[go: up one dir, main page]

JP2007172976A - Alkaline storage battery and manufacturing method therefor - Google Patents

Alkaline storage battery and manufacturing method therefor Download PDF

Info

Publication number
JP2007172976A
JP2007172976A JP2005367992A JP2005367992A JP2007172976A JP 2007172976 A JP2007172976 A JP 2007172976A JP 2005367992 A JP2005367992 A JP 2005367992A JP 2005367992 A JP2005367992 A JP 2005367992A JP 2007172976 A JP2007172976 A JP 2007172976A
Authority
JP
Japan
Prior art keywords
annular groove
insulating ring
storage battery
electrode
alkaline storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005367992A
Other languages
Japanese (ja)
Inventor
Kazuteru Mori
和照 森
Hiroyuki Inoue
博之 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2005367992A priority Critical patent/JP2007172976A/en
Publication of JP2007172976A publication Critical patent/JP2007172976A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent an insulating ring from protruding from between each upper face of electrodes and underside of annular grooves, even if the projecting portion of the annular groove into a packaging can abuts against the insulating ring. <P>SOLUTION: This alkaline storage battery comprises an electrode assembly which is formed by welding an current collector 14 on the top portion of an electrode group, including positive electrodes 11, separators 13, and negative electrodes 12; and a packaging can 16 which contains an alkali electrolyte, and has a annular groove 16a at the upper circumference portion and is sealed with a seal-opening closure at the opening portion. A planar insulating ring 17, having a cut portion, is arranged between the underside of the annular groove 16a and the topside of the current collector 14, both ends of the cut portion 17a approaching each other due to the pressure applied from the ring-like groove 16a. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明はニッケル−カドミウム蓄電池、ニッケル−水素蓄電池などのアルカリ蓄電池に係り、特に、正極とセパレータと負極とからなる電極群の上部に集電体が溶接された電極体とアルカリ電解液とを収容し、上部外周部に環状溝が形成された外装缶の開口部に封口体が配置されて密封されたアルカリ蓄電池およびその製造方法に関する。   The present invention relates to an alkaline storage battery such as a nickel-cadmium storage battery or a nickel-hydrogen storage battery, and in particular, contains an electrode body in which a current collector is welded to an upper part of an electrode group including a positive electrode, a separator, and a negative electrode, and an alkaline electrolyte. In addition, the present invention relates to an alkaline storage battery in which a sealing body is disposed and sealed in an opening of an outer can in which an annular groove is formed in an upper outer peripheral portion, and a manufacturing method thereof.

一般に、ニッケル−カドミウム蓄電池、ニッケル−水素蓄電池などのアルカリ蓄電池は、正極および負極の間にセパレータを介在させ、これらを渦巻状に巻回して電極群を形成した後、正極の端部に正極集電体を溶接するとともに、負極の端部に負極集電体を溶接して電極体を形成する。この後、得られた電極体を金属製電池ケース(外装缶)に挿入し、外装缶の内底部と負極集電体とを溶接する。ついで、外装缶の上部外周部に溝入れ加工を施して環状溝を形成した後、外装缶内にアルカリ電解液を注液する。ついで、正極集電体から延伸するリード部を封口体に溶接した後、外装缶の開口部の環状溝の上にガスケットを介して封口体を配置し、外装缶をかしめることにより密閉してアルカリ蓄電池を作製するようにしている。   In general, an alkaline storage battery such as a nickel-cadmium storage battery or a nickel-hydrogen storage battery has a separator interposed between a positive electrode and a negative electrode, and these are spirally wound to form an electrode group. While welding an electric body, a negative electrode collector is welded to the edge part of a negative electrode, and an electrode body is formed. Thereafter, the obtained electrode body is inserted into a metal battery case (external can), and the inner bottom portion of the external can and the negative electrode current collector are welded. Next, the upper outer periphery of the outer can is grooved to form an annular groove, and then an alkaline electrolyte is injected into the outer can. Next, after welding the lead portion extending from the positive electrode current collector to the sealing body, the sealing body is arranged via a gasket on the annular groove of the opening of the outer can, and the outer can is sealed by caulking. An alkaline storage battery is manufactured.

