[go: up one dir, main page]

JP2007187078A - Exhaust gas treatment equipment - Google Patents

Exhaust gas treatment equipment Download PDF

Info

Publication number
JP2007187078A
JP2007187078A JP2006005551A JP2006005551A JP2007187078A JP 2007187078 A JP2007187078 A JP 2007187078A JP 2006005551 A JP2006005551 A JP 2006005551A JP 2006005551 A JP2006005551 A JP 2006005551A JP 2007187078 A JP2007187078 A JP 2007187078A
Authority
JP
Japan
Prior art keywords
exhaust gas
pipe
flow rate
control means
blowing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006005551A
Other languages
Japanese (ja)
Other versions
JP4817850B2 (en
Inventor
Toshiharu Inaba
利晴 稲葉
Yoichi Takahashi
洋一 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2006005551A priority Critical patent/JP4817850B2/en
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to DK06843608.8T priority patent/DK1975381T3/en
Priority to KR1020087016303A priority patent/KR101004741B1/en
Priority to PCT/JP2006/326230 priority patent/WO2007077919A1/en
Priority to US12/087,362 priority patent/US7842266B2/en
Priority to EP06843608.8A priority patent/EP1975381B1/en
Priority to CN2006800504308A priority patent/CN101356344B/en
Publication of JP2007187078A publication Critical patent/JP2007187078A/en
Priority to NO20083432A priority patent/NO20083432L/en
Application granted granted Critical
Publication of JP4817850B2 publication Critical patent/JP4817850B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Treating Waste Gases (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust gas treatment device for removing nitrogen oxide in low-temperature exhaust gas from a large diesel engine at a high NOx removal efficiency. <P>SOLUTION: A blow-in pipe 4 is inserted into an exhaust gas pipe 3 for exhaust gas 2 from the large diesel engine 1 in the radial direction so that its end is protruded therefrom, and a heater 5 is installed in a portion of the blow-in pipe 4 outside the exhaust gas pipe 3. A hydrocarbon compound 6 and a nitrogen compound 7 heated in the blow-in pipe 4 by the heater 5 are supplied through a blow-out portion 11 formed at the end of the blow-in pipe 4 into the exhaust gas pipe 3. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、エンジンの排ガスの処理装置に関し、詳しくは船舶や発電などに用いられる大型ディーゼルエンジン等から排出される排ガス中に含まれる窒素酸化物を除去する排ガス処理装置に関するものである。   The present invention relates to an exhaust gas treatment device for an engine, and more particularly to an exhaust gas treatment device that removes nitrogen oxides contained in exhaust gas discharged from a large diesel engine or the like used for ships or power generation.

近年では、バスやトラックなどの自動車用ディーゼルエンジンから排出される排ガス中に含まれる窒素酸化物や粒子状物質の削減が問題となっているが、船舶や発電に使用される大型ディーゼルエンジン等についても同様の問題が生じている。   In recent years, the reduction of nitrogen oxides and particulate matter contained in exhaust gas discharged from automobile diesel engines such as buses and trucks has become a problem. About large diesel engines used for ships and power generation There are similar problems.

しかし、自動車用ディーゼルエンジンとは異なり、大型ディーゼルエンジン等はA重油やC重油といった硫黄分の含有が高い燃料を使用するため、その排ガス中には硫黄酸化物が多く含まれ、窒素酸化物や粒子状物質の除去処理において障害となっていた。   However, unlike automobile diesel engines, large diesel engines, etc. use fuels with a high sulfur content, such as A heavy oil and C heavy oil, so the exhaust gas contains a lot of sulfur oxides, nitrogen oxides and It was an obstacle in the removal process of particulate matter.

ここで、排ガスから窒素酸化物を除去する脱硝方法については、一般に選択的還元触媒法(SCR法)と無触媒脱硝法があることが知られている。このうちSCR法については、設備及び運転コストが高く、かつ排ガス中の硫黄分により触媒が被毒して活性が低下してしまうという欠点があるため、無触媒脱硝法に比べると大型ディーゼルエンジン等に適用するには不向きであるとされている。   Here, it is known that a denitration method for removing nitrogen oxides from exhaust gas generally includes a selective reduction catalyst method (SCR method) and a non-catalytic denitration method. Of these, the SCR method has the disadvantages that the equipment and operating costs are high, and the catalyst is poisoned by the sulfur content in the exhaust gas, resulting in a decrease in activity. It is said that it is unsuitable to apply to.

