JP2007169927A - Earthquake resisting manhole structure and its manufacturing method - Google Patents
Earthquake resisting manhole structure and its manufacturing method Download PDFInfo
- Publication number
- JP2007169927A JP2007169927A JP2005365888A JP2005365888A JP2007169927A JP 2007169927 A JP2007169927 A JP 2007169927A JP 2005365888 A JP2005365888 A JP 2005365888A JP 2005365888 A JP2005365888 A JP 2005365888A JP 2007169927 A JP2007169927 A JP 2007169927A
- Authority
- JP
- Japan
- Prior art keywords
- manhole
- manhole structure
- roadbed material
- ground
- floor plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 4
- 239000000463 material Substances 0.000 claims abstract description 67
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 16
- 230000000087 stabilizing effect Effects 0.000 claims abstract description 5
- 239000003673 groundwater Substances 0.000 claims description 25
- 238000009434 installation Methods 0.000 claims description 24
- 239000002689 soil Substances 0.000 claims description 22
- 239000004576 sand Substances 0.000 claims description 9
- 230000005484 gravity Effects 0.000 claims description 5
- 239000011230 binding agent Substances 0.000 claims description 3
- 239000004568 cement Substances 0.000 claims description 2
- 238000007654 immersion Methods 0.000 claims description 2
- 230000006378 damage Effects 0.000 abstract description 3
- 239000013049 sediment Substances 0.000 abstract description 2
- 239000010410 layer Substances 0.000 description 15
- 239000004567 concrete Substances 0.000 description 9
- 238000010276 construction Methods 0.000 description 9
- 238000000034 method Methods 0.000 description 7
- 238000007634 remodeling Methods 0.000 description 7
- 238000009412 basement excavation Methods 0.000 description 6
- 239000004575 stone Substances 0.000 description 6
- 239000002245 particle Substances 0.000 description 5
- 230000002265 prevention Effects 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 239000011083 cement mortar Substances 0.000 description 4
- 238000005243 fluidization Methods 0.000 description 4
- 230000000630 rising effect Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 238000007667 floating Methods 0.000 description 2
- 230000003014 reinforcing effect Effects 0.000 description 2
- 230000001174 ascending effect Effects 0.000 description 1
- 239000010426 asphalt Substances 0.000 description 1
- 239000011449 brick Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000001687 destabilization Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000005339 levitation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Landscapes
- Sewage (AREA)
- Underground Structures, Protecting, Testing And Restoring Foundations (AREA)
Abstract
Description
本発明は、地下埋設管の接続位置に設けられるマンホールを耐震化するための改良構造に関し、特に地震の発生に際して、地盤の液状化によりマンホールが浮上や移動がおこることを防ぐための耐震化構造に関する。 The present invention relates to an improved structure for making a manhole earthquake-proof at a connection position of an underground underground pipe, and in particular, an earthquake-proof structure for preventing a manhole from rising and moving due to liquefaction of the ground when an earthquake occurs. About.
道路などの地下には、上水道、下水道、或いは都市ガス、電力、通信等の種々の管路が埋設されていることが多く、これらの管路の接続位置に設けられるマンホールなどは、土圧に耐える強靱な材料で構築されているのが普通である。しかし、管路が埋設されている範囲内で、地盤の地質が一定且つ均一であることは期待し難く、また埋設構造物の周囲に充填される土砂の密度が不均一となり易いこともあって、特に地下水位が高い場所では地震の発生時に地盤の液状化が起こる危険がある。そうなると、その場に設けられていたマンホールが浮上し、移動し、或いは転倒するなどして管路の接続が外れる障害を起こし、ライフラインの機能の停止に繋がる恐れがある。 Various underground pipelines such as water supply, sewerage, city gas, electric power, and communication are often buried in the underground such as roads. Manholes installed at the connection positions of these pipelines are subject to earth pressure. It is usually constructed of tough materials that can withstand. However, it is difficult to expect that the geology of the ground is constant and uniform within the range where the pipe is buried, and the density of the earth and sand filled around the buried structure may be uneven. Especially in places with high groundwater levels, there is a risk of ground liquefaction when an earthquake occurs. If this happens, the manhole provided on the spot will rise, move, or fall down, causing a failure to disconnect the pipeline, leading to the failure of the lifeline function.