上述のように構成されるアルカリ蓄電池においては、衝撃や振動などにより外装缶内で電極体が移動し、正極集電体と外装缶(負極端子を兼ねる)の環状溝とが接触して内部短絡を引き起こすという問題を生じた。そこで、例えば、特許文献1(特開2001−143684号公報)に記載されるように、円環状の絶縁リング(防振リング)を電極体上面と環状溝の下端面との間に配置することにより、正極集電体と環状溝との間の内部短絡を防止することが提案されるようになった。
特開2001−143684号公報
In the alkaline storage battery configured as described above, the electrode body moves in the outer can due to impact or vibration, and the positive electrode current collector and the annular groove of the outer can (also serving as the negative electrode terminal) come into contact with each other to cause an internal short circuit. Caused the problem of causing. Therefore, for example, as described in Patent Document 1 (Japanese Patent Laid-Open No. 2001-143684), an annular insulating ring (vibration-proof ring) is disposed between the upper surface of the electrode body and the lower end surface of the annular groove. Therefore, it has been proposed to prevent an internal short circuit between the positive electrode current collector and the annular groove.
JP 2001-143684 A

ところで、近年、電池に対する高容量化、高密度化の要請が高まり、限られた容積の電池内空間を有効利用するための種々の試みがなされるようになり、電極体上面と封口体下面との間の隙間、即ち、電極体上面と環状溝との間の隙間をできる限り小さくする必要が生じた。そこで、上述した円環状の絶縁リング(防振リング)を電極体上面と環状溝の下端面との間の微少な隙間に配置するとともに、この微少な隙間をできる限り小さくする試みが行われるようになった。この場合、電極体上面と環状溝の下端面との間の微少な隙間を小さくすると、環状溝の形成時に、環状溝の外装缶内への突起部が絶縁リングに当たる事態が生じた。この結果、絶縁リングが移動して、電極体上面と環状溝の下端面との間からはみ出てしまう(図4のA部参照)という問題を生じた。   By the way, in recent years, there has been an increasing demand for higher capacity and higher density for batteries, and various attempts have been made to effectively utilize the limited space in the battery. The upper surface of the electrode body, the lower surface of the sealing body, In other words, the gap between the upper surface of the electrode body and the annular groove needs to be as small as possible. Therefore, an attempt is made to arrange the above-described annular insulating ring (vibration-proof ring) in a minute gap between the upper surface of the electrode body and the lower end surface of the annular groove and to make the minute gap as small as possible. Became. In this case, when the minute gap between the upper surface of the electrode body and the lower end surface of the annular groove is reduced, a situation occurs in which the protruding portion into the outer can of the annular groove hits the insulating ring when the annular groove is formed. As a result, the insulation ring moves and protrudes from between the upper surface of the electrode body and the lower end surface of the annular groove (refer to part A in FIG. 4).

このような絶縁リングが電極体上面と環状溝の下端面との間からはみ出た状態においては、電池外部から衝撃を受けた場合、正極集電体と外装缶とが接触して内部短絡を引き起こすという問題を生じた。この場合、絶縁リングの厚みを薄くすることにより、環状溝の形成時に、環状溝の外装缶内への突起部が絶縁リングに当たるということが防止できるようになるが、絶縁リングの厚みを薄くしすぎると、絶縁性が低下するという新たな問題が生じるようになる。   In a state where such an insulating ring protrudes from between the upper surface of the electrode body and the lower end surface of the annular groove, when receiving an impact from the outside of the battery, the positive electrode current collector and the outer can come into contact to cause an internal short circuit. The problem that occurred. In this case, by reducing the thickness of the insulating ring, it becomes possible to prevent the protruding portion into the outer can of the annular groove from hitting the insulating ring when the annular groove is formed. If it is too much, a new problem that the insulating property is lowered occurs.

そこで、本発明は上記問題点を解決するためになされたものであって、電極体上面と環状溝の下端面との間の隙間をできる限り小さくし、これらの隙間に絶縁リングを配置して環状溝の外装缶内への突起部が絶縁リングに当たっても、絶縁リングが電極体上面と環状溝の下端面との間からはみ出ないようにして、衝撃による集電体と外装缶との接触を防止できるアルカリ蓄電池およびその製造方法を提供することを目的とするものである。   Therefore, the present invention has been made to solve the above problems, and the gap between the upper surface of the electrode body and the lower end surface of the annular groove is made as small as possible, and an insulating ring is disposed in these gaps. Even if the protrusion into the outer can of the annular groove hits the insulating ring, the insulating ring does not protrude from between the upper surface of the electrode body and the lower end surface of the annular groove, and contact between the current collector and the outer can due to impact is prevented. An object of the present invention is to provide an alkaline storage battery that can be prevented and a method for producing the same.

