[go: up one dir, main page]

JP2007181278A - Autonomous power supply and wireless sensor network apparatus - Google Patents

Autonomous power supply and wireless sensor network apparatus Download PDF

Info

Publication number
JP2007181278A
JP2007181278A JP2005375102A JP2005375102A JP2007181278A JP 2007181278 A JP2007181278 A JP 2007181278A JP 2005375102 A JP2005375102 A JP 2005375102A JP 2005375102 A JP2005375102 A JP 2005375102A JP 2007181278 A JP2007181278 A JP 2007181278A
Authority
JP
Japan
Prior art keywords
power supply
solar cell
voltage
power
double layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005375102A
Other languages
Japanese (ja)
Inventor
Osamu Hattori
修 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Morioka Seiko Instruments Inc
Original Assignee
Morioka Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Morioka Seiko Instruments Inc filed Critical Morioka Seiko Instruments Inc
Priority to JP2005375102A priority Critical patent/JP2007181278A/en
Publication of JP2007181278A publication Critical patent/JP2007181278A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an autonomous power supply and a wireless sensor network apparatus for implement indoor photovoltaic power generation, and supplying sufficient power. <P>SOLUTION: An electric double layer capacitor 210 stores a charge generated from a solar cell 110. When the solar cell 110 can not generate power, a reverse current preventing diode 280 prevents a reverse current from the electric double layer capacitor 210. A voltage detector 220 confirms a charged state of the electric double layer capacitor 210 as a voltage value. A real time clock 230 temporally controls an intermittent operation. A power supply switch 260 controls the supplied power by the logical sum of the voltage detector 220 and the real time clock 230. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明の自立電源及びこの自立電源を搭載した無線ネットワーク装置は、蛍光灯の光を電気エネルギーに換え、発生した電荷を蓄電し、必要に応じて蓄電した電荷を用いて、無線センサーネットワーク装置を駆動する発電装置の分野と無線センサーネットワーク装置に搭載されてセンサーを用いて環境の変化を数値化し、その値を電波に乗せて通信する通信装置の技術分野に属する。   The self-sustained power supply of the present invention and a wireless network device equipped with this self-supported power supply convert the light of the fluorescent lamp into electrical energy, store the generated charge, and use the stored charge as necessary to It belongs to the field of power generation devices to be driven and the technical field of communication devices that are mounted on wireless sensor network devices and digitize environmental changes using sensors, and communicate those values on radio waves.

無線センサーネットワークと言えば、家庭用の交流電源やコイン電池や蓄電池に代表される電池を用いて駆動されるのが一般的であり(例えば、特許文献1参照)、電池駆動の場合は消費電力を押さえて如何に長く同一電池を使うかに技術的な感心が高まっている。   Speaking of a wireless sensor network, it is generally driven using a household AC power source, a battery typified by a coin battery or a storage battery (for example, see Patent Document 1). There is a growing technical appreciation of how long the same battery can be used.

一方、屋外で用いられる無線装置は太陽電池を用いて発電をし、発電された電荷を二次電池に蓄えて使用する方法が多用されている。太陽電池の発電量は太陽電池の波長に対する発電効率と光束密度によって決まる為、屋外では曇りの日でも充分に発電量を確保できる設計になっているのが一般的である。   On the other hand, a radio device used outdoors often generates power using a solar cell, and a method of using the generated electric charge in a secondary battery is often used. Since the amount of power generated by the solar cell is determined by the power generation efficiency and the luminous flux density with respect to the wavelength of the solar cell, it is generally designed to ensure a sufficient amount of power generated outdoors even on a cloudy day.

しかし、無線センサーネットワークは室内で稼働させるのが一般的であり、自立電源を搭載させる場合は、室内光に合わせた光発電装置が必要となる。同様に、屋外と室内では光密度に大きな差があり、室内の弱い光で発電することが必要となる。その一例として太陽電池の規格において、屋外型太陽電池では50,000ルックスを基準最低入射光量としているのに対し、室内型太陽電池では200ルックスを基準最低入射光量としている。つまり、両者には250倍もの開きがある。   However, the wireless sensor network is generally operated indoors, and when a self-sustained power supply is installed, a photovoltaic device that matches indoor light is required. Similarly, there is a large difference in light density between outdoors and indoors, and it is necessary to generate power with weak light in the room. As an example, in a solar cell standard, an outdoor solar cell has a reference minimum incident light amount of 50,000 lux, whereas an indoor solar cell has a reference minimum incident light amount of 200 lux. That is, there is a 250 times difference between the two.

次に、二次電池については、ニッケルカドミウム式のものより容量の大きいニッケル水素式等の二次電池が市販されている。しかし、メモリー効果を持つものや充電と放電を繰り返すと容量が急速に低下し、使い方によっては半年で容量が半分に減ってしまうものもある。また、サイズや重量も大きいものが多く、必ずしも小型の無線センサーネットワーク装置を作る場合には適しているとは言い難い。
特表2005−545695号公報
Next, as for the secondary battery, a secondary battery such as a nickel metal hydride battery having a capacity larger than that of the nickel cadmium battery is commercially available. However, some have a memory effect, and if you repeat charging and discharging, the capacity will drop rapidly, and depending on how you use it, the capacity will drop in half in half a year. Also, many of them are large in size and weight, and are not necessarily suitable for making a small wireless sensor network device.
JP 2005-545695 A

