides an inrush current protection having a main power supply that supplies power to a load circuit via a current limiting resistor, and a large-capacitance capacitor connected in parallel to the load circuit for power supply. In the circuit, the switching circuit connected in parallel to the current limiting resistor and the voltage across the current limiting resistor after the start of power supply are detected, and the switching circuit is turned on when the voltage falls below the threshold value The charging state monitoring circuit is provided.

このような構成によれば、起動時には電流制限抵抗が突入電流のピーク値を制限して負荷回路側に電源を供給する。そして、大容量コンデンサの電荷がある程度増加した時点で、充電状態監視回路がスイッチング回路をオン状態にさせ電流制限抵抗を短絡するので、それ以降においては、電源は電流制限抵抗の電流制限を受けることなく、負荷回路に効率的に電源を供給することができる。   According to such a configuration, at the time of start-up, the current limiting resistor limits the peak value of the inrush current and supplies power to the load circuit side. When the charge on the large-capacity capacitor increases to some extent, the charge state monitoring circuit turns on the switching circuit and shorts out the current limiting resistor. After that, the power supply is subject to current limitation by the current limiting resistor. Therefore, it is possible to efficiently supply power to the load circuit.

さらに、本発明においては、充電状態監視回路がスイッチング回路をオン状態に切り替えるまでは、負荷回路およびその周辺回路をインアクティブに保つ制御切替回路を有する。電流制限抵抗の両端の電圧がしきい値以下になって、負荷回路に電力供給を確実にできる以前に負荷回路およびその周辺の回路によって電流が消費されると、異常が発生する可能性があるので、制御切替回路は、負荷回路に電力供給を確実にできる以前において負荷回路およびその周辺の回路が電流を消費しないように、それらをインアクティブにする。   Further, the present invention includes a control switching circuit that keeps the load circuit and its peripheral circuits inactive until the charging state monitoring circuit switches the switching circuit to the ON state. Abnormality may occur if current is consumed by the load circuit and its surroundings before the voltage across the current limiting resistor falls below the threshold and power can be reliably supplied to the load circuit Therefore, the control switching circuit makes them inactive so that the load circuit and its peripheral circuits do not consume current before power can be reliably supplied to the load circuit.

本発明の突入電流保護回路は、以上において説明したように構成されているので、起動時には電流制限抵抗によって突入電流のピーク値を制限して負荷回路に電源を供給しようとしている。そして、大容量コンデンサの電荷がある程度増加すると、充電状態監視回路が電流制限抵抗の両端にかかる電圧からそのことを検出し、スイッチング回路をオン状態にして電流制限抵抗を短絡させる。このことにより、電流制限抵抗の短絡以降においては、電源は電流制限抵抗の電流制限を受けることなく、負荷回路に効率的に供給される。したがって、突入電流のピーク値を押さえる目的で電流制限抵抗を相当に大きくしても、通常動作時に電流制限抵抗の制限を全く受けることがない。また、電流制限抵抗の両端の電圧に基づいてスイッチング回路の切り替えを判断しているので主電源の変動に影響されることが少ない。   Since the inrush current protection circuit of the present invention is configured as described above, it is intended to supply power to the load circuit by limiting the peak value of the inrush current with a current limiting resistor at the time of startup. When the charge of the large-capacity capacitor increases to some extent, the charge state monitoring circuit detects this from the voltage applied to both ends of the current limiting resistor, and turns on the switching circuit to short-circuit the current limiting resistor. As a result, after the short circuit of the current limiting resistor, the power supply is efficiently supplied to the load circuit without being limited by the current limiting resistor. Therefore, even if the current limiting resistance is considerably increased for the purpose of suppressing the peak value of the inrush current, the current limiting resistance is not limited at all during normal operation. In addition, since switching of the switching circuit is determined based on the voltage across the current limiting resistor, it is less affected by fluctuations in the main power supply.