本発明のアルカリ蓄電池は、正極とセパレータと負極とからなる電極群を含む電極体とアルカリ電解液とを収容し、上部外周部に環状溝が形成された外装缶の開口部に封口体が配置されて密封されている。そして、上記目的を達成するため、外装缶の上部外周部に形成された環状溝の下端部と電極体の上面との間に切断部を備えた円環状の絶縁リングが配置されており、絶縁リングは環状溝からの押圧力により切断部の両端部が接近していることを特徴とする。   The alkaline storage battery of the present invention accommodates an electrode body including an electrode group composed of a positive electrode, a separator, and a negative electrode, and an alkaline electrolyte, and a sealing body is disposed in an opening of an outer can in which an annular groove is formed in an upper outer peripheral portion. Being sealed. And in order to achieve the said objective, the annular | circular shaped insulating ring provided with the cutting part is arrange | positioned between the lower end part of the annular groove formed in the upper outer peripheral part of an exterior can, and the upper surface of an electrode body, and insulation is carried out. The ring is characterized in that both ends of the cutting portion are approached by a pressing force from the annular groove.

このように、環状溝の下端部と電極体の上面との間に切断部を備えた円環状の絶縁リングが配置されていて、切断部の両端部が環状溝からの押圧力により接近していると、当該電池が外部から衝撃を受けた場合、電極群の上部に溶接された集電体と外装缶に形成された環状溝とが接触して内部短絡を引き起こすという事態が防止できるようになる。   In this way, an annular insulating ring having a cutting portion is arranged between the lower end portion of the annular groove and the upper surface of the electrode body, and both end portions of the cutting portion are approached by the pressing force from the annular groove. When the battery is impacted from the outside, the current collector welded to the upper part of the electrode group and the annular groove formed in the outer can contact with each other to prevent an internal short circuit. Become.

そして、上述のようなアルカリ蓄電池を製造するに際しては、電極体の上面に切断部が形成された円環状の絶縁リングを配置する絶縁リング配置工程と、外装缶の上部外周部に溝入れ加工を施して環状溝を形成するとともに、当該環状溝からの押圧力による絶縁リングの縮径に基づき切断部の両端部を接近させる環状溝形成工程と、環状溝の上に封口体を配置した後、当該封口体を気密に封止する封口工程とを備えるようにすればよい。これにより、環状溝の形成時に環状溝が絶縁リングに当たって押圧力を付与する事態が生じても、切断部により絶縁リングは縮径することにより、円環状の絶縁リングの切断部の両端部が接近することとなる。   And when manufacturing the alkaline storage battery as described above, an insulating ring arrangement step of arranging an annular insulating ring having a cut portion formed on the upper surface of the electrode body, and grooving processing on the upper outer peripheral portion of the outer can After forming the annular groove and placing the sealing body on the annular groove, the annular groove forming step of bringing both ends of the cutting portion closer based on the reduced diameter of the insulating ring due to the pressing force from the annular groove, What is necessary is just to provide the sealing process which seals the said sealing body airtightly. As a result, even if the annular groove hits the insulating ring during the formation of the annular groove and a pressing force is applied, the diameter of the insulating ring is reduced by the cut portion, so that both ends of the cut portion of the annular insulating ring approach each other. Will be.

以下に、本発明をニッケル−カドミウム蓄電池に適用した場合の実施の形態を図に基づいて説明する。なお、図1は外装缶の上部外周部に環状溝を形成する前の本発明の一実施例のニッケル−カドミウム蓄電池を模式的に示す図であり、図1(a)は断面図であり、図1(b)は上面図である。図2は外装缶の上部外周部に環状溝を形成した後の本発明の一実施例のニッケル−カドミウム蓄電池を模式的に示す図であり、図2(a)はその要部を拡大して示す断面図であり、図2(b)は上面図である。また、図3は外装缶の上部外周部に環状溝を形成する前の比較例(従来例)のニッケル−カドミウム蓄電池を模式的に示す図であり、図3(a)は断面図であり、図3(b)は上面図である。図4は外装缶の上部外周部に環状溝を形成した後の比較例(従来例)のニッケル−カドミウム蓄電池を模式的に示す図であり、図4(a)はその要部を拡大して示す断面図であり、図4(b)は上面図である。   Below, an embodiment at the time of applying the present invention to a nickel-cadmium storage battery is described based on figures. In addition, FIG. 1 is a figure which shows typically the nickel-cadmium storage battery of one Example of this invention before forming an annular groove in the upper outer peripheral part of an exterior can, FIG. 1 (a) is sectional drawing, FIG. 1B is a top view. FIG. 2 is a view schematically showing a nickel-cadmium storage battery according to an embodiment of the present invention after an annular groove is formed in the upper outer peripheral portion of the outer can, and FIG. FIG. 2B is a top view. Moreover, FIG. 3 is a figure which shows typically the nickel-cadmium storage battery of the comparative example (conventional example) before forming an annular groove in the upper outer periphery of the outer can, and FIG. 3 (a) is a sectional view. FIG. 3B is a top view. FIG. 4 is a diagram schematically showing a nickel-cadmium storage battery of a comparative example (conventional example) after forming an annular groove in the upper outer peripheral portion of the outer can, and FIG. FIG. 4B is a top view.

1.焼結式ニッケル正極
ニッケル粉末にカルボキシメチルセルロース等の増粘剤および水を混練してスラリーを調製し、このスラリーをパンチングメタルからなる導電性芯体に塗着した後、還元性雰囲気下で焼結してニッケル焼結基板を作製した。得られたニッケル焼結基板を比重が1.70の硝酸ニッケル水溶液に浸漬した後、乾燥させた。ついで、濃度が6mol/lで、温度が60℃の水酸化ナトリウム水溶液中に浸漬してアルカリ処理を行い、硝酸ニッケルを水酸化ニッケルに化学変化させて活物質化した。この後、水洗、乾燥を行った。このような活物質充填操作を所定回数繰り返して、ニッケル焼結基板の空孔内に水酸化ニッケルを主体とする活物質が所定量だけ充填した。乾燥後、所定の寸法に切断して焼結式ニッケル正極11を作製した。
1. Sintered Nickel Positive Electrode Thickener such as carboxymethyl cellulose and water are kneaded with nickel powder to prepare a slurry, and this slurry is applied to a conductive core made of punching metal and then sintered in a reducing atmosphere. Thus, a nickel sintered substrate was produced. The obtained nickel sintered substrate was immersed in an aqueous nickel nitrate solution having a specific gravity of 1.70 and then dried. Subsequently, it was immersed in an aqueous sodium hydroxide solution having a concentration of 6 mol / l and a temperature of 60 ° C. to perform alkali treatment, and nickel nitrate was chemically changed to nickel hydroxide to form an active material. Thereafter, washing with water and drying were performed. Such an active material filling operation was repeated a predetermined number of times to fill the pores of the nickel sintered substrate with a predetermined amount of an active material mainly composed of nickel hydroxide. After drying, the sintered nickel positive electrode 11 was manufactured by cutting into a predetermined size.

2.ペースト式カドミウム負極
酸化カドミウム粉末80質量%と、金属カドミウム粉末20質量%とを混合して混合活物質粉末とした。この後、この混合活物質粉末に、結着剤としてのメチルセルロース溶液にナイロン繊維などを添加した溶液を添加・混合して、負極活物質ペーストを調製した。ついで、この負極活物質ペーストをパンチングメタルよりなる導電性芯体の両面に塗着した後、乾燥させた。この後、所定の寸法に切断して、活物質が酸化カドミウムとなるペースト式カドミウム負極12を作製した。
2. Paste type cadmium negative electrode 80% by mass of cadmium oxide powder and 20% by mass of metal cadmium powder were mixed to obtain a mixed active material powder. Thereafter, a solution obtained by adding nylon fiber or the like to a methylcellulose solution as a binder was added to and mixed with the mixed active material powder to prepare a negative electrode active material paste. Next, this negative electrode active material paste was applied to both surfaces of a conductive core made of punching metal, and then dried. Then, it cut | disconnected to the predetermined dimension and produced the paste type cadmium negative electrode 12 in which an active material turns into cadmium oxide.

3.電極体
ついで、得られた焼結式ニッケル正極11とペースト式カドミウム負極12とを用いて、これらの間にセパレータ13を介在させて渦巻状に巻回して渦巻状電極群を形成した。なお、この渦巻状電極群の上端は焼結式ニッケル正極11の極板芯体であるパンチングメタルの端部が露出して正極用導電端縁11aが形成されている。一方、渦巻状電極群の下端はペースト式カドミウム負極12の極板芯体であるパンチングメタルの端部が露出して負極用導電端縁12aが形成されている。
3. Electrode body Next, the obtained sintered nickel positive electrode 11 and paste-type cadmium negative electrode 12 were wound in a spiral shape with a separator 13 interposed therebetween to form a spiral electrode group. Note that, at the upper end of the spiral electrode group, an end portion of a punching metal which is an electrode plate core of the sintered nickel positive electrode 11 is exposed to form a positive electrode conductive edge 11a. On the other hand, at the lower end of the spiral electrode group, the end portion of the punching metal that is the electrode plate core of the paste type cadmium negative electrode 12 is exposed to form a negative electrode conductive edge 12a.

ついで、渦巻状電極群の上部に正極集電体14を配置し、この正極集電体14の上の複数箇所に一対の溶接電極(図示せず)を載置して、これらの一対の溶接電極間に溶接電流を印加して、正極集電体14と正極用導電端縁11aとを抵抗溶接した。一方、渦巻状電極群の下部に負極集電体15を配置し、この負極集電体15の上の複数箇所に一対の溶接電極(図示せず)を載置して、これらの一対の溶接電極間に溶接電流を印加して、負極集電体15と負極用導電端縁12aとを抵抗溶接した。これにより、渦巻状電極群の上端に正極集電体14が溶接され、下端に負極集電体15が溶接された電極体(径が30.6mmで、高さが51mmのもの)を作製した。   Next, the positive electrode current collector 14 is disposed above the spiral electrode group, and a pair of welding electrodes (not shown) are placed at a plurality of locations on the positive electrode current collector 14, and the pair of weldings A welding current was applied between the electrodes to resistance weld the positive electrode current collector 14 and the positive electrode conductive edge 11a. On the other hand, the negative electrode current collector 15 is disposed below the spiral electrode group, and a pair of welding electrodes (not shown) are placed at a plurality of locations on the negative electrode current collector 15 so that the pair of weldings are performed. A welding current was applied between the electrodes, and the negative electrode current collector 15 and the negative electrode conductive edge 12a were resistance-welded. Thus, an electrode body (having a diameter of 30.6 mm and a height of 51 mm) in which the positive electrode current collector 14 was welded to the upper end of the spiral electrode group and the negative electrode current collector 15 was welded to the lower end was produced. .

4.ニッケル−カドミウム蓄電池
(1)実施例1
ついで、鉄にニッケルメッキを施した有底円筒形の金属外装缶(内径が31mmのもの)16を用意し、この外装缶16内に、上述のようして得られた電極体を収容した。この後、負極集電体15と外装缶16の底部(負極外部端子)とを抵抗溶接した。ついで、切断部17aを備えた平板円環状の絶縁リング17を用意し、この絶縁リング17を電極体の正極集電体14の外周部の上に載置した。なお、絶縁リング17はポリプロピレン(PP)やポリエチレン(PE)などのフィルムから形成されており、厚みが0.9mmで、外径が30.6mmで、内径が24.2mmで、切断部17aの幅が4.0mmとなるようになされている。この後、外装缶16の上部外周側に溝入れ加工を施して環状溝部16aを形成した。
4). Nickel-cadmium storage battery (1) Example 1
Next, a bottomed cylindrical metal outer can (with an inner diameter of 31 mm) 16 in which nickel was plated on iron was prepared, and the electrode body obtained as described above was accommodated in the outer can 16. Thereafter, the negative electrode current collector 15 and the bottom of the outer can 16 (negative electrode external terminal) were resistance welded. Next, a flat plate-shaped insulating ring 17 provided with a cutting portion 17a was prepared, and this insulating ring 17 was placed on the outer peripheral portion of the positive electrode current collector 14 of the electrode body. The insulating ring 17 is formed of a film such as polypropylene (PP) or polyethylene (PE), and has a thickness of 0.9 mm, an outer diameter of 30.6 mm, an inner diameter of 24.2 mm, and the cutting portion 17a. The width is set to 4.0 mm. Thereafter, the upper outer peripheral side of the outer can 16 was grooved to form an annular groove 16a.

この場合、外装缶16の缶底から54mmの位置に、外装缶16の側壁内面から1.7mmだけ缶内に突出するように溝入れ加工を施して環状溝部16aを形成した。ついで、外周部にガスケットが嵌着され、内部に弁板とスプリングからなる弁体を備えた封口体(図示せず)を用意した。ついで、正極集電体14より延出するリード部(図示せず)を封口体の内底部に溶接した後、外装缶16内にアルカリ電解液(水酸化リチウム(LiOH)と水酸化ナトリウム(NaOH)を含有した8Nの水酸化カリウム(KOH)水溶液)を注入した。ついで、外装缶16に形成された環状溝部16aに封口体を載置した後、外装缶16の開口端縁を内方にかしめて電池を封口することにより、実施例1のニッケル−カドミウム蓄電池Aを作製した。   In this case, an annular groove portion 16a was formed at a position 54 mm from the bottom of the outer can 16 so as to protrude into the can by 1.7 mm from the inner surface of the side wall of the outer can 16. Next, a sealing body (not shown) was prepared, in which a gasket was fitted on the outer periphery, and a valve body consisting of a valve plate and a spring was provided inside. Next, after a lead portion (not shown) extending from the positive electrode current collector 14 is welded to the inner bottom portion of the sealing body, an alkaline electrolyte (lithium hydroxide (LiOH) and sodium hydroxide (NaOH) is placed in the outer can 16. 8N aqueous potassium hydroxide (KOH) solution). Next, after the sealing body is placed in the annular groove 16a formed in the outer can 16, the opening edge of the outer can 16 is crimped inward to seal the battery, whereby the nickel-cadmium storage battery A of Example 1 is used. Was made.

(2)比較例1
ここで、ポリプロピレン(PP)やポリエチレン(PE)などのフィルムから形成され、厚みが0.9mmで、外径が30.6mmで、内径が24.2mmとなるように形成された絶縁リング18(図3参照)を用いたこと以外は上述と同様にして、比較例1のニッケル−カドミウム蓄電池Xを作製した。
(2) Comparative Example 1
Here, an insulating ring 18 (formed from a film such as polypropylene (PP) or polyethylene (PE) and having a thickness of 0.9 mm, an outer diameter of 30.6 mm, and an inner diameter of 24.2 mm) A nickel-cadmium storage battery X of Comparative Example 1 was produced in the same manner as described above except that (see FIG. 3) was used.

5.絶縁リングの変形数の観察
ついで、上述のようにして電池A,Xをそれぞれ100個ずつ作製するに際して、外装缶16の溝入れ加工後に、絶縁リング17(18)を観察して、絶縁リング17(18)に変形が生じた電池の個数を求めると下記の表1に示すような結果が得られた。

Figure 2007172976
5. Observation of Deformation Number of Insulating Ring Next, when 100 batteries A and X are produced as described above, the insulating ring 17 (18) is observed after grooving of the outer can 16, and the insulating ring 17 is observed. When the number of batteries in which deformation occurred in (18) was obtained, the results shown in Table 1 below were obtained.
Figure 2007172976

上記表1より明らかなように、電池Xにおいては20個(20%)の電池に絶縁リング18に変形が生じていることが分かる。この場合、外装缶16の側壁内面から缶内に突出するように溝入れ加工を施して環状溝部16aを形成する際に、環状溝部16aが絶縁リング18に押し当たる事態が生じて絶縁リング18が移動するようになる。これにより、図4に示すように、絶縁リング18に波打などの変形が生じ、最悪の場合は、図4のA部で示すように、正極集電体14の上面と環状溝部16aの下端面との間からはみ出てしまうという問題を生じた。   As is clear from Table 1 above, it can be seen that in the battery X, the insulation ring 18 is deformed in 20 (20%) batteries. In this case, when the groove portion 16a is formed by grooving so as to protrude from the inner wall of the outer can 16 into the can, the annular groove portion 16a is pressed against the insulating ring 18 so that the insulating ring 18 is To move. As a result, as shown in FIG. 4, deformation such as undulation occurs in the insulating ring 18, and in the worst case, as shown by part A in FIG. 4, the upper surface of the positive electrode current collector 14 and the bottom of the annular groove 16 a The problem that it protruded from between the end faces occurred.

一方、電池Aにおいては、絶縁リング17に変形が生じたものは0であることが分かる。これは、電池Aに用いられた絶縁リング17には所定幅の切断部17aが形成されているため、外装缶16の側壁内面から缶内に突出するように溝入れ加工を施して環状溝部16aを形成する際に、環状溝部16aが絶縁リング17に押し当たっても、図2(b)に示すように、絶縁リング17は縮径するように移動することとなる。これにより、絶縁リング17は正極集電体14の上面と環状溝部16aの下端面との間からはみ出てしまうという問題を生じることがない。この結果、当該電池Aが外部から衝撃を受けても、正極集電体14と外装缶16とが接触して内部短絡を引き起こすという事態が防止できるようになる。   On the other hand, in the battery A, it can be seen that the deformation of the insulating ring 17 is zero. This is because the insulating ring 17 used in the battery A is formed with a cut portion 17a having a predetermined width. Therefore, the annular groove portion 16a is formed by grooving so as to protrude from the inner surface of the side wall of the outer can 16 into the can. Even when the annular groove 16a is pressed against the insulating ring 17 when forming the insulating ring 17, the insulating ring 17 moves so as to reduce the diameter, as shown in FIG. Thereby, the problem that the insulating ring 17 protrudes from between the upper surface of the positive electrode collector 14 and the lower end surface of the annular groove 16a does not occur. As a result, even when the battery A receives an impact from the outside, it is possible to prevent a situation in which the positive electrode current collector 14 and the outer can 16 are brought into contact to cause an internal short circuit.

なお、上述した実施形態においては、絶縁リング17に4.0mm幅の切断部17aを形成する例について説明したが、切断部17aの切断幅についてはこれに限定されるものでない。この場合、溝入れ加工を施して環状溝部16aを形成する際に、環状溝部16aが絶縁リング17に押し当たって絶縁リング17が縮径したときに、切断部17aの両端部ができるだけ接近し、かつ重ならないような幅に設定するのが望ましい。   In the above-described embodiment, the example in which the cut portion 17a having a width of 4.0 mm is formed in the insulating ring 17 is described. However, the cut width of the cut portion 17a is not limited thereto. In this case, when forming the annular groove portion 16a by performing grooving, when the annular groove portion 16a presses against the insulating ring 17 and the insulating ring 17 is reduced in diameter, both ends of the cutting portion 17a are as close as possible, It is desirable to set the width so as not to overlap.

なお、上述した実施形態においては、正極に焼結式電極を用い、負極にペースト式電極を用いた例について説明したが、正極および負極に焼結式電極を用いたり、あるいは正極および負極の両方にペースト式などの非焼結式電極を用いてもよい。また、上述した実施形態においては、本発明をニッケル−カドミウム蓄電池に適用する例について説明したが、本発明はニッケル−水素化物蓄電池などのアルカリ蓄電池にも適用できることは明らかである。   In the above-described embodiment, an example in which a sintered electrode is used for the positive electrode and a paste electrode is used for the negative electrode has been described. However, a sintered electrode is used for the positive electrode and the negative electrode, or both the positive electrode and the negative electrode are used. Alternatively, a non-sintered electrode such as a paste type may be used. Moreover, in embodiment mentioned above, although the example which applies this invention to a nickel-cadmium storage battery was demonstrated, it is clear that this invention is applicable also to alkaline storage batteries, such as a nickel-hydride storage battery.

外装缶の上部外周部に環状溝を形成する前の本発明の一実施例のニッケル−カドミウム蓄電池を模式的に示す図であり、図1(a)は断面図であり、図1(b)は上面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows typically the nickel cadmium storage battery of one Example of this invention before forming an annular groove in the upper outer peripheral part of an exterior can, FIG.1 (a) is sectional drawing, FIG.1 (b) Is a top view. 外装缶の上部外周部に環状溝を形成した後の本発明の一実施例のニッケル−カドミウム蓄電池を模式的に示す図であり、図2(a)はその要部を拡大して示す断面図であり、図2(b)は上面図である。It is a figure which shows typically the nickel-cadmium storage battery of one Example of this invention after forming the annular groove in the upper outer peripheral part of an exterior can, FIG.2 (a) is sectional drawing which expands and shows the principal part FIG. 2B is a top view. 外装缶の上部外周部に環状溝を形成する前の比較例(従来例)のニッケル−カドミウム蓄電池を模式的に示す図であり、図3(a)は断面図であり、図3(b)は上面図である。It is a figure which shows typically the nickel-cadmium storage battery of the comparative example (conventional example) before forming an annular groove in the upper outer peripheral part of an exterior can, FIG.3 (a) is sectional drawing, FIG.3 (b) Is a top view. 外装缶の上部外周部に環状溝を形成した後の比較例(従来例)のニッケル−カドミウム蓄電池を模式的に示す図であり、図4(a)はその要部を拡大して示す断面図であり、図4(b)は上面図である。It is a figure which shows typically the nickel-cadmium storage battery of the comparative example (former example) after forming the annular groove in the upper outer peripheral part of an exterior can, and FIG. 4 (a) is sectional drawing which expands and shows the principal part FIG. 4B is a top view.

符号の説明Explanation of symbols

11…焼結式ニッケル正極、11a…正極用導電端縁、12…ペースト式カドミウム負極、12a…負極用導電端縁、13…セパレータ、14…正極集電体、15…負極集電体、16…外装缶、16a…環状溝部、17…絶縁リング、17a…切断部、18…絶縁リング
DESCRIPTION OF SYMBOLS 11 ... Sintered nickel positive electrode, 11a ... Electroconductive edge for positive electrodes, 12 ... Paste type cadmium negative electrode, 12a ... Conductive edge for negative electrodes, 13 ... Separator, 14 ... Positive electrode collector, 15 ... Negative electrode collector, 16 ... outer can, 16a ... annular groove, 17 ... insulating ring, 17a ... cut part, 18 ... insulating ring

Claims (2)

正極とセパレータと負極とからなる電極群を含む電極体とアルカリ電解液とを収容し、上部外周部に環状溝が形成された外装缶の開口部に封口体が配置されて密封されたアルカリ蓄電池であって、
前記外装缶の上部外周部に形成された環状溝の下端部と前記電極体の上面との間に切断部を備えた円環状の絶縁リングが配置されており、
前記絶縁リングは前記環状溝からの押圧力により前記切断部の両端部が接近していることを特徴とするアルカリ蓄電池。
An alkaline storage battery that contains an electrode body including an electrode group composed of a positive electrode, a separator, and a negative electrode, and an alkaline electrolyte, and is sealed with a sealing member disposed in an opening of an outer can in which an annular groove is formed in an upper outer peripheral portion. Because
An annular insulating ring provided with a cutting portion is disposed between the lower end portion of the annular groove formed in the upper outer peripheral portion of the outer can and the upper surface of the electrode body,
2. The alkaline storage battery according to claim 1, wherein both ends of the cutting portion are close to each other by the pressing force from the annular groove.
正極とセパレータと負極とからなる電極群を含む電極体とアルカリ電解液とを外装缶内に挿入し、当該外装缶の上部外周部に溝入れ加工を施して環状溝を形成した後、前記外装缶の開口部に封口体を配置して密封するアルカリ蓄電池の製造方法であって、
前記電極体の上部に切断部が形成された円環状の絶縁リングを配置する絶縁リング配置工程と、
前記外装缶の上部外周部に溝入れ加工を施して環状溝を形成するとともに、当該環状溝からの押圧力による前記絶縁リングの縮径に基づき前記切断部の両端部を接近させる環状溝形成工程と、
前記環状溝の上に封口体を配置した後、当該封口体を気密に封止する封口工程とを備えたことを特徴とするアルカリ蓄電池の製造方法。
After inserting an electrode body including an electrode group composed of a positive electrode, a separator, and a negative electrode and an alkaline electrolyte into an outer can, and forming an annular groove by grooving the upper outer periphery of the outer can, the outer casing A method for producing an alkaline storage battery in which a sealing body is disposed and sealed in an opening of a can,
An insulating ring arrangement step of arranging an annular insulating ring in which a cut portion is formed on the upper part of the electrode body;
An annular groove forming step of forming an annular groove by grooving the upper outer peripheral portion of the outer can and bringing the both ends of the cutting portion closer based on the reduced diameter of the insulating ring due to the pressing force from the annular groove When,
An alkaline storage battery manufacturing method comprising: a sealing step of sealing the sealing body in an airtight manner after disposing the sealing body on the annular groove.
JP2005367992A 2005-12-21 2005-12-21 Alkaline storage battery and manufacturing method therefor Withdrawn JP2007172976A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005367992A JP2007172976A (en) 2005-12-21 2005-12-21 Alkaline storage battery and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005367992A JP2007172976A (en) 2005-12-21 2005-12-21 Alkaline storage battery and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2007172976A true JP2007172976A (en) 2007-07-05

Family

ID=38299262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005367992A Withdrawn JP2007172976A (en) 2005-12-21 2005-12-21 Alkaline storage battery and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2007172976A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009224094A (en) * 2008-03-14 2009-10-01 Sanyo Electric Co Ltd Square sealed battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009224094A (en) * 2008-03-14 2009-10-01 Sanyo Electric Co Ltd Square sealed battery

Similar Documents

Publication Publication Date Title
JP5004452B2 (en) Battery manufacturing method
JP7128666B2 (en) secondary battery
JP2018045994A (en) Cylindrical alkaline secondary battery
JP5127250B2 (en) Cylindrical storage battery and manufacturing method thereof
JP5159076B2 (en) Cylindrical storage battery and manufacturing method thereof
JP5364512B2 (en) Cylindrical battery
JP3926147B2 (en) battery
JP2018055812A (en) Current collecting lead, method for producing alkaline secondary battery including the current collecting lead, and alkaline secondary battery produced by this production method
JP2010061892A (en) Secondary battery with spirally-rolled electrode group
JP2000251871A (en) Alkaline secondary battery
JP5196824B2 (en) Cylindrical battery and manufacturing method thereof
JP2007172976A (en) Alkaline storage battery and manufacturing method therefor
CN110931698B (en) Secondary battery and method for manufacturing the same
JP2020068172A (en) Secondary battery
JP5110889B2 (en) Nickel metal hydride secondary battery
JP4698159B2 (en) Sealed battery and manufacturing method thereof
JP2001273920A (en) Storage battery and its manufacturing method
JP3588249B2 (en) Alkaline storage battery and method for manufacturing the same
JP6835451B2 (en) Current collector reed, manufacturing method of secondary battery including this current collector reed, and secondary battery
JP2015220118A (en) Alkali secondary battery
JP2002298824A (en) Sealed battery and its production method
JP2013206745A (en) Cylindrical storage battery
JP2001266899A (en) Lengthy electrode plate, cylindrical battery and their manufacturing method
JP4610395B2 (en) battery
JP2001126710A (en) Alkaline storage battery and method of manufacturing the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090303