[go: up one dir, main page]

JP2007181910A - Polishing apparatus and polishing method - Google Patents

Polishing apparatus and polishing method Download PDF

Info

Publication number
JP2007181910A
JP2007181910A JP2006124214A JP2006124214A JP2007181910A JP 2007181910 A JP2007181910 A JP 2007181910A JP 2006124214 A JP2006124214 A JP 2006124214A JP 2006124214 A JP2006124214 A JP 2006124214A JP 2007181910 A JP2007181910 A JP 2007181910A
Authority
JP
Japan
Prior art keywords
polishing
polishing surface
fluid
temperature distribution
blowing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006124214A
Other languages
Japanese (ja)
Other versions
JP4787063B2 (en
Inventor
Osamu Nabeya
治 鍋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2006124214A priority Critical patent/JP4787063B2/en
Priority to US11/634,135 priority patent/US20070135020A1/en
Priority to KR1020060124242A priority patent/KR101267922B1/en
Publication of JP2007181910A publication Critical patent/JP2007181910A/en
Priority to US11/979,023 priority patent/US20080076335A1/en
Priority to US12/712,455 priority patent/US20100151771A1/en
Application granted granted Critical
Publication of JP4787063B2 publication Critical patent/JP4787063B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/005Control means for lapping machines or devices
    • B24B37/015Temperature control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/14Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation taking regard of the temperature during grinding

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)

Abstract

【課題】被研磨面の研磨レートの研磨面温度への依存性が高いCMPプロセスにおいても、被研磨面の高い研磨レートを維持しながら均一な研磨プロファイルを得ることができる研磨装置を提供する。
【解決手段】基板Wの被研磨面9を研磨テーブル1の研磨面8に接触させ、被研磨面9と研磨面8の相対運動により被研磨面9を研磨する研磨装置において、研磨面8に向けて圧縮ガス等の気体を吹き出す流体吹出機構30と、研磨面8の温度分布を測定するサーモグラフィ40と、コントローラ50とからなる研磨面温度制御手段20を備えた。被研磨面9を研磨する際に、研磨面温度制御手段20は、サーモグラフィ40の測定結果に基づいて、気体の吹き出し流量、温度、吹付位置を決定することで、流体の吹き出しを制御し、研磨面8を所定の温度分布にすることで、被研磨面9の研磨レートを均一にする。
【選択図】図1
There is provided a polishing apparatus capable of obtaining a uniform polishing profile while maintaining a high polishing rate of a surface to be polished even in a CMP process in which the polishing rate of the surface to be polished is highly dependent on the polishing surface temperature.
In a polishing apparatus in which a surface to be polished 9 is brought into contact with a polishing surface 8 of a polishing table 1 and the surface to be polished 9 is polished by relative movement between the surface to be polished 9 and the polishing surface 8, the polishing surface 8 is provided. A polishing surface temperature control means 20 comprising a fluid blowing mechanism 30 for blowing a gas such as a compressed gas toward the surface, a thermography 40 for measuring the temperature distribution of the polishing surface 8, and a controller 50 was provided. When polishing the surface 9 to be polished, the polishing surface temperature control means 20 controls the blowing of fluid by determining the gas blowing flow rate, temperature, and spraying position based on the measurement result of the thermography 40, and polishing. By making the surface 8 have a predetermined temperature distribution, the polishing rate of the surface 9 to be polished is made uniform.
[Selection] Figure 1

Description

本発明は、基板保持機構で保持する半導体基板等の研磨対象基板の被研磨面を、研磨テーブル等の研磨面に接触させ、被研磨面と研磨面の相対運動により被研磨面を研磨する研磨装置及び研磨方法に関するものである。   The present invention is a polishing method in which a surface to be polished such as a semiconductor substrate held by a substrate holding mechanism is brought into contact with a polishing surface such as a polishing table and the surface to be polished is polished by relative movement of the surface to be polished and the polishing surface. The present invention relates to an apparatus and a polishing method.

従来、研磨テーブルの上面に研磨クロス(研磨パッド)を貼り付けて研磨面を形成し、この研磨面に基板保持機構(トップリング)で保持する半導体基板等の研磨対象基板(以下、「基板」という)の被研磨面を押圧接触させ、研磨面にスラリーを供給しながら、研磨テーブルの回転とトップリングの回転による研磨面と被研磨面の相対運動により、被研磨面を平坦且つ鏡面状に研磨する化学機械研磨(Chemical mechanical polishing:CMP)装置がある。   Conventionally, a polishing target substrate (hereinafter referred to as “substrate”) such as a semiconductor substrate is formed by attaching a polishing cloth (polishing pad) to an upper surface of a polishing table to form a polishing surface and holding the polishing surface by a substrate holding mechanism (top ring). The surface to be polished is brought into contact with the surface to be polished and the surface to be polished is made flat and mirror-like by the relative movement of the surface to be polished and the surface to be polished by the rotation of the polishing table and the rotation of the top ring while supplying the slurry to the polishing surface. There is a chemical mechanical polishing (CMP) apparatus for polishing.

ここで、半導体デバイスの微細化への取り組みには、上記のCMP装置における基板の被研磨面の均一な研磨が重要である。そのため従来から、例えば特許文献1に示すように、研磨面の被研磨面に対する接触圧力を調節して被研磨面内の面圧分布を最適化することで、基板の被研磨面を均一な状態に研磨する試みがなされている。
特開2002−86347号公報
Here, uniform polishing of the surface to be polished of the substrate in the above-described CMP apparatus is important for efforts to miniaturize semiconductor devices. Therefore, conventionally, as shown in Patent Document 1, for example, by adjusting the contact pressure of the polishing surface to the surface to be polished to optimize the surface pressure distribution in the surface to be polished, the surface to be polished of the substrate is in a uniform state. Attempts have been made to polish.
JP 2002-86347 A

しかしながら、基板の被研磨面の研磨レート(研磨率)は、研磨面の接触圧力だけでなく、研磨面の温度や供給するスラリーの濃度等の影響も受けるため、研磨面の接触圧力を調節するだけでは、研磨レートを完全にコントロールすることはできなかった。特に、研磨レートの研磨面温度への依存性が高いCMPプロセス(例えば、研磨クロスの表面硬度がその温度に高く依存するような場合)では、研磨面の温度分布によって被研磨面内の各部の研磨レートにばらつきが生じ、研磨プロファイルが均一にならなかった。研磨面の温度は、一般に、被研磨面との接触やトップリングに取り付けられた基板を保持するリテーナリングとの接触による研磨面自体の発熱や、研磨面の熱吸収率のばらつきや、研磨面に滴下されたスラリーの流れ方などによって、均一でなく、各所で温度差が生じた状態になっている。   However, the polishing rate (polishing rate) of the surface to be polished of the substrate is affected not only by the contact pressure of the polishing surface but also by the temperature of the polishing surface and the concentration of the slurry to be supplied. Therefore, the contact pressure of the polishing surface is adjusted. The polishing rate could not be completely controlled by itself. In particular, in a CMP process in which the polishing rate is highly dependent on the polishing surface temperature (for example, when the surface hardness of the polishing cloth is highly dependent on the temperature), the temperature distribution of the polishing surface causes each part in the surface to be polished to The polishing rate varied and the polishing profile was not uniform. The temperature of the polishing surface is generally determined by the heat generated by the polishing surface itself due to contact with the surface to be polished or with the retainer ring that holds the substrate attached to the top ring, variation in the heat absorption rate of the polishing surface, Depending on the flow of the slurry dripped onto the surface, the temperature is not uniform and a temperature difference is generated in various places.

また、上記のような研磨レートの研磨面温度への依存性が高いCMPプロセスでは、研磨面の被研磨面に対する接触圧力が所定範囲内の間は、研磨レートが接触圧力に比例するが、接触圧力が所定範囲を超えると接触圧力が変化しても研磨レートが変化しなくなる。この場合、被研磨面内の他の箇所と温度が異なる部分の接触圧力を局所的に変化させても、その部分の研磨レートを変えることができず、被研磨面内の研磨レートのばらつきを是正することができなかった。このように、研磨面の接触圧力を調節するだけでは、被研磨面の全体で均一な研磨プロファイルを得ることができなかった。   In the CMP process in which the polishing rate is highly dependent on the polishing surface temperature as described above, the polishing rate is proportional to the contact pressure while the contact pressure of the polishing surface to the surface to be polished is within a predetermined range. When the pressure exceeds a predetermined range, the polishing rate does not change even if the contact pressure changes. In this case, even if the contact pressure of the part where the temperature is different from that of the other part in the surface to be polished is locally changed, the polishing rate of the part cannot be changed, and the variation in the polishing rate in the surface to be polished is caused. I could not correct it. Thus, it was not possible to obtain a uniform polishing profile over the entire surface to be polished only by adjusting the contact pressure on the polishing surface.

一方、研磨面の被研磨面に対する接触部分全体の接触圧力を下げれば、研磨面の温度上昇が抑えられ、接触圧力の変化による研磨プロファイルのコントロール性が向上するが、その反面、被研磨面全体の研磨レートが低下してしまうので、生産性が悪化する。このように従来は、高い研磨レートを維持しながら均一な研磨プロファイルを得ることが困難であった。   On the other hand, if the contact pressure of the entire contact portion of the polishing surface with respect to the surface to be polished is lowered, the temperature rise of the polishing surface can be suppressed, and the controllability of the polishing profile due to the change in contact pressure is improved. As a result, the polishing rate is lowered, and the productivity is deteriorated. Thus, conventionally, it has been difficult to obtain a uniform polishing profile while maintaining a high polishing rate.

本発明は上述の点に鑑みてなされたものでありその目的は、被研磨面の研磨レートの研磨面温度への依存性が高いCMPプロセスにおいても、被研磨面の高い研磨レートを維持しながら均一な研磨プロファイルを得ることができる研磨装置、及び研磨方法を提供することにある。   The present invention has been made in view of the above points, and its purpose is to maintain a high polishing rate of the surface to be polished even in a CMP process in which the polishing rate of the surface to be polished is highly dependent on the polishing surface temperature. An object of the present invention is to provide a polishing apparatus and a polishing method capable of obtaining a uniform polishing profile.

上記課題を解決するため本願の請求項1に記載の発明は、基板を保持する基板保持機構と、研磨面を有する研磨テーブルとを備え、基板保持機構で保持する基板の被研磨面を研磨テーブルの研磨面に接触させ、被研磨面と研磨面の相対運動により被研磨面を研磨する研磨装置において、前記研磨テーブルの研磨面の温度分布を制御する研磨面温度制御手段を設け、前記研磨面温度制御手段で研磨面の温度分布を所定の温度分布に制御し、前記基板の被研磨面の各部の研磨レートを制御することを特徴とする。   In order to solve the above-mentioned problems, an invention according to claim 1 of the present application includes a substrate holding mechanism for holding a substrate and a polishing table having a polishing surface, and the polishing surface of the substrate held by the substrate holding mechanism is a polishing table. In a polishing apparatus that contacts a polishing surface of the polishing table and polishes the surface to be polished by relative movement of the surface to be polished and a polishing surface, polishing surface temperature control means for controlling a temperature distribution of the polishing surface of the polishing table is provided, and the polishing surface The temperature distribution of the polishing surface is controlled to a predetermined temperature distribution by the temperature control means, and the polishing rate of each part of the surface to be polished of the substrate is controlled.

本願の請求項2に記載の発明は、請求項1に記載の研磨装置において、前記研磨面温度制御手段は、前記研磨テーブルの研磨面に向けて流体を吹き出すことで該研磨面を所定の温度分布にする流体吹出機構を具備することを特徴とする。   According to a second aspect of the present invention, in the polishing apparatus according to the first aspect, the polishing surface temperature control means blows a fluid toward the polishing surface of the polishing table so that the polishing surface has a predetermined temperature. It is characterized by having a fluid blowing mechanism for distribution.

本願の請求項3に記載の発明は、請求項2に記載の研磨装置において、前記流体吹出機構は、複数の流体吹出口を具備することを特徴とする。   The invention according to claim 3 of the present application is the polishing apparatus according to claim 2, wherein the fluid blowing mechanism includes a plurality of fluid blowing ports.

本願の請求項4に記載の発明は、請求項3に記載の研磨装置において、前記複数の流体吹出口から吹き出す流体の流量を個別に調節する流量調節手段、及び/又は前記複数の流体吹出口から吹き出す流体の温度を個別に調節する温度調節手段を具備することを特徴とする。   According to a fourth aspect of the present invention, in the polishing apparatus according to the third aspect, the flow rate adjusting means for individually adjusting the flow rate of the fluid blown out from the plurality of fluid outlets and / or the plurality of fluid outlets. It is characterized by comprising temperature adjusting means for individually adjusting the temperature of the fluid blown out from the liquid.