しかし、無触媒脱硝法を大型ディーゼルエンジン等に適用した際には、排ガスの温度が250〜450℃と低くアミンラジカルが生成しにくいため、脱硝率が低くなってしまうという問題があった。   However, when the non-catalytic denitration method is applied to a large diesel engine or the like, the temperature of the exhaust gas is as low as 250 to 450 ° C., and amine radicals are not easily generated.

このような問題を解決するため、特許文献1には、排ガスが通る排ガス管に連通する部屋内にバーナーによる加熱領域を形成し、この加熱領域に向けて炭化水素類と窒素化合物を別々に吹き込んでアミンラジカルを生成させて排ガスの脱硝を行う技術が記載されている。
特開2005−254093号公報
In order to solve such a problem, Patent Document 1 discloses that a heating region by a burner is formed in a room communicating with an exhaust gas pipe through which exhaust gas passes, and hydrocarbons and nitrogen compounds are separately blown into the heating region. Describes a technique for denitrating exhaust gas by generating amine radicals.
JP 2005-254093 A

しかし、上記の特許文献1に記載の技術では、常温の炭化水素類と窒素化合物をバーナーの火炎先端部に別々に吹き込むため、反応温度を高温に保つことが難しく、アミンラジカルの生成が不足するため、脱硝率を向上させることが困難であるという課題があった。   However, in the technique described in Patent Document 1, since normal temperature hydrocarbons and nitrogen compounds are separately blown into the flame tip of the burner, it is difficult to maintain the reaction temperature at a high temperature, and the generation of amine radicals is insufficient. Therefore, there is a problem that it is difficult to improve the denitration rate.

本発明は、このような課題に鑑みてなされたものであり、大型ディーゼルエンジン等から排出される低温の排ガス中の窒素酸化物を、高い脱硝率で除去することができる排ガス処理装置を提供することを目的とするものである。   The present invention has been made in view of such problems, and provides an exhaust gas treatment apparatus capable of removing nitrogen oxides in low-temperature exhaust gas discharged from a large diesel engine or the like with a high denitration rate. It is for the purpose.

上記の目的を達成するため、請求項1に係る本発明は、排ガスの排ガス管内に端部が突出するように径方向から挿入された吹込管と、前記吹込管の前記排ガス管外の部分に設置されたヒーターとからなり、前記ヒーターにより前記吹込管内で加熱された炭化水素化合物と窒素化合物とを前記吹込管の端部に形成された吹出部を通じて前記排ガス管内へ供給することにより、前記排ガス中の窒素酸化物を還元的に除去することを特徴とする排ガス処理装置である。   In order to achieve the above object, the present invention according to claim 1 is directed to a blow pipe inserted from a radial direction so that an end protrudes into an exhaust gas pipe of exhaust gas, and a portion of the blow pipe outside the exhaust pipe. The exhaust gas by supplying a hydrocarbon compound and a nitrogen compound heated in the blowing pipe by the heater into the exhaust pipe through a blowing portion formed at an end of the blowing pipe. The exhaust gas treatment apparatus is characterized by reductively removing nitrogen oxides therein.

このように構成された発明によれば、炭化水素化合物と窒素化合物を高温状態で排ガスと反応させることができるため、低温の排ガス中の窒素酸化物を高い脱硝率で除去することができる。   According to the invention configured as described above, since the hydrocarbon compound and the nitrogen compound can be reacted with the exhaust gas at a high temperature, the nitrogen oxide in the low temperature exhaust gas can be removed with a high denitration rate.

また、請求項2に係る本発明は、前記吹出部付近に設置された温度計測手段と、前記吹込管への前記炭化水素化合物と前記窒素化合物との流量を調整する流量制御手段と、前記温度計測手段の検出信号を入力として前記流量制御手段を操作するための信号を形成する制御手段とを備え、前記制御手段は前記温度計測手段が所定の値以下の温度を検出したときは、前記流量制御手段を操作して前記炭化水素化合物の流量を増加させ前記窒素化合物の流量を減少させることを特徴とする請求項1に記載の排ガス処理装置である。   Further, the present invention according to claim 2 is a temperature measuring means installed in the vicinity of the blowing portion, a flow rate controlling means for adjusting flow rates of the hydrocarbon compound and the nitrogen compound to the blowing pipe, and the temperature Control means for forming a signal for operating the flow rate control means with the detection signal of the measurement means as an input, and the control means detects the flow rate when the temperature measurement means detects a temperature below a predetermined value. The exhaust gas treatment apparatus according to claim 1, wherein the flow rate of the hydrocarbon compound is increased and the flow rate of the nitrogen compound is decreased by operating a control means.

