[go: up one dir, main page]

JP2007167707A - Exhaust gas purification catalyst and production method thereof - Google Patents

Exhaust gas purification catalyst and production method thereof Download PDF

Info

Publication number
JP2007167707A
JP2007167707A JP2005364822A JP2005364822A JP2007167707A JP 2007167707 A JP2007167707 A JP 2007167707A JP 2005364822 A JP2005364822 A JP 2005364822A JP 2005364822 A JP2005364822 A JP 2005364822A JP 2007167707 A JP2007167707 A JP 2007167707A
Authority
JP
Japan
Prior art keywords
catalyst
oxide
metal
exhaust gas
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005364822A
Other languages
Japanese (ja)
Inventor
Takatoshi Arayoshi
隆利 新吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005364822A priority Critical patent/JP2007167707A/en
Publication of JP2007167707A publication Critical patent/JP2007167707A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

【課題】觊媒金属の粒成長あるいは合金化をさらに抑制するこずで、浄化掻性の䜎䞋を抑制する。
【解決手段】局間に空隙11をも぀倚局構造を有する第酞化物10の局間に第觊媒金属12を担持した第觊媒粉末ず、倚孔質の第酞化物20に第觊媒金属21を第酞化物10の平均局間距離より倧きな粒埄で担持した第觊媒粉末ず、を含む。
第觊媒金属21が第酞化物10の局間の空隙11内に進入するこずが困難ずなるため、第觊媒金属12ず第觊媒金属21ずが粒成長あるいは合金化するのを高床に抑制できる。
【遞択図】図
A reduction in purification activity is suppressed by further suppressing grain growth or alloying of catalytic metal.
SOLUTION: A first catalyst powder 1 carrying a first catalyst metal 12 between layers of a first oxide 10 having a multilayer structure with a gap 11 between layers, and a second catalyst metal on a porous second oxide 20. And a second catalyst powder 2 supporting 21 with a particle size larger than the average interlayer distance of the first oxide 10.
Since it becomes difficult for the second catalyst metal 21 to enter the gap 11 between the layers of the first oxide 10, it is highly possible that the first catalyst metal 12 and the second catalyst metal 21 grow or alloy. Can be suppressed.
[Selection] Figure 1

Description

本発明は、自動車の゚ンゞンなどから排出される排ガスを浄化する排ガス浄化甚觊媒ず、その補造方法に関する。   The present invention relates to an exhaust gas purifying catalyst for purifying exhaust gas discharged from an automobile engine and the like, and a method for manufacturing the same.

埓来より、自動車の排ガス浄化甚觊媒ずしお、CO及びHCの酞化ずNOx の還元ずを同時に行っお排気ガスを浄化する䞉元觊媒が甚いられおいる。このような䞉元觊媒ずしおは、コヌディ゚ラむトなどからなる耐熱性基材にγ−アルミナからなる倚孔質担䜓局を圢成し、その倚孔質担䜓局に癜金Pt、ロゞりムRhなどの貎金属を担持させたものが広く知られおいる。 Conventionally, a three-way catalyst that purifies exhaust gas by simultaneously performing oxidation of CO and HC and reduction of NO x has been used as an exhaust gas purification catalyst for automobiles. As such a three-way catalyst, a porous carrier layer made of γ-alumina is formed on a heat-resistant substrate made of cordierite or the like, and platinum (Pt), rhodium (Rh) or the like is formed on the porous carrier layer. Those carrying precious metals are widely known.

ずころで近幎、排ガス浄化甚觊媒の蚭眮堎所が゚ンゞンに近いマニホヌルド盎䞋ずされる傟向があり、たた高速走行時には排ガス枩床が高くなるこずから、排ガス浄化甚觊媒は高枩に晒される堎合が倚くなっおいる。ずころが埓来の排ガス浄化甚觊媒では、高枩の排ガスによりγ−アルミナの焌結が進行し、これに䌎う貎金属の粒成長によっお觊媒掻性点が枛少するため觊媒性胜が劣化するずいう䞍具合があった。   By the way, in recent years, the exhaust gas purification catalyst tends to be located directly under the manifold close to the engine, and the exhaust gas temperature becomes higher during high-speed driving, so the exhaust gas purification catalyst is often exposed to high temperatures. . However, the conventional exhaust gas purifying catalyst has a problem that the catalytic performance is deteriorated because the sintering of γ-alumina proceeds with high-temperature exhaust gas, and the catalytic active point decreases due to the accompanying noble metal grain growth.

たた近幎では、二酞化炭玠の排出量を抑制するために、酞玠過剰の混合気を䟛絊するリヌンバヌン゚ンゞンが䞻流になっおいる。しかし酞玠過剰のリヌン雰囲気䞋で 800℃以䞊の高枩が䜜甚した堎合には、貎金属の粒成長が特に著しい。䟋えばアルミナ衚面に担持されたPtは、高枩で酞玠が共存する雰囲気においおはPtO2ずなり、気盞移動により拡散・凝集が促進される。そのため酞玠過剰のリヌン雰囲気又はストむキ雰囲気では、高枩に晒されるずPtに粒成長が生じ衚面積の䜎䞋により觊媒性胜が倧きく䜎䞋する。 In recent years, lean burn engines that supply an oxygen-rich mixture have become the mainstream in order to suppress carbon dioxide emissions. However, noble metal grain growth is particularly noticeable when high temperatures of 800 ° C or higher are applied in a lean atmosphere with excess oxygen. For example, Pt supported on an alumina surface becomes PtO 2 in an atmosphere where oxygen coexists at a high temperature, and diffusion and aggregation are promoted by gas phase movement. Therefore, in an oxygen-excess lean atmosphere or stoichiometric atmosphere, when exposed to a high temperature, grain growth occurs in Pt, and the catalytic performance is greatly reduced due to a reduction in surface area.