本願の請求項5に記載の発明は、請求項3又は4に記載の研磨装置において、前記複数の流体吹出口のうち流体を吹き出す流体吹出口の数を調節する吹出口数調節手段、及び/又は前記各流体吹出口の研磨面への流体の吹き付け位置を調節する吹付位置調節手段を具備することを特徴とする。   Invention of Claim 5 of this application WHEREIN: The polishing apparatus of Claim 3 or 4 WHEREIN: Outlet adjustment means which adjusts the number of the fluid outlets which blow out the fluid among these fluid outlets, and / or Alternatively, spray position adjusting means for adjusting the spray position of the fluid onto the polishing surface of each fluid outlet is provided.

本願の請求項6に記載の発明は、請求項4又は5に記載の研磨装置において、前記研磨テーブルの研磨面の温度分布を測定する研磨面温度分布測定手段を備え、前記研磨面温度制御手段は、前記研磨面温度分布測定手段の測定結果に基づいて、前記流量調節手段、温度調節手段、吹出口数調節手段、吹付位置調節手段の少なくともいずれかを用いて流体の吹き出しを制御することで、前記研磨面を所定の温度分布に制御することを特徴とする。   The invention according to claim 6 of the present application is the polishing apparatus according to claim 4 or 5, further comprising polishing surface temperature distribution measuring means for measuring the temperature distribution of the polishing surface of the polishing table, and the polishing surface temperature control means. Is based on the measurement result of the polishing surface temperature distribution measuring means by controlling the flow of fluid using at least one of the flow rate adjusting means, the temperature adjusting means, the outlet number adjusting means, or the spray position adjusting means. The polishing surface is controlled to have a predetermined temperature distribution.

本願の請求項7に記載の発明は、基板の被研磨面を研磨面に接触させ、被研磨面と研磨面の相対運動により被研磨面を研磨する研磨工程を有し、前記研磨工程を行う際に、前記研磨面の温度分布を所定の温度分布に制御して、前記基板の被研磨面の各部の研磨レートを制御することを特徴とする研磨方法にある。   The invention according to claim 7 of the present application has a polishing step of bringing the polishing surface of the substrate into contact with the polishing surface and polishing the polishing surface by relative movement of the polishing surface and the polishing surface, and performing the polishing step. In this case, the polishing method is characterized in that the polishing rate of each part of the surface to be polished of the substrate is controlled by controlling the temperature distribution of the polishing surface to a predetermined temperature distribution.

本願の請求項8に記載の発明は、基板の被研磨面を研磨面に接触させ、被研磨面と研磨面の相対運動により被研磨面を研磨する研磨工程を有し、前記研磨工程は、前記研磨面の温度分布を制御する研磨面温度制御手段で、該研磨面の温度分布を所定の温度分布に制御して研磨を行う第1の研磨工程と、前記研磨面温度制御手段による研磨面の温度分布の制御を行わずに研磨を行う第2の研磨工程と、からなることを特徴とする研磨方法にある。   The invention according to claim 8 of the present application has a polishing step of bringing the polishing surface of the substrate into contact with the polishing surface and polishing the polishing surface by relative movement of the polishing surface and the polishing surface, A polishing surface temperature control means for controlling the temperature distribution of the polishing surface; a first polishing step for polishing by controlling the temperature distribution of the polishing surface to a predetermined temperature distribution; and a polishing surface by the polishing surface temperature control means And a second polishing step in which polishing is performed without controlling the temperature distribution.

本願の請求項9に記載の発明は、請求項8に記載の研磨方法において、前記第1の研磨工程は、前記研磨面温度制御手段が備える流体吹出機構で前記研磨面に向けて流体を吹き出して該研磨面の温度分布を制御して研磨を行う工程であり、前記第2の研磨工程は、前記流体吹出機構による流体の吹き出しを停止して研磨を行う工程であることを特徴とする。   The invention according to claim 9 of the present application is the polishing method according to claim 8, wherein the first polishing step blows fluid toward the polishing surface by a fluid blowing mechanism provided in the polishing surface temperature control means. The second polishing step is a step of performing polishing by stopping the blowing of fluid by the fluid blowing mechanism.

本願の請求項10に記載の発明は、基板の被研磨面を研磨面に接触させ、被研磨面と研磨面の相対運動により被研磨面を研磨する研磨工程を有し、前記研磨工程は、前記研磨面の温度を制御する研磨面温度制御手段で、該研磨面の温度を所定の温度分布に制御して研磨を行う第1の研磨工程と、前記研磨面温度制御手段で、前記研磨面の温度分布を前記第1の研磨工程における温度分布よりも高い温度の温度分布に制御して研磨を行う第2の研磨工程と、からなることを特徴とする研磨方法にある。   The invention according to claim 10 of the present application has a polishing step of bringing the polishing surface of the substrate into contact with the polishing surface and polishing the polishing surface by relative movement of the polishing surface and the polishing surface, A first polishing step for performing polishing by controlling the temperature of the polishing surface to a predetermined temperature distribution by a polishing surface temperature control means for controlling the temperature of the polishing surface; and the polishing surface by the polishing surface temperature control means. And a second polishing step for performing polishing while controlling the temperature distribution to a temperature distribution higher than the temperature distribution in the first polishing step.

本願の請求項11に記載の発明は、請求項10に記載の研磨方法において、前記第1の研磨工程は、前記研磨面温度制御手段が備える流体吹出機構で、前記研磨面に向けて所定流量の流体を吹き出して研磨を行う工程であり、前記第2の研磨工程は、前記流体吹出機構で、前記第1の工程における流体の吹出流量よりも少ない流量の流体を吹き出して研磨を行う工程であることを特徴とする。   According to an eleventh aspect of the present invention, in the polishing method according to the tenth aspect, the first polishing step is a fluid blowing mechanism provided in the polishing surface temperature control means, and a predetermined flow rate toward the polishing surface. The second polishing step is a step of performing polishing by blowing out a fluid having a flow rate smaller than the flow rate of the fluid in the first step by the fluid blowing mechanism. It is characterized by being.

本願の請求項12に記載の発明は、基板の被研磨面を研磨面に接触させ、被研磨面と研磨面の相対運動により被研磨面を研磨する研磨工程を有し、前記研磨工程は、前記研磨面に向けて流体を吹き出す流体吹出機構で該研磨面に向けて加湿していない気体を吹き出すことで該研磨面の温度分布を所定の温度分布に制御して研磨を行う第1の研磨工程と、前記流体噴出機構で前記研磨面に向けて加湿した気体を吹き出すことで該研磨面の温度分布を所定の温度分布に制御して研磨を行う第2の研磨工程と、からなることを特徴とする研磨方法にある。   The invention according to claim 12 of the present application has a polishing step of bringing the surface to be polished into contact with the polishing surface and polishing the surface to be polished by relative movement of the surface to be polished and the polishing surface, First polishing is performed by controlling the temperature distribution of the polishing surface to a predetermined temperature distribution by blowing unhumidified gas toward the polishing surface by a fluid blowing mechanism that blows fluid toward the polishing surface. And a second polishing step of performing polishing by controlling the temperature distribution of the polishing surface to a predetermined temperature distribution by blowing the gas humidified toward the polishing surface by the fluid ejection mechanism. There is a characteristic polishing method.

本願の請求項13に記載の発明は、請求項8乃至12のいずれか1項に記載の研磨方法において、前記第1の研磨工程の時間が、研磨工程全体の半分以上の時間を占めることを特徴とする。   Invention of Claim 13 of this application WHEREIN: In the grinding | polishing method of any one of Claims 8 thru | or 12, the time of the said 1st grinding | polishing process occupies the time more than half of the whole grinding | polishing process. Features.

本願の請求項1に記載の発明によれば、研磨テーブルの研磨面の温度分布を制御する研磨面温度制御手段を設け、研磨面温度制御手段で研磨面の温度分布を所定の温度分布に制御し、基板の被研磨面の各部の研磨レートを制御するので、被研磨面の研磨レートの研磨面温度への依存性が高いCMPプロセスにおいても、被研磨面全体の面圧を下げることなく、被研磨面の各部を所望の研磨レートで研磨することが可能となり、被研磨面の高い研磨レートを維持しながら均一な研磨プロファイルを得ることができる。   According to the first aspect of the present invention, the polishing surface temperature control means for controlling the temperature distribution of the polishing surface of the polishing table is provided, and the temperature distribution of the polishing surface is controlled to a predetermined temperature distribution by the polishing surface temperature control means. In addition, since the polishing rate of each part of the surface to be polished of the substrate is controlled, even in the CMP process in which the polishing rate of the surface to be polished is highly dependent on the polishing surface temperature, without reducing the surface pressure of the entire surface to be polished, Each part of the surface to be polished can be polished at a desired polishing rate, and a uniform polishing profile can be obtained while maintaining a high polishing rate on the surface to be polished.

本願の請求項2に記載の発明によれば、研磨面温度制御手段は、研磨テーブルの研磨面に向けて流体を吹き出すことで研磨面を所定の温度分布にする流体吹出機構を具備するので、簡単な構成で研磨面を所望の温度分布にすることが可能となり、均一な研磨プロファイルを得ることができる。   According to the invention described in claim 2 of the present application, the polishing surface temperature control means includes a fluid blowing mechanism that blows the fluid toward the polishing surface of the polishing table so that the polishing surface has a predetermined temperature distribution. It becomes possible to make the polishing surface have a desired temperature distribution with a simple configuration, and a uniform polishing profile can be obtained.

本願の請求項3に記載の発明によれば、流体吹出機構は、複数の流体吹出口を具備するので、研磨面をより細かい範囲に区分してそれらの部分を所望の温度分布にすることが可能となり、より均一な研磨プロファイルを容易に得ることができる。   According to the invention described in claim 3 of the present application, since the fluid blowing mechanism includes a plurality of fluid blowing ports, it is possible to divide the polishing surface into a finer range and make those portions have a desired temperature distribution. This makes it possible to easily obtain a more uniform polishing profile.

本願の請求項4に記載の発明によれば、複数の流体吹出口から吹き出す流体の流量を個別に調節する流量調節手段、及び/又は複数の流体吹出口から吹き出す流体の温度を個別に調節する温度調節手段を具備するので、研磨面の局所的な部分を所望の温度分布にすることが可能となり、より均一な研磨プロファイルを容易に得ることができる。   According to the invention described in claim 4 of the present application, the flow rate adjusting means for individually adjusting the flow rate of the fluid blown from the plurality of fluid outlets and / or the temperature of the fluid blown from the plurality of fluid outlets are individually adjusted. Since the temperature adjusting means is provided, a local portion of the polishing surface can have a desired temperature distribution, and a more uniform polishing profile can be easily obtained.

本願の請求項5に記載の発明によれば、複数の流体吹出口のうち流体を吹き出す流体吹出口の数を調節する吹出口数調節手段、及び/又は各流体吹出口の研磨面への流体の吹き付け位置を調節する吹付位置調節手段を具備するので、研磨面の局所的な部分を所望の温度分布にすることが可能となり、より均一な研磨プロファイルを容易に得ることができる。   According to invention of Claim 5 of this application, the number of the fluid outlets which adjusts the number of the fluid outlets which blow off the fluid among several fluid outlets, and / or the fluid to the grinding | polishing surface of each fluid outlet Since the spray position adjusting means for adjusting the spray position is provided, the local portion of the polishing surface can have a desired temperature distribution, and a more uniform polishing profile can be easily obtained.

本願の請求項6に記載の発明によれば、研磨面温度制御手段は、研磨面温度分布測定手段の測定結果に基づいて、流量調節手段、温度調節手段、吹出口数調節手段、吹付位置調節手段の少なくともいずれかを用いて流体の吹き出しを制御することで、研磨面を所定の温度分布に制御するので、実際の研磨面の温度分布に基づいて、正確に目的とする研磨面の温度分布を実現することができ、より均一な研磨プロファイルを得ることができる。   According to the invention described in claim 6 of the present application, the polishing surface temperature control means is based on the measurement result of the polishing surface temperature distribution measurement means, the flow rate adjustment means, the temperature adjustment means, the outlet number adjustment means, the blowing position adjustment. Since the polishing surface is controlled to have a predetermined temperature distribution by controlling the flow of fluid using at least one of the means, the temperature distribution of the target polishing surface is accurately based on the temperature distribution of the actual polishing surface. And a more uniform polishing profile can be obtained.

本願の請求項7に記載の発明によれば、研磨工程を行う際に、研磨面の温度分布を所定の温度分布に制御して、基板の被研磨面の各部の研磨レートを制御するので、被研磨面の研磨レートの研磨面温度への依存性が高いCMPプロセスにおいても、被研磨面全体の面圧を下げることなく、被研磨面の各部を所望の研磨レートで研磨することが可能となり、被研磨面の高い研磨レートを維持しながら均一な研磨プロファイルを得ることができる。   According to the invention of claim 7 of the present application, when performing the polishing process, the temperature distribution of the polishing surface is controlled to a predetermined temperature distribution, and the polishing rate of each part of the surface to be polished of the substrate is controlled. Even in a CMP process in which the polishing rate of the surface to be polished is highly dependent on the polishing surface temperature, each part of the surface to be polished can be polished at a desired polishing rate without reducing the surface pressure of the entire surface to be polished. A uniform polishing profile can be obtained while maintaining a high polishing rate on the surface to be polished.