このように構成された発明によれば、排ガス管中へ供給された炭化水素化合物が排ガス中の酸素と接して自然発火して生じる炎の消失を防ぐことができるため、安定して脱硝反応を継続させることができる。   According to the invention thus configured, the hydrocarbon compound supplied into the exhaust gas pipe can be prevented from disappearing due to spontaneous ignition in contact with oxygen in the exhaust gas. Can continue.

また、請求項2に係る本発明については、前記吹出部付近に着火手段を設けて前記制御装置により同時に作動させるようにしてもよい。   Moreover, about this invention which concerns on Claim 2, an ignition means may be provided in the vicinity of the said blowing part, and you may make it operate | move simultaneously by the said control apparatus.

なお、前記吹出部は、前記排ガス管の上流側の前記吹込管側面に形成された複数の貫通孔からなることが望ましい。   In addition, it is desirable that the blow-out portion is composed of a plurality of through holes formed in the side surface of the blow-in pipe upstream of the exhaust gas pipe.

また、排ガス管中へ吹き込む前記炭化水素化合物は、n−ヘキサン、シクロヘキサン、n−ブタン、プロパン、エタン、メタンの脂肪族炭化水素の少なくとも1種であることが望ましい。   The hydrocarbon compound blown into the exhaust gas pipe is desirably at least one of n-hexane, cyclohexane, n-butane, propane, ethane, and methane aliphatic hydrocarbons.

本発明においては、排ガスの排ガス管内に端部が突出するように径方向から挿入された吹込管と、前記吹込管の前記排ガス管外の部分に設置されたヒーターとからなり、前記ヒーターにより前記吹込管内で加熱された炭化水素化合物と窒素化合物とを前記吹込管の端部に形成された吹出部を通じて前記排ガス管内へ供給することにより、前記排ガス中の窒素酸化物を還元的に除去することを特徴とする排ガス処理装置を構成した。   In the present invention, it comprises a blow pipe inserted from the radial direction so that the end protrudes into the exhaust gas pipe of the exhaust gas, and a heater installed in a portion outside the exhaust pipe of the blow pipe, Removing nitrogen oxides in the exhaust gas reductively by supplying the hydrocarbon compound and nitrogen compound heated in the injection tube into the exhaust gas pipe through a blow-off portion formed at an end of the injection tube; An exhaust gas treatment apparatus characterized by the above was constructed.

このような構成により、大型ディーゼルエンジン等から排出される低温の排ガス中の窒素酸化物を高い脱硝率で除去することができる。   With such a configuration, nitrogen oxides in low-temperature exhaust gas discharged from a large diesel engine or the like can be removed with a high denitration rate.

また、上記の排ガス処理装置に、吹出部の温度に基づき炭化水素化合物と窒素化合物との流量を調整し、吹出部付近に設置された着火源を作動させることができる制御装置を設けた。   In addition, the exhaust gas treatment apparatus is provided with a control device that can adjust the flow rates of the hydrocarbon compound and the nitrogen compound based on the temperature of the blow-out unit and operate the ignition source installed near the blow-out unit.

このような構成により、脱硝反応を安定して継続することができ、脱硝率を更に向上させることができる。   With such a configuration, the denitration reaction can be continued stably, and the denitration rate can be further improved.

本発明の実施の形態について、図面を参照して説明する。
本発明に係る排ガス処理装置の第1の実施形態を図1に示す。
Embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a first embodiment of an exhaust gas treatment apparatus according to the present invention.

排ガス装置は、大型ディーゼルエンジン1からの排ガス2が流れる排ガス管3内にその端部が突出するように径方向から挿入された吹込管4と、当該吹込管4の排ガス管3外の部分を外囲するように設置されたヒーター5から主に構成される。   The exhaust gas apparatus includes a blow pipe 4 inserted from a radial direction so that an end portion protrudes into an exhaust pipe 3 through which exhaust gas 2 from a large diesel engine 1 flows, and a portion of the blow pipe 4 outside the exhaust pipe 3. It is mainly comprised from the heater 5 installed so that it might enclose.