室内で光発電をし、充分な電力を無線センサーネットワーク装置に供給することが、発明が解決しようとする課題である。装置自体の大きさを考える上で、その大きさが日常生活に違和感を与えない程度の大きさと考えると、大きくても名詞サイズの大きさが限界となる。一方、室内に於ける光強度については、会議室や事務室で300ルックスから多くても600ルックスが一般的であり、それ以外の場所、例えば、食堂や喫茶室では200ルックス以下と言う報告もある。従って、室内で蛍光灯から得られる最低の光量が200ルックスとし、名詞サイズ以下の白色蛍光灯の波長800nm(ナノメートル)を最大発電効率とする採用することが課題の一つとなる。次に太陽電池の出力を蓄電するデバイスとして、メモリー効果が無く且つ充電・放電の繰り返しや経時変化で容量が大幅に低下しない蓄電装置の開発が課題となる。   It is a problem to be solved by the present invention to generate photovoltaic power indoors and supply sufficient power to the wireless sensor network device. In considering the size of the device itself, the size of the noun size is the limit, even if it is large, considering that the size does not give a sense of incongruity to daily life. On the other hand, the light intensity in the room is generally 300 lux at the conference room or office room and at most 600 lux, and there is a report that it is 200 lux or less in other places, for example, cafeteria and cafe room. is there. Therefore, it is one of the problems to adopt the maximum power generation efficiency with the minimum light quantity obtained from the fluorescent lamp in the room being 200 lux and the wavelength of 800 nm (nanometer) of a white fluorescent lamp having a noun size or less. Next, as a device for storing the output of the solar cell, there is a problem of developing a power storage device that does not have a memory effect and that does not have a significant decrease in capacity due to repeated charging / discharging or changes over time.

本発明の自立電源装置は、太陽電池と、前記太陽電池で発電された電荷を蓄積する電気二重層キャパシタと、前記太陽電池が発電できなくなった時に前記電気二重層キャパシタからの逆流電流を防止する逆電防止ダイオードと、前記電気二重層キャパシタの充電状態を電圧値で確認する電圧検知器と、間欠動作を時間で制御する実時間時計と、前記電圧検知器と前記実時間時計からの論理和により電源供給を制御する電源スイッチと、負荷部への電圧を制御する電圧制御器とからなる。   The self-supporting power supply device of the present invention prevents a backflow current from the electric double layer capacitor when the solar cell, the electric double layer capacitor that accumulates the electric power generated by the solar cell, and the solar cell can no longer generate electric power. A reverse current prevention diode, a voltage detector for confirming a charge state of the electric double layer capacitor by a voltage value, a real time clock for controlling intermittent operation by time, and a logical sum from the voltage detector and the real time clock The power supply switch for controlling the power supply by the power supply and the voltage controller for controlling the voltage to the load unit.

本発明の自立電源装置は、前記電源スイッチが、前記電圧検知器がオンで且つ前記実時間時計がオンの時にオンとなることで、前記電圧制御器で供給電源電圧を制御する。
本発明の無線ネットワーク装置は、上記の自立電源装置を有し、前記太陽電池の発電量を最大にするため、前記太陽電池の角度を変更する可動装置を有する。
In the self-supporting power supply device of the present invention, the power switch controls the power supply voltage by the voltage controller by turning on when the voltage detector is on and the real time clock is on.
The wireless network device of the present invention includes the above-described self-supporting power supply device, and includes a movable device that changes the angle of the solar cell in order to maximize the amount of power generated by the solar cell.

一般的な電池、例えば、乾電池やバッテリーで駆動される無線センサーネットワーク装置とは異なり、太陽電池で発電する事で電池の消耗に起因する無線ネットワークの停止が防げる。また、従来の二次電池を使わず、電気二重層キャパシタを使用することで、経時劣化による容量減りが押さえられる。従って、容量減りの為に蓄電装置の交換に起因する保守の回数又はコストを削減できる利点がある。更に、発電量が不足して、蓄電装置に無線センサーネットワークに充分な電気量が蓄電されない時に、非接触で充電することができる。即ち、保守を軽減する効果を持つ。   Unlike a general battery such as a dry battery or a wireless sensor network device driven by a battery, power generation by a solar cell can prevent the wireless network from being stopped due to battery consumption. In addition, by using an electric double layer capacitor without using a conventional secondary battery, capacity reduction due to deterioration over time can be suppressed. Therefore, there is an advantage that the number of maintenance or the cost due to the replacement of the power storage device can be reduced due to the capacity reduction. Furthermore, when the amount of power generation is insufficient and a sufficient amount of electricity is not stored in the wireless sensor network in the power storage device, charging can be performed in a non-contact manner. That is, it has the effect of reducing maintenance.

本発明を図面に基づいて説明する。   The present invention will be described with reference to the drawings.