本願の請求項8に記載の発明によれば、研磨工程が、研磨面温度制御手段で研磨面の温度分布を所定の温度分布に制御して研磨を行う第1の研磨工程と、研磨面温度制御手段による研磨面の温度分布の制御を行わずに研磨を行う第2の研磨工程とからなるので、第1の研磨工程で、研磨面の温度分布を制御して均一な研磨プロファイルを得ることができる一方、第2の研磨工程で、研磨面の温度分布の制御による研磨面の乾燥等の不具合の発生を抑制して研磨を行うことが可能となる。   According to the invention described in claim 8 of the present application, the polishing step includes a first polishing step in which polishing is performed by controlling the temperature distribution of the polishing surface to a predetermined temperature distribution by the polishing surface temperature control means, and the polishing surface temperature. Since it comprises a second polishing step in which polishing is performed without controlling the temperature distribution of the polishing surface by the control means, the temperature distribution of the polishing surface is controlled in the first polishing step to obtain a uniform polishing profile. On the other hand, in the second polishing step, it is possible to perform polishing while suppressing the occurrence of problems such as drying of the polished surface by controlling the temperature distribution of the polished surface.

本願の請求項9に記載の発明によれば、第1の研磨工程は、研磨面温度制御手段が備える流体吹出機構で研磨面に向けて流体を吹き出して研磨を行う工程であり、第2の研磨工程は、流体吹出機構による流体の吹き出しを停止して研磨を行う工程なので、第2の研磨工程での研磨面の乾燥を抑えることができるので、砥粒の凝集等が抑えられ、被研磨面におけるスクラッチ等のディフェクトの発生を防止することが可能となる。   According to invention of Claim 9 of this application, a 1st grinding | polishing process is a process of blowing out a fluid toward a grinding | polishing surface with the fluid blowing mechanism with which a grinding | polishing surface temperature control means is equipped, and 2nd Since the polishing process is a process in which the blowing of the fluid by the fluid blowing mechanism is stopped and polishing is performed, drying of the polishing surface in the second polishing process can be suppressed, so that agglomeration of abrasive grains and the like can be suppressed and polishing is performed. It is possible to prevent the occurrence of defects such as scratches on the surface.

本願の請求項10に記載の発明によれば、研磨工程が、研磨面温度制御手段で、該研磨面の温度を所定の温度分布に制御して研磨を行う第1の研磨工程と、研磨面温度制御手段で、研磨面の温度分布を第1の研磨工程における温度分布よりも高い温度の温度分布に制御して研磨を行う第2の研磨工程とからなるので、第2の研磨工程の研磨レートが第1の研磨工程の研磨レートよりも低下することで、第2の研磨工程における研磨工程の終了点を正確に検出できるようになり、研磨終点検知の精度の向上が望めるようになる。   According to invention of Claim 10 of this application, a grinding | polishing process is a 1st grinding | polishing process which performs grinding | polishing by controlling the temperature of this grinding | polishing surface to predetermined temperature distribution by a grinding | polishing surface temperature control means, and a grinding | polishing surface. Since the temperature control means comprises a second polishing step for performing polishing by controlling the temperature distribution of the polishing surface to a temperature distribution higher than the temperature distribution in the first polishing step, polishing in the second polishing step Since the rate is lower than the polishing rate of the first polishing step, the end point of the polishing step in the second polishing step can be accurately detected, and improvement in the accuracy of the polishing end point detection can be expected.

本願の請求項11に記載の発明によれば、第1の研磨工程は、流体吹出機構で、研磨面に向けて所定流量の流体を吹き出して研磨を行う工程であり、第2の研磨工程は、流体吹出機構で、第1の工程における流体の吹出流量よりも少ない流量の流体を吹き出して研磨を行う工程なので、簡単な工程の変化によって、第2の研磨工程の研磨レートが第1の研磨工程の研磨レートよりも低下することで、第2の研磨工程における研磨工程の終了点を正確に検出できるようになる。また、第2の研磨工程における研磨面の乾燥も抑えることができる。   According to invention of Claim 11 of this application, a 1st grinding | polishing process is a process which blows and polishes a predetermined flow volume of fluid toward a grinding | polishing surface with a fluid blowing mechanism, A 2nd grinding | polishing process Since the polishing is performed by blowing out the fluid having a flow rate smaller than the flow rate of the fluid in the first step by the fluid blowing mechanism, the polishing rate of the second polishing step is changed to the first polishing rate by a simple process change. By lowering than the polishing rate of the process, the end point of the polishing process in the second polishing process can be accurately detected. In addition, drying of the polished surface in the second polishing step can be suppressed.

本願の請求項12に記載の発明によれば、研磨工程が、流体吹出機構で研磨面に向けて加湿していない気体を吹き出す第1の研磨工程と、流体噴出機構で研磨面に向けて加湿した気体を吹き出す第2の研磨工程とからなるので、第2の研磨工程での研磨面の乾燥を抑えることができるので、砥粒の凝集等が抑えられ、被研磨面におけるスクラッチ等のディフェクトの発生を防止することが可能となる。   According to the invention described in claim 12 of the present application, the polishing step is a first polishing step of blowing a gas that is not humidified toward the polishing surface by the fluid blowing mechanism, and a humidification toward the polishing surface by the fluid blowing mechanism. The second polishing step of blowing out the generated gas, so that drying of the polished surface in the second polishing step can be suppressed, so that aggregation of abrasive grains and the like can be suppressed, and defects such as scratches on the polished surface can be prevented. Occurrence can be prevented.

本願の請求項13に記載の発明によれば、第1の研磨工程の時間が、研磨工程全体の半分以上の時間を占めるので、研磨終点付近以外では研磨レートを落とすことなく研磨を行うことができる。   According to the invention described in claim 13 of the present application, since the time of the first polishing step occupies more than half of the entire polishing step, polishing can be performed without reducing the polishing rate except in the vicinity of the polishing end point. it can.

以下、本発明の実施形態を図面に基づいて詳細に説明する。
〔第1実施形態〕
図1は、本発明の第1実施形態にかかる研磨装置の構成を示す概略側面図である。同図に示す研磨装置は、回転軸3に支持されて水平面内で回転するように設置された円形平板状の研磨テーブル(ターンテーブル)1を備え、研磨テーブル1の上面に研磨クロス2が貼り付けられて研磨面8が形成されている。研磨テーブル1の上部には、基板Wを保持するトップリング4が設置されている。トップリング4は、トップリング回転軸5の下端に枢着され、トップリング回転軸5は、揺動軸7を中心として揺動(旋回)するトップリング揺動アーム6によって同図に示す研磨テーブル1上の研磨位置と、研磨テーブル1側部の基板受渡位置(図示せず)との間で揺動自在に支持されている。またトップリング4は、図示しない昇降手段によりトップリング回転軸5と共に研磨面8に対して上下動可能になっており、研磨面8に向けて下降することで、基板Wの被研磨面9を研磨面8に所定の圧力で押圧接触させる一方、上昇することで被研磨面9を研磨面8から離間させるようになっている。研磨テーブル1の上方には、研磨面8に向けてスラリー等の砥液を供給する砥液供給ノズル10が設置されている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[First Embodiment]
FIG. 1 is a schematic side view showing the configuration of the polishing apparatus according to the first embodiment of the present invention. The polishing apparatus shown in the figure includes a circular flat plate-like polishing table (turn table) 1 supported by a rotating shaft 3 and installed so as to rotate in a horizontal plane, and a polishing cloth 2 is attached to the upper surface of the polishing table 1. In addition, a polished surface 8 is formed. A top ring 4 that holds the substrate W is installed on the upper part of the polishing table 1. The top ring 4 is pivotally attached to the lower end of the top ring rotating shaft 5, and the top ring rotating shaft 5 is a polishing table shown in the figure by a top ring swinging arm 6 that swings (turns) around the swing shaft 7. 1 is supported in a swingable manner between a polishing position on the substrate 1 and a substrate delivery position (not shown) on the side of the polishing table 1. Further, the top ring 4 can be moved up and down with respect to the polishing surface 8 together with the top ring rotating shaft 5 by elevating means (not shown), and descends toward the polishing surface 8 so that the surface 9 to be polished of the substrate W is lowered. While being brought into pressure contact with the polishing surface 8 with a predetermined pressure, the surface 9 to be polished is separated from the polishing surface 8 by being raised. A polishing liquid supply nozzle 10 that supplies a polishing liquid such as a slurry toward the polishing surface 8 is installed above the polishing table 1.

そしてこの研磨装置は、基板Wの被研磨面9に接触する研磨面8を所定の温度分布に制御する研磨面温度制御手段20を備えている。研磨面温度制御手段20は、研磨テーブル1上のトップリング4に隣接する位置に設置された、研磨面8に向けて流体(本実施形態では気体)を吹き出す流体吹出機構30と、研磨面8の温度分布を測定する研磨面温度分布測定手段40と、コントローラ50とを備えて構成されている。以下、研磨面温度制御手段20の各構成部を順に説明する。   The polishing apparatus includes polishing surface temperature control means 20 that controls the polishing surface 8 that contacts the surface 9 to be polished of the substrate W to have a predetermined temperature distribution. The polishing surface temperature control means 20 is installed at a position adjacent to the top ring 4 on the polishing table 1, and a fluid blowing mechanism 30 that blows fluid (gas in this embodiment) toward the polishing surface 8, and the polishing surface 8. The polishing surface temperature distribution measuring means 40 for measuring the temperature distribution of the above and a controller 50 are provided. Hereinafter, each component of the polishing surface temperature control means 20 will be described in order.

図2は、流体吹出機構30の構成を説明するための図で、同図(a)は研磨テーブル1をその上方から見た図で、同図(b)は側方から見た図である。なお、同図(b)では、流体吹出機構30はその一部のみを示している。また図3は、流体吹出機構30の全体構成を示す図である。図2に示すように、流体吹出機構30は、研磨テーブル1上のトップリング4の側部(詳細には、研磨テーブル1の回転によって、基板Wの被研磨面9に接触する部分の研磨面8が移動して通過する位置の上方にあたる側部)に設置され、トップリング4の側面を囲むように放射状に配置された複数個(図では5個)の吹出ノズル(流体吹出口)32を備えている。各吹出ノズル32は、いずれも研磨面8に向けて開口し、それぞれ研磨面8上の異なる位置に気体を吹き付けるようになっている。   2A and 2B are diagrams for explaining the configuration of the fluid blowing mechanism 30. FIG. 2A is a view of the polishing table 1 as viewed from above, and FIG. 2B is a view of the polishing table 1 as viewed from the side. . In FIG. 2B, only a part of the fluid blowing mechanism 30 is shown. FIG. 3 is a diagram showing an overall configuration of the fluid blowing mechanism 30. As shown in FIG. 2, the fluid blowing mechanism 30 is provided on the side of the top ring 4 on the polishing table 1 (specifically, the polishing surface of the portion that contacts the surface to be polished 9 of the substrate W due to the rotation of the polishing table 1). A plurality of (five in the figure) blowing nozzles (fluid outlets) 32 that are installed radially above the side surface of the top ring 4 and that are installed on the side portion above the position where the 8 moves and passes. I have. Each blowing nozzle 32 opens toward the polishing surface 8 and blows gas to different positions on the polishing surface 8.

図3に示すように、各吹出ノズル32は、各々の配管33を介して圧縮エアやチッソガスなどの気体が供給される気体源34と接続され、気体源34から供給される前記気体を吹き出すように構成されている。また、各々の配管33には、各吹出ノズル32から吹き出す気体の流量を個別に調節する流量調節手段であるニードルバルブ35と、流量を計測する流量計36とが設置されている。各流量計36の測定値はコントローラ50に入力され、各ニードルバルブ35はコントローラ50の指令で動作するように構成されている。   As shown in FIG. 3, each blowing nozzle 32 is connected to a gas source 34 to which a gas such as compressed air or nitrogen gas is supplied via each pipe 33, and blows out the gas supplied from the gas source 34. It is configured. Each pipe 33 is provided with a needle valve 35 which is a flow rate adjusting means for individually adjusting the flow rate of the gas blown from each blowing nozzle 32 and a flow meter 36 for measuring the flow rate. The measurement value of each flow meter 36 is input to the controller 50, and each needle valve 35 is configured to operate according to a command from the controller 50.