吹込管4は、炭化水素化合物6と窒素化合物7を排ガス管3内を流れる排ガス2中に供給するためのものであり、その端部には炭化水素化合物6と窒素化合物7を吹き出すための吹出部8が設けられている。この吹出部8は、排ガス2との反応を促進する観点から、排ガス管3の上流側の側面に形成された複数の貫通孔からなることが望ましい。   The blow-in pipe 4 is for supplying the hydrocarbon compound 6 and the nitrogen compound 7 into the exhaust gas 2 flowing in the exhaust gas pipe 3, and the blow-out for blowing out the hydrocarbon compound 6 and the nitrogen compound 7 at the end thereof. A part 8 is provided. From the viewpoint of promoting the reaction with the exhaust gas 2, it is desirable that the blowout portion 8 includes a plurality of through holes formed in the side surface on the upstream side of the exhaust gas pipe 3.

なお、これらの貫通孔の大きさ及び配置については、本発明の目的を達成する限りにおいて特に制限はない。   In addition, there is no restriction | limiting in particular about the magnitude | size and arrangement | positioning of these through-holes, as long as the objective of this invention is achieved.

また、吹込管4の挿入深さXは、排ガス管3の内径に対して0〜70%の範囲で任意に調整できることが、排ガス管3内の排ガス2を効率的に処理する上から好ましい。   Further, it is preferable that the insertion depth X of the blowing pipe 4 can be arbitrarily adjusted within a range of 0 to 70% with respect to the inner diameter of the exhaust gas pipe 3 from the viewpoint of efficiently treating the exhaust gas 2 in the exhaust gas pipe 3.

ここで、挿入深さXとは、排ガス管3の径方向中心線と、吹込管4の挿入部分の長さ方向の中心位置との距離により定義される。   Here, the insertion depth X is defined by the distance between the radial center line of the exhaust gas pipe 3 and the center position in the length direction of the insertion part of the blowing pipe 4.

炭化水素化合物6については、炭素数が5以上である化合物、例えばペンタン又はヘキサンである必要がある。また、その発火点は300〜700℃、より好ましくは400〜500℃の範囲にある方がよい。ここで発火点とは、DIN−51794に規定するものを意味する。   The hydrocarbon compound 6 needs to be a compound having 5 or more carbon atoms, such as pentane or hexane. Further, the ignition point is preferably in the range of 300 to 700 ° C, more preferably 400 to 500 ° C. Here, the ignition point means that specified in DIN-51794.

なお、炭化水素化合物6の濃度を調整するために、窒素9又は水蒸気10を吹込管4に流してもよい。   In order to adjust the concentration of the hydrocarbon compound 6, nitrogen 9 or water vapor 10 may flow through the blowing pipe 4.

窒素化合物7については、アミンラジカルを生成するものである必要があり、図中に示すアンモニアの他に、例えば、尿素、シアヌール酸、アミン類、ニトリル類等を使用することができる。   The nitrogen compound 7 needs to generate an amine radical. For example, urea, cyanuric acid, amines, nitriles and the like can be used in addition to ammonia shown in the figure.

ヒーター5は、吹込管4内を流れる炭化水素化合物6と窒素化合物7を加熱して温度を上昇させるためのものであり、吹込管4の挿入部外側付近を外囲するように設置される。このヒーター5には電熱ヒーター又は熱交換器などを用いることができる。   The heater 5 is for heating the hydrocarbon compound 6 and the nitrogen compound 7 flowing in the blowing pipe 4 to raise the temperature, and is installed so as to surround the vicinity of the outside of the insertion portion of the blowing pipe 4. The heater 5 can be an electric heater or a heat exchanger.

このような排ガス処理装置は、1本の排ガス管3に対して複数台設置してもよいことはもちろんである。   Of course, a plurality of such exhaust gas treatment apparatuses may be installed for one exhaust gas pipe 3.