そこで本願出願人は、特開2004−141864においお、氎酞化物を焌成するこずで圢成され局間に空隙をも぀倚局構造を有する酞化物の局間に貎金属を担持した排ガス浄化甚觊媒を提案しおいる。この排ガス浄化甚觊媒によれば、局間に担持された貎金属は移動しにくいため粒成長が抑制されるので、耐熱耐久性に優れおいる。   Therefore, the applicant of the present application has proposed in JP-A-2004-141864 a catalyst for purifying exhaust gas in which a noble metal is supported between layers of an oxide having a multilayer structure formed by firing hydroxide and having voids between the layers. . According to the exhaust gas-purifying catalyst, the noble metal supported between the layers hardly moves, so that the grain growth is suppressed, and thus the heat resistance and durability are excellent.

たた䞉元觊媒においおは、HC及びCOの酞化掻性が高いPtず、NOx の還元掻性が高いRhず、を䜵甚するこずが行われおいる。ずころが、䟋えばアルミナにPtずRhずを担持した觊媒では、高枩雰囲気でPtずRhずが合金化し、それぞれの掻性が共に䜎䞋するずいう問題があった。そこで特開2004−141864に蚘茉の技術を応甚し、局間の空隙内にPtずRhずを担持するこずが考えられる。しかしながら移動しにくいずいえども、空隙内でPtずRhずが接觊する確率は高く、合金化を高床に抑制するこずは困難であった。 In addition the three-way catalyst, and oxidation activity of HC and CO is high Pt, reduction activity of the NO x is being performed to be used in combination with high Rh, a. However, for example, in a catalyst in which Pt and Rh are supported on alumina, there is a problem that Pt and Rh are alloyed in a high temperature atmosphere, and their respective activities are reduced. Therefore, it is conceivable to apply Pt and Rh in the gaps between the layers by applying the technique described in JP-A-2004-141864. However, even though it is difficult to move, there is a high probability that Pt and Rh are in contact with each other in the gap, and it is difficult to highly suppress alloying.

さらに、アルミナに担持されたRhは、粒成長は抑制されるものの掻性が䜎いずいう問題がある。そこでアルミナにPtを担持した觊媒粉末ず、ゞルコニアにRhを担持した觊媒粉末ずを混合する提案がある。たた二局構造の觊媒局ずし、PtずRhを各局にそれぞれ担持する提案もある。このようにPtずRhずを分離担持するこずで、互いの合金化を抑制するこずができる。   Furthermore, Rh supported on alumina has a problem that the activity is low although grain growth is suppressed. Therefore, there is a proposal of mixing a catalyst powder having Pt supported on alumina and a catalyst powder having Rh supported on zirconia. There is also a proposal for a catalyst layer having a two-layer structure in which Pt and Rh are supported on each layer. Thus, Pt and Rh can be separated and supported, thereby preventing mutual alloying.

䟋えば特開2005−246216には、第倚孔質酞化物にPtを担持した第觊媒粉末ず、第倚孔質酞化物にRhを担持した第觊媒粉末ず、これらより粒埄の小さい第倚孔質酞化物粉末ず、を混合しおなる排ガス浄化甚觊媒が提案されおいる。この觊媒によれば、第倚孔質酞化物粒子が第觊媒粒子ず第觊媒粒子ずの間に介圚しやすく、第倚孔質酞化物粒子が障壁ずなるため第觊媒粒子ず第觊媒粒子ずが接觊しにくい。したがっおPtずRhずの近接が抑制され、分離担持効果が最倧に発珟されるため、合金化を倧きく抑制するこずができる。   For example, Japanese Patent Laid-Open No. 2005-246216 discloses a first catalyst powder in which Pt is supported on a first porous oxide, a second catalyst powder in which Rh is supported on a second porous oxide, and a particle size smaller than these. An exhaust gas-purifying catalyst obtained by mixing three porous oxide powders has been proposed. According to this catalyst, since the third porous oxide particles are likely to be interposed between the first catalyst particles and the second catalyst particles, and the third porous oxide particles serve as a barrier, the first catalyst particles and the second catalyst particles It is difficult to contact with catalyst particles. Therefore, the proximity of Pt and Rh is suppressed, and the separation support effect is maximized, so that alloying can be greatly suppressed.

しかし特開2005−246216に蚘茉の觊媒であっおも、PtずRhずの間にある皋床の合金化が避けられないため、浄化掻性の䜎䞋をさらに抑制するこずが求められおいる。
特開2004−141864 特開2005−246216
However, even with the catalyst described in JP-A-2005-246216, some degree of alloying is unavoidable between Pt and Rh, and therefore, further reduction in purification activity is required.
JP2004-141864 JP2005-246216

本発明は䞊蚘事情に鑑みおなされたものであり、觊媒金属の粒成長ず合金化をさらに抑制するこずを解決すべき課題ずする。   This invention is made | formed in view of the said situation, and makes it the problem which should be solved to further suppress the grain growth and alloying of a catalyst metal.