また各々の配管33には、各吹出ノズル32から吹き出す気体の温度を個別に調節するヒーターあるいは冷却器などの温度調節手段37が設置されている。また各吹出ノズル32には、それらの姿勢を個別に変えて各吹出ノズル32から出た気体が吹き付けられる研磨面8上の位置を任意に変更する機構である吹付位置調節手段(図示せず)が設置されている。温度調節手段37や吹付位置調節手段も、コントローラ50の指令で動作するように構成されている。なお、各吹出ノズル32から乾燥した気体を研磨面8に吹き付けると、研磨面8が乾燥してスラリーが固化し、基板Wの被研磨面9が傷付く可能性があるため、これを防ぐ目的で、各吹出ノズル32から吹き出す気体を加湿する加湿機構38を設けている。また、図示は省略するが、吹出ノズル32の近傍に加湿機や噴霧ノズル等を設置することで、研磨面8の乾燥を防ぐように構成してもよい。   Each pipe 33 is provided with a temperature adjusting means 37 such as a heater or a cooler for individually adjusting the temperature of the gas blown from each blowing nozzle 32. Further, spray position adjusting means (not shown), which is a mechanism for arbitrarily changing the position on the polishing surface 8 to which the gas discharged from each blow nozzle 32 is blown, by individually changing the posture of each blow nozzle 32. Is installed. The temperature adjusting means 37 and the spray position adjusting means are also configured to operate according to a command from the controller 50. In addition, when the gas dried from each blowing nozzle 32 is blown onto the polishing surface 8, the polishing surface 8 is dried and the slurry is solidified, and the surface 9 to be polished of the substrate W may be damaged. Thus, there is provided a humidifying mechanism 38 for humidifying the gas blown out from each of the blowout nozzles 32. Although not shown, a humidifier, a spray nozzle, or the like may be installed in the vicinity of the blowout nozzle 32 to prevent the polishing surface 8 from drying.

研磨面温度分布測定手段40は、本実施形態では、図1に示すように、研磨面8の温度分布(被研磨面9と接触する部分の温度分布)を測定するサーモグラフィ40である。このサーモグラフィ40による研磨面8の温度分布の測定結果は、コントローラ50に入力されるように構成されている。なお研磨面温度分布測定手段40としては、同図に示すサーモグラフィ40のほか、研磨面8上の各部の温度を測定する複数の放射温度計等を用いることもできる。   In this embodiment, the polishing surface temperature distribution measuring means 40 is a thermography 40 that measures the temperature distribution of the polishing surface 8 (the temperature distribution of the portion in contact with the surface 9 to be polished), as shown in FIG. The measurement result of the temperature distribution of the polishing surface 8 by the thermography 40 is configured to be input to the controller 50. As the polishing surface temperature distribution measuring means 40, a plurality of radiation thermometers for measuring the temperature of each part on the polishing surface 8 can be used in addition to the thermography 40 shown in FIG.

コントローラ50は、サーモグラフィ40の測定データを入力すると共に、流体吹出機構30へ指令を出力するように、これらと電気的に接続されている。また、コントローラ50には、予め測定した、研磨面8の温度制御を行なっていない状態における被研磨面9の研磨プロファイルのデータが格納されると共に、各吹出ノズル32からの最適な気体の吹出流量や吹出温度、又は気体を吹き出す吹出ノズル32の数や各吹出ノズル32の吹出方向(吹付位置)を自動的に決定することで研磨面の温度分布を制御する研磨面温度制御プログラム51が格納されている。   The controller 50 is electrically connected to the thermography 40 so as to input measurement data and to output a command to the fluid blowing mechanism 30. In addition, the controller 50 stores data of the polishing profile of the surface 9 to be polished in a state where the temperature control of the polishing surface 8 is not performed, and the optimal gas blowing flow rate from each blowing nozzle 32. A polishing surface temperature control program 51 is stored which controls the temperature distribution of the polishing surface by automatically determining the number of blow nozzles 32 for blowing gas, the number of blow nozzles 32 for blowing gas, and the blow direction (spray position) of each blow nozzle 32. ing.

次に、上記構成の研磨装置による研磨工程を説明する。トップリング揺動アーム6によってトップリング4を研磨テーブル1上の研磨位置まで揺動移動させる。そして、回転軸3を中心に研磨テーブル1を回転させると共に、トップリング回転軸5を中心にトップリング4を回転させ、砥液供給ノズル10から研磨面8にスラリーを供給しながら、昇降手段によりトップリング4を下降させて、トップリング4の下端面に保持された基板Wの被研磨面9を研磨面8に押圧接触させる。これにより被研磨面9と研磨面8の相対運動で、基板Wの被研磨面9を研磨する。   Next, the polishing process by the polishing apparatus having the above configuration will be described. The top ring swing arm 6 swings the top ring 4 to the polishing position on the polishing table 1. Then, the polishing table 1 is rotated around the rotating shaft 3, the top ring 4 is rotated around the top ring rotating shaft 5, and the slurry is supplied from the abrasive liquid supply nozzle 10 to the polishing surface 8, while lifting and lowering means. The top ring 4 is lowered, and the surface 9 to be polished of the substrate W held on the lower end surface of the top ring 4 is brought into press contact with the polishing surface 8. Thus, the surface 9 to be polished of the substrate W is polished by the relative movement of the surface 9 and the polishing surface 8.

その際、サーモグラフィ40で、研磨中の研磨面8の温度分布を測定し、この測定データをコントローラ50に入力する。研磨面温度制御プログラム51は、この温度分布の測定データと、コントローラ50に格納されている研磨面8の温度制御を行なっていない状態での被研磨面9の研磨プロファイルのデータとに基づいて、被研磨面9の研磨レートを均一化するために必要な研磨面8の加熱・冷却量を算出し、各吹出ノズル32からの気体の最適な吹出流量と吹出温度、吹付位置を決定する。そしてこの決定結果に基づいて、コントローラ50は、流体吹出機構30に、各ニードルバルブ35の弁開度、各温度調節手段37の設定温度、各吹付位置調節手段による吹付位置の指令を出力し、各吹出ノズル32の吹出流量、吹出温度、吹付位置を個別に調節して研磨面8に気体を吹き付ける。これにより、研磨面8を所定の温度分布に制御することができ、研磨面8に接触する被研磨面9の研磨レートを均一化して、被研磨面9を平坦化することができる。   At that time, the thermography 40 measures the temperature distribution of the polishing surface 8 being polished, and inputs this measurement data to the controller 50. The polishing surface temperature control program 51 is based on the measurement data of the temperature distribution and the data of the polishing profile of the surface 9 to be polished in a state where the temperature control of the polishing surface 8 is not performed, which is stored in the controller 50. The amount of heating / cooling of the polishing surface 8 required to make the polishing rate of the surface 9 to be polished uniform is calculated, and the optimum blowing flow rate, blowing temperature, and blowing position of the gas from each blowing nozzle 32 are determined. Based on the determination result, the controller 50 outputs to the fluid blowing mechanism 30 the valve opening degree of each needle valve 35, the set temperature of each temperature adjusting means 37, and the command of the blowing position by each blowing position adjusting means, The blowing flow rate, blowing temperature, and blowing position of each blowing nozzle 32 are individually adjusted to blow gas onto the polishing surface 8. Thereby, the polishing surface 8 can be controlled to a predetermined temperature distribution, the polishing rate of the surface 9 to be polished that contacts the polishing surface 8 can be made uniform, and the surface 9 to be polished can be flattened.

ここで、各吹出ノズル32の吹出流量を調節する際に、いずれかのニードルバルブ35を完全に閉じてその吹出ノズル32からの吹き出しを停止させれば、気体を吹き出す吹出ノズル32の数を調節することができる。なお、上記で説明した気体の吹出流量、吹出温度、吹付位置の各要素は、その全部でなくても、いずれかを制御して研磨面8の温度分布を調節するように構成することもできる。   Here, when adjusting the blowing flow rate of each blowing nozzle 32, if one of the needle valves 35 is completely closed and the blowing from the blowing nozzle 32 is stopped, the number of blowing nozzles 32 that blow out the gas is adjusted. can do. In addition, each element of the gas blowing flow rate, the blowing temperature, and the blowing position described above may be configured not to be all of them but to control the temperature distribution of the polishing surface 8 by controlling any one of them. .

上記構成の研磨装置によれば、研磨面温度制御手段20を備えたことで、被研磨面9に接触する研磨面8を所望の温度分布にできるので、被研磨面9の研磨レートが研磨面8の温度に高く依存するCMPプロセスにおいても、被研磨面9の各部の研磨レートを自由に制御することができる。したがって、被研磨面9全体の面圧を下げることなく、被研磨面9の高い研磨レートを維持して生産性を良好に保ちながら、被研磨面9の平坦化を実現することができる。さらに、研磨面温度制御手段20は、研磨面8の各部に気体を吹き付ける複数の吹出ノズル32と、これら各吹出ノズル32の気体の吹出流量、吹出温度、吹付位置を個別に調節する機構を備えるので、研磨面8を目的とする微細な範囲に区分して、各区分の温度分布を個別に制御することが可能となる。したがって、被研磨面9の各部の研磨レートを精密に制御でき、被研磨面9を高い精度で平坦化できる。   According to the polishing apparatus having the above configuration, since the polishing surface temperature control means 20 is provided, the polishing surface 8 in contact with the surface 9 to be polished can have a desired temperature distribution, so that the polishing rate of the surface 9 to be polished is the polishing surface. Even in the CMP process highly dependent on the temperature of 8, the polishing rate of each part of the surface 9 to be polished can be freely controlled. Accordingly, it is possible to realize the planarization of the surface 9 to be polished while maintaining a high polishing rate of the surface 9 to be polished and maintaining good productivity without reducing the surface pressure of the entire surface 9 to be polished. Further, the polishing surface temperature control means 20 includes a plurality of blowing nozzles 32 for blowing gas to each part of the polishing surface 8, and a mechanism for individually adjusting the gas blowing flow rate, blowing temperature, and blowing position of each blowing nozzle 32. Therefore, it is possible to control the temperature distribution of each section by dividing the polishing surface 8 into a target fine range. Therefore, the polishing rate of each part of the surface 9 to be polished can be precisely controlled, and the surface 9 to be polished can be flattened with high accuracy.

また、上記の研磨工程を前半の研磨工程(第1研磨工程)と後半の研磨工程(第2研磨工程)とに分けて、これら前半と後半の研磨工程で、研磨面温度制御手段20の流体吹出機構30からの気体の吹出流量を変化させて基板Wの研磨を行うようにしても良い。この具体例としては、前半の研磨工程で、流体吹出機構30から所定流量の気体を吹き出して研磨面8の温度を制御しながら研磨を行う一方、後半の研磨工程で、前半の研磨工程よりも流体吹出機構30からの気体の吹出流量を少なくして研磨を行ったり、あるいは気体の吹き出しを完全に停止して(即ち、研磨面温度制御手段20による研磨面8の温度制御を行わずに)研磨を行う。これにより、後半の研磨工程での研磨面8における砥液の乾燥を抑えることができるので、砥粒の凝集が抑えられ、被研磨面9におけるスクラッチ(研磨傷)等のディフェクトの発生を防ぐことが可能となる。またこれと同様に、研磨面8における砥液の乾燥を抑えるため、前半の研磨工程では流体吹出機構30から加湿していない気体を吹き出して研磨を行う一方、後半の研磨工程で、加湿機構38や加湿機又は噴霧ノズル等で加湿した気体ないしは霧状の気液混合流体を吹き出して研磨を行っても良い。   Further, the above polishing process is divided into the first half polishing process (first polishing process) and the second half polishing process (second polishing process), and the fluid of the polishing surface temperature control means 20 is used in these first half and second half polishing processes. The substrate W may be polished by changing the gas flow rate from the blowing mechanism 30. As a specific example, in the first half of the polishing process, a predetermined flow rate of gas is blown out from the fluid blowing mechanism 30 to perform polishing while controlling the temperature of the polishing surface 8, while in the second half of the polishing process, compared to the first half of the polishing process. Polishing is performed by reducing the gas flow rate from the fluid blowing mechanism 30, or the gas blowing is completely stopped (that is, without controlling the temperature of the polishing surface 8 by the polishing surface temperature control means 20). Polish. As a result, the drying of the abrasive liquid on the polishing surface 8 in the latter polishing step can be suppressed, so that the aggregation of abrasive grains can be suppressed and the occurrence of defects such as scratches (polishing scratches) on the surface 9 to be polished can be prevented. Is possible. Similarly, in order to suppress the drying of the abrasive liquid on the polishing surface 8, polishing is performed by blowing a non-humidified gas from the fluid blowing mechanism 30 in the first half polishing step, while the humidifying mechanism 38 is used in the second polishing step. Alternatively, polishing may be performed by blowing a gas or a mist-like gas-liquid mixed fluid humidified by a humidifier or a spray nozzle.