図1は、本発明の自立電源装置を搭載した無線センサーネットワーク装置の外観形状を示す。この装置100の表面には、太陽電池110が敷設されている。センサーは、図1のセンサー部120に格納され、外気の自由な流通が確保されている。通信状態の確認等の試験を行う際に、その状態を示す為に通信状態表示部130があり、3色の発光ダイオードで構成されている。赤色発光ダイオードの点灯は送信時を表し、黄色発光ダイオードの点灯は受信時を示し、緑色発光ダイオードは中央処理装置の処理時を示す。通信状態表示部130は通常は発光せず、試験やデモを行う場合のみ点灯する。また、装置側面には可動台140があり、太陽電池の設定角度を変えることができる構造をもっている。
次に、太陽電池パネルと電気二重層キャパシタによる自立電源装置を、効率よく無線センサーネットワーク装置の電源にする方法について説明する。
FIG. 1 shows the external shape of a wireless sensor network device equipped with the self-supporting power supply device of the present invention. A solar cell 110 is laid on the surface of the device 100. The sensor is stored in the sensor unit 120 of FIG. 1, and free circulation of outside air is ensured. When a test such as confirmation of the communication state is performed, a communication state display unit 130 is provided to indicate the state, and the light emitting diodes are composed of three colors. The lighting of the red light emitting diode indicates the time of transmission, the lighting of the yellow light emitting diode indicates the time of reception, and the green light emitting diode indicates the time of processing of the central processing unit. The communication status display unit 130 does not normally emit light and is lit only when a test or demonstration is performed. In addition, a movable table 140 is provided on the side of the device, and has a structure that can change the set angle of the solar cell.
Next, a method for efficiently converting a self-supporting power supply device using a solar cell panel and an electric double layer capacitor to a power source of a wireless sensor network device will be described.

太陽電池110と電気二重層キャパシタ210を組み合わせた自立電源装置200を無線センサーネットワーク装置100の電源とするには、次の2点について注意を払わなければならない。先ず、無線センサーネットワーク100は使用電圧が3.3Vである為に、3.3Vを出力電圧として保つ必要がある。また、太陽電池110の出力電流は、無線センサーネットワーク100が使用する電流量より遙かに小さい為に、電源の投入は間欠動作でなければならない。   In order to use the self-supporting power supply device 200 combining the solar cell 110 and the electric double layer capacitor 210 as the power source of the wireless sensor network device 100, attention must be paid to the following two points. First, since the working voltage of the wireless sensor network 100 is 3.3V, it is necessary to keep 3.3V as the output voltage. In addition, since the output current of the solar cell 110 is much smaller than the amount of current used by the wireless sensor network 100, the power supply must be turned on intermittently.

図2は、本発明の自立電源装置を示す回路図である。本回路は、蛍光灯の光を電気に変える太陽電池110、発電された電荷を蓄積する電気二重層キャパシタ210、入射光が無く太陽電池110が発電できなくなった時に電気二重層キャパシタ210からの逆流電流を防止する逆電防止ダイオード280、電気二重層キャパシタ210の充電状態を電圧値で確認する電圧検知器220、間欠動作を時間で制御する実時間時計230、電圧検知器220の出力と実時間時計230の出力の論理和を取るミニロジック回路270、ロジック回路270の出力で電源供給を制御する電源スイッチ260、負荷部250への電圧を制御する電圧制御器240から成る。   FIG. 2 is a circuit diagram showing the self-supporting power supply device of the present invention. This circuit includes a solar cell 110 that converts fluorescent light into electricity, an electric double layer capacitor 210 that stores the generated electric charge, and a backflow from the electric double layer capacitor 210 when the incident light does not exist and the solar cell 110 cannot generate electricity. A reverse current prevention diode 280 for preventing current, a voltage detector 220 for confirming a charging state of the electric double layer capacitor 210 by a voltage value, a real time clock 230 for controlling intermittent operation by time, an output and a real time of the voltage detector 220 The circuit includes a mini-logic circuit 270 that performs a logical sum of outputs of the clock 230, a power switch 260 that controls power supply by the output of the logic circuit 270, and a voltage controller 240 that controls the voltage to the load unit 250.

室内用の太陽電池に付いては屋外用のものと異なり、白色蛍光灯の波長が800nmが最大であることを受けて、この波長で発電効率が最大となるアモロファスシリコン型の太陽電池110を用いた。無線センサーネットワーク装置100の大きさを名詞サイズ以下に納める為に、横約58cm、縦約45cmのガラス上面の9セル型のアモロファスシリコン型の太陽電池とした。太陽電池110の解放電圧は約5V、また短絡電流は約47μAであり、出力効率の良い点は3.0Vに於いて42μAである。無線センサーネットワーク装置100に供給する基準となる電力量(以後、「基準電力量」と言う。)は330mF(ミリファラッド)である。しかし、蓄電装置は自然放電等があり、容量が抜けることを考慮して、470mFの蓄電装置を用いることとした。蓄電装置の種類として容量の経時変化による減少を防ぐ為に電気二重層キャパシタ210を使用した。   Unlike the outdoor solar cell, the indoor solar cell has a maximum wavelength of 800 nm, and the amorofas silicon solar cell 110 having the maximum power generation efficiency at this wavelength is used. Using. In order to keep the size of the wireless sensor network device 100 below the noun size, a 9-cell amorphous silicon type solar cell with a glass top surface of about 58 cm wide and about 45 cm long was used. The release voltage of the solar cell 110 is about 5 V, the short-circuit current is about 47 μA, and the good output efficiency is 42 μA at 3.0 V. The reference power amount (hereinafter referred to as “reference power amount”) supplied to the wireless sensor network device 100 is 330 mF (millifarads). However, the power storage device has a spontaneous discharge and the like, and the power storage device of 470 mF is used in consideration of capacity loss. An electric double layer capacitor 210 was used as a type of power storage device in order to prevent a decrease due to a change in capacity over time.