䞊蚘課題を解決する本発明の排ガス浄化甚觊媒の特城は、局間に空隙をも぀倚局構造を有する第酞化物の局間に第觊媒金属を担持した第觊媒粉末ず、
倚孔質の第酞化物に第觊媒金属を第酞化物の平均局間距離より倧きな粒埄で担持した第觊媒粉末ず、を含むこずにある。
A feature of the exhaust gas purifying catalyst of the present invention that solves the above problem is that a first catalyst powder supporting a first catalyst metal between layers of a first oxide having a multilayer structure with a gap between layers,
And a second catalyst powder in which the second catalyst metal is supported on the porous second oxide with a particle size larger than the average interlayer distance of the first oxide.

第觊媒金属はPtであり、第觊媒金属はRhであるこずが奜たしい。   Preferably, the first catalyst metal is Pt and the second catalyst metal is Rh.

たた䞊蚘排ガス浄化甚觊媒を補造できる本発明の排ガス浄化甚觊媒の補造方法の特城は、第觊媒粉末を加熱するこずによっお第觊媒金属を粒成長させ、その埌第觊媒粉末ず第觊媒粉末ずを混合するこずにある。   The exhaust gas purifying catalyst production method of the present invention that can produce the exhaust gas purifying catalyst is characterized in that the second catalyst metal is grown by heating the second catalyst powder, and then the second catalyst powder and the first catalyst are grown. It is to mix the powder.

本発明の排ガス浄化甚觊媒では、第觊媒粉末ず第觊媒粉末ずが混合されおいる。しかし第觊媒粉末においおは、担持されおいる第觊媒金属の粒埄が第酞化物の平均局間距離より倧きいので、第觊媒金属が第酞化物の局間の空隙内に進入するこずは困難ずなる。したがっお第觊媒金属ず第觊媒金属ずが同皮の堎合には、その粒成長を抑制するこずができる。たた第觊媒金属ず第觊媒金属ずが異皮の堎合には、その合金化を抑制するこずができ、第觊媒金属及び第觊媒金属のそれぞれの掻性の䜎䞋を高床に抑制するこずができる。   In the exhaust gas purifying catalyst of the present invention, the first catalyst powder and the second catalyst powder are mixed. However, in the second catalyst powder, since the particle size of the supported second catalyst metal is larger than the average interlayer distance of the first oxide, the second catalyst metal enters the voids between the layers of the first oxide. Will be difficult. Therefore, when the first catalyst metal and the second catalyst metal are of the same type, the grain growth can be suppressed. Further, when the first catalyst metal and the second catalyst metal are different, the alloying can be suppressed, and the decrease in the activity of each of the first catalyst metal and the second catalyst metal can be highly suppressed. it can.

そしお本発明の排ガス浄化甚觊媒の補造方法によれば、本発明の排ガス浄化甚觊媒を容易にか぀安定しお補造するこずができる。   And according to the manufacturing method of the exhaust gas purifying catalyst of the present invention, the exhaust gas purifying catalyst of the present invention can be manufactured easily and stably.

本発明の排ガス浄化甚觊媒は、第觊媒粉末ず、第觊媒粉末ずが混合されおなる。   The exhaust gas purifying catalyst of the present invention is a mixture of a first catalyst powder and a second catalyst powder.

第觊媒粉末は、局間に空隙をも぀倚局構造を有する第酞化物の局間に第觊媒金属を担持したものである。第觊媒粉末の担䜓を構成する第酞化物は、氎酞化物を焌成するこずで圢成され局間に空隙をも぀倚局構造を有する酞化物であり、ゞルコニア、チタニア、セリアなどを甚いるこずもできるが、α−アルミナが特に奜たしい材料である。すなわちα−アルミナは熱的にきわめお安定であり、1200℃の高枩䞋でも安定であっお焌結が生じない。   The first catalyst powder is one in which a first catalyst metal is supported between layers of a first oxide having a multilayer structure having voids between layers. The first oxide constituting the carrier of the first catalyst powder is an oxide having a multilayer structure formed by firing a hydroxide and having voids between layers, and zirconia, titania, ceria, etc. can also be used. However, α-alumina is a particularly preferred material. That is, α-alumina is thermally very stable, stable even at a high temperature of 1200 ° C., and does not sinter.

局間に空隙をも぀倚局構造を有するα−アルミナは、䟋えば、氎酞化アルミニりムの結晶粒子を也燥し、その埌1200℃皋床の高枩で焌成するこずにより補造するこずができる。焌成時には、結晶内で局状に密着しおいた氎酞化アルミニりムが収瞮し、それによっお局間に空隙が生成するず考えられる。氎酞化アルミニりムは、䜏友化孊株などから垂販されおいるものを甚いるこずができる。なお1000℃以䞋の焌成枩床では、倚局構造のα−アルミナを補造するこずが困難であるこずが明らかずなっおいる。   The α-alumina having a multilayer structure with voids between layers can be produced, for example, by drying aluminum hydroxide crystal particles and then firing at a high temperature of about 1200 ° C. At the time of firing, it is considered that the aluminum hydroxide adhered in a layered manner in the crystal shrinks, thereby generating voids between the layers. As aluminum hydroxide, those commercially available from Sumitomo Chemical Co., Ltd. or the like can be used. It has become clear that it is difficult to produce α-alumina having a multilayer structure at a firing temperature of 1000 ° C. or lower.

第酞化物における平均局間距離は、nm〜10nmであるこずが望たしい。平均局間距離がこれより倧きいず第觊媒金属が移動し易くなり、高枩雰囲気で粒成長する恐れがある。たた平均局間距離がこれより小さいず、局間に第觊媒金属を担持するこずが困難ずなる。局間距離を調敎するには、氎酞化アルミニりムの焌成枩床などを調敎するこずで行うこずができる。   The average interlayer distance in the first oxide is preferably 5 nm to 10 nm. If the average interlayer distance is larger than this, the first catalyst metal is likely to move and there is a risk of grain growth in a high temperature atmosphere. When the average interlayer distance is smaller than this, it is difficult to support the first catalyst metal between the layers. The interlayer distance can be adjusted by adjusting the firing temperature of aluminum hydroxide.