本研磨装置における研磨工程では、たとえ基板Wの被研磨面9にスクラッチ等のディフェクトが生じても、被研磨面9の研磨対象膜の膜厚がスクラッチの深さよりも厚ければ、基板Wが不良品とはならない。したがって、上記のように研磨工程を前半と後半の研磨工程に分け、これらで流体吹出機構30の運転状態を変えることで、後半の研磨工程において砥粒の凝集を防ぎながら研磨を行えば、最終的には被研磨面9にスクラッチ等のディフェクトが無い基板Wを得ることが可能となる。このことから、前半の研磨工程から後半の研磨工程への切り替えのタイミングは、砥粒の凝集体の大きさを考慮して定められる。例えば、前半の研磨工程において研磨対象膜の厚さが約50nmになった時点で、後半の研磨工程に切り替えるようにする。この切り替えのタイミングの判定は、具体的には、研磨テーブル1やトップリング4に設けたトルク電流センサや渦電流センサあるいは光学式センサなどの膜厚検出器(図示せず)の出力値を基準にして行う。   In the polishing process in this polishing apparatus, even if a defect such as a scratch occurs on the surface 9 to be polished of the substrate W, if the film to be polished on the surface 9 to be polished is thicker than the depth of the scratch, the substrate W It will not be defective. Accordingly, as described above, the polishing process is divided into the first half and the second half, and by changing the operation state of the fluid blowing mechanism 30 with these, if polishing is performed while preventing aggregation of abrasive grains in the second half polishing process, the final process is performed. Specifically, it becomes possible to obtain a substrate W having no defects such as scratches on the surface 9 to be polished. Therefore, the timing for switching from the first half polishing step to the second half polishing step is determined in consideration of the size of the aggregate of abrasive grains. For example, when the thickness of the polishing target film reaches about 50 nm in the first half polishing step, the second half polishing step is switched. The determination of the switching timing is specifically based on the output value of a film thickness detector (not shown) such as a torque current sensor, eddy current sensor or optical sensor provided on the polishing table 1 or the top ring 4. To do.

また、後半の研磨工程への切り替えのタイミングは、前半と後半の研磨工程の時間配分によって決定しても良い。例えば、前半の研磨工程よりも後半の研磨工程を長くすることで、全体の研磨工程の半分以上の時間である後半の研磨工程において、残りの時間である前半の研磨工程よりも流体吹出機構30からの気体の吹出流量を少なくして研磨を行ったり、気体の吹き出しを停止して研磨を行うことができる。一方、全体の研磨時間の半分以上の時間において気体を吹き出し、研磨終点付近になったら気体の吹き出しを停止するようにして研磨工程を行ってもよい。なおここでは、研磨工程を前半と後半の二段階の研磨工程に分けた場合を説明したが、場合によっては研磨工程を三段階以上に分けても良いし、あるいは二段階に分けた場合でも、後半の研磨工程に代えて基板Wのエッチング工程を採用するなどしても良い。   Further, the timing of switching to the latter polishing process may be determined by the time distribution of the first and second polishing processes. For example, by making the polishing process in the latter half longer than the polishing process in the first half, the fluid blowing mechanism 30 in the polishing process in the latter half, which is more than half the time of the entire polishing process, than in the polishing process in the first half that is the remaining time. Polishing can be performed by reducing the flow rate of gas from the nozzle, or polishing can be performed by stopping the blowing of gas. On the other hand, the polishing step may be performed by blowing out the gas for a time that is half or more of the entire polishing time, and stopping the blowing of the gas when the vicinity of the polishing end point is reached. Here, the case where the polishing process is divided into the first half and the second half of the polishing process has been described, but depending on the case, the polishing process may be divided into three or more stages, or even when divided into two stages, An etching process of the substrate W may be employed instead of the latter polishing process.

さらに、上記のように後半の研磨工程で前半の研磨工程よりも気体の吹出流量を低減させて研磨を行ったり、気体の吹き出しを停止して研磨を行えば、後半の研磨工程では、研磨面8の冷却効果が低減することで、研磨面8の温度分布が前半の研磨工程の温度分布よりも高い温度の温度分布になる。これにより被研磨面9の研磨レートが低下するが、研磨終了の際に研磨レートが低下していれば、研磨工程の終了点をより正確に検出できるという効果が生じるので、研磨終点の検知の精度を向上させることにつながる。このように、後半の研磨工程で気体の吹出流量を低減させて研磨を行ったり、気体の吹き出しを停止して研磨を行うことで、研磨面8の温度分布を前半の研磨工程の温度分布よりも高い温度の温度分布にすれば、研磨対象の基板Wを理想の研磨終点値に到達させるための制御が容易かつ確実に行えるようになる効果が望める。   Further, as described above, in the latter polishing step, if the polishing is performed by reducing the gas blowing flow rate than in the first half polishing step, or if the polishing is stopped by stopping the gas blowing, By reducing the cooling effect of 8, the temperature distribution of the polishing surface 8 becomes a temperature distribution higher than the temperature distribution of the polishing process in the first half. As a result, the polishing rate of the surface to be polished 9 is reduced. However, if the polishing rate is reduced at the end of polishing, the end point of the polishing process can be detected more accurately. This leads to improved accuracy. In this way, polishing is performed by reducing the gas flow rate in the latter half of the polishing process, or polishing is performed by stopping the blowing of gas, so that the temperature distribution of the polishing surface 8 is made higher than the temperature distribution of the first half of the polishing process. However, if the temperature distribution is higher, it is possible to achieve an effect that the control for causing the substrate W to be polished to reach the ideal polishing end point value can be easily and reliably performed.

〔第2実施形態〕
本発明の第2実施形態を説明する。本実施形態においては、第1実施形態と共通する構成部分については同一の符号を付してその詳細な説明は省略する。また、以下で説明する以外の事項は第1実施形態と同じである。他の実施形態においても同様とする。図4は、本実施形態にかかる研磨装置が備える流体吹出機構30−2の構成を説明するための図で、同図(a)は研磨テーブル1をその上方から見た図で、同図(b)は側方から見た図である。なお、同図(b)では、流体吹出機構30−2はその一部のみを示している。また図5は、流体吹出機構30−2の全体構成を示す図である。本実施形態の研磨装置は、第1実施形態の研磨装置が備える流体吹出機構30にかえて、図4、5に示す他の構成の流体吹出機構30−2を備えたものである。
[Second Embodiment]
A second embodiment of the present invention will be described. In the present embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted. In addition, matters other than those described below are the same as those in the first embodiment. The same applies to other embodiments. FIG. 4 is a view for explaining the configuration of the fluid blowing mechanism 30-2 provided in the polishing apparatus according to the present embodiment. FIG. 4A is a view of the polishing table 1 viewed from above, and FIG. b) is a view from the side. In FIG. 5B, only a part of the fluid blowing mechanism 30-2 is shown. FIG. 5 is a diagram showing an overall configuration of the fluid blowing mechanism 30-2. The polishing apparatus according to this embodiment includes a fluid blowing mechanism 30-2 having another configuration shown in FIGS. 4 and 5 in place of the fluid blowing mechanism 30 provided in the polishing apparatus according to the first embodiment.

流体吹出機構30−2は、図5に示すように送風管41の一端にモータ42で駆動する送風機43が設置され、送風機43の吸込側に、研磨装置の外部に開口する吸気口44が設けられている。送風機43は、コントローラ50の指令によって運転・停止される。一方、送風管41の途中には、エアフィルタ45が設置され、送風管41の他端には吹出部46が設けられている。吹出部46は、図4に示すように、研磨テーブル1上のトップリング4の一方の側部位置(第1実施形態の流体吹出口31と同様の位置)に配置されている。吹出部46は、その内部が複数個(図では4個)の吹出口47に分割されていて、各吹出口47が、トップリング4の側面を囲むように放射状に配置されている。各吹出口47はいずれも研磨面8に向けて開口し、それぞれ研磨面8上の異なる位置に気体を吹き付けるように構成されている。また、吹出部46内で送風管41から各吹出口47に分岐する部分には、各吹出口47への流路の開度を個別に調節する絞り弁48が設置されている。各絞り弁48は、コントローラ50の指令で開閉するように構成されている。なお、本実施形態においても、図示は省略するが、研磨面8の乾燥を防ぐため、各吹出口47から吹き出す気体を加湿する加湿機構を設けたり、吹出部46の近傍に加湿機や噴霧ノズル等を設置してもよい。   As shown in FIG. 5, the fluid blowing mechanism 30-2 is provided with a blower 43 driven by a motor 42 at one end of a blower pipe 41, and an intake port 44 that opens to the outside of the polishing apparatus is provided on the suction side of the blower 43. It has been. The blower 43 is operated / stopped by a command from the controller 50. On the other hand, an air filter 45 is installed in the middle of the blower pipe 41, and a blow-out portion 46 is provided at the other end of the blower pipe 41. As shown in FIG. 4, the blowout portion 46 is disposed at one side position of the top ring 4 on the polishing table 1 (the same position as the fluid blowout port 31 of the first embodiment). The blowout portion 46 is divided into a plurality (four in the figure) of blowout ports 47, and the blowout ports 47 are arranged radially so as to surround the side surface of the top ring 4. Each outlet 47 is configured to open toward the polishing surface 8 and to blow gas to different positions on the polishing surface 8. Further, a throttle valve 48 that individually adjusts the opening degree of the flow path to each outlet 47 is installed at a portion of the outlet 46 that branches from the blower pipe 41 to each outlet 47. Each throttle valve 48 is configured to open and close in response to a command from the controller 50. Although not shown in the present embodiment, a humidifying mechanism for humidifying the gas blown out from each outlet 47 is provided in order to prevent the polishing surface 8 from drying, or a humidifier or a spray nozzle is provided in the vicinity of the outlet 46. Etc. may be installed.

この研磨装置では、被研磨面9の研磨を行うにあたって、送風機43を運転して、研磨面8に研磨装置の外部から吸入した空気を吹き付けることで、研磨面8の温度分布を制御するが、その際、第1実施形態の研磨装置と同様に、サーモグラフィ40による研磨面8の温度分布の測定結果から被研磨面9の研磨レートを均一化するために必要な研磨面8の加熱・冷却量を算出し、各吹出口47からの最適な気体の吹出流量を決定する。そしてこの決定結果に基づいて、コントローラ50から絞り弁48の開度の指令を出し、各吹出口47に通じる流路の開度を変え、各吹出口47からの気体の吹出流量を個別に調節する。これにより、研磨面8を所定の温度分布に制御する。なおこのときも、いずれかの絞り弁48を完全に閉じることで、気体が吹き出す吹出口47の数を調節することも可能である。   In this polishing apparatus, when polishing the surface 9 to be polished, the air blower 43 is operated to blow air sucked from the outside of the polishing apparatus onto the polishing surface 8 to control the temperature distribution of the polishing surface 8. At that time, similarly to the polishing apparatus of the first embodiment, the heating / cooling amount of the polishing surface 8 necessary for making the polishing rate of the surface 9 to be polished uniform from the measurement result of the temperature distribution of the polishing surface 8 by the thermography 40. Is calculated and the optimum gas flow rate from each air outlet 47 is determined. Based on the determination result, the controller 50 issues a command for the opening of the throttle valve 48, changes the opening of the flow path leading to each outlet 47, and individually adjusts the gas flow rate from each outlet 47. To do. Thereby, the polishing surface 8 is controlled to a predetermined temperature distribution. At this time, it is also possible to adjust the number of outlets 47 through which gas blows out by completely closing any of the throttle valves 48.

〔第3実施形態〕
図6は、本発明の第3実施形態にかかる研磨装置の構成を説明するための図で、同図(a)は研磨テーブル1をその上方から見た図で、同図(b)は側方から見た図である。本実施形態の研磨装置は、第1実施形態の研磨装置が備える流体吹出機構30にかえて、研磨面の温度分布を制御する手段として、研磨面8にその側面を接触させながら転動する冷却加熱ローラー60を設置したものである。冷却加熱ローラー60は、略円錐形状の接触部61を備え、研磨テーブル1の回転に伴う研磨面8の移動により、接触部61の側面61aが研磨面8に接触した状態で回転軸62を中心に転動するように構成されている。接触部61は、ステンレス、チタン、あるいは耐腐食処理を施したアルミ合金等の金属材料で構成されている。そして接触する研磨面8を所定の温度分布にできるように、接触部61の側面61aの各部分は、互いに熱吸収率の異なる複数種類の金属材料で構成されている。また図示は省略するが、冷却加熱ローラー60を研磨面8に対して上下動させることで、接触部61の側面61aを研磨面8に接触・離間させる上下動機構を備えている。上下動機構は、コントローラ50の指令で動作する。
[Third Embodiment]
FIG. 6 is a view for explaining the configuration of a polishing apparatus according to a third embodiment of the present invention. FIG. 6 (a) is a view of the polishing table 1 as viewed from above, and FIG. It is the figure seen from the direction. The polishing apparatus of the present embodiment replaces the fluid blowing mechanism 30 provided in the polishing apparatus of the first embodiment, and as a means for controlling the temperature distribution of the polishing surface, cooling that rolls while bringing the side surface into contact with the polishing surface 8. A heating roller 60 is installed. The cooling and heating roller 60 includes a substantially conical contact portion 61, and the rotation shaft 62 is centered in a state where the side surface 61 a of the contact portion 61 is in contact with the polishing surface 8 due to the movement of the polishing surface 8 as the polishing table 1 rotates. It is comprised so that it may roll. The contact portion 61 is made of a metal material such as stainless steel, titanium, or an aluminum alloy subjected to corrosion resistance treatment. And each part of the side surface 61a of the contact part 61 is comprised with the multiple types of metal material from which a heat absorption rate mutually differs so that the grinding | polishing surface 8 to contact can be made into predetermined temperature distribution. Although not shown in the figure, a vertical movement mechanism for moving the cooling and heating roller 60 up and down relative to the polishing surface 8 to bring the side surface 61a of the contact portion 61 into contact with and away from the polishing surface 8 is provided. The vertical movement mechanism operates according to a command from the controller 50.