さらに、電源供給ルート切替回路がスイッチング回路をオン状態に切り替えるまでは、負荷回路およびその周辺回路をインアクティブに保つ制御切替回路を有する場合には、電流制限抵抗の両端の電圧がしきい値以下になって、負荷回路に電力供給を確実にできる以前に負荷回路およびその周辺の回路によって電流が消費されると、異常が発生する可能性があるので、制御切替回路は、負荷回路に電力供給を確実にできる以前においては負荷回路及びその周辺の回路が電流を消費しないようにインアクティブにし、誤動作を防止することができる。   Furthermore, when the power supply route switching circuit has a control switching circuit that keeps the load circuit and its peripheral circuits inactive until the switching circuit is turned on, the voltage across the current limiting resistor is below the threshold value. Therefore, if current is consumed by the load circuit and its surrounding circuits before power can be reliably supplied to the load circuit, an abnormality may occur, so the control switching circuit supplies power to the load circuit. Before it can be ensured, the load circuit and its peripheral circuits are made inactive so as not to consume current, and malfunction can be prevented.

以下、本発明の実施の形態について添付図面に基づいて説明する。図1は、本発明の突入電流保護回路の実施の形態を示すブロック図であり、図2は、図1の各部の構成を詳細に示す回路図である。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a block diagram showing an embodiment of an inrush current protection circuit of the present invention, and FIG. 2 is a circuit diagram showing in detail the configuration of each part of FIG.

図1に示す突入電流保護回路100は、スイッチSW0が“オン”にされたとき、主電源VVからの電力が、電源供給ルート切替回路10と、充電状態監視回路20と、安定化電源回路30と、制御切替回路40と、制御用電源回路50の働きにより、大容量コンデンサC60に蓄積されると共に、インバータ70などの後続の回路に供給される。上述の各回路10,20,30,40,50の詳細は図2に示されている。   In the inrush current protection circuit 100 shown in FIG. 1, when the switch SW0 is turned on, the power from the main power supply VV is supplied from the power supply route switching circuit 10, the charge state monitoring circuit 20, and the stabilized power supply circuit 30. Then, by the action of the control switching circuit 40 and the control power supply circuit 50, it is stored in the large-capacitance capacitor C60 and supplied to subsequent circuits such as the inverter 70. Details of each of the circuits 10, 20, 30, 40, 50 described above are shown in FIG.

図2から分かるように、スイッチSW0が“オン”にされると、電流は電源供給ルート切替回路10の電流制限抵抗RSを経由して大容量コンデンサC60への充電動作を開始する。スイッチSW0が“オン”にされた初期においては、大容量コンデンサC60には電荷が少ないので、大きな電流が電流制限抵抗RSを流れる。この場合、流れる電流のピーク値は電流制限抵抗RSによって制限される。   As can be seen from FIG. 2, when the switch SW0 is turned on, the current starts to charge the large-capacitance capacitor C60 via the current limiting resistor RS of the power supply route switching circuit 10. In the initial stage when the switch SW0 is turned on, the large-capacity capacitor C60 has a small amount of electric charge, so that a large current flows through the current limiting resistor RS. In this case, the peak value of the flowing current is limited by the current limiting resistor RS.

電流制限抵抗RSを経由して電力供給を受けた安定化電源回路30は、ゼナーダイオードZDAで決まる電圧の安定化電源を充電状態監視回路20のコンパレータCMに供給し始める。安定化電源の供給を受けたコンパレータCMは、電流制限抵抗RSの両端のノードP1,P2間の電圧がしきい値以下であるか否かをチェックする。スイッチSW0が“オン”にされた初期においては、電流制限抵抗RSの両端のノードP1,P2間の電圧は大きいので、この電圧を入力とするコンパレータCMは、出力を“L”(ロウレベル)レベルにする。そこで、コンパレータCMの出力を受ける否定回路Nは、出力端を“H”(ハイレベル)にする。   The stabilized power supply circuit 30 that has received power supply via the current limiting resistor RS starts to supply the stabilized power supply having a voltage determined by the Zener diode ZDA to the comparator CM of the charge state monitoring circuit 20. The comparator CM that receives the supply of the stabilized power supply checks whether or not the voltage between the nodes P1 and P2 at both ends of the current limiting resistor RS is equal to or lower than the threshold value. In the initial stage when the switch SW0 is turned on, the voltage between the nodes P1 and P2 at both ends of the current limiting resistor RS is large. Therefore, the comparator CM having this voltage as an input outputs “L” (low level) level. To. Therefore, the negative circuit N that receives the output of the comparator CM sets the output terminal to “H” (high level).