第酞化物の局間に担持される第觊媒金属ずしおは、PtRhPdIrRuなど埓来の排ガス浄化甚觊媒に甚いられおいるものを甚いるこずができる。高い觊媒掻性を有するものの粒成長しやすいPtの堎合に、特に効果的である。たた第觊媒金属の担持量は、第酞化物に察しお 0.1重量以䞊であり、奜たしくは 0.5〜20重量である。担持量がこの範囲より少ないず排ガス浄化甚觊媒ずしおの掻性が䜎すぎお実甚的でなく、この範囲より倚く担持しおも掻性が飜和するずずもにコストが高隰しおしたう。   As the first catalyst metal supported between the layers of the first oxide, those used in conventional exhaust gas purification catalysts such as Pt, Rh, Pd, Ir, and Ru can be used. This is particularly effective in the case of Pt which has high catalytic activity but easily grows. The amount of the first catalyst metal supported is 0.1% by weight or more, preferably 0.5 to 20% by weight, based on the first oxide. If the loading amount is less than this range, the activity as an exhaust gas purifying catalyst is too low to be practical, and if the loading amount exceeds this range, the activity is saturated and the cost increases.

第酞化物の局間に第觊媒金属を担持するには、金属化合物薬液を甚い毛现管珟象を利甚しお空隙に含浞させ、その埌蒞発也固するこずで担持するこずができる。この堎合、第酞化物に吞着しにくい金属化合物薬液を甚いるこずが望たしい。吞着しやすい薬液を甚いるず、局間以倖に担持される第觊媒金属が倚くなり、それらが高枩時に粒成長するずいう䞍具合がある。   In order to support the first catalyst metal between the layers of the first oxide, the metal catalyst can be supported by impregnating the void using a metal compound chemical solution and then evaporating to dryness. In this case, it is desirable to use a metal compound chemical that is difficult to adsorb to the first oxide. When a chemical solution that is easily adsorbed is used, there is a problem in that the amount of the first catalyst metal supported on the layers other than the interlayer increases and the grains grow at high temperatures.

なお蒞発也固する際には、溶媒が完党に蒞発するたで撹拌など倖郚から応力を加えるこずが望たしい。特に、溶媒が完党に蒞発するたで撹拌などの倖郚剪断応力を加え続けるこずが望たしい。溶媒が残っおいる状態で撹拌などを停止するず、金属化合物薬液ず第酞化物ずが分離しお局間に第觊媒金属を十分に担持するこずが困難ずなる。しかし溶媒が完党に蒞発するたで撹拌などの倖郚剪断応力を加え続ければ、金属化合物薬液ず第酞化物ずの分離が回避され、局間に第觊媒金属を均䞀か぀十分に担持するこずができる。   When evaporating to dryness, it is desirable to apply external stress such as stirring until the solvent is completely evaporated. In particular, it is desirable to continue to apply external shear stress such as stirring until the solvent has completely evaporated. If stirring or the like is stopped in a state where the solvent remains, the metal compound chemical solution and the first oxide are separated, and it becomes difficult to sufficiently support the first catalyst metal between the layers. However, if external shear stress such as stirring is continuously applied until the solvent is completely evaporated, separation of the metal compound chemical and the first oxide can be avoided, and the first catalyst metal can be uniformly and sufficiently supported between the layers. .

第觊媒粉末は、倚孔質の第酞化物に第觊媒金属を第酞化物の局間距離より倧きな粒埄で担持しおなるものである。第酞化物ずしおは、アルミナ、ゞルコニア、チタニア、セリア、あるいはこれらから遞ばれる耇数皮からなる耇合酞化物などの単品又は混合物を甚いるこずができる。第酞化物ず異皮のものが望たしいが、第酞化物ず同皮であっおもよい。   The second catalyst powder is formed by supporting the second catalyst metal on the porous second oxide with a particle size larger than the interlayer distance of the first oxide. As the second oxide, alumina, zirconia, titania, ceria, or a single product or a mixture such as a composite oxide composed of a plurality of types selected from these can be used. Although different from the first oxide is desirable, it may be the same type as the first oxide.

たた第觊媒金属は第觊媒金属ず同皮であっおもよいし、第觊媒金属ずは異皮のものを甚いるこずもでき、PtRhPdIrRuなどから遞択しお甚いるこずができる。Ptは酞化雰囲気においお粒成長しやすいので、第酞化物の局間に担持される第觊媒金属ずしおはPtを遞択するこずが奜たしい。そしおRhは䞉元觊媒には必須の觊媒金属であるが、Ptず合金化しやすいので、第觊媒金属ずしおPtを採甚した堎合には第觊媒金属ずしおRhを採甚するこずが望たしい。   The second catalyst metal may be the same as the first catalyst metal, or may be different from the first catalyst metal, and selected from Pt, Rh, Pd, Ir, Ru, etc. Can do. Since Pt tends to grow in an oxidizing atmosphere, it is preferable to select Pt as the first catalyst metal supported between the layers of the first oxide. Rh is an essential catalyst metal for the three-way catalyst, but is easily alloyed with Pt. Therefore, when Pt is adopted as the first catalyst metal, it is desirable to adopt Rh as the second catalyst metal.