この研磨装置では、被研磨面9の研磨を行うにあたって、冷却加熱ローラー60を研磨面8に接触させて転動させながら研磨を行うことで、接触部61の側面61aの各部と研磨面8の各部との間で熱交換を行わせ、研磨面8の温度分布を制御する。その際、第1実施形態の研磨装置と同様に、サーモグラフィ40による研磨面8の温度分布の測定結果から、被研磨面9の研磨レートを均一化するために必要な研磨面8の加熱・冷却量を決定する。そしてこの決定結果に基づいて、冷却加熱ローラー60を上下動させて、接触部61の研磨面8への接触時間を調節する。これにより、研磨面8を所定の温度分布にする。   In this polishing apparatus, when polishing the surface 9 to be polished, polishing is performed while the cooling heating roller 60 is brought into contact with the polishing surface 8 and rolling, so that each part of the side surface 61a of the contact portion 61 and the polishing surface 8 are polished. Heat exchange is performed with each part, and the temperature distribution of the polishing surface 8 is controlled. At that time, similarly to the polishing apparatus of the first embodiment, from the measurement result of the temperature distribution of the polishing surface 8 by the thermography 40, the heating and cooling of the polishing surface 8 necessary for making the polishing rate of the surface 9 to be polished uniform. Determine the amount. Based on this determination result, the cooling and heating roller 60 is moved up and down to adjust the contact time of the contact portion 61 with the polishing surface 8. As a result, the polishing surface 8 has a predetermined temperature distribution.

以上本発明の実施形態を説明したが、本発明は上記実施形態に限定されるものではなく、特許請求の範囲、及び明細書と図面に記載された技術的思想の範囲内において種々の変形が可能である。なお直接明細書及び図面に記載のない何れの形状・構造・材質であっても、本願発明の作用・効果を奏する以上、本願発明の技術的思想の範囲内である。例えば、流体吹出機構30から吹き出す流体は、気体に限らず、液体や、霧状の気液混合流体等とすることも可能である。また、気体の場合でも、その種類は上記の圧縮エアやチッソガスには限定されず、目的に応じて他の種類のガスなども使用できる。また、流体吹出機構30の吹出ノズル32や吹出口47の数や形状などは、上記実施形態に示すものに限定されず、研磨面8を所定の温度分布にできるように構成するため他の数や形状などにすることもできる。また、研磨装置の具体的な構成は、上記各実施形態に示すものに限られない。   Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the technical idea described in the claims and the specification and drawings. Is possible. It should be noted that any shape, structure, and material not directly described in the specification and drawings are within the scope of the technical idea of the present invention as long as the effects and advantages of the present invention are exhibited. For example, the fluid blown out from the fluid blowing mechanism 30 is not limited to gas, but may be liquid, mist-like gas-liquid mixed fluid, or the like. Further, even in the case of gas, the type is not limited to the above compressed air or nitrogen gas, and other types of gas can be used depending on the purpose. Further, the number and shape of the blowout nozzles 32 and blowout ports 47 of the fluid blowout mechanism 30 are not limited to those shown in the above embodiment, and other numbers are used to configure the polishing surface 8 to have a predetermined temperature distribution. It can also be a shape. Further, the specific configuration of the polishing apparatus is not limited to those shown in the above embodiments.

次に、図7を用いて本発明の実施例を説明する。同図(b)は、研磨テーブル1上の研磨面8の加熱・冷却を行わずに(研磨面8の温度分布を制御せずに)基板Wの研磨を行った場合と、本発明にかかる研磨装置で、同図(a)に示す研磨面8上の所定領域(符号Aを付した領域)を冷却しながら研磨を行った場合との、基板Wの被研磨面9の研磨プロファイルの比較を示すグラフである。この場合の研磨面8の冷却は、上記実施形態の研磨装置で、研磨面8上のA部分に気体を吹き付ける吹出ノズル32からのみ気体を吹き出すように設定して行った。グラフは、横軸が被研磨面9上の測定位置(被研磨面9の中心からの距離で示す)で、縦軸が研磨レートである。この研磨プロファイルからわかるように、研磨面8の温度分布を制御せずに研磨を行うと、被研磨面9にかかる面圧の分布の影響で、被研磨面9の外周に近くなるほど研磨レートが低下する傾向がみられるが、被研磨面9の外周近傍と接触する部分の研磨面8を冷却することで研磨面8の温度分布を制御して研磨を行うと、被研磨面9の外周近傍の研磨レートを上昇させることができる。これにより、被研磨面9全体で均一な研磨レートを得ることが可能となり、被研磨面9を平坦化することが可能となった。   Next, an embodiment of the present invention will be described with reference to FIG. FIG. 6B shows the case where the substrate W is polished without heating / cooling the polishing surface 8 on the polishing table 1 (without controlling the temperature distribution of the polishing surface 8) and according to the present invention. Comparison of the polishing profile of the surface to be polished 9 of the substrate W with the case where the polishing is performed while cooling a predetermined region (region denoted by symbol A) on the polishing surface 8 shown in FIG. It is a graph which shows. In this case, the cooling of the polishing surface 8 was performed by the polishing apparatus according to the above-described embodiment, in which the gas was blown out only from the blowing nozzle 32 that blows the gas onto the portion A on the polishing surface 8. In the graph, the horizontal axis represents the measurement position on the surface 9 to be polished (indicated by the distance from the center of the surface 9 to be polished), and the vertical axis represents the polishing rate. As can be seen from this polishing profile, when polishing is performed without controlling the temperature distribution of the polishing surface 8, the polishing rate becomes closer to the outer periphery of the surface 9 to be polished due to the influence of the surface pressure distribution on the surface 9 to be polished. Although there is a tendency to decrease, when the polishing is performed by controlling the temperature distribution of the polishing surface 8 by cooling the portion of the polishing surface 8 in contact with the vicinity of the periphery of the surface 9 to be polished, the vicinity of the periphery of the surface 9 to be polished The polishing rate can be increased. As a result, a uniform polishing rate can be obtained over the entire surface 9 to be polished, and the surface 9 to be polished can be flattened.

本発明の第1実施形態にかかる研磨装置の構成例を示す概略側面図である。It is a schematic side view which shows the structural example of the grinding | polishing apparatus concerning 1st Embodiment of this invention. 流体吹出機構30の詳細構成を説明するための図で、同図(a)は研磨テーブル1をその上方から見た図であり、同図(b)はその側方から見た図である。FIG. 4A is a view for explaining a detailed configuration of the fluid blowing mechanism 30. FIG. 1A is a view of the polishing table 1 as viewed from above, and FIG. 2B is a view of the polishing table 1 as viewed from the side. 流体吹出機構30の全体構成を示す図である。FIG. 2 is a diagram showing an overall configuration of a fluid blowing mechanism 30. 図4は、本発明の第2実施形態にかかる研磨装置が備える流体吹出機構30−2の構成を示す図で、同図(a)は研磨テーブル1をその上方から見た図であり、同図(b)はその側方から見た図である。FIG. 4 is a view showing a configuration of a fluid blowing mechanism 30-2 included in a polishing apparatus according to a second embodiment of the present invention. FIG. 4A is a view of the polishing table 1 as viewed from above. Figure (b) is a view from the side. 図5は、流体吹出機構30−2の全体構成を示す図である。FIG. 5 is a diagram illustrating an overall configuration of the fluid blowing mechanism 30-2. 図6は、本発明の第3実施形態にかかる研磨装置の構成を説明するための図で、同図(a)は研磨テーブル1をその上方から見た図であり、同図(b)はその側方から見た図である。FIG. 6 is a view for explaining the configuration of a polishing apparatus according to a third embodiment of the present invention. FIG. 6 (a) is a view of the polishing table 1 as viewed from above, and FIG. It is the figure seen from the side. 本発明の実施例を説明するための図で、同図(a)は研磨テーブル1をその上方から見た図であり、同図(b)は、基板Wの被研磨面の研磨プロファイルを示すグラフである。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram for explaining an embodiment of the present invention, in which FIG. 1A is a view of a polishing table 1 viewed from above, and FIG. 1B shows a polishing profile of a surface to be polished of a substrate W; It is a graph.

符号の説明Explanation of symbols

1 研磨テーブル
2 研磨クロス(研磨パッド)
3 回転軸
4 トップリング
5 トップリング回転軸
6 トップリング揺動アーム
7 揺動軸
8 研磨面
9 被研磨面
10 砥液供給ノズル
20 研磨面温度制御手段
30 流体吹出機構
30−2 流体吹出機構
32 吹出ノズル(流体吹出口)
33 配管
34 気体源
35 ニードルバルブ(流量調節手段)
36 流量計
37 温度調節手段
38 加湿機構
40 サーモグラフィ(研磨面温度分布測定手段)
41 送風管
42 モータ
43 送風機
44 吸気口
45 エアフィルタ
46 吹出部
47 吹出口(流体吹出口)
48 絞り弁(流量調節手段)
50 コントローラ
51 研磨面温度制御プログラム
60 冷却加熱ローラー
61 接触部
61a 側面
62 回転軸
1 Polishing table 2 Polishing cloth (polishing pad)
DESCRIPTION OF SYMBOLS 3 Rotating shaft 4 Top ring 5 Top ring rotating shaft 6 Top ring oscillating arm 7 Oscillating shaft 8 Polishing surface 9 Surface to be polished 10 Polishing liquid supply nozzle 20 Polishing surface temperature control means 30 Fluid blowing mechanism 30-2 Fluid blowing mechanism 32 Blowing nozzle (fluid outlet)
33 Piping 34 Gas source 35 Needle valve (flow rate adjusting means)
36 Flow meter 37 Temperature adjusting means 38 Humidification mechanism 40 Thermography (polishing surface temperature distribution measuring means)
41 Blower pipe 42 Motor 43 Blower 44 Air inlet 45 Air filter 46 Blowing section 47 Air outlet (fluid air outlet)
48 Throttle valve (flow rate adjusting means)
50 Controller 51 Polishing surface temperature control program 60 Cooling and heating roller 61 Contact portion 61a Side surface 62 Rotating shaft

Claims (13)