電圧3Vに電流42μAの太陽電池110を使用して、470mFの電気二重層キャパシタを充電した場合、充電ロスが無いとした場合でも、約62分掛かる。このことから、本発明の太陽電池110及び電気二重層キャパシタ210を使用した場合、この電源に接続される無線センサーネットワーク装置100を常に稼働状態にしておくことは難しい。この場合、本発明の自立電源装置を搭載した無線センサーネットワーク装置100を正常に稼働させる為には、無線センサーネットワーク装置100が稼働する際に、電気二重層キャパシタ210に充分な電力が蓄積されているかを検知する手段と、室内と言う弱い光環境の中で発電量を多くする外装に関する構造と、充分な電気を発電できない時に発電を補う為に、この自立電源装置に充電する方法が必要となる。
また、無線センサーネットワーク装置100に充分な電力を供給する為の電力量として、印可電圧3.3V、消費電流10mA、継続時間10秒間を目安とした。
When a solar cell 110 having a voltage of 3V and a current of 42 μA is used to charge a 470 mF electric double layer capacitor, it takes about 62 minutes even if there is no charge loss. For this reason, when the solar cell 110 and the electric double layer capacitor 210 of the present invention are used, it is difficult to always keep the wireless sensor network device 100 connected to the power supply in an operating state. In this case, in order to normally operate the wireless sensor network device 100 equipped with the self-supporting power supply device of the present invention, when the wireless sensor network device 100 operates, sufficient electric power is accumulated in the electric double layer capacitor 210. And a structure related to the exterior that increases the amount of power generation in a weak light environment such as indoors, and a method of charging this stand-alone power supply device to supplement power generation when sufficient electricity cannot be generated Become.
In addition, as an amount of power for supplying sufficient power to the wireless sensor network device 100, an applied voltage of 3.3 V, a consumption current of 10 mA, and a duration of 10 seconds were used as a guide.

逆流防止ダイオード280は降伏電圧を考慮して、耐圧10Vで降下電圧0.2Vのものを使用した。電圧検知器220は、負荷部250への出力電圧が3.3Vを考慮して、負荷の変化による電源に於いての電圧のふらつきがあると想定し、負荷電圧に対し余裕をもった3.7Vに設定した。電源スイッチ260としては、半導体式の物を接点式スイッチで実施した。半導体式は少量であるが漏れ電流がある場合があり、その点では接点式スイッチが良いが、接点スイッチは駆動回路が大がかりになる。電圧制御回路240は、出力電圧が3.3Vのものを使用した。   In consideration of the breakdown voltage, a reverse current prevention diode 280 having a breakdown voltage of 10 V and a drop voltage of 0.2 V was used. The voltage detector 220 assumes that the output voltage to the load unit 250 is 3.3 V and assumes that there is a voltage fluctuation in the power supply due to a change in the load, and has a margin with respect to the load voltage. Set to 7V. As the power switch 260, a semiconductor type switch was implemented as a contact type switch. The semiconductor type has a small amount but may have a leakage current. In this respect, the contact type switch is good, but the contact switch requires a large drive circuit. A voltage control circuit 240 having an output voltage of 3.3 V was used.

次に負荷部に付いて示す。図3は、負荷部分の構成を示す模式図である。負荷部250は情報を高周波でやりとりする無線モジュール310と情報を処理する中央処理装置320、温度及び湿度の測定をする温度・湿度計330、通信時間等の時間を管理する第2実時間時計340がある。中央処理装置、温度・湿度計及び第2実時間時計340はIIC(アイスクエアシー)インターフェース360で接続されている。温度・湿度計330はC−MOS(コンプリメンタリー・メタル・オキサイド・セミコンダクタ)型温湿度センサーであり、消費電力が非常に低く、数μAのレベルである。   Next, the load part is shown. FIG. 3 is a schematic diagram showing the configuration of the load portion. The load unit 250 includes a wireless module 310 that exchanges information at a high frequency, a central processing unit 320 that processes information, a temperature / humidity meter 330 that measures temperature and humidity, and a second real-time clock 340 that manages time such as communication time. There is. The central processing unit, the temperature / humidity meter, and the second real time clock 340 are connected by an IIC (Isquare Sea) interface 360. The temperature / humidity meter 330 is a C-MOS (Complementary Metal Oxide Semiconductor) type temperature / humidity sensor, which consumes very low power and has a level of several μA.

この方法による電源制御は、電圧検知器220と実時間時計230の出力の論理和を取ることで、電気二重層キャパシタ210に充分に充電されていない場合には、電源スイッチ260がオンに成らないため、作業の途中で電源が切れてしまう心配がない。また、実時間時計230がオンになっても電源が入らない事で、マルチホップ型通信システムの場合は、この装置100を無視して通信が行われ、この装置100が故障又は何らかの問題点があると言うことが、ネットワークを通じて把握することができる利点がる。   In the power control by this method, the power switch 260 is not turned on when the electric double layer capacitor 210 is not sufficiently charged by taking the logical sum of the outputs of the voltage detector 220 and the real time clock 230. Therefore, there is no worry that the power will be cut off during the work. In addition, since the power is not turned on even when the real time clock 230 is turned on, in the case of a multi-hop communication system, communication is performed ignoring the device 100, and the device 100 is broken or has some problem. There is an advantage that it can be grasped through the network.