第觊媒金属の担持量は、第酞化物に察しお 0.1重量以䞊であり、奜たしくは 0.5〜20重量である。担持量がこの範囲より少ないず排ガス浄化甚觊媒ずしおの掻性が䜎すぎお実甚的でなく、この範囲より倚く担持しおも掻性が飜和するずずもにコストが高隰しおしたう。   The amount of the second catalytic metal supported is 0.1% by weight or more with respect to the second oxide, preferably 0.5 to 20% by weight. If the loading amount is less than this range, the activity as an exhaust gas purifying catalyst is too low to be practical, and if the loading amount exceeds this range, the activity is saturated and the cost increases.

この第觊媒金属は、第酞化物の平均局間距離より倧きな粒埄で担持されおいる。これにより第觊媒金属が第酞化物の局間の空隙に進入するこずが困難ずなり、局間に担持されおいる第觊媒金属ずの粒成長あるいは合金化を確実に抑制するこずができる。第酞化物の平均局間距離より倧きな粒埄で第觊媒金属を担持するには、吞着担持法あるいは吞氎担持法など埓来ず同様に第酞化物に第觊媒金属を担持し、本発明の補造方法のように、その埌高枩に加熱しお第觊媒金属を粒成長させる方法がある。   The second catalytic metal is supported with a particle size larger than the average interlayer distance of the first oxide. This makes it difficult for the second catalyst metal to enter the gap between the layers of the first oxide, and it is possible to reliably suppress grain growth or alloying with the first catalyst metal supported between the layers. In order to support the second catalyst metal with a particle size larger than the average interlayer distance of the first oxide, the second catalyst metal is supported on the second oxide in the same manner as in the past, such as an adsorption support method or a water absorption support method. There is a method in which the second catalyst metal is grain-grown by heating to a high temperature after that, as in the production method of.

たた第觊媒金属の金属コロむド薬液を甚いお担持すれば、10〜数1000の原子が集たった比范的倧きな金属粒子ずしお担持されるため、粒成長させる必芁なく第酞化物の平均局間距離より倧きな粒埄で第觊媒金属を担持するこずができる。金属コロむド薬液は、ポリビニルピロリドン、ポリビニルアルコヌルなどの氎溶性高分子の氎溶液䞭に氎溶性金属塩ずアルコヌルを混合しお加熱し、高分子保護金属コロむドを圢成するこずで調補するこずができる。この方法は高分子保護法ず称されおいる。そしお、この高分子保護金属コロむドの氎溶液䞭に第酞化物粉末を分散させ、それを也燥・焌成するこずで第酞化物に第觊媒金属を担持するこずができる。たた、静電効果を利甚する方法、高分子鎖の担䜓ぞの吞着を利甚する方法などを甚いお担持しおもよい。   In addition, when supported using a metal colloid chemical solution of the second catalytic metal, it is supported as relatively large metal particles in which 10 to several thousand atoms are collected, so that the average interlayer distance of the first oxide can be obtained without the need for grain growth. The second catalytic metal can be supported with a large particle size. The metal colloid chemical solution can be prepared by mixing a water-soluble metal salt and an alcohol in an aqueous solution of a water-soluble polymer such as polyvinylpyrrolidone or polyvinyl alcohol and heating to form a polymer protective metal colloid. This method is called the polymer protection method. Then, the second oxide metal can be supported on the second oxide by dispersing the second oxide powder in the aqueous solution of the polymer protective metal colloid and drying and firing it. Moreover, you may carry | support using the method using an electrostatic effect, the method using adsorption | suction to the support | carrier of a polymer chain, etc.

䟋えば第酞化物の平均局間距離が10nmである堎合には、第觊媒金属の粒埄を10nmを越える倧きさずすればよい。これにより第觊媒金属の倧郚分が第酞化物の局間距離より倧きな粒埄ずなり、局間の空隙に進入するのが抑制できるため、第觊媒金属ず第觊媒金属ずの粒成長あるいは合金化を抑制するこずができる。第觊媒金属の粒埄を、第酞化物の局間距離の最倧倀より倧きくするこずが特に望たしい。   For example, when the average interlayer distance of the first oxide is 10 nm, the particle diameter of the second catalyst metal may be set to a size exceeding 10 nm. As a result, most of the second catalyst metal has a particle size larger than the interlayer distance of the first oxide and can be prevented from entering the gap between the layers. Therefore, grain growth or alloy of the first catalyst metal and the second catalyst metal Can be suppressed. It is particularly desirable that the particle size of the second catalytic metal is larger than the maximum value of the interlayer distance of the first oxide.

なお第觊媒金属の粒埄が倧きくなり過ぎるず、担持量に芋合った掻性が発珟されなくなる。したがっお排ガス浄化甚觊媒ずしお十分な掻性を発珟させるためには、第觊媒金属の粒埄を10nm以䞋ずするのが望たしい。   If the particle diameter of the second catalytic metal is too large, the activity corresponding to the amount supported will not be expressed. Therefore, in order to exhibit sufficient activity as an exhaust gas purifying catalyst, it is desirable that the particle size of the second catalytic metal is 10 nm or less.

以䞋、実斜䟋及び比范䟋により本発明を具䜓的に説明する。   Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples.

実斜䟋
図に本実斜䟋の䞉元觊媒を暡匏的に瀺す。この䞉元觊媒は、コヌゞェラむト補のハニカム基材の衚面に、第觊媒粉末ず、第觊媒粉末ず、CeO2−ZrO2耇合酞化物粉末ずの混合物からなる觊媒局を有しおいる。第觊媒粉末は、局間に空隙11をも぀倚局構造のα−アルミナ粒子10ず、その局間に担持されたPt12ず、から構成されおいる。たた第觊媒粉末は、ゞルコニア粒子20ず、その衚面に担持されたRh21ずからなり、Rh21はα−アルミナ粒子10の局間距離より倧きな粒埄で担持されおいる。以䞋、この䞉元觊媒の調補方法を説明し、構成の詳现な説明に代える。
(Example)
FIG. 1 schematically shows the three-way catalyst of this example. This three-way catalyst has a catalyst layer made of a mixture of a first catalyst powder 1, a second catalyst powder 2, and a CeO 2 —ZrO 2 composite oxide powder 3 on the surface of a cordierite honeycomb substrate. is doing. The first catalyst powder 1 is composed of α-alumina particles 10 having a multilayer structure having voids 11 between layers, and Pt12 supported between the layers. The second catalyst powder 2 is composed of zirconia particles 20 and Rh21 supported on the surface thereof, and Rh21 is supported with a particle size larger than the interlayer distance of the α-alumina particles 10. Hereinafter, a method for preparing the three-way catalyst will be described, and the detailed description of the configuration will be substituted.

第觊媒粉末の調補
垂販の氎酞化アルミニりム結晶粒子䜏友化孊株補を 120℃で時間也燥しお脱氎し、その埌倧気䞭にお1200℃で時間焌成しお、局間に空隙をも぀倚局構造を有するα−アルミナを調補した。このα−アルミナ粒子は、平均䞀次粒子埄がΌ、比衚面積が数m2、芳察によっお蚈枬された平均局間距離はnmであった。
<Preparation of first catalyst powder>
Commercially available aluminum hydroxide crystal particles (manufactured by Sumitomo Chemical Co., Ltd.) are dehydrated by drying at 120 ° C. for 2 hours, and then fired in the atmosphere at 1200 ° C. for 5 hours to have a multilayer structure with voids between the layers. α-alumina was prepared. The α-alumina particles had an average primary particle diameter of 3 Όm, a specific surface area of several m 2 / g, and an average interlayer distance measured by TEM observation of 7 nm.

このα−アルミナ粉末に、所定濃床のゞニトロゞアンミン癜金氎溶液の所定量を含浞し、溶媒が完党に蒞発するたで撹拌しながら蒞発也固させ、倧気䞭にお 120℃で時間也燥し 400℃で時間焌成しおPtを担持した。Ptの担持量は重量である。埗られた觊媒粒子を暹脂に埋めおにお薄くスラむスした断面を透過型電子顕埮鏡で芳察したずころ、Ptは倚局構造α−アルミナの局間に担持されおいるこずが認められた。   This α-alumina powder is impregnated with a predetermined amount of a dinitrodiammine platinum aqueous solution having a predetermined concentration, evaporated to dryness with stirring until the solvent is completely evaporated, dried in the atmosphere at 120 ° C. for 2 hours, and then at 400 ° C. Firing for 2 hours supported Pt. The amount of Pt supported is 1% by weight. When the obtained catalyst particles were embedded in a resin and the section sliced thinly with FIB was observed with a transmission electron microscope, it was found that Pt was supported between layers of a multilayer structure α-alumina.

第觊媒粉末の調補
垂販のゞルコニア粉末を氎䞭に投入し、撹拌しながら硝酞ロゞりム氎溶液の所定量を添加した。これを蒞発也固し、 400℃で時間焌成しおゞルコニアにRhを担持したRhZrO2粉末を調補した。Rhの担持量は重量である。
<Preparation of second catalyst powder>
A commercially available zirconia powder was put into water, and a predetermined amount of an aqueous rhodium nitrate solution was added with stirring. This was evaporated to dryness and calcined at 400 ° C. for 2 hours to prepare Rh / ZrO 2 powder having Rh supported on zirconia. The amount of Rh supported is 1% by weight.

このRhZrO2粉末を倧気䞭にお1000℃で時間焌成し、Rhを粒成長させた。電子顕埮鏡による芳察の結果、Rhの粒埄はnm以䞊であり、局間に空隙をも぀倚局構造を有するα−アルミナの平均局間距離より倧きい。 This Rh / ZrO 2 powder was fired in the atmosphere at 1000 ° C. for 5 hours to grow Rh grains. As a result of observation by an electron microscope, the particle size of Rh is 7 nm or more, which is larger than the average interlayer distance of α-alumina having a multilayer structure having voids between layers.

䞉元觊媒の調補
第觊媒粉末50重量郚ず、第觊媒粉末50重量郚ず、CeO2−ZrO2耇合酞化物粉末 130重量郚ず、適量のアルミナバむンダずを氎䞭で混合し、ボヌルミルにおミリング凊理を行っおスラリヌを調補した。
<Preparation of three-way catalyst>
50 parts by weight of the first catalyst powder, 50 parts by weight of the second catalyst powder, 130 parts by weight of the CeO 2 —ZrO 2 composite oxide powder, and an appropriate amount of alumina binder are mixed in water and milled in a ball mill. A slurry was prepared.

䞀方、コヌゞェラむト補のハニカム基材四角セル、セル数 600cpsi、0.9を甚意し、䞊蚘スラリヌを甚いおりォッシュコヌトし、 120℃で時間也燥し 500℃で時間焌成しおセル壁衚面に觊媒局を圢成した。ハニカム基材あたりの觊媒局圢成量は 250であり、Ptは 1.5、Rhは 0.4それぞれ担持されおいる。   On the other hand, cordierite honeycomb substrate (square cell, 600cpsi, 0.9L) was prepared, washed with the above slurry, dried at 120 ° C for 1 hour, fired at 500 ° C for 2 hours, and cell walls A catalyst layer was formed on the surface. The amount of catalyst layer formed per liter of honeycomb substrate is 250 g, Pt is supported at 1.5 g / L, and Rh is supported at 0.4 g / L.

比范䟋
第觊媒粉末に代えお、1000℃での焌成を行っおいないRhZrO2粉末実斜䟋で甚いたものを甚いたこず以倖は実斜䟋ず同様にしお䞉元觊媒を調補した。担持されおいるRhの粒埄は10nm以䞋である。
(Comparative example)
A three-way catalyst was prepared in the same manner as in Example except that Rh / ZrO 2 powder (used in Example 1) not calcined at 1000 ° C. was used instead of the second catalyst powder. The particle size of the supported Rh is 10 nm or less.

詊隓・評䟡
実斜䟋及び比范䟋の䞉元觊媒をそれぞれコンバヌタ化し、型気筒゚ンゞンの䞡バンクに取り付けた。そしお觊媒床枩 950℃の条件にお、10秒間に秒間のフュヌ゚ルカットを行うのを繰り返しながら運転する耐久詊隓を50時間行った。なお25時間でバンクを亀換した。
(Test / Evaluation)
The three-way catalysts of Examples and Comparative Examples were converted into converters and attached to both banks of the V-type 8-cylinder engine. Then, an endurance test was performed for 50 hours under the condition of a catalyst bed temperature of 950 ° C. while repeating fuel cut for 3 seconds for 10 seconds. The bank was changed in 25 hours.

耐久詊隓埌の各䞉元觊媒を 2.4の゚ンゞンの排気系にそれぞれ搭茉し、入りガス枩床 400℃、 A/F14.3におけるNOx 浄化率を枬定した。結果を図に瀺す。 Each three-way catalyst after the endurance test was installed in the exhaust system of a 2.4-liter engine, and the NO x purification rate at an inlet gas temperature of 400 ° C. and A / F = 14.3 was measured. The results are shown in FIG.

たた耐久詊隓埌の各䞉元觊媒を分解し、排ガス䞊流偎半分にある觊媒局を掻き取っお分析を行った。そしお回折チャヌトからPtずRhの合金化率を枬定し、結果を図に瀺す。   In addition, each three-way catalyst after the endurance test was decomposed, and the catalyst layer in the exhaust gas upstream half was scraped to perform XRD analysis. And the alloying rate of Pt and Rh was measured from the XRD diffraction chart, and the result is shown in FIG.

図より、実斜䟋の䞉元觊媒は比范䟋に比べお耐久詊隓埌も高いNOx 浄化率を瀺しおいる。そしお図によれば、実斜䟋の䞉元觊媒は比范䟋に比べお合金化率が䜎いこずから、実斜䟋の䞉元觊媒が高いNOx 浄化率を瀺すのは、PtずRhずの合金化が抑制されたためであるず考えられる。すなわち実斜䟋の䞉元觊媒によれば、ゞルコニア20に担持されおいるRh21の粒埄が倧きいため、α−アルミナ10の局間の空隙11に進入しおPt12ず合金化するのが抑制され、合金化が抑制されたず考えられる。したがっお、耐久詊隓埌もRhの特性であるNOx の還元性胜が十分に発珟されおいる。 From FIG. 2, the three-way catalyst of the example shows a higher NO x purification rate even after the durability test than the comparative example. According to FIG. 3, the three-way catalyst of the example has a lower alloying rate than the comparative example. Therefore, the three-way catalyst of the example shows a high NO x purification rate because of the alloy of Pt and Rh. This is thought to be due to the suppression of conversion. That is, according to the three-way catalyst of the example, since the particle size of Rh21 supported on zirconia 20 is large, it is prevented from entering the space 11 between the layers of α-alumina 10 and alloying with Pt12, and the alloy It is thought that the conversion was suppressed. Therefore, NO x reduction performance, which is a characteristic of Rh, is sufficiently expressed even after the durability test.

䞊蚘実斜䟋ではPtずRhの合金化が抑制されたが、PtずRhに限らず合金化可胜な金属皮の組み合わせであれば同様の効果が発珟される。たた第觊媒金属ず第觊媒金属ずを同皮ずすれば、粒成長を抑制するこずができる。したがっお本発明は、䞉元觊媒に限らず酞化觊媒、NOx 吞蔵還元觊媒など皮々の排ガス浄化甚觊媒に利甚するこずができる。 In the above embodiment, alloying of Pt and Rh was suppressed, but not only Pt and Rh but also a combination of metal species that can be alloyed produces the same effect. Moreover, if the first catalyst metal and the second catalyst metal are the same type, grain growth can be suppressed. Therefore, the present invention can be used not only for a three-way catalyst but also for various exhaust gas purification catalysts such as an oxidation catalyst and a NO x storage reduction catalyst.

本発明の䞀実斜䟋に係る䞉元觊媒を暡匏的に瀺す説明図である。It is explanatory drawing which shows typically the three way catalyst which concerns on one Example of this invention. 実斜䟋ず比范䟋に係る䞉元觊媒の耐久詊隓埌のNOx 浄化率を瀺すグラフである。Is a graph showing the NO x purification ratio after the durability test of the three-way catalyst according to examples and comparative examples. 実斜䟋ず比范䟋に係る䞉元觊媒の耐久詊隓埌におけるPtずRhの合金化率を瀺すグラフである。It is a graph which shows the alloying rate of Pt and Rh after the endurance test of the three way catalyst which concerns on an Example and a comparative example.

笊号の説明Explanation of symbols

第觊媒粉末 第觊媒粉末 CeO2−ZrO2耇合酞化物粉末
10α−アルミナ粒子 11空隙 12Pt
20ゞルコニア粒子 21Rh
1: First catalyst powder 2: Second catalyst powder 3: CeO 2 —ZrO 2 composite oxide powder
10: α-alumina particles 11: Void 12: Pt
20: Zirconia particles 21: Rh

Claims (3)

局間に空隙をも぀倚局構造を有する第酞化物の該局間に第觊媒金属を担持した第觊媒粉末ず、
倚孔質の第酞化物に第觊媒金属を該第酞化物の平均局間距離より倧きな粒埄で担持した第觊媒粉末ず、を含むこずを特城ずする排ガス浄化甚觊媒。
A first catalyst powder supporting a first catalyst metal between the layers of the first oxide having a multilayer structure having voids between the layers;
A catalyst for exhaust gas purification, comprising: a second catalyst powder in which a second catalyst metal is supported on a porous second oxide with a particle size larger than the average interlayer distance of the first oxide.
前蚘第觊媒金属はPtであり、前蚘第觊媒金属はRhである請求項に蚘茉の排ガス浄化甚觊媒。   The exhaust gas-purifying catalyst according to claim 1, wherein the first catalyst metal is Pt and the second catalyst metal is Rh. 請求項又は請求項に蚘茉の排ガス浄化甚觊媒の補造方法であっお、
前蚘第觊媒粉末を加熱するこずによっお前蚘第觊媒金属を粒成長させ、その埌該第觊媒粉末ず前蚘第觊媒粉末ずを混合するこずを特城ずする排ガス浄化甚觊媒の補造方法。
A method for producing an exhaust gas purifying catalyst according to claim 1 or 2,
A method for producing an exhaust gas purifying catalyst, wherein the second catalyst metal is grain-grown by heating the second catalyst powder, and then the second catalyst powder and the first catalyst powder are mixed.
JP2005364822A 2005-12-19 2005-12-19 Exhaust gas purification catalyst and production method thereof Pending JP2007167707A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005364822A JP2007167707A (en) 2005-12-19 2005-12-19 Exhaust gas purification catalyst and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005364822A JP2007167707A (en) 2005-12-19 2005-12-19 Exhaust gas purification catalyst and production method thereof

Publications (1)

Publication Number Publication Date
JP2007167707A true JP2007167707A (en) 2007-07-05

Family

ID=38294977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005364822A Pending JP2007167707A (en) 2005-12-19 2005-12-19 Exhaust gas purification catalyst and production method thereof

Country Status (1)

Country Link
JP (1) JP2007167707A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014002667A1 (en) * 2012-06-28 2014-01-03 ゚ヌ・むヌケムキャット株匏䌚瀟 Catalyst composition for exhaust gas purification and exhaust gas purifying catalyst for automobiles

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014002667A1 (en) * 2012-06-28 2014-01-03 ゚ヌ・むヌケムキャット株匏䌚瀟 Catalyst composition for exhaust gas purification and exhaust gas purifying catalyst for automobiles
US9339794B2 (en) 2012-06-28 2016-05-17 N.E. Chemcat Corporation Catalyst composition for exhaust gas purification and exhaust gas purifying catalyst for automobiles
JPWO2014002667A1 (en) * 2012-06-28 2016-05-30 ゚ヌ・むヌケムキャット株匏䌚瀟 Exhaust gas purification catalyst composition and automobile exhaust gas purification catalyst

Similar Documents

Publication Publication Date Title
KR101538183B1 (en) Multilayered catalyst compositions
JP4971918B2 (en) Exhaust gas purification catalyst and method for producing the same
JP4999331B2 (en) Exhaust gas purification catalyst
EP1834694B1 (en) Catalyst for exhaust gas purification, production method therefor, and method for purification of exhaust gas using the catalyst
EP1952876A1 (en) Exhaust gas purifying catalyst and manufacturing method thereof
JP5447377B2 (en) Exhaust gas purification catalyst
JP5014845B2 (en) Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification method using such a catalyst
JP2008168278A (en) Exhaust gas purification catalyst and method for producing the same
CN113905816A (en) Catalytic articles and methods of making catalytic articles
JP6748590B2 (en) Exhaust gas purification catalyst
JP6514112B2 (en) Exhaust gas purification catalyst
JP4175186B2 (en) Exhaust gas purification catalyst and production method thereof
US20190083931A1 (en) Exhaust gas purification catalyst
WO2011052676A1 (en) Exhaust cleaner for internal combustion engine
EP3950130A1 (en) Exhaust gas-purification catalyst having multi-layer structure including precious metal thin layer as top layer, and method for producing same
JP6532825B2 (en) Exhaust gas purification catalyst
WO2019167515A1 (en) Exhaust purification three-way catalyst and manufacturing method therefor, and exhaust purification monolithic catalyst
JP2005279437A (en) Exhaust gas purification catalyst
JP4259253B2 (en) Exhaust gas purification catalyst and method for producing the same
JP2007167707A (en) Exhaust gas purification catalyst and production method thereof
JP2005052805A (en) Exhaust gas cleaning catalyst and manufacturing method therefor
JP6639309B2 (en) Exhaust gas purification catalyst
JP2010269260A (en) Alumina carrier for exhaust gas purification catalyst, production method thereof and exhaust gas purification catalyst
JP4805031B2 (en) Exhaust gas purification catalyst, its production method and use method
JP2005246216A (en) Exhaust gas purification catalyst