次に、排ガス処理装置の第1の実施形態における作用について以下に説明する。
ヒーター5により高温状態(例えば、700℃以上など)になった炭化水素化合物6と窒素化合物7を、吹込管4の吹出部8から排ガス2中へ供給すると、まず炭化水素化合物6が排ガス2中の酸素と接し、自然発火して炎(以下、「ラジカル化炎」という。)11を生じるため、高温下でヒドロキシラジカルが生成する。そして、このヒドロキシラジカルが窒素化合物7に作用して、還元性ガスであるアミンラジカルを生成する。このアミンラジカルにより、排ガス3中の窒素酸化物(NOx:一酸化窒素と二酸化窒素の混合物)が窒素12に還元分解されることで排ガス2が脱硝処理される。
Next, the effect | action in 1st Embodiment of an waste gas processing apparatus is demonstrated below.
When the hydrocarbon compound 6 and the nitrogen compound 7 brought to a high temperature state (for example, 700 ° C. or higher) by the heater 5 are supplied into the exhaust gas 2 from the blowing portion 8 of the blowing pipe 4, the hydrocarbon compound 6 is first in the exhaust gas 2 In contact with the oxygen, it spontaneously ignites to produce a flame (hereinafter referred to as “radical flame”) 11, so that a hydroxy radical is generated at a high temperature. Then, this hydroxy radical acts on the nitrogen compound 7 to generate an amine radical which is a reducing gas. By this amine radical, nitrogen oxides (NOx: a mixture of nitrogen monoxide and nitrogen dioxide) in the exhaust gas 3 are reduced and decomposed into nitrogen 12, whereby the exhaust gas 2 is denitrated.

このときの炭化水素化合物6の濃度は、排ガス2に対して0.01〜5.0体積%、好ましくは0.05〜1.0体積%の範囲にあることが望ましい。また、窒素化合物7の濃度は、排ガス2に対して0.01〜5.0体積%、、好ましくは0.05〜1.0体積%の範囲とすることが好ましい。   The concentration of the hydrocarbon compound 6 at this time is 0.01 to 5.0% by volume, preferably 0.05 to 1.0% by volume with respect to the exhaust gas 2. Further, the concentration of the nitrogen compound 7 is 0.01 to 5.0% by volume, preferably 0.05 to 1.0% by volume with respect to the exhaust gas 2.

本発明に係る排ガス処理装置の第2の実施形態を図2に示す。図2においては、図1と同じ部分には同一の符号を付している。   FIG. 2 shows a second embodiment of the exhaust gas treatment apparatus according to the present invention. In FIG. 2, the same parts as those in FIG.

第1の実施形態においては、排ガス管3内の排ガス2の流量が変動した場合には、ラジカル化炎11が消失してしまい、脱硝反応が停止してしまう可能性がある。   In the first embodiment, when the flow rate of the exhaust gas 2 in the exhaust gas pipe 3 fluctuates, the radicalization flame 11 may disappear and the denitration reaction may stop.

本実施形態は、このラジカル化炎11の維持を目的として、第1の実施形態における吹込管4の吹出部8付近に温度計測手段である熱電対20と着火手段である着火源21とを配置するとともに、吹込管4に接続する流路に流量制御手段である流量制御器22を設けて、熱電対20からの信号によりそれらを操作又は作動させる制御装置23を付加したものである。   In the present embodiment, for the purpose of maintaining the radicalization flame 11, a thermocouple 20 as a temperature measuring means and an ignition source 21 as an ignition means are provided in the vicinity of the blowing portion 8 of the blowing pipe 4 in the first embodiment. In addition to the arrangement, a flow rate controller 22 as a flow rate control means is provided in a flow path connected to the blowing pipe 4, and a control device 23 for operating or operating them according to a signal from the thermocouple 20 is added.

なお、着火源21は省略することも可能である。
流量制御手段22は、炭化水素化合物6や窒素化合物7などのそれぞれの流路に設けられた複数の流量調整弁24からなり、制御装置23からの信号に応じて、各物質の流量を調整することができるようになっている。
The ignition source 21 can be omitted.
The flow rate control means 22 includes a plurality of flow rate adjustment valves 24 provided in the respective flow paths of the hydrocarbon compound 6 and the nitrogen compound 7 and adjusts the flow rate of each substance in accordance with a signal from the control device 23. Be able to.

また、着火源21としては、電熱コイル、点火プラグ又は圧電素子式の着火器などを用いることができる。   As the ignition source 21, an electric heating coil, a spark plug, a piezoelectric element type igniter, or the like can be used.

この第2の実施形態における作用を図2及び図3を基に以下に説明する。図3は、制御装置のシーケンスの一例を示したものである。なお、第1の実施形態と同じ部分についての説明は省略する。   The operation of the second embodiment will be described below with reference to FIGS. FIG. 3 shows an example of a sequence of the control device. In addition, description about the same part as 1st Embodiment is abbreviate | omitted.