そこで、上述の障害の発生を避けるために、地下の岩盤にまで届く長い杭を打ち込んでこれにマンホールを固定する、などの対策も考えられるが、マンホールは種々の管路が埋設されている道路の地下に設置されることが多く、施工が難しいばかりでなく工費も嵩むという欠点がある。 Therefore, in order to avoid the occurrence of the above-mentioned obstacles, measures such as driving a long pile reaching the underground rock and fixing the manhole to this can be considered, but the manhole is a road where various pipes are embedded It is often installed in the basement of the city, and there is a drawback that not only construction is difficult, but also the construction cost increases.
そこで本発明は、地震などによって液状化を起こし易い地盤に設置されているか、或いは設置が予定されているマンホールを、地盤の液状化による被害から護るための、大幅に耐震化された簡素なマンホール構造を提案するものであり、更には、上記の耐震化マンホール構造を確実に製造するための方法を提供しようとするものである。 Therefore, the present invention is a simple manhole that is greatly earthquake-resistant to protect manholes that are installed or planned to be liquefied by earthquakes or the like from damage caused by liquefaction of the ground. The present invention proposes a structure, and further intends to provide a method for reliably manufacturing the above-mentioned earthquake-proof manhole structure.
本発明の耐震化マンホール構造は、地下埋設管の接続地に設置するマンホールにおいて、マンホール構造体の外壁面の、マンホール設置地盤の平均年間最高地下水位より高い位置から略水平方向に路盤材支持用床板を延設すると共に、該路盤材支持用床板上に安定化路盤材を敷設してなることを特徴とするものである。 The seismic manhole structure of the present invention is for manholes installed at underground underground pipe connections, for supporting roadbed materials in a substantially horizontal direction from a position higher than the average annual maximum groundwater level of the manhole installation ground on the outer wall surface of the manhole structure. The floor board is extended, and the stabilized roadbed material is laid on the roadbed material supporting floorboard.
また、このような本発明の耐震化マンホール構造において、前記路盤材支持用床板を含む前記マンホール構造体の重量と前記路盤材支持用床板に支持された前記安定化路盤材及び路盤の総重量との合計が、前記マンホール設置地盤の平均年間最高地下水位より下方の土砂が液状化泥水に変化したときの、前記マンホール構造体が受けると予測される前記泥水による浮力より大きいことで、地震発生に際しても確実にマンホール構造の破壊を防止することができる。 Further, in such a seismic manhole structure of the present invention, the weight of the manhole structure including the roadbed material support floor plate, the total weight of the stabilized roadbed material and the roadbed supported by the roadbed material support floor plate, Is greater than the buoyancy due to the mud that is expected to be received by the manhole structure when the sediment below the average annual maximum groundwater level of the manhole installation ground changes to liquefied mud, However, the destruction of the manhole structure can be surely prevented.
更に、本発明の耐震化マンホール構造において、前記安定化路盤材としては、土砂又は礫等の高比重骨材を、セメントなどの土石結合剤を用いて安定化してなるものが好ましいが、これには予め煉瓦状やブロック状などの適宜の形状に成形したものを組み合わせて使用してもよく、或いは施工現場で骨材と結合剤とを混合して凝結性の路盤材組成物を調製したうえ、床板上に敷設して凝結させ、安定化路盤材とすることもできる。 Furthermore, in the seismic manhole structure of the present invention, the stabilized roadbed material is preferably a material obtained by stabilizing a high specific gravity aggregate such as earth or sand or gravel using a debris binder such as cement, May be used in combination with those previously molded into an appropriate shape such as a brick shape or a block shape, or after preparing an agglomerated roadbed material composition by mixing aggregate and binder at the construction site. It can also be laid on a floor board and condensed to form a stabilized roadbed material.
更に、本発明の耐震化マンホール構造は、 地下埋設管を接続するマンホールにおいて、マンホール構造体の外壁面の、マンホール設置地盤の平均年間最高地下水位より高い位置から略水平方向に延設した路盤材支持用床板上に安定化路盤材を敷設してなり、前記路盤材支持用床板を含む前記マンホール構造体の全重量W0(tf)と前記安定化路盤材及び路盤の総重量Wb(tf)との合計重量Ws(tf)を、該マンホール構造体の外形寸法より予測した液状化泥水による浸漬体積V0(m3)に該泥水の密度を乗じて求めた浮力値Wf(tf)より大とすることによって、確実に製造することができる。 Further, the seismic manhole structure of the present invention is a roadbed material extending in a substantially horizontal direction from a position higher than the average annual maximum groundwater level of the manhole installation ground on the outer wall surface of the manhole structure in the manhole connecting the underground pipe. Stabilized roadbed material is laid on the supporting floorboard, and the total weight W0 (tf) of the manhole structure including the floorboard supporting floorboard and the total weight Wb (tf) of the stabilized roadbed material and roadbed The total weight Ws (tf) of the buoyancy is set to be larger than the buoyancy value Wf (tf) obtained by multiplying the immersion volume V0 (m3) of the liquefied mud water estimated from the external dimensions of the manhole structure by the density of the mud Therefore, it can be reliably manufactured.
本発明の耐震化マンホール構造は、地下埋設管を接続するマンホールにおいて、マンホール構造体の外壁面の、マンホール設置地盤の平均年間最高地下水位より高い位置から略水平方向に路盤材支持用床板を延設すると共に、該路盤材支持用床板上に安定化路盤材を敷設したものであるから、地震の発生により地盤全体が液状化しても、本発明の耐震化マンホールにおける、マンホール構造体の上部などから水平に延設された路盤材支持用床板の重量増加と、この床板の上に敷設された安定化路盤材の重量と、この安定化路盤材の上に敷設されたマンホール周囲の道路の路盤や舗装体などの重量とが、一体に結合してマンホール構造体の安定化重量として作用することになるから、マンホール構造体の浮上や移動、転倒などが、効果的に抑制される。 The seismic-proof manhole structure of the present invention is a manhole connecting underground pipes, and the floor plate for supporting roadbed material extends substantially horizontally from a position higher than the average annual maximum groundwater level of the manhole installation ground on the outer wall surface of the manhole structure. In addition, since the stabilized roadbed material is laid on the floorboard for supporting the roadbed material, even if the entire ground liquefies due to the occurrence of an earthquake, the upper part of the manhole structure in the earthquake-resistant manhole of the present invention, etc. The weight of the floor plate for supporting the roadbed material extending horizontally from the floor, the weight of the stabilized roadbed material laid on the floorboard, and the roadbed around the manhole laid on the stabilized roadbed material The weight of the pavement, etc., and the weight of the manhole structure are combined together to act as a stabilizing weight for the manhole structure, so that the manhole structure can be effectively prevented from rising, moving, and falling. It is.
以下、本発明の耐震化マンホール構造とその製造方法を、図に基づいて説明する。
図3において、1は下水管2の中繼地点などに設けてある従来型のマンホール構造体であり、このマンホール構造体1は、地表から地盤G内に矢板Cなどを打ち込んで、マンホール設置用の縦孔を掘削し、その底に砕石層Ba を敷き、更にコンクリート層Bb を設けた基礎Bなどを形成したうえ、底板1a 、管取付壁筒1b 、直壁筒1c 、下斜壁筒1d 、下調整環1e、上斜壁筒1f 、上調整環1g を順次に積み重ねて、セメントモルタル等でこれらを接合し、更に蓋取付枠1h を設けたうえ、蓋1i を着脱可能に嵌め込んでなるものである。こうした一般的な構造のマンホールでは、縦孔を掘削したときに得た土砂などを周囲の埋め戻し用とすることが多く、また蓋1i の上面が地面GLと略一致するように設けられていて土被りが少ないので、地下水位が高くなるとマンホール周囲に水が回り易く、地震が起こって水を含んだ土砂が液状化すると、生成した泥水の浮力によってマンホール全体が浮き上がり、下水管2との接続が破壊されるほか、場合によっては転倒するなどの危険があった。
Hereinafter, the earthquake-resistant manhole structure of the present invention and the manufacturing method thereof will be described with reference to the drawings.
In FIG. 3, 1 is a conventional manhole structure provided at the middle point of the
そこで耐震化マンホールを設置する計画があるときは、先ずマンホール設置予定地の地盤を調査し、地下水位の年間変動の状況を参考として、その計画の適否を審査するのがよい。そして、マンホール設置予定地について予備調査の結果、地下水位が高くなってマンホール設置位置に達することがあり、且つマンホール周囲の地盤が液状化し易いことが判明したときは、耐震化構造を備えたマンホールの設置を検討することが勧められる。しかし、上記の条件のいずれか一方が欠けるとき、即ち地下水位が十分に低いか、又は地盤が地震に対して安定であって液状化の心配がなければ、従来の一般的なマンホール構造体を設置することで、充分と考えられる。 Therefore, when there is a plan to install a seismic manhole, it is better to first investigate the ground of the planned manhole installation site and examine the suitability of the plan with reference to the situation of annual fluctuations in the groundwater level. As a result of a preliminary survey on the manhole installation site, if it is found that the groundwater level may rise and reach the manhole installation location, and if the ground around the manhole is likely to liquefy, the manhole equipped with an earthquake resistant structure It is recommended to consider the installation. However, if either of the above conditions is missing, that is, if the groundwater level is sufficiently low, or if the ground is stable against earthquakes and there is no concern about liquefaction, the conventional general manhole structure is used. Installation is considered sufficient.
ところで、マンホール設置予定地の地質が液状化し易いかどうかの判定をするには、土質試験を含む地質の調査を行った上、その結果に基づいて、例えば道路橋示方書に記載されているように、以下の3つの条件について評価を行う。そして、3つの条件の全てに該当している場合には、液状化し易い土質であるということができる。
(1) 沖積砂質土などであること。
(2) 粒径75μm 以下の土粒子(細粒分)の含有率(FC)が35w%以下か、又は塑性指数(Ip)が15以下であること。
(3) 粒度分布で50w%位置における中心粒径が10mm以下であり、且つ10w%位置における粒径が1mm 以下であること。
従って、上記の判定基準に基づいて、設置予定地の地盤は液状化性が高いと判定されたときは、地下水位の位置がマンホール設置予定位置付近にある場合は勿論、地下10m 以内にある場合は、従来構造のマンホールでは、地震等による地盤の液状化のために大きな影響を受ける可能性が高いと考えるべきである。
By the way, in order to judge whether the geology of the manhole installation site is likely to be liquefied, after conducting a geological survey including a soil test, it is described in, for example, the road bridge specifications. In addition, the following three conditions are evaluated. When all three conditions are satisfied, it can be said that the soil is easily liquefied.
(1) Alluvial sandy soil.
(2) The content (FC) of soil particles (fine particles) having a particle size of 75 μm or less is 35 w% or less, or the plasticity index (Ip) is 15 or less.
(3) In the particle size distribution, the central particle size at 50 w% position is 10 mm or less, and the particle size at 10 w% position is 1 mm or less.
Therefore, based on the above criteria, when it is determined that the ground of the planned installation site is highly liquefiable, the groundwater level is within the vicinity of the planned manhole installation location and within 10m underground It should be considered that manholes with a conventional structure are likely to be greatly affected by the liquefaction of the ground due to earthquakes and the like.
こうして、本発明の耐震化マンホール構造を備えたマンホールを設置する方針が決定したときは、以前に調査しておいた地下水位のデータと、土質の液状化性及びその土質の分布範囲のデータとを勘案して、所望の形態のマンホール構造体を選定し、その周りに埋め戻し土として充填する流動化防止処理土や、それぞれどのような骨材とどのような処理材又は凝結材などを選択し組み合わせて、どのような形態として使用するかを決定するほか、本発明の耐震化マンホール構造を採用する方針を決定して、マンホール構造体の外壁面より延設する路盤材支持用床板を延設する位置や形状など、及び路盤材支持用床板上に敷設する安定化路盤材の性状や量などを設計する作業と、これらの流動化防止処理土や安定化路盤材の使用量の見積もりを行うなどの準備作業とが必要である。 Thus, when the policy of installing the manhole having the seismic resistance manhole structure of the present invention is determined, the data of the groundwater level investigated previously, the data of soil liquefaction and the distribution range of the soil, In consideration of the above, select the manhole structure of the desired form, select the fluidization prevention treated soil that fills it as backfill soil, and what kind of aggregate and what kind of treated material or condensing material respectively In addition to deciding what form to use, the policy of adopting the seismic resistance manhole structure of the present invention is decided, and the roadbed material support floor board extending from the outer wall surface of the manhole structure is extended. Work to design the location and shape of the installation and the properties and quantity of the stabilized roadbed material to be laid on the roadbed material support floor plate, and estimate the amount of use of these anti-fluidized soil and stabilized roadbed material Preparatory work and there is a need of Unado.
前記のような予備調査と準備作業が終わった後に、本発明の耐震化マンホール構造を備えたマンホールの設置工事が可能となるが、その工事の目的が単なる新設ではなく、既存のマンホールの修理、又は改造である場合もあり得る。その場合には、改造が経済的でない場合にのみ既存のマンホールを撤去するか又は廃止して、別途にマンホールの新設を考えるのが、順序であろうと思われる。そこで以下に、軟弱な地盤Gを通る道路下に埋設された下水管2の中繼用である既存のマンホールを、図1に示すような本発明の耐震化マンホール構造を備えたマンホールに改造する工事を例として、本発明の耐震化マンホール構造を設ける手順を具体的に説明するが、ここで開示される技術思想は、新設のマンホール設備として、本発明の耐震化マンホール構造を備えたマンホールを設置する場合にも、全く同様に応用可能であることを付言する。
After the preliminary investigation and preparatory work as described above, manhole installation work with the earthquake-resistant manhole structure of the present invention is possible, but the purpose of the work is not just new installation, repair of existing manholes, Or it may be a modification. In that case, it would be in order to remove or abolish existing manholes only when remodeling is not economical and to consider establishing new manholes. Therefore, in the following, an existing manhole for the middle of the
先ず、従来のマンホール構造体1と同様な基本的構造を備えたマンホールについて、それが設置されている地盤Gの地下水位の測定を行い、最も近い位置にある水路の水位と、その水路に通じている川の水位とに対する関連性を調べ、地盤Gの通常の地下水位が、道路面から深さ約2.7mの位置、即ちマンホール構造体1に接続する下水管2の略軸心付近のレベルにあること、及び上記の水路の水位に変動があると、その変動に遅れて変化することが分かり、また大量の降雨が続いた場合には、川の水位の上昇に連れてマンホール近傍の地盤G内の地下水位も上昇して、深さ2mから1.5m程度までに達することがある、と予想できる。更に、別途に地盤の土質を調査した結果では、下水管2の埋設された深度付近は、細粒分を比較的に多く含む砂礫混じりシルト状の土質層があり、液状の危険度が特に高いとは言えないが、警戒が必要とされる状態であると判断される。
First, for the manhole having the same basic structure as the
更にマンホール構造体1の構造を精査して、図3に示すような、従来と同様な基本的構造を備えたマンホール構造体1であることを確認して、マンホール構造体1の予想地下水位より高い位置にある一部の構造部材を取り外して、その位置に図2に示したような路盤材支持用床板3を取り付けるという、本発明に従った改造工事の計画を決定し、改造に必要な構造部材の設計と調達の手配を行うこととした。しかし、その他のマンホールの部材は、以前から軟弱であることが知られていた地盤Gに設置されたもので、基礎Bの砕石層Baやコンクリート層Bb などの部分も含めて、特別に補強を加える必要がないと判断され、マンホール構造体1自体には勿論、マンホール構造体1と下水管2との接続構造にも、特に欠陥はないと判断して、そのまま利用することとした。
Further, the structure of the
更にこのマンホール構造体1の形状調査の結果から、その下部の縦2.0mの部分が外径1400mm, 内径1200mmのコンクリート製の円筒形で、これより上部は順次に細くなっており、2号マンホールに該当するものであることが分かった。そこで、2号マンホールの諸元を使用して、厚さ約15cmの底板を含めて空洞状態のマンホール構造体1の全重量と見掛体積とを求めると、全高が3.55m 、断面積が1.54m2の直筒部分の長さ2.0mで、全重量は約3.87tf、見掛体積は4.37m3であった。従って、通常は地下水位が約2.7m、即ち、マンホール構造体1の底から0.85m 分が地下水( 比重1.0)中に浸っていて、約1,31tfの浮力が掛かっているが、地下水位が1.5mまで上昇すると、マンホール構造体1は底から2.05m 分が地下水中に浸ることになり、浮力が3.16tfに増加する。しかし、マンホール構造体1の全重量は上記のとおり約3.87tfであるから、マンホール構造体1の重量が地下水の浮力より0.51tf大きく、安定した状態を維持できる筈と考えられる。
Furthermore, as a result of the survey of the shape of the
そこで、地下水位が1.5mまで上昇したときに地震が起こったとすると、マンホール構造体1の底から2.05m までが液状化泥水中に浸る可能性がある。そして、泥水の比重を1.4
と仮定すると、マンホール構造体1の全重量約3.87tfに対して、浮力が4.42tfに増加するから、マンホール構造体1を浮遊させないためには、少なくとも0.55tfの荷重をマンホール構造体1に加える必要がある。従って、本発明の耐震化構造をマンホールに導入しようとするならば、マンホール構造体1の地下1.5mより上方の、地下水位が到達しない高さの位置に、路盤材支持用床板3を水平方向に延び出すように取り付けて、0.55tf以上の荷重がマンホール構造体1に加わるように改造すれば良いことになる。
Therefore, if an earthquake occurs when the groundwater level rises to 1.5 m, there is a possibility that up to 2.05 m from the bottom of the
Assuming that the buoyancy increases to 4.42 tf for the total weight of the
ところで路盤材支持用床板3は、マンホール構造体1の浮上を防止するために必要な量の安定化路盤材を、上面に敷設した状態で安定に支持するためのもので、例えば鉄筋で補強したコンクリート板等の、強靱で重量のある材料で形成されたものであることが好ましい。また、その形状は特に定まったものである必要はなく、例えば下水管2の埋設方向に長く延びた形状とすることもでき、マンホールの設置場所の状況に応じて適宜に選択してよい。更に路盤材支持用床板3の取り付け位置は、マンホール構造体1の上部に近くて地下水との接触がない位置、例えば下調整環1e が組み付けてある位置又は、より高い位置に、固定できるように構成されることが好ましい。そこで、例えば路盤材支持用床板3の中央部に嵌合孔3aを設けて、マンホール構造体1の上部の径が細くなっている部分が、嵌合孔3a内を貫くように結合させるか、或いはマンホール構造体1の上部の下調整環1e を取り外して、別な短い下調整環1e1, 1e2と嵌合孔3aとを組み合わせたものに置き換える、などの手法を用いて、路盤材支持用床板3をマンホール構造体1に結合し、セメントモルタルなどで固定することができる。