本発明の自立電源装置200の動作について説明する。図7は、自立電源装置200が電源を供給する際のフローチャートを示す。太陽電池110は入射光があれば発電を行う(工程101)。発電された電流は逆電防止ダイオード280を通過し(工程102)、電気二重層キャパシタ210に充電される(工程103)。電気二重層キャパシタ210の電圧は充電される毎に上昇し(工程104)、設定電圧の3.7Vに達すると(工程1101)、その出力がオンとなる(工程105)。一方、本発明の無線センサーネットワーク装置100が稼働する時間になると(工程1102)、実時間時計230がオンとなり(工程106)、その値が論理和回路に入力され(工程107)、その結果、電源スイッチ260がオンとなる(工程108)。電源スイッチ260がオンになると、電気二重層キャパシタ210に充電された電荷が流れ(工程109)、電圧制御器240が電源電圧を3.3Vに制御して、負荷部250に流す(工程110)。
次に、発電効率を最大にする外装構造について説明する。
The operation of the self-supporting power supply apparatus 200 of the present invention will be described. FIG. 7 shows a flowchart when the self-supporting power supply 200 supplies power. If there is incident light, the solar cell 110 generates power (step 101). The generated current passes through the reverse current prevention diode 280 (step 102), and the electric double layer capacitor 210 is charged (step 103). The voltage of the electric double layer capacitor 210 increases every time it is charged (step 104), and when the set voltage reaches 3.7V (step 1101), its output is turned on (step 105). On the other hand, when it is time to operate the wireless sensor network device 100 of the present invention (step 1102), the real time clock 230 is turned on (step 106), and the value is input to the OR circuit (step 107). The power switch 260 is turned on (step 108). When the power switch 260 is turned on, the electric charge charged in the electric double layer capacitor 210 flows (step 109), and the voltage controller 240 controls the power supply voltage to 3.3 V and flows it to the load unit 250 (step 110). .
Next, an exterior structure that maximizes power generation efficiency will be described.

蛍光灯410の弱い光の下で発電する場合は、自立電源搭載無線センサーネットワーク装置100の太陽電池面に対して、蛍光灯410の光430が直角に当たるように設置しなければ、太陽電池110が持っている発電能力を充分発揮することができない。
天井に取り付けられている蛍光灯410に対し、装置の置き台420と太陽電池110の表面との成す角度を可変して、その起電力量を測定してみる。すると、太陽電池110の表面が蛍光灯410の光軸に対して直角の角度の値を1とした場合に、発電量は余弦関数に近い数値で変化した。これは太陽電池110の表面に入射する光束の角度が変化する事で光束密度が変化する為に、太陽電池110に於ける発電量が変化したものである。従って、より多くの発電量を得るためには、無線センサーネットワーク装置100の太陽電池110の表面が、常に蛍光灯410からの光軸方向に向いているように設定する必要がある。また、光束密度は距離の二乗に反比例して減少する為、同じ蛍光灯410であれば、この装置に近いものを選ぶ必要がある。
In the case of generating power under the weak light of the fluorescent lamp 410, the solar battery 110 is not installed unless the light 430 of the fluorescent lamp 410 strikes the right angle with respect to the solar battery surface of the wireless sensor network device 100 with a self-supporting power source. The power generation capability you have cannot be fully demonstrated.
With respect to the fluorescent lamp 410 attached to the ceiling, the angle between the device stand 420 and the surface of the solar cell 110 is varied, and the amount of electromotive force is measured. Then, when the value of the angle of the surface of the solar cell 110 perpendicular to the optical axis of the fluorescent lamp 410 is 1, the amount of power generation changes with a value close to a cosine function. This is because the power generation amount in the solar cell 110 is changed because the light beam density is changed by changing the angle of the light beam incident on the surface of the solar cell 110. Therefore, in order to obtain a larger amount of power generation, it is necessary to set the surface of the solar cell 110 of the wireless sensor network device 100 so as to always face the optical axis direction from the fluorescent lamp 410. In addition, since the light flux density decreases in inverse proportion to the square of the distance, it is necessary to select the same fluorescent lamp 410 that is close to this device.

また、机等に本発明の自立電源無線センサーネットワーク装置100を置く場合には、図1に示す可動台140を動かして、発電量が最大になる様に位置の設定を行うことで、図2で示す負荷部250が使用するに必要な電力を確保することができる。
図4は、可動台140を動かして、蛍光灯410からの入射光の光束密度を最大にする様子を示す模式図である。本図では、この装置を人間が作業する机の上に、この装置を置いたと仮定している。
When the self-sustained power supply wireless sensor network device 100 of the present invention is placed on a desk or the like, the movable base 140 shown in FIG. 1 is moved to set the position so that the amount of power generation is maximized. It is possible to secure the electric power necessary for use by the load unit 250 shown in FIG.
FIG. 4 is a schematic diagram showing how the movable base 140 is moved to maximize the luminous flux density of incident light from the fluorescent lamp 410. In this figure, it is assumed that this device is placed on a desk on which a human works.

そして、この自立電源装置が入力光不足の為充分発電できず、無線センサーネットワークが動作しなくなった時に応急用として充電する方法について説明する。図5は充電装置の構造であり、図6は光充電を行った際の様子を示す模式図である。   A description will be given of a method of charging the emergency power supply device for emergency use when the wireless sensor network cannot operate sufficiently due to insufficient input light and the wireless sensor network stops operating. FIG. 5 shows the structure of the charging device, and FIG. 6 is a schematic diagram showing the state when optical charging is performed.