排ガス管3内の排ガス2の流量が変動してラジカル化炎11が消失しそうになり、吹出部8周辺の温度が所定の温度(例えば、500℃など)より低くなった場合には、熱電対20からの信号25を受けた制御装置23により流量制御器22内の各流量調整弁24を操作する信号26が発せられる。これにより、炭化水素化合物6については自然発火の発生を促すために流量が増加され、窒素化合物7については消費防止のために流量が減少又は停止させられる。また、炭化水素化合物6の濃度調整のために窒素9と水蒸気10を流していた場合には、炭化水素化合物6の濃度を高めるために、それぞれの流量は減少又は停止させられる。   When the flow rate of the exhaust gas 2 in the exhaust gas pipe 3 fluctuates and the radicalization flame 11 is likely to disappear, and the temperature around the blowing part 8 becomes lower than a predetermined temperature (for example, 500 ° C.), the thermocouple The control device 23 that receives the signal 25 from 20 generates a signal 26 for operating each flow rate adjusting valve 24 in the flow rate controller 22. Thereby, the flow rate of hydrocarbon compound 6 is increased to promote the occurrence of spontaneous ignition, and the flow rate of nitrogen compound 7 is decreased or stopped to prevent consumption. Further, when nitrogen 9 and water vapor 10 are flowed for adjusting the concentration of the hydrocarbon compound 6, the respective flow rates are reduced or stopped in order to increase the concentration of the hydrocarbon compound 6.

このようにして、脱硝反応を安定して継続させることができる。
また、着火源21を上記の温度低下とともに作動させることにより、ラジカル化炎11が消失していた場合において、強制的にラジカル化炎11を発生させることができるため、脱硝反応を確実に継続させることができる。
In this way, the denitration reaction can be continued stably.
Further, by operating the ignition source 21 together with the above temperature decrease, the radicalization flame 11 can be forcibly generated when the radicalization flame 11 has disappeared, so that the denitration reaction is reliably continued. Can be made.

なお、この着火源21については作動させるための設定温度を、例えば炭化水素化合物6の自然発火温度である300℃未満の値などに別途設けてもよい。   In addition, you may provide separately the preset temperature for operating this ignition source 21 in the value below 300 degreeC which is the spontaneous ignition temperature of the hydrocarbon compound 6, for example.

本発明に係る排ガス処理装置の第1の実施形態の構成図である。1 is a configuration diagram of a first embodiment of an exhaust gas treatment apparatus according to the present invention. 本発明に係る排ガス処理装置の第2の実施形態の構成図である。It is a block diagram of 2nd Embodiment of the waste gas processing apparatus which concerns on this invention. 制御装置の動作を示すシーケンスの一例である。It is an example of the sequence which shows operation | movement of a control apparatus.

符号の説明Explanation of symbols

1 ディーゼルエンジン 2 排ガス 3 排ガス管
4 吹込管 5 ヒータ 6 炭化水素化合物
7 窒素化合物 8 吹出部 9 窒素
10 水蒸気 11 ラジカル化炎 12 脱硝後のガス
20 熱電対 21 着火源 22 流量調整器
23 制御装置 24 流量調整弁 25 熱電対の検出信号
26 流量調整器の操作信号 27 着火源の作動信号
DESCRIPTION OF SYMBOLS 1 Diesel engine 2 Exhaust gas 3 Exhaust gas pipe 4 Blowing pipe 5 Heater 6 Hydrocarbon compound 7 Nitrogen compound 8 Blowing part 9 Nitrogen 10 Steam 11 Radicalization flame 12 Gas after denitration 20 Thermocouple 21 Ignition source 22 Flow rate regulator 23 Control device 24 Flow control valve 25 Thermocouple detection signal 26 Flow controller operation signal 27 Ignition source operation signal

Claims (5)