By the way, the
このような路盤材支持用床板3としては、鉄筋などで補強した孔空きコンクリート板などであってもよいが、マンホール構造体1の浮上を抑制するに必要な荷重を支持できる強度と耐久性があれば、特に限定されることなく適宜のものを使用することができ、例えば図2に示すように、2.0m×2.2m×0.1mで角落ち形の鉄筋入り孔空きコンクリート板( 孔径0.90m)を用いることとして、コンクリート板の比重を略2.4 程度と見積もれば、その重量は0.90tfと計算され、マンホール構造体1が地下1.5mまで泥水に浸ったときの、前記の荷重不足分である0.55tfを超えるのに充分な荷重が負荷されることになる。
Such a roadbed material supporting
そこで、既設のマンホールを耐震化する工事を開始できる段階に達したので、図に従って改造工事の説明をする。図3の従来型マンホールを改造する工事の第1工程では、上記の2.0m×2.2m×0.1mで角落ち長方形の孔空きコンクリート板からなる路盤材支持用床板3を準備すると共に、図4に示すように、マンホール構造体1に路盤材支持用床板3を取り付ける作業用空間を形成するために、設置されている従来のマンホール周囲の地盤Gに、例えば矢板Cなどを打ち込んで、マンホールの改造工事に必要と予想される範囲で道路の舗装部分を除去し、マンホール周囲の土砂を掘削除去する。そして第2工程では、図5に示すように、マンホール構造体1の改造のために不要となる部材(下調整環1e など)と、それより上方に組み付けてある部材の全てとを取り外し、更に路盤材支持用床板3が取り付けられる位置の下まで埋め戻すために、上部の部材を取り外した残りのマンホール構造体1の部分に、最低必要な追加部材である下1調整環1e1を取り付けて、セメントモルタルなどで該部材1e1を接合し、固着する。
Therefore, we have reached the stage where we can start work to make existing manholes earthquake resistant, so we will explain the remodeling work according to the figure. In the first step of remodeling the conventional manhole shown in FIG. 3, the above-mentioned road base material supporting
次にこうした作業の後の第3工程として、図6に示すように第1充填作業を行うが、この作業は、路盤材支持用床板3が取り付けられる位置の直下までの掘削空間を埋め戻すものである。この際の埋め戻し土としては、前記掘削作業時の発生土砂に流動化防止処理を施した土砂か、又は安定化地盤材料などを用いることが望ましく、更には充分に圧密処理を加えて、第1埋め戻し土層Gaの上面と、後から取り付けられる路盤材支持用床板3の下側面との間に残る隙間を,極力小さくすることが望ましい。
Next, as the third step after such work, the first filling work is performed as shown in FIG. 6, and this work is to refill the excavation space up to the position immediately below the position where the road base material
上記の第1充填作業が終わった後の第4工程では、マンホール構造体1に耐震化構造を導入するが、この工程では図7に示すように、前記の第2工程で取り付けた下1調整環1e1の上に、改造構造として必要な路盤材支持用床板3と、更にマンホールの蓋1iの位置を路面と一致させるために必要な、補充用の下2調整環1e2とを組み付け、先に取り外して置いた上斜壁筒1f 、上調整環1g 、蓋取付枠1hを再び順次に取り付けて、セメントモルタルなどにより各部材を接合し、最後に蓋1i を元通りに蓋取付枠1h の上にのせ、改造されたマンホール構造体1が出来上がる。こうして改造されたマンホール構造体1を改造前と比べると、改造前の下調整環1e が、下1調整環1e1と路盤材支持用床板3と下2調整環1e2との組立体に置き代わっただけで、その他の形状や寸法、機能などは全く同じである。
In the fourth step after the first filling operation is finished, an earthquake resistant structure is introduced into the
以上のようにして、マンホール構造体1の改造作業が終わった後の第5工程では、図8に示すように、最後の作業である作業用掘削孔の埋め戻しと、矢板C等の壁面支保材の撤去回収とを行うが、この第2充填作業においても、掘削空間を埋め戻すに用いる埋め戻し土としては、第1充填作業時と同様に、流動化防止処理を施した土砂や砕石などの他、周辺の道路における路盤の構成材料と同様な安定化路盤材を用いて、路盤材支持用床板3の周囲や上方の空間を充填し、均一に圧密しながら敷設を進めることが望ましい。
As described above, in the fifth step after the remodeling work of the
それは、マンホール設置位置が道路下であることが多く、マンホール設置位置付近のみが周辺の道路の路盤と構造や強度が異なることは、本質的に望ましくないばかりでなく、路盤の破壊強度を損なう欠陥部を残すと、路盤材支持用床板3によって支持されるマンホール浮上防止荷重の不安定化に繋がるからであって、このように路盤の破壊抵抗を高めることが、付近の地域に予想を超えた地盤の液状化が発生しても、マンホールに対する浮上防止力として働くので、安全率を更に高めるという効果をもつのである。
It is often the case that the manhole installation location is under the road, and it is not only undesirable that the manhole installation location is different from the surrounding roadbed in the structure and strength, but it is also a defect that impairs the fracture strength of the roadbed. If the part is left, it will lead to the destabilization of the manhole levitation prevention load supported by the