否定回路Nが出力端を“H”にすると、ノードP3は、ノードP1に比較して電位が低くないので、抵抗R12と、切替制御回路PH1と、ダイオードD21とを結ぶラインに電流は流れず、切替制御回路PH1は、スイッチング回路SW1を“オフ”状態を保ち、電源電流は電流制限抵抗RSを流れ続ける。   When the negative circuit N sets the output terminal to “H”, since the potential of the node P3 is not lower than that of the node P1, no current flows through the line connecting the resistor R12, the switching control circuit PH1, and the diode D21. The switching control circuit PH1 keeps the switching circuit SW1 in the “off” state, and the power supply current continues to flow through the current limiting resistor RS.

他方、制御切替回路40については、否定回路Nの出力端が“H”であるので、抵抗R41と、ゼナーダイオードZDBと、ダイオードD23とを結ぶラインにも電流が流れず、制御切替回路40は“オフ”であって、制御用電源回路50をインアクティブに保っている。したがって、後続の回路、例えば、制御用電源回路50から制御電力を受けるインバータ70(図1)は作動を開始しない。   On the other hand, for the control switching circuit 40, since the output terminal of the negative circuit N is “H”, no current flows through the line connecting the resistor R41, the Zener diode ZDB, and the diode D23. Is “OFF”, and the control power supply circuit 50 is kept inactive. Therefore, the subsequent circuit, for example, the inverter 70 (FIG. 1) receiving the control power from the control power supply circuit 50 does not start operation.

次に、スイッチSW0が“オン”にされてから所定の時間が経過すると、大容量コンデンサC60の充電が進み、電流制限抵抗RSを流れる電流は次第に減少し、電流制限抵抗RSの両端のノードP1,P2間の差分電圧がしきい値以下になり、これを検知したコンパレータCMは、出力を“L”から“H”に切り替える。コンパレータCMの出力が“H”になると、否定回路Nの出力は“L”になり、ノードP1からノードP3に向け、抵抗R12と、切替制御回路PH1と、ダイオードD21とを経由して電流が流れ、切換制御回路PH1は、スイッチング回路SW1を“オン”に切り替える。スイッチング回路SW1が“オン”になると、電流は、電流制限抵抗RSの制限を受けることなく抵抗値の極めて少ないスイッチング回路SW1を経由して大容量コンデンサC60およびその負荷回路たる後続の回路に直接的に供給される。   Next, when a predetermined time elapses after the switch SW0 is turned on, charging of the large-capacitance capacitor C60 proceeds, the current flowing through the current limiting resistor RS gradually decreases, and the node P1 at both ends of the current limiting resistor RS. , P2 becomes equal to or lower than the threshold value, and the comparator CM detecting this switches the output from “L” to “H”. When the output of the comparator CM becomes “H”, the output of the negative circuit N becomes “L”, and the current flows from the node P1 to the node P3 via the resistor R12, the switching control circuit PH1, and the diode D21. The flow and switching control circuit PH1 switches the switching circuit SW1 to “ON”. When the switching circuit SW1 is turned on, the current is directly applied to the large-capacitance capacitor C60 and the subsequent circuit as its load circuit via the switching circuit SW1 having a very small resistance value without being limited by the current limiting resistor RS. To be supplied.

また、コンパレータCMの出力が“H”になり、否定回路Nの出力が“L”になると、制御切替回路40の抵抗R41と、ゼナーダイオードZDBと、ダイオードD23とを結ぶラインにも電流が流れ、制御切替回路40は“オン”状態になり、制御用電源回路50をアクティブに切り替える。制御用電源回路50がアクティブになると、後続のインバータ70は、制御用電源回路50から制御電力を受け、スイッチング回路SW1からは駆動電力を受けることとなり、通常の動作を開始する。このとき、駆動電力供給ラインには、電流制限抵抗RS等のように電圧を下げあるいは電力を無駄に消費する素子は存在せず、消費電力の小さいスイッチング回路SW1を経由するだけになる。   Further, when the output of the comparator CM becomes “H” and the output of the negative circuit N becomes “L”, a current is also applied to the line connecting the resistor R41 of the control switching circuit 40, the Zener diode ZDB, and the diode D23. As a result, the control switching circuit 40 is turned on, and the control power supply circuit 50 is switched to active. When the control power supply circuit 50 becomes active, the subsequent inverter 70 receives control power from the control power supply circuit 50 and receives drive power from the switching circuit SW1, and starts normal operation. At this time, the drive power supply line does not have an element that lowers the voltage or wastes power like the current limiting resistor RS, and only passes through the switching circuit SW1 with low power consumption.