排ガスの排ガス管内に端部が突出するように径方向から挿入された吹込管と、
前記吹込管の前記排ガス管外の部分に設置されたヒーターとからなり、
前記ヒーターにより前記吹込管内で加熱された炭化水素化合物と窒素化合物とを前記吹込管の端部に形成された吹出部を通じて前記排ガス管内へ供給することにより、前記排ガス中の窒素酸化物を還元的に除去することを特徴とする排ガス処理装置。
A blow pipe inserted from the radial direction so that the end protrudes into the exhaust gas pipe of the exhaust gas;
It consists of a heater installed in a portion outside the exhaust pipe of the blowing pipe,
By supplying hydrocarbon compounds and nitrogen compounds heated in the blowing pipe by the heater into the exhaust pipe through a blowing portion formed at an end of the blowing pipe, nitrogen oxides in the exhaust gas are reductively reduced. An exhaust gas treatment device characterized by being removed.
前記吹出部付近に設置された温度計測手段と、
前記吹込管への前記炭化水素化合物と前記窒素化合物との流量を調整する流量制御手段と、
前記温度計測手段の検出信号を入力として前記流量制御手段を操作するための信号を形成する制御手段とを備え、
前記制御手段は前記温度計測手段が所定の値以下の温度を検出したときは、前記流量制御手段を操作して前記炭化水素化合物の流量を増加させ前記窒素化合物の流量を減少させることを特徴とする請求項1に記載の排ガス処理装置。
Temperature measuring means installed in the vicinity of the blowing section;
Flow rate control means for adjusting the flow rate of the hydrocarbon compound and the nitrogen compound into the blowing pipe;
A control means for forming a signal for operating the flow rate control means with the detection signal of the temperature measurement means as an input;
When the temperature measuring means detects a temperature below a predetermined value, the control means operates the flow rate control means to increase the flow rate of the hydrocarbon compound and decrease the flow rate of the nitrogen compound. The exhaust gas treatment apparatus according to claim 1.
前記吹出部付近に設置された温度計測手段及び着火手段と、
前記吹込管への前記炭化水素化合物と前記窒素化合物との流量を調整する流量制御手段と、
前記温度計測手段の検出信号を入力として前記流量制御手段及び前記着火手段を操作するための信号を形成する制御手段とを備え、
前記制御手段は前記温度計測手段が所定の値以下の温度を検出したときは、前記流量制御手段を操作して前記炭化水素化合物の流量を増加させ前記窒素化合物の流量を減少させるとともに、前記着火手段を作動させることを特徴とする請求項1に記載の排ガス処理装置。
A temperature measuring means and an ignition means installed in the vicinity of the blowing section;
Flow rate control means for adjusting the flow rate of the hydrocarbon compound and the nitrogen compound into the blowing pipe;
A control means for forming a signal for operating the flow rate control means and the ignition means with the detection signal of the temperature measurement means as an input;
When the temperature measuring means detects a temperature below a predetermined value, the control means operates the flow rate control means to increase the flow rate of the hydrocarbon compound and decrease the flow rate of the nitrogen compound, and to ignite the ignition. The exhaust gas treatment apparatus according to claim 1, wherein the means is operated.
前記吹出部は、前記排ガス管の上流側の前記吹込管側面に形成された複数の貫通孔からなることを特徴とする請求項1〜3のいずれかに記載の排ガス処理装置。 The exhaust gas treatment apparatus according to any one of claims 1 to 3, wherein the blow-out portion includes a plurality of through holes formed in a side surface of the blow-in pipe upstream of the exhaust gas pipe. 前記炭化水素化合物は、n−ヘキサン、シクロヘキサン、n−ブタン、プロパン、エタン、メタンの脂肪族炭化水素の少なくとも1種であることを特徴とする請求項1〜4のいずれかに記載の排ガス処理装置。 The exhaust gas treatment according to any one of claims 1 to 4, wherein the hydrocarbon compound is at least one of n-hexane, cyclohexane, n-butane, propane, ethane, and methane aliphatic hydrocarbons. apparatus.
JP2006005551A 2006-01-06 2006-01-13 Exhaust gas treatment equipment Expired - Fee Related JP4817850B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2006005551A JP4817850B2 (en) 2006-01-13 2006-01-13 Exhaust gas treatment equipment
KR1020087016303A KR101004741B1 (en) 2006-01-06 2006-12-28 Method and apparatus for denitration of exhaust gas
PCT/JP2006/326230 WO2007077919A1 (en) 2006-01-06 2006-12-28 Method of denitration of exhaust gas and apparatus therefor
US12/087,362 US7842266B2 (en) 2006-01-06 2006-12-28 Method of denitration of exhaust gas and apparatus therefor
DK06843608.8T DK1975381T3 (en) 2006-01-06 2006-12-28 Process for denitrification of exhaust gas and apparatus therefor
EP06843608.8A EP1975381B1 (en) 2006-01-06 2006-12-28 Method of denitrification of exhaust gas and apparatus therefor
CN2006800504308A CN101356344B (en) 2006-01-06 2006-12-28 Method of denitration of exhaust gas and apparatus thereof
NO20083432A NO20083432L (en) 2006-01-06 2008-08-05 Process for denitrification of exhaust gas and apparatus for this