本発明の自立電源装置200を搭載した無線センサーネットワーク装置100は、様々な場所に設置される。室内に於ける一例として、天井の表面、壁の側面、机の上等が考えられる。この内、天井の表面や壁の表面上部は、人間の手が届きにくい場所である。人間の手が充分届く場所であれば、充電器で簡単に電荷を補充することができるが、手が届きにくい場所に於いては、脚立やその他の道具を用いて、手の届く範囲まで移動しなければならない。従って、保守専門業者に委託する必要が出てくる場合があり、保守に費用がかかる結果となる。   The wireless sensor network device 100 equipped with the self-supporting power supply device 200 of the present invention is installed in various places. As an example in the room, the surface of the ceiling, the side of the wall, the desk, etc. can be considered. Of these, the surface of the ceiling and the upper surface of the wall are places that are difficult for human hands to reach. Charges can be replenished easily with a charger if it is within reach of human hands, but in places where it is difficult to reach, use a stepladder or other tools to move to reach the reach. Must. Therefore, it may be necessary to outsource to a maintenance specialist, resulting in costly maintenance.

一方、本発明の自立電源装置200は、光発電システムを持っている為、発電に必要な光さえ供給してやれば、太陽電池110が発電を行って電気二重層キャパシタ210に電荷が補充されることになる。従って、電荷の補充は発電に必要な光源を用意してやれば済む事になる。   On the other hand, since the self-supporting power supply device 200 of the present invention has a photovoltaic power generation system, the solar cell 110 generates power and replenishes the electric double layer capacitor 210 with charge as long as light necessary for power generation is supplied. become. Therefore, it is only necessary to prepare a light source necessary for power generation to replenish charges.

本発明の自立電源装置200に搭載されている太陽電池110は、波長800nmで発電効率が最大になるものを用いている。波長800nmは白色蛍光灯510が発するスペクトラム中でも強いものである。従って、白色蛍光灯510を光源とした光充電装置500を開発し、本発明の自立電源装置の充電器とした。次にこの充電装置について説明する。   As the solar cell 110 mounted on the self-supporting power supply device 200 of the present invention, a solar cell having a maximum power generation efficiency at a wavelength of 800 nm is used. The wavelength of 800 nm is strong even in the spectrum emitted by the white fluorescent lamp 510. Accordingly, an optical charging device 500 using the white fluorescent lamp 510 as a light source has been developed and used as a charger for the self-supporting power supply device of the present invention. Next, this charging device will be described.

先ず、光源に使う白色蛍光灯510は持ち運びを考えて小さいのも、例えば20ワット以下のものが好ましい。本実施例に於いては、光強度を考えて20ワットの白色蛍光灯510を使用した。白色蛍光管の構造は通常の直管ではなく、曲管を用いて一見、白色電球の様な形状のものを用いた。次に集光し、光に指向性を持たせる為にパラボラ形状の金属板520を白色蛍光管510の後ろに配し、その後ろを蝶番530で固定し、パラボラ型金属板520と白色蛍光管510が縦に首を振れるようにした。蝶番530の下は支柱540とし、下部に錘を組み込み安定させた。   First, the white fluorescent lamp 510 used for the light source is preferably small, for example 20 watts or less, in consideration of carrying. In this embodiment, a 20 watt white fluorescent lamp 510 was used in consideration of the light intensity. The structure of the white fluorescent tube was not a normal straight tube, but a curved tube was used at first glance. Next, a parabolic metal plate 520 is arranged behind the white fluorescent tube 510 in order to condense and give directionality to the light, and the back thereof is fixed by a hinge 530, and the parabolic metal plate 520 and the white fluorescent tube are fixed. 510 was able to swing his head vertically. Below the hinge 530 was a support column 540, and a weight was incorporated in the lower part to stabilize it.

光充電器500は構造が非常に簡単であるが上、製作費が安いのが特徴である。使用方法に付いては、光充電器500を机などの上に置き、充電したい無線センサーネットワーク装置100の太陽電池面に向けて光りを照射するだけである。本実施例での充電実験において、約40分で充電が完了した。   The optical charger 500 is characterized by a very simple structure and low manufacturing costs. As for the method of use, the optical charger 500 is simply placed on a desk or the like, and light is only irradiated toward the solar cell surface of the wireless sensor network device 100 to be charged. In the charging experiment in this example, charging was completed in about 40 minutes.

本発明の実時間校正方法は保守不要の無線センサーネットワークを構築する上では有用な方法として利用価値があり、ネットワークに接続されているが、外から時間情報を得る事ができない特立した装置等の実時間校正に利用が可能と考える。   The real-time calibration method of the present invention has utility value as a useful method for constructing a maintenance-free wireless sensor network, and is a special device that is connected to the network but cannot obtain time information from the outside. It can be used for real-time calibration.

