[go: up one dir, main page]

JP2007165204A - Porous base material, membrane-electrode junction, and fuel cell - Google Patents

Porous base material, membrane-electrode junction, and fuel cell Download PDF

Info

Publication number
JP2007165204A
JP2007165204A JP2005362518A JP2005362518A JP2007165204A JP 2007165204 A JP2007165204 A JP 2007165204A JP 2005362518 A JP2005362518 A JP 2005362518A JP 2005362518 A JP2005362518 A JP 2005362518A JP 2007165204 A JP2007165204 A JP 2007165204A
Authority
JP
Japan
Prior art keywords
pore diameter
pore
membrane
porous substrate
convex curve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005362518A
Other languages
Japanese (ja)
Inventor
Takuya Okura
拓也 大倉
Hiroshi Yoshikawa
大士 吉川
N Nair Balagopal
エヌ.ナイル バラゴパル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritake Co Ltd
Original Assignee
Noritake Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritake Co Ltd filed Critical Noritake Co Ltd
Priority to JP2005362518A priority Critical patent/JP2007165204A/en
Publication of JP2007165204A publication Critical patent/JP2007165204A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Conductive Materials (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a porous base material for forming a durable and proton conductive fine pore filled electrolyte film, a durable and proton conductive film-electrode connected member, and a long life fuel cell having high power generation ability. <P>SOLUTION: The porous base material 22 has fine holes 34 and 36 with a diameter from 0.03 to 0.3μm, and a fine hole 32 with a diameter form 0.5 to 15μm formed separated in the thickness direction thereof. The holes having different diameters are connected with the two kinds of fine holes 32 to 36 above to form a continuous hole as the pathway thereof. The relatively small size fine hole 34 and 36 contributes to suppress the swelling of a proton conductive polymer 24, and the relatively large fine hole 32 contributes on the improvement of proton conductivity. The communication fine holes having the two kinds of fine holes 32 to 36 made to communicate with each other have both properties thereof. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、細孔にプロトン伝導性材料を充填して膜−電極接合体(Membrane Electrode Assembly:MEA)を構成するために用いられる多孔性基材、これを用いたMEA、およびそのMEAを用いた燃料電池に関する。   The present invention relates to a porous substrate used to form a membrane-electrode assembly (MEA) by filling a pore with a proton conductive material, an MEA using the porous substrate, and the MEA. Relates to the fuel cell.

燃料電池は、燃料として水素、メタノール、化石燃料からの改質水素等の還元剤を用い、空気や酸素を酸化剤として、電池内で燃料を電気化学的に酸化することにより、燃料の化学エネルギーを直接電気エネルギーに変換して取り出すものである。そのため、内燃機関に比較して効率が高く、静粛性に優れると共に、大気汚染の原因となるNOx、SOx、粒子状物質(PM)等の排出量が少ないことから、近年、クリーンな電気エネルギー供給源として注目されている。例えば、自動車用エンジンの代替、住宅用等の分散型電源や熱電供給システムとしての利用が期待されている。 A fuel cell uses a reducing agent such as hydrogen, methanol, or reformed hydrogen from fossil fuels as a fuel, and electrochemically oxidizes the fuel in the cell using air or oxygen as an oxidant, thereby chemical energy of the fuel. Is directly converted into electrical energy and extracted. As a result, it has higher efficiency and quietness compared to internal combustion engines, and has low emissions of NO x , SO x , particulate matter (PM), etc. that cause air pollution. It is attracting attention as an energy supply source. For example, it is expected to be used as a distributed power source or a thermoelectric supply system for automobile engines, residential use, etc.

このような燃料電池は、用いる電解質の種類によって、アルカリ形、リン酸形、溶融炭酸塩形、固体酸化物形、固体高分子形等に分類される。これらのうちプロトン伝導性の電解質を用いるリン酸形および固体高分子形は、熱力学におけるカルノーサイクルの制限を受けることなく高い効率で運転できるものであり、その理論効率は、25(℃)において83(%)にも達する。特に、固体高分子形燃料電池は、近年電解質膜や触媒技術の発展により性能の向上が著しくなり、低公害自動車用電源や高効率発電方法として注目を集めている。   Such fuel cells are classified into alkali type, phosphoric acid type, molten carbonate type, solid oxide type, solid polymer type, and the like depending on the type of electrolyte used. Among these, the phosphoric acid form and the solid polymer form using a proton-conducting electrolyte can be operated with high efficiency without being restricted by the Carnot cycle in thermodynamics, and the theoretical efficiency is 25 (° C). It reaches 83 (%). In particular, solid polymer fuel cells have been remarkably improved in performance in recent years due to the development of electrolyte membranes and catalyst technology, and are attracting attention as a low-pollution automobile power source and a high-efficiency power generation method.

上記の固体高分子形燃料電池に用いる膜−電極接合体を構成するための電解質膜としては、従来から、パーフルオロスルホン酸膜(例えば、デュポン社製Nafion(登録商標)やダウケミカル社製ダウ膜等)が一般的に用いられている。しかしながら、このような高分子電解質は、適当な含水状態で良好なプロトン伝導性を発揮するため、水分管理のために膜加湿が必須となる。その一方、高分子電解質は水やメタノールと接触すると膨潤し、膨潤および乾燥の繰返しが劣化の原因となるので、膜−電極接合体が劣化し易く、燃料電池の寿命が得られない問題がある。しかも、電解質膜が劣化すると水素やメタノール等の燃料が燃料極側から空気極側に透過(すなわちクロスオーバー)し、空気極で直接酸化されることから、電池の起電力も低くなる。   Conventionally, as an electrolyte membrane for constituting a membrane-electrode assembly used in the above polymer electrolyte fuel cell, a perfluorosulfonic acid membrane (for example, Nafion (registered trademark) manufactured by DuPont or Dow Chemical manufactured by Dow Chemical Co., Ltd.) is used. Membranes and the like) are commonly used. However, since such a polymer electrolyte exhibits good proton conductivity in an appropriate water-containing state, membrane humidification is essential for moisture management. On the other hand, polymer electrolytes swell when contacted with water or methanol, and repeated swelling and drying cause deterioration. Therefore, there is a problem that the membrane-electrode assembly is easily deteriorated and the life of the fuel cell cannot be obtained. . Moreover, when the electrolyte membrane deteriorates, fuel such as hydrogen or methanol permeates from the fuel electrode side to the air electrode side (that is, crossover) and is directly oxidized at the air electrode, so that the electromotive force of the battery is also reduced.