本発明の第5工程では、上記のような安定化路盤材を用いて、路盤材支持用床板3より地表GL までの掘削空間の埋め戻しを行うが、その際には掘削前の地盤の構造、特にマンホール設置場所における路盤構造と舗装構造とを復旧させることが好ましい。従って、地表に設けられた、例えば基層と表層との2層からなるアスファルト舗装工部分を除いて、それより下方の路盤工部分は、一般に道路規格に従って構築されるように、安定性に富んだ砕石層などで、厚さ20乃至40cm程度に形成することが望ましいから、流動化防止処理を施した土砂や砕石などで形成される第2次埋め戻し土層Gb は、上記の道路構造における路盤工部分より下方に限ってよい。そして本発明のマンホールの耐震化改良工事は、この第2次埋め戻し土層Gbの上に道路の路盤を構築し、更に舗装などを行ってはじめて完成する。
In the fifth step of the present invention, the above-mentioned stabilized roadbed material is used to backfill the excavation space from the roadbed material supporting
以上詳述したような本発明の耐震化マンホール構造は、マンホール構造体1の地下水と接触しない上部位置に、水平方向に延設した路盤材支持用床板3が安定化路盤材を支えるように構成されており マンホール構造体1の浮上防止用の荷重として作用するので、地震などによる土砂の液状化によるマンホールの転倒や移動を防止できるようになった。従って、マンホールを新規に設置する場合は勿論のこと、既存のマンホールを改造して耐震化構造を導入することが容易となったので、地盤が液状化しやすい地域に建設されているマンホールを、経済的且つ短期間に耐震化することができる。
The seismic-resistant manhole structure of the present invention as described in detail above is configured such that a roadbed material supporting
B 基礎
Ba 砕石層
Bb コンクリート層
C 矢板
G 地盤
Ga 第1次埋め戻し土層
Gb 第2次埋め戻し土層
GL 地表
1 マンホール構造体
1a 底板
1b 管取付壁筒
1c 直壁筒
1d 下斜壁筒
1e 下調整環
1e1 下1調整環
1e2 下2調整環
1f 上斜壁筒
1g 上調整環
1h 蓋取付枠
1i 蓋
2 下水管
3 路盤材支持用床板
3a 嵌合孔
B foundation Ba crushed stone layer Bb concrete layer C sheet pile G ground Ga primary backfill soil layer Gb second backfill soil layer
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005365888A JP2007169927A (en) | 2005-12-20 | 2005-12-20 | Earthquake resisting manhole structure and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005365888A JP2007169927A (en) | 2005-12-20 | 2005-12-20 | Earthquake resisting manhole structure and its manufacturing method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007169927A true JP2007169927A (en) | 2007-07-05 |
Family
ID=38296836
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005365888A Withdrawn JP2007169927A (en) | 2005-12-20 | 2005-12-20 | Earthquake resisting manhole structure and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007169927A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008101404A (en) * | 2006-10-19 | 2008-05-01 | Hanex Co Ltd | Floating prevention manhole and method of constructing same |
JP2009052391A (en) * | 2007-08-02 | 2009-03-12 | Sanritsu:Kk | Unfloatable manhole structure |
KR20180026413A (en) * | 2018-02-02 | 2018-03-12 | 남천콘크리트(주) | Assembly manhole apparatus for connecting hume pipe and constructing method thereof |
CN110042868A (en) * | 2019-05-14 | 2019-07-23 | 中建五局土木工程有限公司 | Anti-jump vehicle inspection shaft and its construction method |
CN113898056A (en) * | 2021-10-28 | 2022-01-07 | 中国化学工程第七建设有限公司 | Construction method of traffic lane inspection well |
WO2024257192A1 (en) * | 2023-06-12 | 2024-12-19 | 日本電信電話株式会社 | Concrete structure reinforcing method, and concrete structure assembly |
-
2005
- 2005-12-20 JP JP2005365888A patent/JP2007169927A/en not_active Withdrawn
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008101404A (en) * | 2006-10-19 | 2008-05-01 | Hanex Co Ltd | Floating prevention manhole and method of constructing same |
JP2009052391A (en) * | 2007-08-02 | 2009-03-12 | Sanritsu:Kk | Unfloatable manhole structure |
KR20180026413A (en) * | 2018-02-02 | 2018-03-12 | 남천콘크리트(주) | Assembly manhole apparatus for connecting hume pipe and constructing method thereof |
KR101965801B1 (en) * | 2018-02-02 | 2019-04-05 | 정철원 | Assembly manhole apparatus for connecting hume pipe and constructing method thereof |
CN110042868A (en) * | 2019-05-14 | 2019-07-23 | 中建五局土木工程有限公司 | Anti-jump vehicle inspection shaft and its construction method |
CN110042868B (en) * | 2019-05-14 | 2023-12-29 | 中建五局土木工程有限公司 | Anti-jump inspection well and construction method thereof |
CN113898056A (en) * | 2021-10-28 | 2022-01-07 | 中国化学工程第七建设有限公司 | Construction method of traffic lane inspection well |
WO2024257192A1 (en) * | 2023-06-12 | 2024-12-19 | 日本電信電話株式会社 | Concrete structure reinforcing method, and concrete structure assembly |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Cubrinovski et al. | Liquefaction impacts in residential areas in the 2010-2011 Christchurch earthquakes | |
Cubrinovski | Liquefaction-Induced Damage in The2010-2011 Christchurch (New Zealand) Earthquakes | |
US20230091971A1 (en) | System and Method for Protection of Under-Slab Utilities From Changes in Soil Volume | |
Zhou et al. | Engineering issues on karst | |
HU226433B1 (en) | Foundation slab of underground passage for road | |
JP2007169927A (en) | Earthquake resisting manhole structure and its manufacturing method | |
KR101129469B1 (en) | Method For Laying Pipes Under The Ground | |
JP5975726B2 (en) | Ground structure and ground improvement method | |
Mironov et al. | Specific features of diaphragm wall construction | |
JP2008057188A (en) | Earthquake resisting manhole structure and its manufacturing method | |
Janssen et al. | Busan-Geoje Link: Immersed tunnel opening new horizons | |
JP6298255B2 (en) | Method and jig for preventing floating of underground structure | |
CZ30843U1 (en) | An underlayer of an engineering structure | |
KR20150105891A (en) | The underground facilities for offshore airfield of semi land reclamation type | |
CN111042841A (en) | A kind of tunnel waterproof and drainage construction technology | |
Altuntas et al. | Secant pile wall design and construction in Manhattan, New York | |
KR20050019579A (en) | Inside hollow of abandoned structure filling method of construction using filling system and this | |
JP7265451B2 (en) | Floating prevention method for underground buried objects | |
JPH03158524A (en) | Building anti-lifting structure | |
Ahmed et al. | Shoring for Deep Excavation in Urban Khartoum, Sudan | |
Dryden | 1026 Cooke Boulevard, Burlington, Ontario Client | |
Tirolo Jr et al. | Construction of a TBM “Launch Box” in a Complex Urban Environment | |
Alzamora Jr et al. | Case studies of new york city projects with varying site constraints | |
JP2015048641A (en) | Liquefaction countermeasure structure of structure | |
Sallam et al. | Settlement-control piles to optimize the mat foundation of a high-rise building in Downtown Orlando |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20081219 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20090610 |