自立電源装置の外観を示す模式図Schematic diagram showing the appearance of a self-supporting power supply 自立電源装置の電気回路を示す模式図Schematic diagram showing the electrical circuit of a self-supporting power supply 負荷部分の構成を示す模式図Schematic diagram showing the configuration of the load section 蛍光灯の方向と装置の角度との関係Relationship between the direction of the fluorescent lamp and the angle of the device 光充電器の形状と機能を示す模式図Schematic diagram showing the shape and function of the optical charger 光充電器を用いた無線センサーネットワーク装置の充電方法Method for charging wireless sensor network device using optical charger 自立電源供給のフローチャートFlow chart of independent power supply

符号の説明Explanation of symbols

100 無線センサーネットワーク装置
110 太陽電池
120 センサー部
130 通信状態表示部
140 可動台
210 電気二重層キャパシタ
220 電圧検知器
230 実時間時計
240 電圧制御器
250 負荷部
260 電源スイッチ
270 ミニロジック回路
280 逆電防止ダイオード
410 蛍光灯
420 装置の置き台
500 光充電器
510 白色蛍光灯
520 パラボラ型金属板
530 蝶番
DESCRIPTION OF SYMBOLS 100 Wireless sensor network apparatus 110 Solar cell 120 Sensor part 130 Communication state display part 140 Movable stand 210 Electric double layer capacitor 220 Voltage detector 230 Real time clock 240 Voltage controller 250 Load part 260 Power switch 270 Mini logic circuit 280 Prevention of reverse electricity Diode 410 Fluorescent lamp 420 Device stand 500 Optical charger 510 White fluorescent lamp 520 Parabolic metal plate 530 Hinge

Claims (4)

太陽電池と、
前記太陽電池で発電された電荷を蓄積する電気二重層キャパシタと、
前記太陽電池が発電できなくなった時に前記電気二重層キャパシタからの逆流電流を防止する逆電防止ダイオードと、
前記電気二重層キャパシタの充電状態を電圧値で確認する電圧検知器と、
間欠動作を時間で制御する実時間時計と、
前記電圧検知器と前記実時間時計からの論理和により電源供給を制御する電源スイッチと、
負荷部への電圧を制御する電圧制御器とからなる自立電源装置。
Solar cells,
An electric double layer capacitor for storing electric charges generated by the solar cell;
A reverse current prevention diode for preventing a reverse current from the electric double layer capacitor when the solar cell cannot generate electricity;
A voltage detector for confirming a charge state of the electric double layer capacitor by a voltage value;
A real-time clock that controls intermittent operation by time;
A power switch for controlling power supply by a logical sum from the voltage detector and the real time clock;
A self-supporting power supply device comprising a voltage controller for controlling the voltage to the load section.
前記電源スイッチが、前記電圧検知器がオンで且つ前記実時間時計がオンの時にオンとなることで、前記電圧制御器で供給電源電圧を制御する請求項1記載の自立電源装置。   2. The self-supporting power supply apparatus according to claim 1, wherein the power switch controls the power supply voltage by the voltage controller when the voltage detector is on and the real time clock is on. 請求項1又は2記載の自立電源装置を有する無線ネットワーク装置。   A wireless network device comprising the self-supporting power supply device according to claim 1. 前記太陽電池の発電量を最大にするため、前記太陽電池の角度を変更する可動装置を有する請求項3記載の無線ネットワーク装置。   The wireless network device according to claim 3, further comprising a movable device that changes an angle of the solar cell in order to maximize a power generation amount of the solar cell.
JP2005375102A 2005-12-27 2005-12-27 Autonomous power supply and wireless sensor network apparatus Withdrawn JP2007181278A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005375102A JP2007181278A (en) 2005-12-27 2005-12-27 Autonomous power supply and wireless sensor network apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005375102A JP2007181278A (en) 2005-12-27 2005-12-27 Autonomous power supply and wireless sensor network apparatus

Publications (1)

Publication Number Publication Date
JP2007181278A true JP2007181278A (en) 2007-07-12

Family

ID=38305866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005375102A Withdrawn JP2007181278A (en) 2005-12-27 2005-12-27 Autonomous power supply and wireless sensor network apparatus

Country Status (1)

Country Link
JP (1) JP2007181278A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010120560A1 (en) * 2009-03-31 2010-10-21 Battelle Memorial Institute Supercapacitor materials and devices
CN101951033A (en) * 2010-08-24 2011-01-19 中国农业大学 Device and method for intelligently supplying power to node based on wireless sensor network
CN102355067A (en) * 2011-07-04 2012-02-15 东南大学 Mobile wireless charging and power-supplying method of wireless sensor network node
CN102709962A (en) * 2012-05-09 2012-10-03 东南大学 Sensor network long-distance charging and power supplying system based on laser light source
US8471525B2 (en) 2009-12-17 2013-06-25 Electronics And Telecommunications Research Institute Apparatus and method for charging internal battery in wireless sensor network
CN103219779A (en) * 2013-05-13 2013-07-24 东南大学 Wireless charging method for sensing network node
AT512413B1 (en) * 2012-03-19 2013-08-15 Michael Moser Integrated flexible ice detector
JP2014042404A (en) * 2012-08-22 2014-03-06 Sharp Corp Charging device, solar system, electrical system, and vehicle
JP5668132B1 (en) * 2013-12-27 2015-02-12 株式会社フジクラ Power storage system and power storage method
WO2015045687A1 (en) * 2013-09-24 2015-04-02 株式会社村田製作所 Power supply device, device incorporating this power supply device, and environmental energy evaluation device
CN107577189A (en) * 2017-10-20 2018-01-12 中国电建集团成都勘测设计研究院有限公司 A kind of accurate timing Rouser of automatic monitoring system
EP3327890A1 (en) 2016-11-25 2018-05-30 ABLIC Inc. Power source device
WO2021045236A1 (en) 2019-09-08 2021-03-11 トライポッド・デザイン株式会社 System and device
WO2021250970A1 (en) 2020-06-12 2021-12-16 トライポッド・デザイン株式会社 Sensor
WO2022034887A1 (en) 2020-08-11 2022-02-17 トライポッド・デザイン株式会社 Sensor system, sensor device, and sensing method
US11359940B2 (en) 2018-02-28 2022-06-14 Asahi Kasei Microdevices Corporation Sensor apparatus and sensor system