基板を保持する基板保持機構と、研磨面を有する研磨テーブルとを備え、基板保持機構で保持する基板の被研磨面を研磨テーブルの研磨面に接触させ、被研磨面と研磨面の相対運動により被研磨面を研磨する研磨装置において、
前記研磨テーブルの研磨面の温度分布を制御する研磨面温度制御手段を設け、前記研磨面温度制御手段で研磨面の温度分布を所定の温度分布に制御し、前記基板の被研磨面の各部の研磨レートを制御することを特徴とする研磨装置。
A substrate holding mechanism for holding the substrate and a polishing table having a polishing surface are provided. The polishing surface of the substrate held by the substrate holding mechanism is brought into contact with the polishing surface of the polishing table, and the relative movement between the polishing surface and the polishing surface is performed. In a polishing apparatus for polishing a surface to be polished,
A polishing surface temperature control means for controlling the temperature distribution of the polishing surface of the polishing table is provided, the temperature distribution of the polishing surface is controlled to a predetermined temperature distribution by the polishing surface temperature control means, and each part of the surface to be polished of the substrate is controlled. A polishing apparatus for controlling a polishing rate.
請求項1に記載の研磨装置において、
前記研磨面温度制御手段は、前記研磨テーブルの研磨面に向けて流体を吹き出すことで該研磨面を所定の温度分布にする流体吹出機構を具備することを特徴とする研磨装置。
The polishing apparatus according to claim 1, wherein
The polishing apparatus according to claim 1, wherein the polishing surface temperature control means includes a fluid blowing mechanism that blows fluid toward the polishing surface of the polishing table to make the polishing surface have a predetermined temperature distribution.
請求項2に記載の研磨装置において、
前記流体吹出機構は、複数の流体吹出口を具備することを特徴とする研磨装置。
The polishing apparatus according to claim 2, wherein
The polishing apparatus according to claim 1, wherein the fluid blowing mechanism includes a plurality of fluid blowing ports.
請求項3に記載の研磨装置において、
前記複数の流体吹出口から吹き出す流体の流量を個別に調節する流量調節手段、及び/又は前記複数の流体吹出口から吹き出す流体の温度を個別に調節する温度調節手段を具備することを特徴とする研磨装置。
The polishing apparatus according to claim 3, wherein
It is characterized by comprising flow rate adjusting means for individually adjusting the flow rate of the fluid blown from the plurality of fluid outlets and / or temperature adjusting means for individually adjusting the temperature of the fluid blown from the plurality of fluid outlets. Polishing equipment.
請求項3又は4に記載の研磨装置において、
前記複数の流体吹出口のうち流体を吹き出す流体吹出口の数を調節する吹出口数調節手段、及び/又は前記各流体吹出口の研磨面への流体の吹き付け位置を調節する吹付位置調節手段を具備することを特徴とする研磨装置。
The polishing apparatus according to claim 3 or 4,
An outlet number adjusting means for adjusting the number of fluid outlets for blowing out the fluid among the plurality of fluid outlets, and / or a blowing position adjusting means for adjusting the spray position of the fluid to the polishing surface of each fluid outlet. A polishing apparatus comprising the polishing apparatus.
請求項4又は5に記載の研磨装置において、
前記研磨テーブルの研磨面の温度分布を測定する研磨面温度分布測定手段を備え、
前記研磨面温度制御手段は、前記研磨面温度分布測定手段の測定結果に基づいて、前記流量調節手段、温度調節手段、吹出口数調節手段、吹付位置調節手段の少なくともいずれかを用いて流体の吹き出しを制御することで、前記研磨面を所定の温度分布に制御することを特徴とする研磨装置。
The polishing apparatus according to claim 4 or 5,
A polishing surface temperature distribution measuring means for measuring the temperature distribution of the polishing surface of the polishing table;
The polishing surface temperature control means uses at least one of the flow rate adjustment means, temperature adjustment means, outlet number adjustment means, and spray position adjustment means based on the measurement result of the polishing surface temperature distribution measurement means. A polishing apparatus, wherein the polishing surface is controlled to have a predetermined temperature distribution by controlling blowing.
基板の被研磨面を研磨面に接触させ、被研磨面と研磨面の相対運動により被研磨面を研磨する研磨工程を有し、
前記研磨工程を行う際に、前記研磨面の温度分布を所定の温度分布に制御して、前記基板の被研磨面の各部の研磨レートを制御することを特徴とする研磨方法。
A polishing step of bringing the polishing surface of the substrate into contact with the polishing surface and polishing the polishing surface by relative movement of the polishing surface and the polishing surface;
A polishing method characterized in that when performing the polishing step, the polishing rate of each part of the surface to be polished of the substrate is controlled by controlling the temperature distribution of the polishing surface to a predetermined temperature distribution.
基板の被研磨面を研磨面に接触させ、被研磨面と研磨面の相対運動により被研磨面を研
磨する研磨工程を有し、
前記研磨工程は、前記研磨面の温度分布を制御する研磨面温度制御手段で、該研磨面の温度分布を所定の温度分布に制御して研磨を行う第1の研磨工程と、
前記研磨面温度制御手段による研磨面の温度分布の制御を行わずに研磨を行う第2の研磨工程と、
からなることを特徴とする研磨方法。
A polishing step of bringing the polishing surface of the substrate into contact with the polishing surface and polishing the polishing surface by relative movement of the polishing surface and the polishing surface;
The polishing step is a first polishing step in which polishing is performed by controlling the temperature distribution of the polishing surface to a predetermined temperature distribution by a polishing surface temperature control means for controlling the temperature distribution of the polishing surface;
A second polishing step of polishing without controlling the temperature distribution of the polishing surface by the polishing surface temperature control means;
A polishing method comprising:
請求項8に記載の研磨方法において、
前記第1の研磨工程は、前記研磨面温度制御手段が備える流体吹出機構で前記研磨面に向けて流体を吹き出して該研磨面の温度分布を制御して研磨を行う工程であり、
前記第2の研磨工程は、前記流体吹出機構による流体の吹き出しを停止して研磨を行う工程であることを特徴とする研磨方法。
The polishing method according to claim 8, wherein
The first polishing step is a step of performing polishing by blowing a fluid toward the polishing surface with a fluid blowing mechanism provided in the polishing surface temperature control means to control the temperature distribution of the polishing surface,
The polishing method, wherein the second polishing step is a step of performing polishing by stopping the blowing of fluid by the fluid blowing mechanism.
基板の被研磨面を研磨面に接触させ、被研磨面と研磨面の相対運動により被研磨面を研
磨する研磨工程を有し、
前記研磨工程は、前記研磨面の温度を制御する研磨面温度制御手段で、該研磨面の温度を所定の温度分布に制御して研磨を行う第1の研磨工程と、
前記研磨面温度制御手段で、前記研磨面の温度分布を前記第1の研磨工程における温度分布よりも高い温度の温度分布に制御して研磨を行う第2の研磨工程と、
からなることを特徴とする研磨方法。
A polishing step of bringing the polishing surface of the substrate into contact with the polishing surface and polishing the polishing surface by relative movement of the polishing surface and the polishing surface;
The polishing step is a first polishing step of performing polishing by controlling the temperature of the polishing surface to a predetermined temperature distribution by a polishing surface temperature control means for controlling the temperature of the polishing surface;
A second polishing step of performing polishing by controlling the temperature distribution of the polishing surface to a temperature distribution higher than the temperature distribution in the first polishing step by the polishing surface temperature control means;
A polishing method comprising:
請求項10に記載の研磨方法において、
前記第1の研磨工程は、前記研磨面温度制御手段が備える流体吹出機構で、前記研磨面に向けて所定流量の流体を吹き出して研磨を行う工程であり、
前記第2の研磨工程は、前記流体吹出機構で、前記第1の工程における流体の吹出流量よりも少ない流量の流体を吹き出して研磨を行う工程であることを特徴とする研磨方法。
The polishing method according to claim 10, wherein
The first polishing step is a step of performing polishing by blowing a fluid at a predetermined flow rate toward the polishing surface with a fluid blowing mechanism provided in the polishing surface temperature control means,
The polishing method is characterized in that the second polishing step is a step of performing polishing by blowing out a fluid having a flow rate smaller than the flow rate of the fluid in the first step by the fluid blowing mechanism.
基板の被研磨面を研磨面に接触させ、被研磨面と研磨面の相対運動により被研磨面を研
磨する研磨工程を有し、
前記研磨工程は、前記研磨面に向けて流体を吹き出す流体吹出機構で該研磨面に向けて加湿していない気体を吹き出すことで該研磨面の温度分布を所定の温度分布に制御して研磨を行う第1の研磨工程と、
前記流体噴出機構で前記研磨面に向けて加湿した気体を吹き出すことで該研磨面の温度分布を所定の温度分布に制御して研磨を行う第2の研磨工程と、
からなることを特徴とする研磨方法。
A polishing step of bringing the polishing surface of the substrate into contact with the polishing surface and polishing the polishing surface by relative movement of the polishing surface and the polishing surface;
The polishing step is performed by controlling the temperature distribution of the polishing surface to a predetermined temperature distribution by blowing a non-humidified gas toward the polishing surface by a fluid blowing mechanism that blows fluid toward the polishing surface. A first polishing step to be performed;
A second polishing step of performing polishing by controlling the temperature distribution of the polishing surface to a predetermined temperature distribution by blowing a gas humidified toward the polishing surface by the fluid ejection mechanism;
A polishing method comprising:
請求項8乃至12のいずれか1項に記載の研磨方法において、
前記第1の研磨工程の時間が、研磨工程全体の半分以上の時間を占めることを特徴とする研磨方法。
The polishing method according to any one of claims 8 to 12,
A polishing method characterized in that the time of the first polishing step occupies more than half of the entire polishing step.
JP2006124214A 2005-12-09 2006-04-27 Polishing apparatus and polishing method Active JP4787063B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2006124214A JP4787063B2 (en) 2005-12-09 2006-04-27 Polishing apparatus and polishing method
US11/634,135 US20070135020A1 (en) 2005-12-09 2006-12-06 Polishing apparatus and polishing method
KR1020060124242A KR101267922B1 (en) 2005-12-09 2006-12-08 polishing apparatus and polishing method
US11/979,023 US20080076335A1 (en) 2005-12-09 2007-10-30 Polishing apparatus and polishing method
US12/712,455 US20100151771A1 (en) 2005-12-09 2010-02-25 Polishing apparatus and polishing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005356808 2005-12-09
JP2005356808 2005-12-09
JP2006124214A JP4787063B2 (en) 2005-12-09 2006-04-27 Polishing apparatus and polishing method

Publications (2)

Publication Number Publication Date
JP2007181910A true JP2007181910A (en) 2007-07-19
JP4787063B2 JP4787063B2 (en) 2011-10-05

Family

ID=38140017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006124214A Active JP4787063B2 (en) 2005-12-09 2006-04-27 Polishing apparatus and polishing method

Country Status (3)

Country Link
US (3) US20070135020A1 (en)
JP (1) JP4787063B2 (en)
KR (1) KR101267922B1 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090038502A (en) * 2007-10-16 2009-04-21 주식회사 실트론 Wafer Polishing Method
KR20110076784A (en) * 2009-12-28 2011-07-06 가부시키가이샤 에바라 세이사꾸쇼 A device for controlling the temperature of the polishing surface of the polishing pad used in the substrate polishing apparatus, the substrate polishing method, and the polishing apparatus.
EP2478999A2 (en) 2011-01-20 2012-07-25 Ebara Corporation Polishing method and polishing apparatus
JP2012139739A (en) * 2010-12-28 2012-07-26 Ebara Corp Polishing device, and polishing method
JP2012232366A (en) * 2011-04-28 2012-11-29 Ebara Corp Polishing method
JP2013022664A (en) * 2011-07-19 2013-02-04 Ebara Corp Polishing apparatus and polishing method
JP2013099828A (en) * 2011-11-09 2013-05-23 Ebara Corp Method and apparatus for polishing
JP2013233611A (en) * 2012-05-08 2013-11-21 Disco Corp Cutting device
CN103659575A (en) * 2012-09-24 2014-03-26 株式会社荏原制作所 Grinding method and grinding device
KR20150024781A (en) * 2013-08-27 2015-03-09 가부시키가이샤 에바라 세이사꾸쇼 Polishing method and polishing apparatus
US9579768B2 (en) 2011-07-19 2017-02-28 Ebara Corporation Method and apparatus for polishing a substrate
JP2018160627A (en) * 2017-03-23 2018-10-11 株式会社ディスコ Wafer polishing method and polishing apparatus
WO2020241408A1 (en) * 2019-05-31 2020-12-03 株式会社荏原製作所 Temperature adjustment device and polishing device
JP2022529635A (en) * 2019-04-18 2022-06-23 アプライド マテリアルズ インコーポレイテッド Insituedge asymmetry correction in CMP based on temperature
WO2022232290A1 (en) * 2021-04-30 2022-11-03 Applied Materials, Inc. Monitor chemical mechanical polishing process using machine learning based processing of heat images
WO2022239376A1 (en) * 2021-05-10 2022-11-17 株式会社Sumco Method for creating correlational expression for polishing condition determination
JP2024509159A (en) * 2021-03-03 2024-02-29 アプライド マテリアルズ インコーポレイテッド Temperature-controlled removal rate in CMP
US11986920B2 (en) 2020-03-24 2024-05-21 Kioxia Corporation Polishing method, polishing agent and cleaning agent for polishing