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006005551A JP4817850B2 (en) 2006-01-13 2006-01-13 Exhaust gas treatment equipment

Publications (2)

Publication Number Publication Date
JP2007187078A true JP2007187078A (en) 2007-07-26
JP4817850B2 JP4817850B2 (en) 2011-11-16

Family

ID=38342418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006005551A Expired - Fee Related JP4817850B2 (en) 2006-01-06 2006-01-13 Exhaust gas treatment equipment

Country Status (1)

Country Link
JP (1) JP4817850B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023530753A (en) * 2020-06-29 2023-07-19 セルセントリック・ゲーエムベーハー・ウント・コー・カーゲー Compressed gas storage device and method of operating a compressed gas storage device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000507665A (en) * 1996-04-02 2000-06-20 クリーンエア・システムズ・インコーポレイテッド Ammonia injection in NOx control
JP2004313917A (en) * 2003-04-15 2004-11-11 Babcock Hitachi Kk Method and apparatus for waste gas denitrification using urea
JP2005254093A (en) * 2004-03-10 2005-09-22 Mitsui Eng & Shipbuild Co Ltd Denitration method and denitration apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000507665A (en) * 1996-04-02 2000-06-20 クリーンエア・システムズ・インコーポレイテッド Ammonia injection in NOx control
JP2004313917A (en) * 2003-04-15 2004-11-11 Babcock Hitachi Kk Method and apparatus for waste gas denitrification using urea
JP2005254093A (en) * 2004-03-10 2005-09-22 Mitsui Eng & Shipbuild Co Ltd Denitration method and denitration apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023530753A (en) * 2020-06-29 2023-07-19 セルセントリック・ゲーエムベーハー・ウント・コー・カーゲー Compressed gas storage device and method of operating a compressed gas storage device
JP7459313B2 (en) 2020-06-29 2024-04-01 セルセントリック・ゲーエムベーハー・ウント・コー・カーゲー Compressed gas storage device and method of operating a compressed gas storage device

Also Published As

Publication number Publication date
JP4817850B2 (en) 2011-11-16

Similar Documents

Publication Publication Date Title
US7842266B2 (en) Method of denitration of exhaust gas and apparatus therefor
JP6085245B2 (en) Non-catalytic denitration apparatus and non-catalytic denitration method
KR20160109999A (en) Low Pressure Selective Catalytic Reduction System and Operation Control Method Thereof
CN101356344B (en) Method of denitration of exhaust gas and apparatus thereof
RU2007131784A (en) METHOD FOR REDUCING SO3 EMISSION BY TARGETED FUEL INJECTION
JP2005508486A (en) Continuous-variable adjustment method of pollution reducing agent for combustion source
JP4381208B2 (en) Stepped diffuser for overfire air and overfire air / N-agent injection system
KR20200072609A (en) spray device comprising porous structure for providing precise controllable concentration of diluted urea-water solution inserted inside
JP2010042356A (en) Device and system for treating exhaust gas
JP2005164227A (en) METHOD AND APPARATUS FOR REDUCING FLUE GAS NOx BY INJECTION OF N-AGENT DROPLET AND GAS IN OVERFIRE AIR
CN105318350A (en) Boiler and a method for NOx emission control from a boiler
JP3968086B2 (en) Nitrogen dioxide visible soot emission reduction method generated from fixed source
KR102607313B1 (en) Method and system for removing hazardous compounds from flue gas using SCR catalyst
JP4817850B2 (en) Exhaust gas treatment equipment
JP3558737B2 (en) Exhaust gas denitration method and exhaust gas treatment method
JP4902834B2 (en) Denitration method and denitration apparatus
KR101831681B1 (en) Volatile organic compound removal system and method using the same
JP5269483B2 (en) Operation method of water separator
JP5716186B2 (en) Exhaust gas treatment apparatus and exhaust gas treatment system
JP4676343B2 (en) Exhaust gas treatment method and apparatus
JP2008114115A (en) Harmful substance reduction system
JP5004493B2 (en) Denitration method of exhaust gas
JP2004089752A (en) Exhaust gas denitration method and apparatus
KR20190036659A (en) Gas heating system
JP5911350B2 (en) Exhaust gas purification method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110830

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees