[go: up one dir, main page]

JP2007170614A - Rolling bearing - Google Patents

Rolling bearing Download PDF

Info

Publication number
JP2007170614A
JP2007170614A JP2005372176A JP2005372176A JP2007170614A JP 2007170614 A JP2007170614 A JP 2007170614A JP 2005372176 A JP2005372176 A JP 2005372176A JP 2005372176 A JP2005372176 A JP 2005372176A JP 2007170614 A JP2007170614 A JP 2007170614A
Authority
JP
Japan
Prior art keywords
bearing
cage
ring
surface treatment
inner ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005372176A
Other languages
Japanese (ja)
Inventor
Hisashi Kawamura
久 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2005372176A priority Critical patent/JP2007170614A/en
Publication of JP2007170614A publication Critical patent/JP2007170614A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive rolling bearing usable continuously with fixed performance for a long time by improving wear resistance of the bearing. <P>SOLUTION: This rolling bearing A is provided with bearing rings 2, 4 arranged opposingly so as to rotate relatively, a plurality of rolling bodies 6 assembled in between raceway surfaces 2a and 4a formed in each bearing ring, respectively, so as to roll freely, and a cage 8 holding the plurality of rolling bodies rotatably. When degree of pointedness and degree of distortion in statistical distribution of surface roughness of surfaces of the bearing rings and a surface of the cage are Rk and Rsk, respectively, the working for satisfying Rk<20 and Rsk<0 is applied on at least a slide-contact face 2s of the bearing rings for the cage as first surface treatment. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、例えば、ジェットエンジンやガスタービンエンジンなど高速回転で運転される装置の主軸を軸支する軸受の耐磨耗性の向上に関する。   The present invention relates to an improvement in wear resistance of a bearing that supports a main shaft of a device that operates at a high speed, such as a jet engine or a gas turbine engine.

このような高速回転で運転される装置の主軸を軸支する転がり軸受は、軌道輪(内輪及び外輪)の保持器に対する摺接面と保持器の軌道輪に対する摺接面とが、例えば、装置の振動により摩擦され、摩耗、損傷してしまう場合がある。このような摩耗や損傷は、例えば、潤滑油中に硬質ごみが混入した場合や、潤滑油が不足した場合、さらに激しくなってしまう。
従来から、このような摩耗や損傷を防止するための方策として、例えば、軌道輪や保持器に表面処理を施し、互いの摺接面に対して被膜を形成する方策がある。この場合、かかる被膜としては、TiN(窒化チタン)被膜が一例として挙げられ、当該TiN(窒化チタン)被膜には、硬質で、滑り摩耗に強いという特長がある(特許文献1参照)。しかしながら、軌道輪や保持器に対して、当該TiN被膜形成処理を施す場合、例えば、通常の軸受鋼(高炭素クロム軸受鋼やステンレス鋼など)をその材料として使用した転がり軸受(被膜を施さない軸受)と比較して、当該TiN被膜形成処理の分だけ製造工程が長く、製造コストも高くなってしまう。なお、TiN被膜を形成する場合、その下地である軌道輪及び保持器の表面(相互の摺接面)の粗さ(平均二乗粗さ(Ra値))は、例えば、Ra≦3μm以下に加工されているに過ぎない。
The rolling bearing that supports the main shaft of the device operated at such a high speed rotation has a sliding contact surface with respect to the cage of the bearing ring (inner ring and outer ring) and a sliding contact surface with respect to the bearing ring of the cage. May be rubbed, worn, or damaged by vibrations. Such wear and damage becomes even more severe when, for example, hard dust is mixed in the lubricating oil or when the lubricating oil is insufficient.
Conventionally, as a measure for preventing such wear and damage, for example, there has been a measure in which a surface treatment is performed on a raceway ring or a cage to form a film on the sliding contact surfaces. In this case, an example of such a coating is a TiN (titanium nitride) coating, and the TiN (titanium nitride) coating is characterized by being hard and resistant to sliding wear (see Patent Document 1). However, when the TiN film formation treatment is applied to the bearing ring and the cage, for example, a rolling bearing using normal bearing steel (high carbon chrome bearing steel, stainless steel, etc.) as its material (not coated) Compared with the bearing), the manufacturing process is longer and the manufacturing cost is increased by the TiN film forming process. When forming a TiN film, the roughness (mean square roughness (Ra value)) of the surfaces of the bearing ring and the cage (the mutual contact surfaces) of the TiN film is processed to Ra ≦ 3 μm or less, for example. It has only been done.

また、例えば、TiN被膜が形成された摺接面が装置の振動によって摩耗した場合、その摩耗粉自体が硬質であるため、当該摩耗粉が軌道輪と保持器との摺接面間に入り込むと、当該摺接面をさらに摩耗、損傷させてしまう虞がある。この結果、例えば、軸受寿命を低下させるなど、軸受を長期に亘って一定の性能で連続して使用することが困難になってしまう。
特開2001−65569号公報
Further, for example, when the sliding contact surface on which the TiN film is formed is worn by vibration of the apparatus, the wear powder itself is hard, and therefore when the wear powder enters between the sliding contact surfaces of the race and the cage. The sliding contact surface may be further worn and damaged. As a result, it becomes difficult to continuously use the bearing with a constant performance over a long period of time, for example, to reduce the bearing life.
JP 2001-65569 A

本発明は、このような課題を解決するためになされており、その目的は、軸受の耐摩耗性の向上を図ることで、軸受を長期に亘って一定の性能で連続して使用することが可能な低コストの転がり軸受を提供することにある。   The present invention has been made in order to solve such a problem, and an object thereof is to improve the wear resistance of the bearing so that the bearing can be used continuously with a constant performance over a long period of time. It is to provide a possible low cost rolling bearing.

このような目的を達成するために、本発明の転がり軸受は、相対回転可能に対向して配置された軌道輪と、各軌道輪にそれぞれ形成された軌道面間に転動自在に組み込まれた複数の転動体と、複数の転動体を回転自在に保持する保持器とを備え、軌道輪の表面及び保持器の表面の表面粗さの統計分布における尖度をRk、歪度をRskとした場合、少なくとも軌道輪の保持器に対する摺接面には、第1の表面処理としてRk<20且つRsk<0となる加工が施されている。   In order to achieve such an object, the rolling bearing of the present invention is incorporated in a freely rotatable manner between a raceway arranged so as to be relatively rotatable and a raceway surface formed on each raceway. A plurality of rolling elements and a cage that rotatably holds the plurality of rolling elements are provided, the kurtosis in the statistical distribution of the surface roughness of the surface of the bearing ring and the surface of the cage is Rk, and the skewness is Rsk. In this case, at least the slidable contact surface of the bearing ring with respect to the cage is processed so that Rk <20 and Rsk <0 as the first surface treatment.

このような構成において、前記第1の表面処理に加えてさらに、軌道輪の表面及び保持器の表面のうち、少なくとも軌道輪の保持器に対する摺接面には、第2の表面処理として、窒化処理が施されている。また、前記第1の表面処理に加えてさらに、軌道輪の表面及び保持器の表面のうち、少なくとも軌道輪の保持器に対する摺接面には、第2の表面処理が施され、カーボン被膜が形成されている。   In such a configuration, in addition to the first surface treatment, at least the sliding contact surface of the raceway ring and the cage surface with respect to the raceway cage is subjected to nitriding as a second surface treatment. Processing has been applied. Further, in addition to the first surface treatment, a second surface treatment is applied to at least a sliding surface of the raceway ring surface and the cage surface with respect to the raceway ring cage so that the carbon coating is formed. Is formed.

本発明によれば、軸受の耐摩耗性の向上を図ることで、軸受を長期に亘って一定の性能で連続して使用することが可能な低コストの転がり軸受を提供することができる。   According to the present invention, by improving the wear resistance of the bearing, it is possible to provide a low-cost rolling bearing capable of continuously using the bearing with a constant performance over a long period of time.

以下、本発明の一実施形態に係る転がり軸受について、添付図面を参照して説明する。なお、本発明は、任意の構成の転がり軸受に対して適用することができ、本発明が適用される軸受の構成(例えば、内外輪、転動体及び保持器の形態や大きさなど)は特に限定されないが、一例として、図1に示す軸受構成の転がり軸受Aを想定して以下、説明する。
図1に示すように、本実施形態の転がり軸受Aは、相対回転可能に対向して配置された軌道輪(内輪2及び外輪4)と、内輪2の対向面2sに形成された軌道面2aと外輪4の対向面4sに形成された軌道面4a間に転動自在に組み込まれた複数の転動体(玉)6と、複数の転動体(玉)6を1つずつ回転自在に保持する保持器8とを備えている。
Hereinafter, a rolling bearing according to an embodiment of the present invention will be described with reference to the accompanying drawings. The present invention can be applied to a rolling bearing having an arbitrary configuration, and the configuration of the bearing to which the present invention is applied (for example, the form and size of inner and outer rings, rolling elements, and cages) is particularly great. Although not limited, the rolling bearing A having the bearing configuration shown in FIG. 1 will be described below as an example.
As shown in FIG. 1, the rolling bearing A of this embodiment includes a raceway 2a formed on a raceway (an inner ring 2 and an outer race 4) facing each other so as to be relatively rotatable, and a facing surface 2s of the inner race 2. A plurality of rolling elements (balls) 6 and a plurality of rolling elements (balls) 6 are rotatably held one by one between the raceway surface 4a formed on the opposite surface 4s of the outer ring 4 and the outer ring 4. And a cage 8.

なお、図1に示す構成において、内輪2は、所定位置で軸方向に分割可能な構成となっている。この場合、内輪2は、一例として、内輪2の幅の略中央位置で第1の内輪10と第2の内輪12とに2分割可能となっており、当該第1の内輪10と第2の内輪12とが、例えば接着や溶接などにより接合されて、1つの内輪2を構成している。また、第1の内輪10及び第2の内輪12には、それぞれ一例として所定の曲率半径を成す凹曲面状の軌道面10a及び軌道面12aが形成され、これら軌道面10a,12aが連結されて内輪2の軌道面2aを構成している。なお、外輪4の軌道面4aは、第1の内輪10の軌道面10a及び第2の内輪12の軌道面12aとそれぞれ対向するように形成されている。   In addition, in the structure shown in FIG. 1, the inner ring | wheel 2 becomes a structure which can be divided | segmented into an axial direction at a predetermined position. In this case, as an example, the inner ring 2 can be divided into a first inner ring 10 and a second inner ring 12 at a substantially central position of the width of the inner ring 2, and the first inner ring 10 and the second inner ring 12 can be divided. The inner ring 12 is joined to the inner ring 2 by, for example, adhesion or welding. In addition, the first inner ring 10 and the second inner ring 12 are formed with a concave curved raceway surface 10a and a raceway surface 12a each having a predetermined radius of curvature as an example, and these raceway surfaces 10a and 12a are connected to each other. A raceway surface 2a of the inner ring 2 is configured. The raceway surface 4 a of the outer ring 4 is formed so as to face the raceway surface 10 a of the first inner ring 10 and the raceway surface 12 a of the second inner ring 12.

このような構成において、軸受Aは、各転動体(玉)6が、内輪2の軌道面2a(第1の内輪10の軌道面10a及び第2の内輪12の軌道面12a)と外輪4の軌道面4aにそれぞれ1点で接触する、いわゆる3点接触の軸受となっている。なお、内輪2を第1の内輪10と第2の内輪12との分割構成ではなく、これらを一体的に構成した一体型の内輪2としてもよい。また、内輪2に代えて若しくは内輪2とともに、外輪4を分割して構成してもよい。   In such a configuration, each of the rolling elements (balls) 6 of the bearing A includes the raceway surface 2 a of the inner ring 2 (the raceway surface 10 a of the first inner ring 10 and the raceway surface 12 a of the second inner ring 12) and the outer ring 4. This is a so-called three-point contact bearing that contacts the raceway surface 4a at one point. The inner ring 2 may be an integrated inner ring 2 that is formed integrally with the first inner ring 10 and the second inner ring 12 instead of being divided into the first inner ring 10 and the second inner ring 12. Further, the outer ring 4 may be divided and configured in place of the inner ring 2 or together with the inner ring 2.