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9007742B2 (en) 2009-03-31 2015-04-14 Battelle Memorial Institute Supercapacitor materials and devices
WO2010120560A1 (en) * 2009-03-31 2010-10-21 Battelle Memorial Institute Supercapacitor materials and devices
US8471525B2 (en) 2009-12-17 2013-06-25 Electronics And Telecommunications Research Institute Apparatus and method for charging internal battery in wireless sensor network
CN101951033A (en) * 2010-08-24 2011-01-19 中国农业大学 Device and method for intelligently supplying power to node based on wireless sensor network
CN102355067A (en) * 2011-07-04 2012-02-15 东南大学 Mobile wireless charging and power-supplying method of wireless sensor network node
US9909568B2 (en) 2012-03-19 2018-03-06 Eologix Sensor Technology Gmbh Device for detecting critical states of a surface
AT512413B1 (en) * 2012-03-19 2013-08-15 Michael Moser Integrated flexible ice detector
AT512413A4 (en) * 2012-03-19 2013-08-15 Michael Moser Integrated flexible ice detector
CN102709962A (en) * 2012-05-09 2012-10-03 东南大学 Sensor network long-distance charging and power supplying system based on laser light source
JP2014042404A (en) * 2012-08-22 2014-03-06 Sharp Corp Charging device, solar system, electrical system, and vehicle
CN103219779A (en) * 2013-05-13 2013-07-24 东南大学 Wireless charging method for sensing network node
WO2015045687A1 (en) * 2013-09-24 2015-04-02 株式会社村田製作所 Power supply device, device incorporating this power supply device, and environmental energy evaluation device
JP5668132B1 (en) * 2013-12-27 2015-02-12 株式会社フジクラ Power storage system and power storage method
US10181748B2 (en) 2013-12-27 2019-01-15 Fujikura Ltd. Power storage system and power storage method
EP3327890A1 (en) 2016-11-25 2018-05-30 ABLIC Inc. Power source device
JP2018085888A (en) * 2016-11-25 2018-05-31 エイブリック株式会社 Power supply device
US10075068B2 (en) 2016-11-25 2018-09-11 Ablic Inc. Power source device
US10447155B2 (en) 2016-11-25 2019-10-15 Ablic Inc. Power source device
TWI748000B (en) * 2016-11-25 2021-12-01 日商艾普凌科有限公司 Power source device
CN107577189A (en) * 2017-10-20 2018-01-12 中国电建集团成都勘测设计研究院有限公司 A kind of accurate timing Rouser of automatic monitoring system
CN107577189B (en) * 2017-10-20 2023-12-19 中国电建集团成都勘测设计研究院有限公司 Accurate timing wake-up method of automatic monitoring system
US11359940B2 (en) 2018-02-28 2022-06-14 Asahi Kasei Microdevices Corporation Sensor apparatus and sensor system
KR20220062004A (en) 2019-09-08 2022-05-13 토라이폿도 데자인 가부시키가이샤 systems and devices
WO2021045236A1 (en) 2019-09-08 2021-03-11 トライポッド・デザイン株式会社 System and device
WO2021250970A1 (en) 2020-06-12 2021-12-16 トライポッド・デザイン株式会社 Sensor
KR20230023728A (en) 2020-06-12 2023-02-17 토라이폿도 데자인 가부시키가이샤 sensor
WO2022034887A1 (en) 2020-08-11 2022-02-17 トライポッド・デザイン株式会社 Sensor system, sensor device, and sensing method
KR20230048374A (en) 2020-08-11 2023-04-11 토라이폿도 데자인 가부시키가이샤 Sensor system, sensor device and sensing method

Similar Documents

Publication Publication Date Title
JP2007181278A (en) Autonomous power supply and wireless sensor network apparatus
US8358099B2 (en) Modular electric power system with a renewable energy power generating apparatus
CN202125863U (en) Intelligent LED lighting system and charging system for corresponding battery
JP2016508665A (en) Street light
KR20120093697A (en) Solar cell street lamp
Aung et al. Design of stand-alone solar street lighting system with LED
JP5079617B2 (en) Solar power generator
US20090098832A1 (en) Mobile device powered by alternative energy
JP3195999U (en) Mobile assembly type power supply and its use
US20110176393A1 (en) Battery-less environmental friendly quartz timepieces
WO2009131622A2 (en) Solar-powered valance-mounted lighting system
Soh et al. Building of a portable solar ac & dc power supply
KR20110105922A (en) Window type power generator using solar cell
KR101557847B1 (en) Small photovoltaic system for home
KR200357241Y1 (en) Traveling solar power plant
KR102381357B1 (en) Emotion lighting using indoor lighting power
JP2015522235A (en) AC solar panel system
JP2008017631A (en) Power saving apparatus
US6660929B2 (en) Electrical power module and system
JP2005129800A (en) Power generation system
Mukherjee et al. Maximum Utilisation of Solar Energy for Smart Home Lighting System
CN101572419A (en) Method and device utilizing solar energy to provide power supply for lighting lamps or other electrical appliances
KR20130071315A (en) Light device using solar enenrgy
Amogpai LED lighting combined with solar panels in developing countries
Kauer et al. High‐efficiency indoor photovoltaic energy harvesting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090714