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007063232B4 (en) * 2007-12-31 2023-06-22 Advanced Micro Devices, Inc. Process for polishing a substrate
CN102172859B (en) * 2011-02-23 2012-10-31 南京航空航天大学 Processing method of ultra-thin flat glass based on consolidated abrasive
JP5628067B2 (en) * 2011-02-25 2014-11-19 株式会社荏原製作所 Polishing apparatus provided with temperature adjustment mechanism of polishing pad
EP2688712B1 (en) * 2011-03-21 2017-01-04 Lawrence Livermore National Security, LLC Method and system for convergent polishing
DE102012201465B4 (en) 2012-02-01 2018-01-18 Wafios Ag Method for grinding spring ends and spring end grinding machine
JP2016507896A (en) 2013-01-11 2016-03-10 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Chemical mechanical polishing apparatus and method
US10150251B2 (en) 2013-02-22 2018-12-11 Aeroflex Usa Connecting systems for adjacent ends of insulation tubing
US9997420B2 (en) * 2013-12-27 2018-06-12 Taiwan Semiconductor Manufacturing Company Limited Method and/or system for chemical mechanical planarization (CMP)
JP6139420B2 (en) * 2014-01-10 2017-05-31 株式会社東芝 Polishing apparatus and polishing method
WO2015156923A1 (en) * 2014-04-10 2015-10-15 Apple Inc. Thermographic characterization for surface finishing process development
US9855637B2 (en) 2014-04-10 2018-01-02 Apple Inc. Thermographic characterization for surface finishing process development
KR101597457B1 (en) * 2014-09-26 2016-02-24 현대제철 주식회사 Cleaning apparatus of polishing pad
KR101722555B1 (en) * 2016-03-08 2017-04-03 주식회사 케이씨텍 Chemical mechanical polishing apparatus and method
JP6923342B2 (en) * 2017-04-11 2021-08-18 株式会社荏原製作所 Polishing equipment and polishing method
DE102018106264A1 (en) * 2017-08-15 2019-02-21 Taiwan Semiconductor Manufacturing Co. Ltd. NEW DEVICE FOR CHEMICAL-MECHANICAL POLISHING
US11103970B2 (en) * 2017-08-15 2021-08-31 Taiwan Semiconductor Manufacturing Co, , Ltd. Chemical-mechanical planarization system
TW202408726A (en) * 2017-11-14 2024-03-01 美商應用材料股份有限公司 Method and system for temperature control of chemical mechanical polishing
CN111712903B (en) * 2018-03-07 2024-08-06 应用材料公司 Grinding fluid additive concentration measurement device and related method
KR102736879B1 (en) 2018-06-27 2024-12-03 어플라이드 머티어리얼스, 인코포레이티드 Temperature control of chemical mechanical polishing
TWI838459B (en) 2019-02-20 2024-04-11 美商應用材料股份有限公司 Chemical mechanical polishing apparatus and method of chemical mechanical polishing
TWI754915B (en) * 2019-04-18 2022-02-11 美商應用材料股份有限公司 Chemical mechanical polishing temperature scanning apparatus for temperature control
US11897079B2 (en) 2019-08-13 2024-02-13 Applied Materials, Inc. Low-temperature metal CMP for minimizing dishing and corrosion, and improving pad asperity
US20210046603A1 (en) * 2019-08-13 2021-02-18 Applied Materials, Inc. Slurry temperature control by mixing at dispensing
TWI872101B (en) 2019-08-13 2025-02-11 美商應用材料股份有限公司 Apparatus and method for cmp temperature control
JP7397617B2 (en) * 2019-10-16 2023-12-13 株式会社荏原製作所 polishing equipment
CN115461193A (en) * 2020-06-30 2022-12-09 应用材料公司 Apparatus and method for CMP temperature control
KR20220073192A (en) * 2020-11-26 2022-06-03 에스케이실트론 주식회사 Apparatus of cleaning a polishing pad and polishing device
KR20220148106A (en) * 2021-04-28 2022-11-04 에바라코포레이숀 Polishing apparatus and polishing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0992632A (en) * 1995-09-22 1997-04-04 Nippon Steel Corp Chemical mechanical polishing method
JPH10156708A (en) * 1996-11-29 1998-06-16 Matsushita Electric Ind Co Ltd Polishing method and polishing apparatus
JP2004249452A (en) * 2002-12-27 2004-09-09 Ebara Corp Base board holding mechanism, base board polishing device and base board polishing method

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5104828A (en) * 1990-03-01 1992-04-14 Intel Corporation Method of planarizing a dielectric formed over a semiconductor substrate
US5700180A (en) * 1993-08-25 1997-12-23 Micron Technology, Inc. System for real-time control of semiconductor wafer polishing
US5605487A (en) * 1994-05-13 1997-02-25 Memc Electric Materials, Inc. Semiconductor wafer polishing appartus and method
US6012697A (en) * 1996-04-12 2000-01-11 Nikon Corporation Stage and supporting mechanism for supporting movable mirror on stage
JP3693483B2 (en) * 1998-01-30 2005-09-07 株式会社荏原製作所 Polishing equipment
US20010055940A1 (en) * 2000-06-15 2001-12-27 Leland Swanson Control of CMP removal rate uniformity by selective control of slurry temperature
JP2002187060A (en) * 2000-10-11 2002-07-02 Ebara Corp Substrate holding device, polishing device and grinding method
US7086933B2 (en) * 2002-04-22 2006-08-08 Applied Materials, Inc. Flexible polishing fluid delivery system
US20030119427A1 (en) * 2001-12-20 2003-06-26 Misra Sudhanshu Rid Temprature compensated chemical mechanical polishing apparatus and method
US6896586B2 (en) * 2002-03-29 2005-05-24 Lam Research Corporation Method and apparatus for heating polishing pad
JP2004193289A (en) * 2002-12-10 2004-07-08 Ebara Corp Polishing method
CN1914004B (en) * 2004-01-26 2010-06-02 Tbw工业有限公司 Multi-step pad conditioning method for chemical planarization
ATE411139T1 (en) * 2004-07-22 2008-10-15 Fisba Optik Ag METHOD FOR GRINDING AND/OR POLISHING SURFACES
US7297047B2 (en) * 2005-12-01 2007-11-20 Applied Materials, Inc. Bubble suppressing flow controller with ultrasonic flow meter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0992632A (en) * 1995-09-22 1997-04-04 Nippon Steel Corp Chemical mechanical polishing method
JPH10156708A (en) * 1996-11-29 1998-06-16 Matsushita Electric Ind Co Ltd Polishing method and polishing apparatus
JP2004249452A (en) * 2002-12-27 2004-09-09 Ebara Corp Base board holding mechanism, base board polishing device and base board polishing method

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090038502A (en) * 2007-10-16 2009-04-21 주식회사 실트론 Wafer Polishing Method
US8845391B2 (en) 2009-12-28 2014-09-30 Ebara Corporation Substrate polishing apparatus, substrate polishing method, and apparatus for regulating temperature of polishing surface of polishing pad used in polishing apparatus
KR20110076784A (en) * 2009-12-28 2011-07-06 가부시키가이샤 에바라 세이사꾸쇼 A device for controlling the temperature of the polishing surface of the polishing pad used in the substrate polishing apparatus, the substrate polishing method, and the polishing apparatus.
JP2011136406A (en) * 2009-12-28 2011-07-14 Ebara Corp Substrate polishing apparatus, substrate polishing method, and apparatus for regulating temperature of surface of polishing pad for substrate polishing apparatus
CN102179757A (en) * 2009-12-28 2011-09-14 株式会社荏原制作所 Substrate polishing apparatus, substrate polishing method, and apparatus for regulating temperature of polishing surface of polishing pad used in polishing apparatus
KR101678081B1 (en) * 2009-12-28 2016-12-06 가부시키가이샤 에바라 세이사꾸쇼 Substrate polishing apparatus, substrate polishing method, and apparatus for regulating temperature of polishing surface of polishing pad used in polishing apparatus
JP2012139739A (en) * 2010-12-28 2012-07-26 Ebara Corp Polishing device, and polishing method
EP2478999A2 (en) 2011-01-20 2012-07-25 Ebara Corporation Polishing method and polishing apparatus
CN102601719A (en) * 2011-01-20 2012-07-25 株式会社荏原制作所 Polishing method and polishing apparatus
JP2012148376A (en) * 2011-01-20 2012-08-09 Ebara Corp Polishing method and polishing apparatus
JP2012232366A (en) * 2011-04-28 2012-11-29 Ebara Corp Polishing method
US9067296B2 (en) 2011-04-28 2015-06-30 Ebara Corporation Polishing method
US10259098B2 (en) 2011-07-19 2019-04-16 Ebara Corporation Method and apparatus for polishing a substrate
US9969046B2 (en) 2011-07-19 2018-05-15 Ebara Corporation Method and apparatus for polishing a substrate
JP2013022664A (en) * 2011-07-19 2013-02-04 Ebara Corp Polishing apparatus and polishing method
US9579768B2 (en) 2011-07-19 2017-02-28 Ebara Corporation Method and apparatus for polishing a substrate
JP2013099828A (en) * 2011-11-09 2013-05-23 Ebara Corp Method and apparatus for polishing
JP2013233611A (en) * 2012-05-08 2013-11-21 Disco Corp Cutting device
CN103659575A (en) * 2012-09-24 2014-03-26 株式会社荏原制作所 Grinding method and grinding device
TWI607831B (en) * 2013-08-27 2017-12-11 荏原製作所股份有限公司 Polishing method and polishing apparatus
KR102232431B1 (en) 2013-08-27 2021-03-29 가부시키가이샤 에바라 세이사꾸쇼 Polishing method
JP2015044245A (en) * 2013-08-27 2015-03-12 株式会社荏原製作所 Polishing method and polishing device
US10035238B2 (en) 2013-08-27 2018-07-31 Ebara Corporation Polishing method and polishing apparatus
US9782870B2 (en) 2013-08-27 2017-10-10 Ebara Corporation Polishing method and polishing apparatus
US10195712B2 (en) 2013-08-27 2019-02-05 Ebara Corporation Polishing method and polishing apparatus
KR20150024781A (en) * 2013-08-27 2015-03-09 가부시키가이샤 에바라 세이사꾸쇼 Polishing method and polishing apparatus
CN110076683A (en) * 2013-08-27 2019-08-02 株式会社荏原制作所 Grinding device
US10710208B2 (en) 2013-08-27 2020-07-14 Ebara Corporation Polishing method and polishing apparatus
JP2018160627A (en) * 2017-03-23 2018-10-11 株式会社ディスコ Wafer polishing method and polishing apparatus
US11865671B2 (en) 2019-04-18 2024-01-09 Applied Materials, Inc. Temperature-based in-situ edge assymetry correction during CMP
JP2022529635A (en) * 2019-04-18 2022-06-23 アプライド マテリアルズ インコーポレイテッド Insituedge asymmetry correction in CMP based on temperature
JP7660520B2 (en) 2019-04-18 2025-04-11 アプライド マテリアルズ インコーポレイテッド In situ edge asymmetry correction during CMP based on temperature - Patents.com
WO2020241408A1 (en) * 2019-05-31 2020-12-03 株式会社荏原製作所 Temperature adjustment device and polishing device
US12023777B2 (en) 2019-05-31 2024-07-02 Ebara Corporation Temperature regulating apparatus and polishing apparatus
JP2020196066A (en) * 2019-05-31 2020-12-10 株式会社荏原製作所 Temperature control device and polisher
JP7217202B2 (en) 2019-05-31 2023-02-02 株式会社荏原製作所 Temperature controller and polisher
TWI813881B (en) * 2019-05-31 2023-09-01 日商荏原製作所股份有限公司 Temperature adjustment device and grinding device
US11986920B2 (en) 2020-03-24 2024-05-21 Kioxia Corporation Polishing method, polishing agent and cleaning agent for polishing
JP2024509159A (en) * 2021-03-03 2024-02-29 アプライド マテリアルズ インコーポレイテッド Temperature-controlled removal rate in CMP
WO2022232290A1 (en) * 2021-04-30 2022-11-03 Applied Materials, Inc. Monitor chemical mechanical polishing process using machine learning based processing of heat images
JP2022173730A (en) * 2021-05-10 2022-11-22 株式会社Sumco Creation method for correlation relationship expression for polishing condition determination, determination method for polishing condition, and manufacturing method for semiconductor wafer
WO2022239376A1 (en) * 2021-05-10 2022-11-17 株式会社Sumco Method for creating correlational expression for polishing condition determination
JP7543977B2 (en) 2021-05-10 2024-09-03 株式会社Sumco Method for creating correlation equation for determining polishing conditions, method for determining polishing conditions, and method for manufacturing semiconductor wafers

Also Published As

Publication number Publication date
US20080076335A1 (en) 2008-03-27
KR101267922B1 (en) 2013-05-27
US20070135020A1 (en) 2007-06-14
JP4787063B2 (en) 2011-10-05
KR20070061425A (en) 2007-06-13
US20100151771A1 (en) 2010-06-17

Similar Documents

Publication Publication Date Title
JP4787063B2 (en) Polishing apparatus and polishing method
JP2021181154A (en) Polishing device and polishing method
US9969046B2 (en) Method and apparatus for polishing a substrate
US20120190273A1 (en) Polishing method and polishing apparatus
CN104858785B (en) The dressing method and device of grinding pad
CN112658972B (en) Grinding device
JP6030720B2 (en) Polishing apparatus and method
JPH0945611A (en) Spin coater of substrate
JP3701188B2 (en) Substrate cleaning method and apparatus
KR20230169320A (en) Polishing method and polishing device
JP4059567B2 (en) Sample polishing apparatus and chemical mechanical polishing method
JP7663468B2 (en) Polishing apparatus and polishing method
US20220347814A1 (en) Polishing apparatus and polishing method
JP5077756B2 (en) Polishing equipment
JP6606017B2 (en) Substrate processing equipment
TWI595582B (en) Method and apparatus for processing wafer-shaped articles
KR20230133041A (en) Polishing apparatus for substrate and polishing method for substrate using the same
US20230369074A1 (en) Apparatus and method for supplying gas, facility for processing substrate
JP2747469B2 (en) Semiconductor wafer polishing method and apparatus
JP3792043B2 (en) Nozzle device and substrate polishing apparatus using the same
JP2024016938A (en) polishing equipment
JPH11269669A (en) Nozzle device and polishing device for substrate using the same and method therefor
JP2008103496A (en) Polishing method and polishing apparatus

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081028

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110628

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110714

R150 Certificate of patent or registration of utility model

Ref document number: 4787063

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250