また、外輪4は、その外径部の両端が平坦状に周方向に沿って連続して面取りされている。さらに、外輪4の外径部の一端側(例えば、図1(a)の右側)の外周面4gには周方向に沿って、環状に且つ連続してフランジ部4fが設けられている。この場合、当該フランジ部4fには、周上の所定位置に当該フランジ部4fを軸方向に貫通する複数の貫通孔4kが形成されており、例えば、当該貫通孔4kに固定部材(例えば、いずれも図示しないボルト、ビス及びリベットなど)を挿通し、当該固定部材をハウジング(図示しない)と締結することによって、軸受Aをハウジングに対して固定することができる。   Further, the outer ring 4 is chamfered continuously along the circumferential direction at both ends of the outer diameter portion thereof in a flat shape. Furthermore, an outer peripheral surface 4g on one end side (for example, the right side in FIG. 1A) of the outer diameter portion of the outer ring 4 is provided with a flange portion 4f in an annular and continuous manner along the circumferential direction. In this case, the flange portion 4f is formed with a plurality of through-holes 4k penetrating the flange portion 4f in the axial direction at predetermined positions on the circumference. The bearing A can be fixed to the housing by inserting a bolt (not shown), a screw, a rivet, etc.) and fastening the fixing member to the housing (not shown).

また、保持器8は、内部が中空の円筒状を成しており、その内周面の両端部(内周端面)8a,8aが対向する内輪2の対向面2s,2sと摺接することで、内輪2に案内され、内輪2とともに回転し、内外輪間を公転する。
なお、保持器8には、各転動体6を保持するポケット8pと、隣り合うポケット8pを連結する柱部8hとが周方向に沿って交互に設けられている。また、柱部8hの内周面には、内周端面8a,8aからそれぞれ連続して2つの内周凹曲面8b,8bが形成され、これら内周凹曲面8b,8bに連続して1つの内周凸状部8cが当該内周面の略中央位置に形成されている。また、柱部8hの外周面には、外輪4の対向面4s,4sと対向する外周対向面8s,8sからそれぞれ連続して1つの外周凸状部8tが当該外周面の略中央位置に形成されている。
この場合、内周凸状部8cは、内周端面8aよりも内輪2方向へ所定の長さだけ突出して形成されており、保持器8を内外輪間に組み込み、内周端面8aが内輪2の対向面2sに摺接した状態において、内周凸状部8cの先端8dと内輪2の軌道面2a(10a,12a)との間に所定の間隔を空けることができるように構成されている。また、外周凸状部8tは、外周対向面8sよりも外輪4方向へ所定の長さだけ突出して形成されており、同様に、内周端面8aが内輪2の対向面2sに摺接した状態において、外周凸状部8tの先端8uと外輪4の軌道面4aとの間に所定の間隔を空けることができるように構成されている。
Further, the cage 8 has a hollow cylindrical shape inside, and both end portions (inner peripheral end surfaces) 8a, 8a of the inner peripheral surface thereof are in sliding contact with the opposing surfaces 2s, 2s of the inner ring 2 facing each other. , Guided by the inner ring 2, rotates together with the inner ring 2, and revolves between the inner and outer rings.
The cage 8 is alternately provided with pockets 8p for holding the respective rolling elements 6 and column portions 8h for connecting adjacent pockets 8p along the circumferential direction. Further, on the inner peripheral surface of the column portion 8h, two inner peripheral concave curved surfaces 8b and 8b are formed continuously from the inner peripheral end surfaces 8a and 8a, respectively, and one continuous continuous curved surface 8b and 8b is provided. An inner peripheral convex portion 8c is formed at a substantially central position of the inner peripheral surface. Further, on the outer peripheral surface of the column portion 8h, one outer peripheral convex portion 8t is formed at a substantially central position of the outer peripheral surface continuously from the outer peripheral facing surfaces 8s and 8s facing the opposing surfaces 4s and 4s of the outer ring 4. Has been.
In this case, the inner peripheral convex portion 8 c is formed to protrude from the inner peripheral end surface 8 a by a predetermined length in the direction of the inner ring 2, the cage 8 is assembled between the inner and outer rings, and the inner peripheral end surface 8 a is opposed to the inner ring 2. A predetermined interval can be provided between the tip 8d of the inner circumferential convex portion 8c and the raceway surface 2a (10a, 12a) of the inner ring 2 in a state of sliding contact with the surface 2s. Further, the outer peripheral convex portion 8t is formed to protrude from the outer peripheral facing surface 8s by a predetermined length in the direction of the outer ring 4, and similarly, the inner peripheral end surface 8a is in sliding contact with the opposing surface 2s of the inner ring 2. In FIG. 5, a predetermined interval can be provided between the tip 8u of the outer peripheral convex portion 8t and the raceway surface 4a of the outer ring 4.

本実施形態において、軸受Aは、その軌道輪(内輪2及び外輪4)の表面、及び保持器8の表面のそれぞれの表面粗さの統計分布における尖度(クルトシス)をRk、歪度(スキューネス)をRskとした場合、少なくとも軌道輪の保持器8に対する摺接面には、表面処理(第1の表面処理)としてRk<20且つRsk<0となる加工が施されている。図1に示す構成においては、軸受Aには、一例として、内輪2の対向面2s(具体的には、保持器8に対する摺接面)に表面処理(第1の表面処理)としてRk<20且つRsk<0となる加工が施されている。   In this embodiment, the bearing A has Rk and skewness (skewness) in the statistical distribution of the surface roughness of the surface of the raceway (inner ring 2 and outer ring 4) and the surface of the cage 8. ) Is Rsk, at least the slidable contact surface of the bearing ring with respect to the cage 8 is processed so that Rk <20 and Rsk <0 as surface treatment (first surface treatment). In the configuration shown in FIG. 1, as an example, the bearing A has a surface treatment (first surface treatment) Rk <20 on the opposing surface 2 s of the inner ring 2 (specifically, the sliding surface with respect to the cage 8). In addition, processing is performed so that Rsk <0.

なお、当該表面処理(第1の表面処理)を施す際の加工方法は、内輪2の対向面2sの尖度(Rk)及び歪度(Rsk)の値が、Rk<20且つRsk<0となるように加工できる方法であればよく、ここでは特に限定しない。例えば、当該内輪2の対向面2sに表面処理として、所定の研削処理を施すことで、尖度(Rk)及び歪度(Rsk)の値が、Rk<20且つRsk<0となるように、当該内輪2の対向面2sを加工すればよい。さらに必要に応じて、所定の研磨処理を施してもよい。この場合、所定の研削処理及び研磨処理に当たっては、例えば、各種のグラインダやポリッシャなどを用いればよい。また、尖度(Rk)及び歪度(Rsk)の値の下限値は、例えば、軸受Aの運転条件や製造コストなどにより所定の値に設定されるため、ここでは特に限定しない。   The processing method for performing the surface treatment (first surface treatment) is such that the kurtosis (Rk) and the skewness (Rsk) of the facing surface 2s of the inner ring 2 are Rk <20 and Rsk <0. Any method can be used as long as it can be processed, and there is no particular limitation here. For example, by performing a predetermined grinding process as a surface treatment on the facing surface 2s of the inner ring 2, the values of kurtosis (Rk) and skewness (Rsk) are Rk <20 and Rsk <0. The facing surface 2s of the inner ring 2 may be processed. Furthermore, you may perform a predetermined | prescribed grinding | polishing process as needed. In this case, for example, various grinders and polishers may be used for the predetermined grinding process and polishing process. Further, the lower limit values of the kurtosis (Rk) and the skewness (Rsk) are set to predetermined values depending on, for example, the operating conditions of the bearing A, the manufacturing cost, etc., and are not particularly limited here.

ここで、本実施形態に係る表面処理(第1の表面処理)として、その表面の尖度(Rk)及び歪度(Rsk)の値が、Rk<20且つRsk<0となる加工が施された所定の試料の耐摩耗性能について試験を行い、検証した。当該試験内容及び試験結果について、以下、説明する。
当該試験においては、試料として2つの回転リングを用意し、一方の回転リングの外径面(外周面)に表面処理として、Rk<20且つRsk<0となるように研削加工を施し(以下、当該加工を施した回転リングを本件リングという)、他方の回転リングの外径面(外周面)に表面処理として、Rk>20且つRsk>0となるように研削加工を施した(以下、当該加工を施した回転リングを比較リングという)。そして、本件リング及び比較リングを、所定条件のもとに所定速度でそれぞれ回転させた場合の動摩擦係数を比較することで、当該本件リングと比較リングの耐摩耗性能について検証した。
Here, as the surface treatment (first surface treatment) according to the present embodiment, processing is performed in which the kurtosis (Rk) and skewness (Rsk) values of the surface are Rk <20 and Rsk <0. In addition, a test was conducted to verify the wear resistance performance of a predetermined sample. The test contents and test results will be described below.
In the test, two rotating rings were prepared as samples, and the outer diameter surface (outer peripheral surface) of one rotating ring was subjected to a grinding process so that Rk <20 and Rsk <0 (hereinafter, referred to as “surface treatment”). The rotating ring subjected to the processing is referred to as the present ring), and the outer diameter surface (outer peripheral surface) of the other rotating ring was subjected to grinding so as to satisfy Rk> 20 and Rsk> 0 (hereinafter, the corresponding ring) A processed rotating ring is called a comparative ring). Then, the wear resistance performance of the case ring and the comparison ring was verified by comparing the dynamic friction coefficients when the case ring and the comparison ring were respectively rotated at a predetermined speed under a predetermined condition.

具体的には、図1(b)に示すようなすべり試験機を用いて、当該試験機の所定位置に負荷用ウエイトWをセットし、回転リングR(本件リング及び比較リング)に対してピンPから20〜100(N)の荷重を加えた状態で、当該回転リングRを外嵌した軸Sを1分間に最大20000回転する速度(最大速度20000(rpm))で回転させた。そして、この際の回転リングRの動摩擦係数を、回転リングRとして本件リング及び比較リングを適用した場合についてそれぞれ測定した。なお、試験中は、回転リングRが回転する内部空間の温度をヒーターHにより室温(常温)〜250℃の範囲で調整した。また、試験中、回転リングRに対して潤滑油(例えば、MIL-L-23699相当油(MIL:MILitary Specifications and Standards 米軍規格))を噴出(ジェット潤滑)し、かかるジェット潤滑により、当該回転リングRが滑らかに回転し続けるようにした。なお、この場合の潤滑油の給油温度は、最大150℃とした。   Specifically, using a slip tester as shown in FIG. 1 (b), a load weight W is set at a predetermined position of the tester, and a pin is placed on the rotating ring R (the present ring and the comparison ring) In a state where a load of 20 to 100 (N) was applied from P, the shaft S on which the rotating ring R was fitted was rotated at a maximum speed of 20000 rotation per minute (maximum speed 20000 (rpm)). And the dynamic friction coefficient of the rotating ring R at this time was measured about the case where this ring and a comparison ring are applied as the rotating ring R, respectively. During the test, the temperature of the internal space where the rotating ring R rotates was adjusted by the heater H in the range of room temperature (room temperature) to 250 ° C. In addition, during the test, a lubricant (for example, MIL-L-23699 equivalent oil (MIL: Military Specifications and Standards)) is jetted (jet lubricated) to the rotating ring R, and the rotation is performed by the jet lubrication. The ring R continued to rotate smoothly. In this case, the lubricating oil supply temperature was set to 150 ° C. at the maximum.

測定の結果、所定の回転速度(すべり速度)における回転リングR(本件リング及び比較リング)の動摩擦係数の値を、図1(c)に示す。同図から明らかなように、すべり速度がそれぞれ秒速0、20、40、60、80、100メートル(m/sec)の各速度の場合において、本件リングの動摩擦係数の値は、いずれも比較リングの動摩擦係数の値よりも小さい。また、すべり速度が秒速20メートル(m/sec)以上の速度においては、本件リングの動摩擦係数の値は、0.12程度で安定している(この間、比較リングの動摩擦係数の値は、0.30程度)。
このように、本実施形態に係る表面処理(第1の表面処理)を施した本件リングによれば、当該第1の表面処理を施さない比較リングと比べて、その動摩擦係数の値が顕著に低下することが検証され、優れた耐摩耗性能を発揮できることが上述の試験により、確認された。
As a result of the measurement, the value of the dynamic friction coefficient of the rotating ring R (the present ring and the comparative ring) at a predetermined rotating speed (sliding speed) is shown in FIG. As is clear from the figure, when the sliding speed is 0, 20, 40, 60, 80, and 100 meters (m / sec) per second, the dynamic friction coefficient values of this ring are all comparative rings. It is smaller than the value of the dynamic friction coefficient. In addition, when the sliding speed is 20 meters per second (m / sec) or more, the value of the dynamic friction coefficient of the present ring is stable at about 0.12 (during this time, the value of the dynamic friction coefficient of the comparison ring is 0). About 30).
Thus, according to the present ring subjected to the surface treatment (first surface treatment) according to the present embodiment, the value of the dynamic friction coefficient is conspicuous as compared with the comparison ring not subjected to the first surface treatment. It was verified by the above-mentioned test that it was verified that it was reduced and that excellent wear resistance performance could be exhibited.

また、本実施形態に係る表面処理(第1の表面処理)として、その表面の尖度(Rk)及び歪度(Rsk)の値が、Rk<20且つRsk<0となる加工が施された所定の転がり軸受の耐摩耗性能についても試験を行い、検証した。当該試験内容及び試験結果について、以下、説明する。
当該試験においては、試料として2つの転がり軸受を用意し、一方の転がり軸受には、その内輪外径面(保持器案内面(保持器に対する摺接面))に表面処理として、Rk=16.6且つRsk=−0.5となるように研削加工を施した(以下、当該加工を施した転がり軸受を本件軸受という)。これに対し、他方の転がり軸受には、その内輪外径面(保持器案内面(保持器に対する摺接面))に表面処理として、Rk=74.2且つRsk=7.0となるように研削加工を施した(以下、当該加工を施した転がり軸受を比較軸受という)。そして、本件軸受及び比較軸受を、所定条件のもとに所定速度で所定時間だけそれぞれ回転させた後、両軸受の内輪外径面(保持器に対する摺接面)の状態を比較することで、当該本件軸受と比較軸受の耐摩耗性能について検証した。
Further, as the surface treatment (first surface treatment) according to the present embodiment, processing was performed in which the values of the kurtosis (Rk) and the skewness (Rsk) of the surface were Rk <20 and Rsk <0. The wear resistance performance of a given rolling bearing was also tested and verified. The test contents and test results will be described below.
In this test, two rolling bearings were prepared as samples, and one of the rolling bearings was subjected to surface treatment on the inner ring outer diameter surface (cage guide surface (sliding contact surface with respect to the cage)), Rk = 16. 6 and Rsk = −0.5 was applied (hereinafter, the rolling bearing subjected to the processing was referred to as the present bearing). On the other hand, in the other rolling bearing, Rk = 74.2 and Rsk = 7.0 as the surface treatment on the inner ring outer diameter surface (the cage guide surface (sliding contact surface with respect to the cage)). Grinding was performed (hereinafter, the rolling bearing subjected to the processing is referred to as a comparative bearing). Then, after rotating the present bearing and the comparative bearing for a predetermined time at a predetermined speed under a predetermined condition, by comparing the state of the inner ring outer diameter surface (sliding contact surface with respect to the cage) of both bearings, The wear resistance performance of the bearing and the comparative bearing was verified.

具体的には、図1(a)に示すような高速で使用される玉軸受A(内径d(φ):100(mm)、外径D(φ):150(mm)、幅B:25(mm))を用いて、当該軸受Aをその内輪2が軸(図示しない)に対して所定方向に所定角度だけ傾くように組み付けた(例えば、外嵌した)状態で、内輪2を1分間に15000回転する速度(15000(rpm))で回転させた。この場合、軸受Aには、試験中、アキシアル荷重として5000(N)の負荷を加えた。また、試験中、軸受Aに対して所定の潤滑油を毎分6リットル(6(l/min))噴きつけて潤滑し、当該軸受Aが滑らかに回転し続けるようにした。そして、所定時間経過後の軸受A(本件軸受及び比較軸受)の内輪外径面(保持器に対する摺接面)の状態を確認した。   Specifically, a ball bearing A (inner diameter d (φ): 100 (mm), outer diameter D (φ): 150 (mm), width B: 25 used at a high speed as shown in FIG. (mm)), and the inner ring 2 is mounted for one minute in a state where the inner ring 2 is assembled (for example, externally fitted) so that the inner ring 2 is inclined at a predetermined angle with respect to a shaft (not shown). And 15000 rotation speed (15000 (rpm)). In this case, a load of 5000 (N) was applied to the bearing A as an axial load during the test. Further, during the test, a predetermined lubricating oil was sprayed onto the bearing A at 6 liters per minute (6 (l / min)) to lubricate the bearing A so that the bearing A continued to rotate smoothly. And the state of the inner ring | wheel outer diameter surface (sliding contact surface with respect to a holder | retainer) of the bearing A (this bearing and comparative bearing) after progress for a predetermined time was confirmed.

この結果、試験後の比較軸受には、その内輪外径面(保持器に対する摺接面)及び保持器内径面(内輪に対する摺接面)に摩擦による損傷(摩耗)の発生が認められた。これに対し、試験後の本件軸受には、その内輪外径面(保持器に対する摺接面)及び保持器内径面(内輪に対する摺接面)に摩擦による損傷(摩耗)の発生は全く認められなかった。なお、この場合、試験後の本件軸受には、その内輪外径面及び保持器内径面以外の部位(表面)にも損傷(摩耗)の発生は全く認められなかった。
このように、本実施形態に係る表面処理(第1の表面処理)を施した本件軸受によれば、当該第1の表面処理を施さない比較軸受と比べて、耐磨耗性が顕著に向上することが検証され、優れた耐摩耗性能を発揮できることが上述の試験により、確認された。
As a result, in the comparative bearing after the test, the occurrence of damage (wear) due to friction was observed on the inner ring outer diameter surface (sliding contact surface with respect to the cage) and the inner diameter surface of the cage (sliding contact surface with respect to the inner ring). On the other hand, in the bearing after the test, no damage (abrasion) due to friction was observed on the inner ring outer diameter surface (sliding contact surface with respect to the cage) and the inner diameter surface of the cage (sliding contact surface with respect to the inner ring). There wasn't. In this case, the bearing after the test showed no damage (wear) on the portion (surface) other than the inner ring outer diameter surface and the cage inner diameter surface.
As described above, according to the present bearing subjected to the surface treatment (first surface treatment) according to the present embodiment, the wear resistance is remarkably improved as compared with the comparative bearing not subjected to the first surface treatment. It was verified by the above-mentioned test that it was verified that the wear resistance performance was excellent.

以上、本発明によれば、転がり軸受に対し、その軌道輪の表面及び保持器の表面のうち、少なくとも軌道輪の保持器に対する摺接面(内輪外径面(保持器案内面))に表面処理(第1の表面処理)として、当該摺接面の尖度(Rk)及び歪度(Rsk)の値が、Rk<20且つRsk<0となる加工(例えば、低コストの切削加工など)を施すだけで、当該軸受の耐摩耗性の向上を図ることができ、当該軸受の損傷を防止することができる。これにより、当該軸受を長期に亘って一定の性能で連続して使用することができる。   As described above, according to the present invention, at least a sliding contact surface (inner ring outer diameter surface (cage guide surface)) of the bearing ring with respect to the cage of the surface of the bearing ring and the surface of the cage with respect to the rolling bearing. As the processing (first surface treatment), processing in which the kurtosis (Rk) and skewness (Rsk) values of the sliding contact surface satisfy Rk <20 and Rsk <0 (for example, low-cost cutting) It is possible to improve the wear resistance of the bearing and prevent damage to the bearing. Thereby, the said bearing can be continuously used with fixed performance over a long period of time.

また、上述した第1の表面処理に加えてさらに、転がり軸受に対し、その軌道輪(例えば、内輪)の表面及び保持器の表面のうち、少なくとも軌道輪の保持器に対する摺接面(例えば、内輪外径面(保持器案内面))に表面処理(第2の表面処理)として、窒化処理を施してもよい。これにより、当該軸受の耐摩耗性の向上をさらに図ることができ、当該軸受の損傷をさらに効果的に防止することができる。この結果、当該軸受をより長期に亘って一定の性能で連続して使用することができる。   Further, in addition to the above-described first surface treatment, at least the sliding contact surface (for example, the bearing ring with respect to the cage) of the surface of the bearing ring (for example, the inner ring) and the surface of the cage with respect to the rolling bearing (for example, The inner ring outer diameter surface (cage guide surface)) may be subjected to nitriding as a surface treatment (second surface treatment). Thereby, the wear resistance of the bearing can be further improved, and damage to the bearing can be prevented more effectively. As a result, the bearing can be used continuously with a constant performance over a longer period.

例えば、航空機のジェットエンジンやギアボックスなどの高温環境下で使用され、高速回転する軸受(例えば、図1(a)に示す玉軸受A)は、一例として、AISI(American Iron and Steel Institute:アメリカ鉄鋼協会)規格の耐熱高速度鋼材(M50材)を用いた耐熱軸受鋼で構成することができる。この場合、まず、当該軸受Aに対し、その軌道輪(例えば、内輪)の保持器に対する摺接面(例えば、内輪外径面(保持器案内面))に表面処理(第1の表面処理)として、当該摺接面の尖度(Rk)及び歪度(Rsk)の値が、Rk<20且つRsk<0となる加工(例えば、低コストの切削加工など)を施す。その上でさらに、当該摺接面に表面処理(第2の表面処理)として、窒化処理を施せばよい。なお、かかる窒化処理としては、例えば、その処理温度が300〜400℃である低温窒化処理を行えばよい。   For example, a high-speed rotating bearing (for example, a ball bearing A shown in FIG. 1A) used in a high-temperature environment such as an aircraft jet engine or a gear box is an AISI (American Iron and Steel Institute: USA). It can be made of heat-resistant bearing steel using heat-resisting high-speed steel material (M50 material) of the Steel Association. In this case, first, surface treatment (first surface treatment) is performed on the sliding surface (for example, inner ring outer diameter surface (cage guide surface)) of the bearing ring (for example, inner ring) with respect to the cage of the bearing A. As described above, a process (for example, a low-cost cutting process) in which the kurtosis (Rk) and the skewness (Rsk) of the sliding contact surface are Rk <20 and Rsk <0 is performed. Further, nitriding treatment may be performed on the sliding contact surface as surface treatment (second surface treatment). As such nitriding treatment, for example, low-temperature nitriding treatment at a treatment temperature of 300 to 400 ° C. may be performed.

この場合、窒化処理は任意の方法で行うことができるため、その処理方法はここでは特に限定しない。例えば、ガス窒化法、塩浴窒化法及びガス窒化法など各種の窒化方法によって窒化処理を行うことができるが、好適な方法の一例として、(株)エアー・ウォーター社製の「NV−300」なるNV窒化処理法を使用することができる。なお、NV窒化処理法とは、ガス活性化処理(フッ化処理)とガス窒化処理とを組み合わせて窒化処理を行う方法である。   In this case, since the nitriding treatment can be performed by any method, the treatment method is not particularly limited here. For example, nitriding can be performed by various nitriding methods such as a gas nitriding method, a salt bath nitriding method, and a gas nitriding method. As an example of a suitable method, “NV-300” manufactured by Air Water Co., Ltd. The following NV nitriding process can be used. The NV nitriding treatment method is a method of performing nitriding treatment by combining gas activation treatment (fluorination treatment) and gas nitriding treatment.

ここで、その内輪外径面(保持器に対する摺接面)に上述した第1の表面処理に加えて、さらに第2の表面処理として、窒化処理を施した軸受についても、同様にその耐摩耗性能の試験を行い、検証した。その結果、例えば、高温環境下で使用され、高速回転する軸受の耐摩耗性の向上を図ることができ、当該軸受の損傷を効果的に防止することができることが確認された。   Here, in addition to the first surface treatment described above on the outer surface of the inner ring (sliding contact surface with respect to the cage), the wear resistance is similarly applied to the bearing subjected to nitriding as a second surface treatment. A performance test was performed and verified. As a result, it was confirmed that, for example, the wear resistance of a bearing used in a high temperature environment and rotating at high speed can be improved, and damage to the bearing can be effectively prevented.

また、上述した第1の表面処理に加えてさらに、転がり軸受に対し、その軌道輪(例えば、内輪)の表面及び保持器の表面のうち、少なくとも軌道輪の保持器に対する摺接面(例えば、内輪外径面(保持器案内面))に表面処理(第2の表面処理)を施し、カーボン被膜(例えば、DLC(Diamond Like Carbon)被膜)を形成してもよい。これにより、当該軸受の耐摩耗性の向上をさらに図ることができ、当該軸受の損傷をさらに効果的に防止することができる。この結果、当該軸受をより長期に亘って一定の性能で連続して使用することができる。   Further, in addition to the above-described first surface treatment, at least the sliding contact surface (for example, the bearing ring with respect to the cage) of the surface of the bearing ring (for example, the inner ring) and the surface of the cage with respect to the rolling bearing (for example, A surface treatment (second surface treatment) may be applied to the inner ring outer diameter surface (cage guide surface) to form a carbon coating (for example, a DLC (Diamond Like Carbon) coating). Thereby, the wear resistance of the bearing can be further improved, and damage to the bearing can be prevented more effectively. As a result, the bearing can be used continuously with a constant performance over a longer period.

例えば、航空機のジェットエンジンやギアボックスなどの高温環境下で使用され、高速回転する軸受(例えば、図1(a)に示す玉軸受A)は、一例として、上述したM50材を用いた耐熱軸受鋼で構成することができる。この場合、まず、当該軸受Aに対し、その軌道輪(例えば、内輪)の保持器に対する摺接面(例えば、内輪外径面(保持器案内面))に表面処理(第1の表面処理)として、当該摺接面の尖度(Rk)及び歪度(Rsk)の値が、Rk<20且つRsk<0となる加工(例えば、低コストの切削加工など)を施す。その上でさらに、当該摺接面に表面処理(第2の表面処理)を施し、DLC被膜を形成すればよい。   For example, a bearing that is used in a high-temperature environment such as an aircraft jet engine or a gear box and rotates at high speed (for example, the ball bearing A shown in FIG. 1A) is, for example, a heat-resistant bearing using the M50 material described above. Can be composed of steel. In this case, first, surface treatment (first surface treatment) is performed on the sliding surface (for example, inner ring outer diameter surface (cage guide surface)) of the bearing ring (for example, inner ring) with respect to the cage of the bearing A. As described above, a process (for example, a low-cost cutting process) in which the kurtosis (Rk) and the skewness (Rsk) of the sliding contact surface are Rk <20 and Rsk <0 is performed. In addition, a surface treatment (second surface treatment) may be applied to the sliding contact surface to form a DLC film.

なお、かかるDLC被膜は、任意の表面処理(第2の表面処理)を施すことで、形成することができるため、その処理方法はここでは特に限定しない。例えば、所定の真空槽内に炭化水素(CH)系ガスを封入し、直流電源に接続された基材(例えば、内輪)に印加電圧をかける。これにより、当該真空槽内にプラズマが発生して、当該基材表面(例えば、内輪表面)にDLC被膜を形成することができる。なお、DLC被膜は、アモルファス構造のため結晶粒界を持たず、例えばTiN(窒化チタン)被膜などの多結晶構造の被膜と比べて平滑な表面を成し、トライボロジ特性(摩耗特性・摩擦特性・潤滑特性)に非常に優れている。また、DLC被膜は、ダイヤモンドに似た物性を持つカーボン膜(炭素膜)であり、例えばTiN被膜などよりもその硬度が高い。   In addition, since this DLC film can be formed by performing arbitrary surface treatment (2nd surface treatment), the processing method is not specifically limited here. For example, a hydrocarbon (CH) gas is sealed in a predetermined vacuum chamber, and an applied voltage is applied to a base material (for example, an inner ring) connected to a DC power source. As a result, plasma is generated in the vacuum chamber, and a DLC film can be formed on the surface of the base material (for example, the inner ring surface). The DLC film does not have a grain boundary due to its amorphous structure, and has a smooth surface compared to a polycrystalline structure such as a TiN (titanium nitride) film, for example, tribological characteristics (wear characteristics, friction characteristics, Excellent lubrication characteristics). The DLC film is a carbon film (carbon film) having physical properties similar to diamond, and has a higher hardness than, for example, a TiN film.

ここで、その内輪外径面(保持器に対する摺接面)に上述した第1の表面処理に加えて、さらに第2の表面処理を施し、DLC被膜を形成した軸受についても、同様にその耐摩耗性能の試験を行い、検証した。その結果、例えば、高温環境下で使用され、高速回転する軸受の耐摩耗性の向上を図ることができ、当該軸受の損傷を効果的に防止することができることが確認された。   Here, in addition to the first surface treatment described above on the outer surface of the inner ring (sliding contact surface with respect to the cage), a second surface treatment is further applied to the bearing formed with the DLC film. The wear performance was tested and verified. As a result, it was confirmed that, for example, the wear resistance of a bearing used in a high temperature environment and rotating at high speed can be improved, and damage to the bearing can be effectively prevented.

なお、上述した本実施形態においては、内輪の保持器に対する摺接面(内輪外径面(保持器案内面))にのみ表面処理(第1の表面処理及び第2の表面処理)を施したが、内輪の表面全体に表面処理(第1の表面処理及び第2の表面処理)を施してもよい。また、外輪の保持器に対する摺接面(外輪内径面(保持器案内面))にのみ表面処理(第1の表面処理及び第2の表面処理)を施してもよく、外輪の表面全体に表面処理(第1の表面処理及び第2の表面処理)を施してもよい。この場合、軌道輪間に組み込まれる保持器の案内方式によって、選択的に内輪若しくは外輪のいずれかに表面処理(第1の表面処理及び第2の表面処理)を施せばよい。すなわち、かかる保持器が内輪案内の場合、内輪に表面処理(第1の表面処理及び第2の表面処理)を施せばよく、保持器が外輪案内の場合、外輪に表面処理(第1の表面処理及び第2の表面処理)を施せばよい。なお、保持器の案内方式に関わらず、内輪及び外輪の双方に表面処理(第1の表面処理及び第2の表面処理)を施してもよい。   In the present embodiment described above, the surface treatment (first surface treatment and second surface treatment) is performed only on the sliding surface (inner ring outer diameter surface (cage guide surface)) with respect to the cage of the inner ring. However, the entire surface of the inner ring may be subjected to surface treatment (first surface treatment and second surface treatment). Further, surface treatment (first surface treatment and second surface treatment) may be applied only to the sliding surface (outer ring inner diameter surface (cage guide surface)) of the outer ring with respect to the cage. Treatment (first surface treatment and second surface treatment) may be performed. In this case, surface treatment (first surface treatment and second surface treatment) may be selectively performed on either the inner ring or the outer ring depending on the guide method of the cage incorporated between the race rings. That is, when the cage is an inner ring guide, the inner ring may be subjected to surface treatment (first surface treatment and second surface treatment). When the cage is an outer ring guide, the outer ring is subjected to surface treatment (first surface treatment). Treatment and second surface treatment) may be performed. Regardless of the cage guide method, both the inner ring and the outer ring may be subjected to surface treatment (first surface treatment and second surface treatment).

また、保持器の軌道輪(内輪や外輪)に対する摺接面(例えば、保持器内径面(軌道輪案内面))にのみ表面処理(第1の表面処理及び第2の表面処理)を施してもよく、保持器の表面全体に表面処理(第1の表面処理及び第2の表面処理)を施してもよい。
また、軌道輪(内輪や外輪)及び保持器の双方に表面処理(第1の表面処理及び第2の表面処理)を施してもよい。
なお、上述した本実施形態においては、転動体として玉を適用したが、ころを適用してもよい。また、軸受は、単列構成の他、複列構成(2列以上)であってもよい。
Further, surface treatment (first surface treatment and second surface treatment) is performed only on the sliding contact surface (for example, cage inner diameter surface (tracking ring guide surface)) with respect to the raceway (inner race or outer race) of the cage. Alternatively, surface treatment (first surface treatment and second surface treatment) may be performed on the entire surface of the cage.
Further, surface treatment (first surface treatment and second surface treatment) may be applied to both the raceway ring (inner ring and outer ring) and the cage.
In addition, in this embodiment mentioned above, although the ball was applied as a rolling element, you may apply a roller. Further, the bearing may have a double row configuration (two or more rows) in addition to a single row configuration.

(a)は、本発明の一実施形態に係る転がり軸受の構成例を示す断面図、(b)は、試料の耐摩耗性能を試験するためのすべり試験機の構成例を示す断面図、(c)は、同図(b)に示すすべり試験機を用いて試料の耐摩耗性能を試験した結果を、すべり速度に対する動摩擦係数の値として示した図。(a) is a cross-sectional view showing a configuration example of a rolling bearing according to an embodiment of the present invention, (b) is a cross-sectional view showing a configuration example of a slip test machine for testing the wear resistance performance of a sample, (c) is a diagram showing the result of testing the wear resistance performance of the sample using the sliding tester shown in FIG. (b) as the value of the dynamic friction coefficient with respect to the sliding speed.

符号の説明Explanation of symbols

2 内輪
2a,4a 軌道面
2s 摺接面
4 外輪
6 転動体
8 保持器
A 転がり軸受
2 Inner rings 2a, 4a Raceway surface 2s Sliding contact surface 4 Outer ring 6 Rolling element 8 Cage A Rolling bearing

Claims (3)

相対回転可能に対向して配置された軌道輪と、各軌道輪にそれぞれ形成された軌道面間に転動自在に組み込まれた複数の転動体と、複数の転動体を回転自在に保持する保持器とを備えた転がり軸受であって、
軌道輪の表面及び保持器の表面の表面粗さの統計分布における尖度をRk、歪度をRskとした場合、少なくとも軌道輪の保持器に対する摺接面には、第1の表面処理としてRk<20且つRsk<0となる加工が施されていることを特徴とする転がり軸受。
A bearing ring disposed so as to be capable of relative rotation, a plurality of rolling elements that are rotatably incorporated between raceways formed on each of the race rings, and a holder that rotatably holds the plurality of rolling elements. A rolling bearing with a vessel,
When the kurtosis in the statistical distribution of the surface roughness of the surface of the bearing ring and the surface of the cage is Rk and the skewness is Rsk, at least the sliding contact surface with respect to the cage of the bearing ring is Rk as the first surface treatment. A rolling bearing characterized by being processed so that <20 and Rsk <0.
前記第1の表面処理に加えてさらに、軌道輪の表面及び保持器の表面のうち、少なくとも軌道輪の保持器に対する摺接面には、第2の表面処理として、窒化処理が施されていることを特徴とする請求項1に記載の転がり軸受。   In addition to the first surface treatment, nitriding treatment is performed as a second surface treatment on at least the sliding surface of the raceway surface and the cage surface with respect to the raceway cage. The rolling bearing according to claim 1. 前記第1の表面処理に加えてさらに、軌道輪の表面及び保持器の表面のうち、少なくとも軌道輪の保持器に対する摺接面には、第2の表面処理が施され、カーボン被膜が形成されていることを特徴とする請求項1に記載の転がり軸受。
In addition to the first surface treatment, a second surface treatment is applied to at least a sliding contact surface of the raceway ring and the cage surface with respect to the raceway cage to form a carbon coating. The rolling bearing according to claim 1, wherein the rolling bearing is provided.
JP2005372176A 2005-12-26 2005-12-26 Rolling bearing Pending JP2007170614A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005372176A JP2007170614A (en) 2005-12-26 2005-12-26 Rolling bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005372176A JP2007170614A (en) 2005-12-26 2005-12-26 Rolling bearing

Publications (1)

Publication Number Publication Date
JP2007170614A true JP2007170614A (en) 2007-07-05

Family

ID=38297421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005372176A Pending JP2007170614A (en) 2005-12-26 2005-12-26 Rolling bearing

Country Status (1)

Country Link
JP (1) JP2007170614A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014121737A (en) * 2012-12-20 2014-07-03 Jatco Ltd Manufacturing method of hydraulic actuator device
EP2937573A4 (en) * 2012-12-20 2016-01-06 Jatco Ltd Hydraulic actuator device
JP2017201326A (en) * 2017-07-13 2017-11-09 オリエンタルモーター株式会社 Rotation angle detection device using gear support mechanism for holding gear in proper position

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014121737A (en) * 2012-12-20 2014-07-03 Jatco Ltd Manufacturing method of hydraulic actuator device
EP2937573A4 (en) * 2012-12-20 2016-01-06 Jatco Ltd Hydraulic actuator device
US10371178B2 (en) 2012-12-20 2019-08-06 Jatco Ltd Hydraulic actuator device
JP2017201326A (en) * 2017-07-13 2017-11-09 オリエンタルモーター株式会社 Rotation angle detection device using gear support mechanism for holding gear in proper position

Similar Documents

Publication Publication Date Title
JP3682356B2 (en) Ball bearing using corrugated cage
ES2590780T3 (en) Roller bearing
US5333954A (en) Rolling/sliding part
JP3326912B2 (en) Rolling bearing
US20050047694A1 (en) Rolling bearing
JP2008223942A (en) Rolling bearing
JP2007170614A (en) Rolling bearing
JP2007192330A (en) Rolling bearing
CN112824693A (en) Thrust roller bearing
JP2008095916A (en) Roller bearing with flange
JP2020118292A (en) Rolling bearing and wind power generation spindle support device
JP2000161349A (en) Gear shaft support device for vehicle
JP2003176826A (en) Rolling bearing
JP2760626B2 (en) Constant velocity universal joint
WO2006001144A1 (en) Rolling bearing
JP2007002912A (en) Rolling bearing
JP2008019965A (en) Planetary gear device and rolling bearing
JP2005195150A (en) Rolling device
JP2008111461A (en) Roll bearing
WO2022202483A1 (en) Roller bearing
JP2007100759A (en) Roller bearing
JP2011112201A (en) Ball bearing
CN208185214U (en) A kind of automobile belt pulley bearing
WO2023176615A1 (en) Roller bearing
JP2019100487A (en) Double row roller bearing