したがって、この突入電流保護回路100においては、スイッチSW0が“オン”にされた初期においては、電流制限抵抗RSを大きくすることにより突入電流のピークを所望通りに低下でき、且つ、所定の時間が経過し、大容量コンデンサC60の充電が進んだ時点では、電流制限抵抗RSを切り離して無駄な電圧低下あるいは電力消費を無くすことができる。この例においては、安定化電源回路30を設けたことにより、充電状態監視回路20は安定的に動作可能であり、さらに、充電状態監視回路20は充電の度合いを電流制限抵抗RSの両端の電位差で判定しているために主電源VVの電圧変動に影響されにくいという利点がある。   Therefore, in the inrush current protection circuit 100, in the initial stage when the switch SW0 is turned “on”, the peak of the inrush current can be reduced as desired by increasing the current limiting resistance RS, and a predetermined time is reached. At the time when the large-capacitance capacitor C60 has been charged, the current limiting resistor RS can be disconnected to eliminate unnecessary voltage drop or power consumption. In this example, by providing the stabilized power supply circuit 30, the charging state monitoring circuit 20 can operate stably, and the charging state monitoring circuit 20 determines the degree of charging by the potential difference between both ends of the current limiting resistor RS. Therefore, there is an advantage that it is hardly influenced by the voltage fluctuation of the main power supply VV.

すなわち、充電状態監視回路20は、電流制限抵抗RSの第1端部と第2端部の電位差で充電の度合いをみている。このため、充電状態監視回路20は、とくに主電源VVが二次電池のような充放電可能なバッテリであるときに、主電源VVの電圧が低下しても、その電圧低下に影響されずに充電状態を確実に監視することができる。   That is, the charging state monitoring circuit 20 determines the degree of charging by the potential difference between the first end and the second end of the current limiting resistor RS. For this reason, the charge state monitoring circuit 20 is not affected by the voltage drop even if the voltage of the main power supply VV decreases, particularly when the main power supply VV is a rechargeable battery such as a secondary battery. The state of charge can be reliably monitored.

電源供給ルート切替回路10のスイッチング回路SW1には、好ましい例としてFET(電界効果型トランジスタ)を用いている。このため、主電源VVからスイッチング回路SW1を介してインバータ70側に電圧を供給する際に、電圧降下をほとんど生じることがなく、通常のNPNトランジスタをスイッチとして用いた場合に比べて突入電流保護回路100の消費電力の低減を図ることができる。   As a preferable example, a FET (field effect transistor) is used for the switching circuit SW1 of the power supply route switching circuit 10. For this reason, when a voltage is supplied from the main power supply VV to the inverter 70 side via the switching circuit SW1, there is almost no voltage drop, and an inrush current protection circuit compared to the case where a normal NPN transistor is used as a switch. 100 power consumption can be reduced.

また、図1及び図2に示すように、主電源VVのプラス側に対してスイッチSW0が直接設けてあり、主電源VV及びスイッチSW0で構成される第1ユニットと、突入電源保護回路100、インバータ70及び大容量コンデンサC60で構成される第2ユニットとを別々に設定することができる。これにより、第1ユニットは使用者の手元側に置いて、第2ユニットはモータを含む実際の機器側に配置できるメリットがあり、実用上有効である。   Further, as shown in FIGS. 1 and 2, a switch SW0 is directly provided on the positive side of the main power supply VV, a first unit composed of the main power supply VV and the switch SW0, an inrush power supply protection circuit 100, The second unit composed of the inverter 70 and the large-capacitance capacitor C60 can be set separately. Accordingly, there is an advantage that the first unit can be placed on the user's hand side and the second unit can be arranged on the actual device side including the motor, which is practically effective.

なお、この種の回路においては、制御用電源回路50が消費する電流と、電流制限抵抗RS(例えば、突入電流ピーク値を下げるために電流制限抵抗RSを大きくしたような場合)を経由して流れ込む電流とが同等になり、電流制限抵抗RSの両端の電圧が一定値よりも下がらなくなってしまうという現象が推定できる。しかし、この例では、制御切替回路40および制御用電源回路50を設けたことにより、大容量コンデンサC60への充電が所望のレベルまで到達するまでは、制御切替回路40が制御用電源回路50を“オフ”状態に保つので、このような現象を確実に防止することができるという利点がある。   In this type of circuit, the current consumed by the control power supply circuit 50 and the current limiting resistor RS (for example, when the current limiting resistor RS is increased to reduce the inrush current peak value) are used. It can be estimated that the current flowing in is equal, and the voltage across the current limiting resistor RS does not drop below a certain value. However, in this example, since the control switching circuit 40 and the control power supply circuit 50 are provided, the control switching circuit 40 causes the control power supply circuit 50 to be switched until the charging of the large-capacitance capacitor C60 reaches a desired level. Since the “off” state is maintained, there is an advantage that such a phenomenon can be surely prevented.

本発明の突入電流保護回路の実施の形態を示すブロック図である。It is a block diagram which shows embodiment of the inrush current protection circuit of this invention. 図1の各部の構成を詳細に示す回路図である。It is a circuit diagram which shows the structure of each part of FIG. 1 in detail. 突入電流保護回路の従来例を示す回路図である。It is a circuit diagram which shows the prior art example of an inrush current protection circuit.

符号の説明Explanation of symbols

10 電源供給ルート切替回路
20 充電状態監視回路
30 安定化電源
40 制御切替回路
50 制御切替回路
60 大容量コンデンサ
70 インバータ
100 突入電流保護回路
RS 電流制限抵抗
SW0 スイッチ
SW1 スイッチング回路
DESCRIPTION OF SYMBOLS 10 Power supply route switching circuit 20 Charge state monitoring circuit 30 Stabilized power supply 40 Control switching circuit 50 Control switching circuit 60 Large capacity capacitor 70 Inverter 100 Inrush current protection circuit RS Current limiting resistance SW0 switch SW1 switching circuit

Claims (2)

電流制限抵抗を介して電源を負荷回路に供給する主電源と、電源供給に対する負荷回路に並列に接続された大容量コンデンサとを有する突入電流保護回路において、
電流制限抵抗に並列に接続されたスイッチング回路と、
電源供給開始後における電流制限抵抗の両端の電圧を検出し、その電圧がしきい値以下になったときスイッチング回路をオン状態に切り替える充電状態監視回路を備えたことを特徴とする突入電流保護回路。
In an inrush current protection circuit having a main power supply that supplies power to a load circuit via a current limiting resistor, and a large-capacitance capacitor connected in parallel to the load circuit for power supply,
A switching circuit connected in parallel with the current limiting resistor;
Inrush current protection circuit comprising a charge state monitoring circuit that detects the voltage across the current limiting resistor after the start of power supply and switches the switching circuit to an on state when the voltage falls below a threshold value .
充電状態監視回路が、スイッチング回路をオン状態に切り替えるまでは、負荷回路およびその周辺回路をインアクティブに保つ制御切替回路を備えていることを特徴とする請求項1記載の突入電流保護回路。   2. The inrush current protection circuit according to claim 1, further comprising a control switching circuit that keeps the load circuit and its peripheral circuits inactive until the charging state monitoring circuit switches the switching circuit to the on state.
JP2006007747A 2006-01-16 2006-01-16 Inrush current protection circuit Pending JP2007189873A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006007747A JP2007189873A (en) 2006-01-16 2006-01-16 Inrush current protection circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006007747A JP2007189873A (en) 2006-01-16 2006-01-16 Inrush current protection circuit

Publications (1)

Publication Number Publication Date
JP2007189873A true JP2007189873A (en) 2007-07-26

Family

ID=38344651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006007747A Pending JP2007189873A (en) 2006-01-16 2006-01-16 Inrush current protection circuit

Country Status (1)

Country Link
JP (1) JP2007189873A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102611337A (en) * 2011-01-20 2012-07-25 鸿富锦精密工业(深圳)有限公司 Power supply circuit
CN103580458A (en) * 2012-07-26 2014-02-12 珠海格力电器股份有限公司 Control method and control device of capacitor charging circuit and capacitor charging circuit
KR20190109533A (en) * 2017-02-03 2019-09-25 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 Drivers for High Voltage Capacitive Actuators
KR20200125988A (en) * 2018-04-27 2020-11-05 광저우 파워 서플라이 뷰로 오브 광동 파워 그리드 컴퍼니 리미티드 A method and apparatus for starting a modular multilevel converter in which half bridge and full bridge are mixed

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08163864A (en) * 1994-11-30 1996-06-21 Matsushita Electric Works Ltd Power supply
JPH10243555A (en) * 1997-02-21 1998-09-11 Oki Electric Ind Co Ltd Inrush current limiting circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08163864A (en) * 1994-11-30 1996-06-21 Matsushita Electric Works Ltd Power supply
JPH10243555A (en) * 1997-02-21 1998-09-11 Oki Electric Ind Co Ltd Inrush current limiting circuit

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102611337A (en) * 2011-01-20 2012-07-25 鸿富锦精密工业(深圳)有限公司 Power supply circuit
CN103580458A (en) * 2012-07-26 2014-02-12 珠海格力电器股份有限公司 Control method and control device of capacitor charging circuit and capacitor charging circuit
KR20190109533A (en) * 2017-02-03 2019-09-25 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 Drivers for High Voltage Capacitive Actuators
JP2020506654A (en) * 2017-02-03 2020-02-27 プレジデント アンド フェローズ オブ ハーバード カレッジ Highly integrated high pressure actuator driver
US11374496B2 (en) 2017-02-03 2022-06-28 President And Fellows Of Harvard College Driver for a circuit with a capacitive load
JP7166261B2 (en) 2017-02-03 2022-11-07 プレジデント アンド フェローズ オブ ハーバード カレッジ Highly integrated high voltage actuator driver
KR102527046B1 (en) * 2017-02-03 2023-04-27 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 Drivers for High Voltage Capacitive Actuators
KR20200125988A (en) * 2018-04-27 2020-11-05 광저우 파워 서플라이 뷰로 오브 광동 파워 그리드 컴퍼니 리미티드 A method and apparatus for starting a modular multilevel converter in which half bridge and full bridge are mixed
JP2021516946A (en) * 2018-04-27 2021-07-08 グアンジョウ パワー サプライ ビューロー オブ グァンドン パワー グリッド カンパニー リミテッド How to start a modular multi-level converter with a mixture of half bridges and full bridges
JP7125504B2 (en) 2018-04-27 2022-08-24 グアンジョウ パワー サプライ ビューロー オブ グァンドン パワー グリッド カンパニー リミテッド Start-up method and apparatus for modular multi-level converter in which half-bridge and full-bridge coexist
KR102440726B1 (en) * 2018-04-27 2022-09-06 광저우 파워 서플라이 뷰로 오브 광동 파워 그리드 컴퍼니 리미티드 Method and apparatus for starting a modular multilevel converter in which half-bridge and full-bridge are mixed

Similar Documents

Publication Publication Date Title
US8472216B2 (en) Circuit arrangement and control circuit for a power-supply unit, computer power-supply unit and method for switching a power-supply unit
CN103545867B (en) Battery management circuit and battery management method for battery management device
US7042197B2 (en) Control circuit
CN102111070B (en) The regulator over-voltage protection circuit that standby current reduces
TWI389422B (en) Auto-start circuit and uninterruptible power supply using the same
JP2009159746A (en) Power supply switching circuit
KR20120101108A (en) Method and system for minimum output-voltage battery charger
EP2176729B1 (en) Integrated electronic device including circuitry for providing a system supply voltage from a primary power supply
JP2014017948A (en) On-vehicle power supply unit
JP2007189873A (en) Inrush current protection circuit
WO2012008157A1 (en) Insulation type switching power supply
JP4400426B2 (en) Switching power supply
JP2008061488A (en) Power supply system equipped with remote control circuit, and method for operating the power supply system
JP2009095107A (en) Uninterruptible backup power supply device
JP3954081B1 (en) Power storage device
JP5631161B2 (en) Control circuit
JP2007282316A (en) Dc power holding circuit
JP5851980B2 (en) Power supply start / stop control circuit
JP2005289204A (en) Power supply control device
JP2009100546A (en) Power supply system, semiconductor integrated circuit, backup power-supply apparatus, and electronic equipment
JPH11341397A (en) Remote controller standby power supply unit
JP5040018B2 (en) Fuel cell power supply
CN109217655B (en) Power supply capable of prolonging maintenance time after power failure
JP2007259588A (en) Power consumption reduction circuit
JP2004362457A (en) Power source control circuit, power source device, inkjet printer, image forming apparatus and power source control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110107

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110906