これに対して、多孔性基材の細孔に高分子電解質材料を充填し、細孔充填型高分子電解質膜を構成することが提案されている(例えば特許文献1を参照)。これによれば、高分子電解質材料が膨潤させられた場合にも、その変形や膨張が多孔性基材によって抑制され、延いては電解質膜の変形が抑制される。
特開2003−263998号公報
On the other hand, it has been proposed to form a pore-filled polymer electrolyte membrane by filling the pores of a porous substrate with a polymer electrolyte material (see, for example, Patent Document 1). According to this, even when the polymer electrolyte material is swollen, its deformation and expansion are suppressed by the porous base material, and further, deformation of the electrolyte membrane is suppressed.
JP 2003-263998 A

しかしながら、上記のような細孔充填型電解質膜は、膜全体を電解質で構成した非充填型のものに比較してプロトン伝導性が低いことから、これを用いた膜−電極接合体のプロトン伝導性も低く、延いては燃料電池の発電能力も低く留まっていたため、改善が望まれていた。一般に、細孔充填型電解質膜において電解質の充填量を一定とした場合には、多孔質基材の平均細孔径が大きくなるほど細孔内における電解質相互の接触面積が大きくなって高いプロトン伝導性が得られる。その反面で、平均細孔径が大きくなるほど、電解質の膨潤抑制効果が減じられると共に、充填された電解質が乾燥収縮した際に多孔質基材と電解質との間に隙間が生じて水素漏れが発生する問題がある。そのため、従来においては、膨潤を十分に抑制し延いては耐久性を高める目的で、多孔質基材として0.1(μm)以下すなわちサブミクロンレベルの小さな平均細孔径を有するものが用いられていたことから、高いプロトン伝導性が得られなかったのである。   However, since the pore-filled electrolyte membrane as described above has a lower proton conductivity than the non-filled membrane in which the entire membrane is composed of an electrolyte, the proton conduction of the membrane-electrode assembly using this membrane Therefore, improvement was desired because the power generation capacity of the fuel cell remained low. In general, when the electrolyte filling amount is constant in the pore-filled electrolyte membrane, the larger the average pore diameter of the porous substrate, the larger the contact area between the electrolytes in the pores, resulting in higher proton conductivity. can get. On the other hand, as the average pore size increases, the effect of suppressing the swelling of the electrolyte is reduced, and when the filled electrolyte is dried and contracted, a gap is generated between the porous substrate and the electrolyte, and hydrogen leakage occurs. There's a problem. Therefore, in the past, for the purpose of sufficiently suppressing the swelling and increasing the durability, a porous substrate having a small average pore diameter of 0.1 (μm) or less, that is, a submicron level was used. Therefore, high proton conductivity could not be obtained.

なお、細孔充填型電解質膜を構成する電解質は、上記のような高分子電解質に限られず、炭化水素系電解質(例えばスチレン系、ビニル系、芳香族ポリマー系)や無機リン酸系電解質(例えばリン酸二水素セシウム)等でもよい。これらの電解質は膨潤し延いては劣化するものではないが、機械的強度が低いことから、細孔充填型とすれば機械的強度を補うことができる利点がある。これらにおいて、高い補強効果を得て損傷を抑制し延いては耐久性を高めるためには、平均細孔径の小さい多孔性基材を用いる必要がある。そのため、高分子電解質を用いた細孔充填型電解質膜と同様に、高いプロトン伝導性を得ることが困難であった。   The electrolyte constituting the pore-filled electrolyte membrane is not limited to the polymer electrolyte as described above, but is a hydrocarbon-based electrolyte (for example, styrene-based, vinyl-based, aromatic polymer-based) or an inorganic phosphate-based electrolyte (for example, Cesium dihydrogen phosphate) may also be used. Although these electrolytes swell and do not deteriorate as a result of their swelling, since the mechanical strength is low, the pore-filled type has an advantage that the mechanical strength can be supplemented. In these, it is necessary to use a porous base material having a small average pore diameter in order to obtain a high reinforcing effect, suppress damage and extend durability. For this reason, it has been difficult to obtain high proton conductivity as in the case of a pore-filled electrolyte membrane using a polymer electrolyte.

本発明は、以上の事情を背景として為されたものであって、その目的は、耐久性が高く且つプロトン伝導性の高い細孔充填型電解質膜を構成し得る多孔質基材を提供し、延いては、プロトン伝導性が高く劣化し難い膜−電極接合体および発電能力が高く長寿命の燃料電池を提供することにある。   The present invention has been made against the background of the above circumstances, and its object is to provide a porous substrate that can constitute a pore-filled electrolyte membrane having high durability and high proton conductivity, Accordingly, it is an object of the present invention to provide a membrane-electrode assembly that has high proton conductivity and hardly deteriorates, and a fuel cell that has high power generation capability and a long life.

斯かる目的を達成するため、第1発明の多孔質基材の要旨とするところは、厚み方向に貫通する多数の連通細孔を備え且つその細孔内にプロトン伝導性材料を充填して固体電解質膜を構成するために用いられる多孔性基材であって、log微分細孔容積を表す曲線が所定の第1細孔径範囲に亘る第1凸曲線部と、その第1凸曲線部よりも大径側の所定の第2細孔径範囲に亘る第2凸曲線部とを含む細孔径分布を備え、前記多数の連通細孔の少なくとも一部は、前記第1細孔径範囲内の細孔径を有する部分と前記第2細孔径範囲内の細孔径を有する部分とを連通経路上に共に備えたことにある。   In order to achieve such an object, the gist of the porous substrate of the first invention is that a solid substrate is provided with a large number of communicating pores penetrating in the thickness direction and filled with a proton conductive material in the pores. A porous base material used for constituting an electrolyte membrane, wherein a curve representing a log differential pore volume has a first convex curve portion over a predetermined first pore diameter range, and the first convex curve portion. A pore diameter distribution including a second convex curve portion over a predetermined second pore diameter range on the large diameter side, and at least some of the plurality of communicating pores have a pore diameter within the first pore diameter range. And having a portion having a pore diameter within the second pore diameter range on the communication path.

また、前記目的を達成するための第2発明の膜−電極接合体の要旨とするところは、前記第1発明の多孔性基材にプロトン伝導性材料を充填した細孔充填型電解質膜の一面に空気極を、他面に燃料極をそれぞれ設けたことにある。   Further, the gist of the membrane-electrode assembly of the second invention for achieving the above object is one side of a pore-filled electrolyte membrane in which the porous substrate of the first invention is filled with a proton conductive material. The air electrode and the fuel electrode on the other surface.

また、前記目的を達成するための第3発明の固体高分子形燃料電池の要旨とするところは、前記第2発明の膜−電極接合体を備えたことにある。   Further, the gist of the polymer electrolyte fuel cell of the third invention for achieving the above object is that the membrane-electrode assembly of the second invention is provided.

前記第1発明によれば、多孔性基材には、第1細孔径範囲の細孔径を有する部分と、第2細孔径範囲の細孔径を有する部分とを厚み方向の連通経路上に共に備えた細孔が備えられる。前述したように、細孔内にプロトン伝導性材料が充填された多孔性基材は、細孔径が小さいほど、高分子電解質材料においてはプロトン伝導性材料の膨潤抑制効果が高くなり、他の電解質材料においてはその機械的強度の補強効果が高くなる一方、細孔径が大きいほどプロトン伝導性が高くなる。そのため、相対的に小径の第1細孔径範囲にある細孔は膨潤抑制や補強に寄与し、相対的に大径の第2細孔径範囲にある細孔はプロトン伝導性の向上に寄与することから、それら2種の細孔径の部分を何れも備えた連通細孔は、両特性を兼ね備えたものとなる。したがって、それら2種の細孔径の大きさや割合(すなわち第1凸曲線部および第2凸曲線部の位置や高さの比など)、および、これらを共に連通経路上に備えた細孔の割合などを、所望する特性に応じて適宜定めることにより、プロトン伝導性が高く且つプロトン伝導性材料の膨潤や損傷が生じ難い電解質膜を構成可能な多孔性基材が得られる。   According to the first invention, the porous base material is provided with both a portion having a pore diameter in the first pore diameter range and a portion having a pore diameter in the second pore diameter range on the communication path in the thickness direction. Pores are provided. As described above, in the porous base material in which the proton conductive material is filled in the pores, the smaller the pore diameter, the higher the swelling suppression effect of the proton conductive material in the polymer electrolyte material. In the material, the reinforcing effect of the mechanical strength is increased, while the proton conductivity increases as the pore diameter increases. Therefore, pores in the first pore diameter range having a relatively small diameter contribute to swelling suppression and reinforcement, and pores in the relatively large second pore diameter range contribute to improvement in proton conductivity. Therefore, the communicating pores having both of these two types of pore diameter portions have both characteristics. Therefore, the size and ratio of the two kinds of pore diameters (that is, the ratio of the position and height of the first convex curve part and the second convex curve part), and the ratio of the pores having both of them on the communication path By appropriately determining the above according to the desired characteristics, a porous substrate capable of forming an electrolyte membrane having high proton conductivity and hardly causing swelling or damage of the proton conductive material is obtained.

また、前記第2発明によれば、上記のようにプロトン伝導性が高く且つ劣化し難い多孔性基材が用いられることから、プロトン伝導性が高く且つ劣化や損傷が生じ難い膜−電極接合体が得られる。   In addition, according to the second invention, since the porous base material having high proton conductivity and not easily deteriorated as described above is used, the membrane-electrode assembly having high proton conductivity and hardly causing deterioration or damage. Is obtained.

また、前記第3発明によれば、上記のようにプロトン伝導性が高く且つ劣化し難い多孔性基材を用いた膜−電極接合体が用いられることから、発電能力が高く且つ長寿命を備えた固体高分子形燃料電池が得られる。   Further, according to the third invention, since the membrane-electrode assembly using the porous base material having high proton conductivity and hardly deteriorated as described above is used, the power generation capacity is high and the life is long. A solid polymer fuel cell can be obtained.

なお、本願において、log微分細孔容積を表す曲線とは、横軸に細孔径Dを、縦軸にdV/d(logD)をとったものをいう。但し、dVは測定点間の細孔容積の増加分、d(logD)は細孔径Dの対数扱いの差分値である。また、凸曲線部とは、この細孔分布曲線において上に凸になっている部分を意味する。第1凸曲線部および第2凸曲線部は、ピークが完全に分離したもの(すなわち、それらの間に細孔容積が略零の細孔径がある)であっても、部分的にくっついたもの(すなわち、それらの間に細孔容積の略零の細孔径が存在しない)であってもよい。   In the present application, the curve representing the log differential pore volume refers to a curve in which the horizontal axis represents the pore diameter D and the vertical axis represents dV / d (log D). However, dV is an increase in pore volume between measurement points, and d (logD) is a logarithmic difference value of the pore diameter D. Further, the convex curve portion means a portion that is convex upward in the pore distribution curve. The first convex curve portion and the second convex curve portion are partially stuck even if the peaks are completely separated (that is, there is a pore diameter of substantially zero pore volume between them) (That is, there is no pore diameter of substantially zero pore volume between them).

ここで、好適には、前記多孔性基材は、前記第1凸曲線部に対応する細孔径分布を備えた第1層と、前記第2凸曲線部に対応する細孔径分布を備え且つその第1層に積層された第2層とを含むものである。このようにすれば、多孔性基材全体としては、前述したように第1凸曲線部および第2凸曲線部を有する細孔径分布を備えることとなるため、第1層および第2層がプロトンの透過方向に積層された態様で用いることにより、プロトン伝導性が高く且つプロトン伝導性材料の膨潤や損傷が生じ難い電解質膜を構成可能な多孔性基材が得られる。   Preferably, the porous base material includes a first layer having a pore size distribution corresponding to the first convex curve portion, a pore size distribution corresponding to the second convex curve portion, and the And a second layer stacked on the first layer. In this way, the porous substrate as a whole has a pore size distribution having the first convex curve portion and the second convex curve portion as described above, so that the first layer and the second layer are protons. By using the layers laminated in the permeation direction, a porous substrate capable of forming an electrolyte membrane having high proton conductivity and hardly causing swelling or damage of the proton conductive material is obtained.

すなわち、本発明においては、第1細孔径範囲の細孔径を有する部分と、第2細孔径範囲の細孔径を有する部分とが多孔性基材に共に備えられると共に、それらを共に連通経路上に有する細孔が備えられていれば、発明の効果を享受することができ、それら2種の細孔径の部分の分布形態は特に限定されない。例えば、それら2種の細孔径の部分が多孔性基材の全体に分布していても良いが、それぞれの分布範囲が層状に分離していても良い。後者のような分布態様は、互いに平均細孔径の異なる2層を積層することで容易に得られることから好ましい。なお、積層数は2層に限られず、3層以上であっても差し支えない。   That is, in the present invention, a portion having a pore diameter in the first pore diameter range and a portion having a pore diameter in the second pore diameter range are both provided in the porous substrate, and both of them are on the communication path. If the pore which has is provided, the effect of invention can be enjoyed and the distribution form of these 2 types of pore diameter parts is not specifically limited. For example, these two types of pore diameter portions may be distributed throughout the porous substrate, but the respective distribution ranges may be separated into layers. The latter distribution mode is preferable because it can be easily obtained by laminating two layers having different average pore diameters. Note that the number of stacked layers is not limited to two, and may be three or more.

また、好適には、前記第1凸曲線部は0.01〜0.3(μm)の範囲内にピークを有し、前記第2凸曲線部は0.5〜15(μm)の範囲内にピークを有するものである。小径側については、プロトン伝導性材料の膨潤抑制や機械的強度の補強には0.3(μm)以下の細孔径が好ましく、十分に高いプロトン伝導性を得る観点からは0.01(μm)以上の細孔径が好ましい。また、大径側については、十分に高いプロトン伝導性を得る観点からは0.5(μm)以上の細孔径が好ましく、水素ガスのリークを十分に抑制する観点からは15(μm)以下の細孔径が好ましい。   Preferably, the first convex curve portion has a peak within a range of 0.01 to 0.3 (μm), and the second convex curve portion has a peak within a range of 0.5 to 15 (μm). is there. On the small-diameter side, a pore diameter of 0.3 (μm) or less is preferable for suppressing swelling of the proton conductive material and reinforcing mechanical strength, and from the viewpoint of obtaining sufficiently high proton conductivity, a pore diameter of 0.01 (μm) or more Is preferred. On the large diameter side, a pore diameter of 0.5 (μm) or more is preferable from the viewpoint of obtaining sufficiently high proton conductivity, and a pore diameter of 15 (μm) or less from the viewpoint of sufficiently suppressing hydrogen gas leakage. Is preferred.

一層好適には、前記第1凸曲線部は0.05〜0.3(μm)の範囲内にピークを有するものであり、更に好適には、0.10〜0.3(μm)の範囲内にピークを有するものである。すなわち、十分に高いプロトン伝導性を得るためには、小径側が0.05(μm)以上であることが一層好ましく、0.10(μm)以上であることが更に好ましい。また、一層好適には、前記第2凸曲線部は0.5〜10(μm)の範囲内にピークを有するものであり、更に好適には、0.5〜5(μm)の範囲内にピークを有するものである。すなわち、水素ガスのリークを一層抑制するためには、大径側が10(μm)以下であることが一層好ましく、5(μm)以下であることが更に好ましい。   More preferably, the first convex curve portion has a peak in the range of 0.05 to 0.3 (μm), and more preferably has a peak in the range of 0.10 to 0.3 (μm). . That is, in order to obtain sufficiently high proton conductivity, the smaller diameter side is more preferably 0.05 (μm) or more, and further preferably 0.10 (μm) or more. More preferably, the second convex curve portion has a peak in the range of 0.5 to 10 (μm), and more preferably has a peak in the range of 0.5 to 5 (μm). It is. That is, in order to further suppress the leakage of hydrogen gas, the larger diameter side is more preferably 10 (μm) or less, and further preferably 5 (μm) or less.

また、好適には、前記第1凸曲線部は0.005〜3.0(μm)の範囲内に位置するものであり、前記第2凸曲線部は0.1〜50(μm)の範囲内に位置するものである。小径側については、プロトン伝導性材料の膨潤抑制や機械的強度の補強には全ての細孔径が3.0(μm)以下であることが好ましく、十分に高いプロトン伝導性を得る観点からは全ての細孔径が0.005(μm)以上であることが好ましい。また、大径側については、十分に高いプロトン伝導性を得る観点からは全ての細孔径が0.1(μm)以上であることが好ましく、水素ガスのリークを十分に抑制する観点からは全ての細孔径が50(μm)以下であることが好ましい。なお、本願において、第1凸曲線部および第2凸曲線部の範囲は、これらが完全に分離した細孔分布曲線である場合には、細孔容積が略零を示す点を上限および下限として判断したものであり、これらの間に略零を示す点が存在しない場合には、それらの間に存在する極小点を第1凸曲線部の上限であるとと共に第2凸曲線部の下限であるとして判断する。   Preferably, the first convex curve portion is located within a range of 0.005 to 3.0 (μm), and the second convex curve portion is located within a range of 0.1 to 50 (μm). is there. On the small-diameter side, all pore diameters are preferably 3.0 (μm) or less in order to suppress swelling of the proton conductive material or to reinforce mechanical strength, and from the viewpoint of obtaining sufficiently high proton conductivity, The pore diameter is preferably 0.005 (μm) or more. On the large diameter side, from the viewpoint of obtaining sufficiently high proton conductivity, all pore diameters are preferably 0.1 (μm) or more, and from the viewpoint of sufficiently suppressing hydrogen gas leakage, all fine diameters are preferred. The pore diameter is preferably 50 (μm) or less. In the present application, the range of the first convex curve portion and the second convex curve portion is defined as the upper limit and lower limit when the pore volume distribution curve is a completely separated pore distribution curve. If there is no point indicating approximately zero between them, the minimum point existing between them is the upper limit of the first convex curve portion and the lower limit of the second convex curve portion. Judge that there is.

一層好適には、前記第1凸曲線部は0.010〜1.0(μm)の範囲内に位置し、前記第2凸曲線部は0.1〜20(μm)の範囲内に位置するものである。すなわち、小径側については、十分に高いプロトン伝導性を得るためには、小径側の全ての細孔径が0.010(μm)以上であることが一層好ましく、膨潤抑制や機械的強度の補強の観点からは1.0(μm)以下であることが好ましい。また、大径側については、水素ガスのリークを一層抑制するためには、大径側の全ての細孔が20(μm)以下であることが一層好ましく、プロトン伝導性の観点からは0.1(μm)以上であることが好ましい。   More preferably, the first convex curve portion is located within a range of 0.010 to 1.0 (μm), and the second convex curve portion is located within a range of 0.1 to 20 (μm). That is, for the small diameter side, in order to obtain sufficiently high proton conductivity, it is more preferable that all the pore diameters on the small diameter side are 0.010 (μm) or more, from the viewpoint of suppression of swelling and reinforcement of mechanical strength. Is preferably 1.0 (μm) or less. On the large diameter side, in order to further suppress the leakage of hydrogen gas, it is more preferable that all pores on the large diameter side are 20 (μm) or less, and from the viewpoint of proton conductivity, 0.1 ( μm) or more is preferable.

また、好適には、前記第1細孔径範囲の細孔の全容積と、前記第2細孔径範囲の細孔の全容積との比は、20:80〜80:20の範囲内である。これら2種の細孔が共に備えられていれば本発明の効果を享受できるが、相対的に細孔径の小さい第1細孔径範囲の細孔の占める割合が多くなるほどプロトン伝導性が低下する一方、燃料極側から空気極側への燃料ガスの漏れが生じ難くなる。反対に、第1細孔径範囲の細孔が少なくなるほどプロトン伝導性が高められる一方で燃料ガスの漏れが生じ易くなる。したがって、これら2種の細孔の容積の比は、所望する特性に応じて適宜定め得るものであるが、これらを考慮して定めることが好ましい。   Preferably, the ratio of the total volume of the pores in the first pore diameter range to the total volume of the pores in the second pore diameter range is in the range of 20:80 to 80:20. If both of these two types of pores are provided, the effects of the present invention can be enjoyed. However, as the proportion of pores in the first pore size range having a relatively small pore size increases, the proton conductivity decreases. The fuel gas is less likely to leak from the fuel electrode side to the air electrode side. On the contrary, the smaller the number of pores in the first pore diameter range, the higher the proton conductivity, but the more likely the fuel gas leaks. Therefore, the ratio of the volumes of these two kinds of pores can be determined as appropriate according to the desired characteristics, but it is preferable to determine them in consideration of these.

また、前述したように多孔性基材が前記第1層および第2層を備えた態様においては、第1細孔径範囲の細孔の全容積と、前記第2細孔径範囲の細孔の全容積との比は、これらの厚さ寸法の割合で定められる。したがって、その比は所望する特性に応じて適宜定め得るものであるが、例えば、第1層の厚み:第2層の厚み=20:80〜80:20である。なお、多孔性基材が3層以上で構成される場合には、第1細孔径範囲の細孔を備えた層の合計厚みと、第2細孔径範囲の細孔を備えた層の合計厚みとの比が上記の範囲内にあることが好ましい。   Further, as described above, in the aspect in which the porous substrate includes the first layer and the second layer, the total volume of the pores in the first pore diameter range and the entire pores in the second pore diameter range The ratio to the volume is determined by the ratio of these thickness dimensions. Therefore, the ratio can be appropriately determined according to the desired characteristics. For example, the thickness of the first layer: the thickness of the second layer = 20: 80 to 80:20. When the porous substrate is composed of three or more layers, the total thickness of the layers having pores in the first pore diameter range and the total thickness of the layers having pores in the second pore diameter range The ratio is preferably within the above range.

また、好適には、前記多孔性基材は、プロトン透過方向における中央部が前記第1凸曲線部および前記第2凸曲線部の一方に対応する細孔径分布を備え、残部(すなわちプロトン透過方向における多孔性基材の表面側および裏面側)が前記第1凸曲線部および前記第2凸曲線部の他方に対応する細孔径分布を備えたものである。このようにすれば、多孔性基材が厚み方向において対称的な物性を備えることとなるので、製造過程や使用中において温度が上昇した場合の熱膨張量の相違に起因する破損などが好適に抑制される。   Preferably, the porous base material has a pore diameter distribution in which a central portion in the proton permeation direction corresponds to one of the first convex curve portion and the second convex curve portion, and the remainder (that is, the proton permeation direction). (The front surface side and the back surface side of the porous substrate) have a pore diameter distribution corresponding to the other of the first convex curve portion and the second convex curve portion. In this way, since the porous base material has symmetrical physical properties in the thickness direction, the damage due to the difference in the amount of thermal expansion when the temperature rises during the manufacturing process or use is suitable. It is suppressed.

また、好適には、前記多孔性基材は、使用時において燃料極側に位置する表面を含む部分が前記第1凸曲線部に対応する細孔径分布を備えたものである。このようにすれば、水素やメタノール等に曝される燃料極側における細孔径が小さくされるので、多孔性基材内へのそれらの侵入が好適に抑制され、一層高い耐久性が得られる。   Preferably, the porous substrate has a pore diameter distribution in which a portion including a surface located on the fuel electrode side in use corresponds to the first convex curve portion. In this way, since the pore diameter on the fuel electrode side exposed to hydrogen, methanol or the like is reduced, their penetration into the porous substrate is suitably suppressed, and higher durability can be obtained.

また、好適には、前記多孔性基材はセラミックスから成るものである。多孔性基材は電子伝導性を有しないことが好ましいが、高分子形燃料電池の使用温度に耐えると共に、燃料ガスや水蒸気等による劣化が生じ難いものであれば、構成材料は特に限定されない。例えば、ポリエチレンやポリイミド等の多孔質ポリマーも好適に用い得るが、多孔質セラミックスは、価格、強度、耐久性、細孔の制御性等の観点で特に好ましい。本発明に好適に用いられるセラミック材料としては、アルミナ、ジルコニア、窒化珪素、シリカ等が挙げられる。   Preferably, the porous substrate is made of ceramics. The porous substrate preferably does not have electronic conductivity, but the constituent material is not particularly limited as long as it can withstand the use temperature of the polymer fuel cell and hardly deteriorate due to fuel gas or water vapor. For example, porous polymers such as polyethylene and polyimide can be suitably used, but porous ceramics are particularly preferable from the viewpoints of price, strength, durability, controllability of pores, and the like. Examples of the ceramic material suitably used in the present invention include alumina, zirconia, silicon nitride, and silica.

なお、上記のような多孔性基材は、セラミックスで構成する場合には、例えば、平均粒子径の互いに異なる2種類(但し、2種類よりも多くとも差し支えない)の原料粉末を用意して製造することができる。2種類の原料粉末の平均粒子径や大きさの比等は形成しようとする細孔の大きさに応じて適宜定められるが、例えば0.02〜12(μm)の範囲内の平均粒子径のものと、0.4〜200(μm)の範囲内の平均粒子径のものとを、前者と後者の平均粒子径の比が1:2〜1:1000の範囲内となるように定めることが好ましい。また、原料粉末は0.04〜1.2(μm)の範囲内の平均粒子径のものと、2.0〜60(μm)の範囲内の平均粒子径のものとを用いることが一層好ましく、それらの平均粒子径の比は1:2〜1:100の範囲内であることが一層好ましい。   In addition, when the porous substrate as described above is made of ceramics, for example, it is prepared by preparing two types of raw material powders having different average particle diameters (however, more than two types may be used). can do. The ratio of the average particle size and size of the two types of raw material powders is appropriately determined according to the size of the pores to be formed. For example, the average particle size in the range of 0.02 to 12 (μm) The average particle diameter within the range of 0.4 to 200 (μm) is preferably determined so that the ratio of the average particle diameter of the former to the latter is within the range of 1: 2 to 1: 1000. Further, it is more preferable to use a raw material powder having an average particle size in the range of 0.04 to 1.2 (μm) and an average particle size in the range of 2.0 to 60 (μm), those average particle sizes The ratio is more preferably in the range of 1: 2 to 1: 100.

また、平均粒子径が互いに異なる原料粉末を用いることに代えて、或いはこれに加えて、形成される気孔の大きさが互いに異なる2種類(但し、2種類よりも多くとも差し支えない)の気孔形成剤を原料粉末に混合することで、前記のような多孔性基材を製造することもできる。気孔形成剤としては、焼成処理によって焼失する有機物が好ましい。   In addition to or in addition to using raw material powders having different average particle diameters, two types of pores with different pore sizes (however, more than two types may be used) are formed. The porous substrate as described above can also be produced by mixing the agent with the raw material powder. As the pore forming agent, an organic substance that is burned off by the baking treatment is preferable.

また、上記のような原料粉末を用いて、多孔性基材を製造するに際して、前記第1細孔径範囲の細孔と前記第2細孔径範囲の細孔とが共に多孔性基材の全体に分布する態様では、例えば、原料粉末を適当な割合で混合し、プレス成形等の適宜の方法で成形して焼成処理を施せばよい。このような態様では、2種類の原料粉末を用いる場合には、それらの量比は所望する前記細孔容積の比に応じて適宜定められるが、例えば、20:80〜80:20の範囲内(例えば、80:20、50:50、20:80等)とすることが好ましい。一方、互いに細孔径分布の異なる前記第1層および前記第2層を備えた態様では、互いに平均粒子径の異なる原料粉末の各々でそれら第1層および第2層の一方および他方を形成すればよい。この場合には、例えば、それぞれをプレス成形等によって成形後に重ね合わせて焼成処理を施す方法や、一方の原料粉末で作製した基部を他方の原料粉末を含むスラリーにディッピング等して焼成処理を施す方法等を採り得る。   Further, when the porous substrate is manufactured using the raw material powder as described above, both the pores in the first pore diameter range and the pores in the second pore diameter range are included in the entire porous substrate. In the distributed mode, for example, the raw material powders may be mixed at an appropriate ratio, formed by an appropriate method such as press molding, and fired. In such an embodiment, when two kinds of raw material powders are used, the quantitative ratio thereof is appropriately determined according to the desired ratio of the pore volume, but for example within the range of 20:80 to 80:20 (For example, 80:20, 50:50, 20:80, etc.) are preferable. On the other hand, in the aspect provided with the first layer and the second layer having different pore size distributions, if one and the other of the first layer and the second layer are formed of raw material powders having different average particle sizes, Good. In this case, for example, a method of performing baking treatment by superimposing each after molding by press molding or the like, or performing firing treatment by dipping a base made of one raw material powder into a slurry containing the other raw material powder, etc. The method etc. can be taken.

また、多孔質ポリマーで多孔性基材を構成する場合には、細孔分布の異なる2枚を積層して固着する他、大きさの異なる気孔を形成し得る2種類の気孔形成剤を原料に混合して重合させる方法がある。   When a porous substrate is composed of a porous polymer, two kinds of pore forming agents capable of forming pores of different sizes are used as raw materials in addition to laminating and fixing two pieces having different pore distributions. There is a method of mixing and polymerizing.

また、好適には、前記プロトン伝導性材料は、高分子有機材料である。高分子有機材料から成るプロトン伝導性材料(すなわち高分子電解質)としては、従来から固体高分子形燃料電池に用いられているものを用い得る。例えば、イオン交換基(-SO3H基等)を有するモノマーの単独重合体または共重合体、イオン交換基を有するモノマーとそのモノマーと共重合可能な他のモノマーとの共重合体、加水分解等の後処理によりイオン交換基に転換し得る官能基(すなわちイオン交換基の前駆的官能基)を有するモノマーの単独重合体、または共重合体(プロトン伝導性高分子前駆体)に同様な後処理を施したもの等が挙げられる。 Preferably, the proton conductive material is a polymer organic material. As a proton conductive material (that is, a polymer electrolyte) made of a polymer organic material, those conventionally used in solid polymer fuel cells can be used. For example, a homopolymer or copolymer of a monomer having an ion exchange group (such as —SO 3 H group), a copolymer of a monomer having an ion exchange group and another monomer copolymerizable with the monomer, hydrolysis Similar to the homopolymer or copolymer (proton conductive polymer precursor) of a monomer having a functional group (that is, a precursor functional group of an ion exchange group) that can be converted into an ion exchange group by a post-treatment such as The thing etc. which processed are mentioned.

上記高分子電解質の具体例としては、例えば、パーフルオロカーボンスルホン酸樹脂等のパーフルオロ型のプロトン伝導性高分子、パーフルオロカーボンカルボン酸樹脂膜、スルホン酸型ポリスチレン−グラフト−エチレンテトラフルオロエチレン(ETFE)共重合体膜、スルホン酸型ポリ(トリフルオロスチレン)−グラフト−ETFE共重合体膜、ポリエーテルエーテルケトン(PEEK)スルホン酸膜、2−アクリルアミド−2−メチルプロパンスルホン酸(ATBS)膜、炭化水素系膜等が例示される。   Specific examples of the polymer electrolyte include, for example, perfluoro proton conductive polymer such as perfluorocarbon sulfonic acid resin, perfluorocarbon carboxylic acid resin film, sulfonic acid type polystyrene-graft-ethylenetetrafluoroethylene (ETFE). Copolymer membrane, sulfonic acid type poly (trifluorostyrene) -graft-ETFE copolymer membrane, polyetheretherketone (PEEK) sulfonic acid membrane, 2-acrylamido-2-methylpropanesulfonic acid (ATBS) membrane, carbonized Examples include hydrogen-based films.

また、高分子電解質を前記多孔性基材の細孔に充填する方法は、特に限定されず、公知の適宜の方法を用い得るが、例えば、真空含浸やディップコート等で充填することができる。   The method for filling the polymer electrolyte into the pores of the porous substrate is not particularly limited, and any known appropriate method can be used. For example, it can be filled by vacuum impregnation or dip coating.

また、前記プロトン伝導性材料としては、例えば、リン酸系ガラス材料などの無機電解質膜も好適に用いられる。   In addition, as the proton conductive material, for example, an inorganic electrolyte membrane such as a phosphate glass material is also preferably used.

以下、本発明の一実施例を図面を参照して詳細に説明する。なお、以下の実施例において図は適宜簡略化或いは変形されており、各部の寸法比および形状等は必ずしも正確に描かれていない。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. In the following embodiments, the drawings are appropriately simplified or modified, and the dimensional ratios, shapes, and the like of the respective parts are not necessarily drawn accurately.

図1は、本発明の一実施例の膜−電極接合体10の断面構造を模式的に示す図である。膜−電極接合体10は、例えば高分子形燃料電池(PTFE)に用いられるものであって、固体電解質12と、その両面にそれぞれ固着された触媒層14,16および電極18,20とから構成されている。   FIG. 1 is a diagram schematically showing a cross-sectional structure of a membrane-electrode assembly 10 according to an embodiment of the present invention. The membrane-electrode assembly 10 is used in, for example, a polymer fuel cell (PTFE), and includes a solid electrolyte 12, catalyst layers 14 and 16 and electrodes 18 and 20 fixed to both surfaces thereof, respectively. Has been.

上記の固体電解質12は、例えば200(μm)程度の厚さ寸法を備えたものであって、例えば、5(cm)×5(cm)程度の平面寸法に構成された矩形状で平板型を成すものである。この固体電解質12は、図2に示すような多孔性基材22の細孔に図3に示すようにプロトン伝導性高分子24が充填されることにより構成された所謂細孔充填型電解質膜である。   The above-mentioned solid electrolyte 12 has a thickness dimension of, for example, about 200 (μm). For example, the solid electrolyte 12 has a rectangular shape with a planar dimension of about 5 (cm) × 5 (cm) and a flat plate type. It is to be made. The solid electrolyte 12 is a so-called pore-filled electrolyte membrane configured by filling the pores of a porous base material 22 as shown in FIG. 2 with a proton conductive polymer 24 as shown in FIG. is there.

上記の多孔性基材22は、例えば多孔質アルミナから成るものであって、細孔径が相対的に大きい基部26と、その両面に備えられた細孔径の相対的に小さい表層部28,30とから構成されている。本実施例においては、基部26が第2層に、表層部28,30が第1層にそれぞれ相当する。基部26の厚さ寸法は例えば160(μm)程度であり、表層部28,30の厚さ寸法は例えば何れも20(μm)程度である。   The porous substrate 22 is made of, for example, porous alumina, and has a base portion 26 having a relatively large pore diameter, and surface layer portions 28 and 30 having relatively small pore diameters provided on both surfaces thereof. It is composed of In this embodiment, the base portion 26 corresponds to the second layer, and the surface layer portions 28 and 30 correspond to the first layer. The thickness dimension of the base portion 26 is about 160 (μm), for example, and the thickness dimensions of the surface layer portions 28 and 30 are both about 20 (μm), for example.

また、上記の基部26には、例えば細孔径が0.5〜15(μm)の範囲内の細孔32が専ら備えられており、平均細孔径は例えば5(μm)程度である。また、細孔分布のピークは5(μm)程度の細孔径に位置し、ピーク高さdV/d(logD)=4.80×10-1(ml/g)程度である。一方、表層部28,30には、例えば細孔径が0.03〜0.3(μm)の範囲内の細孔34,36が専ら備えられており、平均細孔径は例えば0.1(μm)程度である。また、細孔分布のピークは0.1(μm)程度の細孔径に位置し、ピーク高さdV/d(logD)=2.30×10-1(ml/g)程度である。図4に多孔性基材22全体の細孔径分布の一例を示す。多孔性基材22は、全体として2つのピークを有する2瘤状の細孔径分布を備えたものであり、両ピークをそれぞれ含む凸曲線部は何れも急峻な曲線を描き、それら凸曲線部は互いに分離させられている。これら3層26〜30に備えられた細孔32〜36の殆どは相互に連通させられると共に、表層部28,30の細孔34,36は表面38,裏面40に開口している。そのため、多孔性基材22には、その表面38から裏面40に連通する多数の連通細孔が備えられている。本実施例においては、0.5〜15(μm)が第2細孔径範囲に、0.03〜0.3(μm)が第1細孔径範囲にそれぞれ相当し、細孔分布曲線においてこれらの間にそれぞれ位置する部分が第2凸曲線部および第1凸曲線部にそれぞれ相当する。 Further, the base portion 26 is exclusively provided with pores 32 having a pore diameter in the range of 0.5 to 15 (μm), for example, and the average pore diameter is, for example, about 5 (μm). The peak of the pore distribution is located at a pore diameter of about 5 (μm), and the peak height is about dV / d (log D) = 4.80 × 10 −1 (ml / g). On the other hand, the surface layer portions 28 and 30 are exclusively provided with pores 34 and 36 having a pore diameter in the range of 0.03 to 0.3 (μm), for example, and the average pore diameter is, for example, about 0.1 (μm). The peak of the pore distribution is located at a pore diameter of about 0.1 (μm), and the peak height is dV / d (log D) = 2.30 × 10 −1 (ml / g). FIG. 4 shows an example of the pore size distribution of the entire porous substrate 22. The porous base material 22 has a bifurcated pore size distribution having two peaks as a whole, and each convex curve portion including both peaks draws a steep curve. Are separated from each other. Most of the pores 32 to 36 provided in the three layers 26 to 30 are communicated with each other, and the pores 34 and 36 of the surface layer portions 28 and 30 are open to the front surface 38 and the back surface 40. Therefore, the porous base material 22 is provided with a large number of communicating pores that communicate from the front surface 38 to the back surface 40. In this example, 0.5 to 15 (μm) corresponds to the second pore diameter range, and 0.03 to 0.3 (μm) corresponds to the first pore diameter range, and portions located between these in the pore distribution curve. Corresponds to the second convex curve portion and the first convex curve portion, respectively.

また、上記の多孔性基材22の細孔32〜36に充填されたプロトン伝導性高分子24は、例えば2−アクリルアミド−2−メチルプロパンスルホン酸系樹脂や、パーフルオロアルキルスルホン酸系樹脂から成るものであり、例えば、全細孔容積の80(%)程度の割合で充填されている。なお、図3においては、細孔32〜36に完全に充填された状態で描いているが、例えば、膜−電極接合体10の使用時にはプロトン伝導性高分子24が膨潤させられることによってこのような状態になる。   The proton conductive polymer 24 filled in the pores 32 to 36 of the porous base material 22 is made of, for example, 2-acrylamido-2-methylpropanesulfonic acid resin or perfluoroalkylsulfonic acid resin. For example, it is filled at a ratio of about 80% of the total pore volume. In FIG. 3, the pores 32 to 36 are drawn in a completely filled state. However, for example, when the membrane-electrode assembly 10 is used, the proton conductive polymer 24 is swollen in this manner. It becomes a state.

なお、上記の図3は、固体電解質12の構成を模式的に示したものであって、細孔32〜36は実際には複雑に屈曲しているが、それぞれ膜厚方向に真っ直ぐに伸びる形状に描いている。この図3に示すように、相対的に厚い基部26には相対的に大径の細孔32が形成される一方、相対的に薄い表層部28,30には相対的に小径の細孔34,36が形成されているが、これらは互いに連通させられて、固体電解質12を膜厚方向に貫通する連通孔を構成する。   3 schematically shows the configuration of the solid electrolyte 12, and the pores 32 to 36 are actually bent in a complicated manner, but each has a shape that extends straight in the film thickness direction. It is drawn in. As shown in FIG. 3, relatively large diameter pores 32 are formed in the relatively thick base portion 26, while relatively small diameter pores 34 are formed in the relatively thin surface layer portions 28 and 30. , 36 are connected to each other to form a communication hole penetrating the solid electrolyte 12 in the film thickness direction.

また、前記触媒層14,16は、例えば何れもPt担持カーボンブラックから成るものである。これは、例えば田中貴金属工業(株)から市販されているものを用い得る。また、前記電極18,20は、例えば何れもカーボンペーパーから成るものである。カーボンペーパーは、例えば東レ(株)から燃料電池用として市販されている380(μm)厚のもの等である。なお、膜−電極接合体10の外周縁はポリテトラフルオロエチレン(PTFE)等から成る300(μm)程度の厚さ寸法のシール材42で封止されている。   The catalyst layers 14 and 16 are made of, for example, Pt-supported carbon black. For example, those commercially available from Tanaka Kikinzoku Kogyo Co., Ltd. can be used. The electrodes 18 and 20 are made of, for example, carbon paper. The carbon paper is, for example, one having a thickness of 380 (μm) commercially available for fuel cells from Toray Industries, Inc. The outer peripheral edge of the membrane-electrode assembly 10 is sealed with a sealing material 42 made of polytetrafluoroethylene (PTFE) or the like and having a thickness of about 300 (μm).

以上のように構成される膜−電極接合体10は、例えば、以下のようにして製造される。すなわち、先ず、例えば平均粒子径が20(μm)程度のアルミナ粉を用意し、例えば一軸加圧によってプレス成形する。次いで、これを原料粉に応じた焼成温度、例えば1200(℃)程度の温度で2時間程度の時間保持して、焼成処理を施す。これにより、アルミナ多孔質焼結体が得られる。次いで、平均粒子径が0.3(μm)程度のアルミナ粉を適当なビヒクル中に分散させたスラリーを調製し、上記焼成処理により得られた焼結体にそのスラリーを例えばディッピングによって塗布する。これを乾燥後、例えば1200(℃)程度で2時間程度保持することにより、前記多孔性基材22が得られる。上記2種の原料の平均粒子径は、プレス成形体の成形厚みおよびスラリーの塗布厚みを前記のような厚さ寸法の基部26および表層部28,30が得られるように定めたとき、前記図4に示されるような細孔分布曲線となるように定められている。すなわち、互いに分離し且つ大径側の高さの高い2つのピークを有するように定められている。   The membrane-electrode assembly 10 configured as described above is manufactured, for example, as follows. That is, first, for example, alumina powder having an average particle diameter of about 20 (μm) is prepared and press-molded by, for example, uniaxial pressing. Next, this is held at a firing temperature corresponding to the raw material powder, for example, a temperature of about 1200 (° C.) for about 2 hours, and a firing treatment is performed. Thereby, an alumina porous sintered body is obtained. Next, a slurry is prepared in which alumina powder having an average particle diameter of about 0.3 (μm) is dispersed in a suitable vehicle, and the slurry is applied to the sintered body obtained by the above-described firing treatment, for example, by dipping. The porous base material 22 is obtained by holding this at about 1200 (° C.) for about 2 hours after drying. When the average particle size of the two kinds of raw materials is determined so that the base 26 and the surface layer portions 28 and 30 having the thickness dimensions as described above can be obtained, the molding thickness of the press-formed body and the coating thickness of the slurry are determined as described above. The pore distribution curve as shown in FIG. That is, it is determined to have two peaks that are separated from each other and have a high height on the large diameter side.

次いで、上記の多孔性基材22の細孔32〜36にプロトン伝導性高分子24を充填する。この充填処理は例えば以下のようにして実施する。すなわち、多孔性基材22を別途調製した電解質モノマー溶液に浸漬し、真空引きすることで細孔32〜36内に十分に含浸させる。次いで、例えば80(℃)の乾燥機内において2時間程度静置することにより、溶液中のモノマーを重合させる。次いで、これを流水で洗浄し、多孔性基材22の両面に付着する過剰なポリマーを除去することにより、細孔充填型電解質が得られる。この細孔充填型電解質は、例えば1MのHClに浸漬することによってイオン交換が施される。   Next, the proton conductive polymer 24 is filled into the pores 32 to 36 of the porous substrate 22. This filling process is performed as follows, for example. That is, the porous substrate 22 is dipped in an electrolyte monomer solution prepared separately and evacuated to sufficiently impregnate the pores 32 to 36. Next, the monomer in the solution is polymerized by, for example, standing in a dryer at 80 (° C.) for about 2 hours. Next, this is washed with running water to remove excess polymer adhering to both surfaces of the porous substrate 22, thereby obtaining a pore-filled electrolyte. This pore-filled electrolyte is subjected to ion exchange, for example, by being immersed in 1M HCl.

上記電解質モノマー溶液は、例えば、プロトン伝導性高分子24を合成するための電解質モノマーと、架橋剤と、重合開始剤と、界面活性剤と、水などから成るものである。なお、架橋剤としては例えばN,N−メチレンビスアクリルアミドが用いられる。また、重合開始剤としては例えば和光純薬(株)製V-50などを用い得る。また、界面活性剤は重合の妨げとならない範囲で適宜のものを用い得るが、例えば、ドデシルベンゼンスルホン酸ナトリウム等が好適である。   The electrolyte monomer solution includes, for example, an electrolyte monomer for synthesizing the proton conductive polymer 24, a crosslinking agent, a polymerization initiator, a surfactant, and water. For example, N, N-methylenebisacrylamide is used as the crosslinking agent. As the polymerization initiator, for example, V-50 manufactured by Wako Pure Chemical Industries, Ltd. can be used. Further, as the surfactant, an appropriate one can be used as long as it does not interfere with the polymerization. For example, sodium dodecylbenzenesulfonate is preferable.

次いで、上記の細孔充填型電解質に触媒層14,16および電極18,20を設けると共に、シール材42で外周縁をシールする。触媒層14,16は、例えば前記の触媒粉末を適当な電解質ポリマー溶液中に分散させ、電極18,20を構成するカーボンペーパーにバーコーター等を用いて塗布することによって形成される。すなわち、触媒層14,16をカーボンペーパーに形成後、これらで細孔充填型電解質を挟むことで触媒層14,16および電極18,20が設けられる。そして、シール材42で外周縁を囲んだ状態で加熱しつつ両面から加圧することで、前記膜−電極接合体10が得られる。   Next, the catalyst layers 14 and 16 and the electrodes 18 and 20 are provided on the pore-filled electrolyte, and the outer peripheral edge is sealed with a sealing material 42. The catalyst layers 14 and 16 are formed, for example, by dispersing the catalyst powder in an appropriate electrolyte polymer solution and applying it to the carbon paper constituting the electrodes 18 and 20 using a bar coater or the like. That is, after the catalyst layers 14 and 16 are formed on the carbon paper, the catalyst layers 14 and 16 and the electrodes 18 and 20 are provided by sandwiching the pore-filled electrolyte therebetween. And the said membrane-electrode assembly 10 is obtained by pressurizing from both surfaces, heating in the state which enclosed the outer periphery with the sealing material 42. FIG.

図5は、上記の膜−電極接合体10を用いた燃料電池44の構成例を模式的に示す図である。この燃料電池44を作動させるに際しては、先ず、膜−電極接合体10を加湿することにより、固体電解質12中のプロトン伝導性高分子24を含水させ、イオン伝導性を発現させる。   FIG. 5 is a diagram schematically showing a configuration example of the fuel cell 44 using the membrane-electrode assembly 10 described above. When the fuel cell 44 is operated, first, the membrane-electrode assembly 10 is humidified, so that the proton conductive polymer 24 in the solid electrolyte 12 is hydrated to develop ionic conductivity.

次いで、燃料供給源46から燃料として例えば水素が加湿槽48を経由してアノード側電極18に供給される。水素および水が供給される電極18上で下記(1)式の酸化反応が生じ、プロトンH+と電子e-が発生する。プロトンは固体電解質12内(正確には固体電解質12の細孔32〜36内に充填されたプロトン伝導性高分子24内)を通ってカソード側電極20に向かって流れ、電子は電極18に接続された図示しない端子から取り出され、外部回路を経由して負荷50に流れる。負荷50に供給された電子は、更に外部回路を経由してカソード側電極20に向かう。そして、電極20上において、プロトンおよび電子が、酸素供給源52から加湿槽54を経由して供給された酸素および水との間で下記(2)式の還元反応を発生させる。なお、水素に代えてメタノールを供給してもよく、その場合の酸化反応は(3)式の通りである。
3H2 → 6H+ + 6e- ・・・(1)
3/2O2 + 6H+ + 6e- → 3H2O ・・・(2)
CH3OH + H2O → 6H+ + CO2 + 6e- ・・・(3)
Next, for example, hydrogen is supplied from the fuel supply source 46 to the anode side electrode 18 via the humidification tank 48 as fuel. An oxidation reaction of the following formula (1) occurs on the electrode 18 to which hydrogen and water are supplied, and protons H + and electrons e are generated. Protons flow toward the cathode electrode 20 through the solid electrolyte 12 (more precisely, within the proton conductive polymer 24 filled in the pores 32 to 36 of the solid electrolyte 12), and the electrons are connected to the electrode 18. Is taken out from the terminal (not shown) and flows to the load 50 via an external circuit. The electrons supplied to the load 50 further travel to the cathode side electrode 20 via an external circuit. On the electrode 20, protons and electrons cause a reduction reaction of the following formula (2) between oxygen and water supplied from the oxygen supply source 52 via the humidification tank 54. Note that methanol may be supplied instead of hydrogen, and the oxidation reaction in this case is as shown in the equation (3).
3H 2 → 6H + + 6e - ··· (1)
3 / 2O 2 + 6H + + 6e - → 3H 2 O ··· (2)
CH 3 OH + H 2 O → 6H + + CO 2 + 6e - ··· (3)

図6および図7は、上記単セルの燃料電池の出力特性を測定した結果を、他の実施例および比較例と併せて示す図である。図6には電流密度と電圧の関係を、図7にはその電流密度とそれら電流密度および電圧から求められる出力密度との関係をそれぞれ示した。測定には、例えば東陽テクニカ製燃料電池測定システムを用い、膜−電極接合体10の温度、配管温度、加湿槽48,52の温度を何れも80(℃)に保持し、H2流量を100(ml/min)、O2流量を500(ml/min)として、負荷を調節することにより電流を変化させつつ端子電圧を測定した。図6および図7において、サンプル4が前記膜−電極接合体10であり、開放電圧で1(V)弱、200(mA/cm2)で0.7(V)以上、300(mA/cm2)でも0.5(V)以上の高い電圧特性を有し、最大で170(mW/cm2)程度もの高い出力密度が得られる。 FIG. 6 and FIG. 7 are diagrams showing the results of measuring the output characteristics of the single cell fuel cell together with other examples and comparative examples. FIG. 6 shows the relationship between current density and voltage, and FIG. 7 shows the relationship between the current density and output density obtained from the current density and voltage. For the measurement, for example, a fuel cell measurement system manufactured by Toyo Technica is used, and the temperature of the membrane-electrode assembly 10, the piping temperature, and the temperatures of the humidifying tanks 48 and 52 are all maintained at 80 (° C.), and the H 2 flow rate is set to 100. (ml / min), the O 2 flow rate was 500 (ml / min), and the terminal voltage was measured while changing the current by adjusting the load. 6 and 7, sample 4 is the membrane-electrode assembly 10, and the open circuit voltage is less than 1 (V), 200 (mA / cm 2 ) is 0.7 (V) or more, and 300 (mA / cm 2 ). However, it has a high voltage characteristic of 0.5 (V) or higher, and a high output density as high as about 170 (mW / cm 2 ) can be obtained.

なお、上記の図6、図7に示すサンプル1、2は、本発明の範囲外の比較例であって、単一の凸曲線部を有する細孔分布を備えた多孔性基材を用いた膜−電極接合体である。サンプル1に用いた多孔性基材は、例えば図8に細孔径分布の一例を示すように、平均細孔径が0.10(μm)程度で専ら0.03〜0.3(μm)の範囲内の細孔径を有する細孔を備え、高さdV/d(logD)=2.30×10-1(ml/g)程度のピークが0.10(μm)に位置する細孔分布を有している。また、サンプル2に用いた多孔性基材は、例えば図9に細孔径分布の一例を示すように、平均細孔径が5(μm)程度で専ら0.5〜15(μm)の範囲内の細孔径を有する細孔のみを備え、高さdV/d(logD)=4.80×10-1(ml/g)程度のピークが5(μm)に位置する細孔分布を有している。すなわち、サンプル1を構成する多孔性基材は、多孔性基材22の表層部28,30と同様な組織構造を備え、サンプル2を構成する多孔性基材は、多孔性基材22の基部26と同様な組織構造を備えている。また、これらはピーク位置が互いに異なるが、何れもただ一つの凸曲線部を備えた細孔径分布を有している。 Note that Samples 1 and 2 shown in FIGS. 6 and 7 are comparative examples outside the scope of the present invention, and a porous substrate having a pore distribution having a single convex curve portion was used. It is a membrane-electrode assembly. The porous base material used for sample 1 has a pore diameter in the range of 0.03 to 0.3 (μm) exclusively with an average pore diameter of about 0.10 (μm), for example, as shown in FIG. It has pores and has a pore distribution in which a peak of height dV / d (logD) = 2.30 × 10 −1 (ml / g) is located at 0.10 (μm). In addition, the porous substrate used in Sample 2 has an average pore diameter of about 5 (μm) and a pore diameter in the range of 0.5 to 15 (μm) as shown in FIG. 9 for example. And has a pore distribution in which a peak of height dV / d (logD) = 4.80 × 10 −1 (ml / g) is located at 5 (μm). That is, the porous substrate constituting Sample 1 has the same structure as the surface layer portions 28 and 30 of the porous substrate 22, and the porous substrate constituting Sample 2 is the base portion of the porous substrate 22. The same organizational structure as that of No. 26 is provided. These have different peak positions, but each has a pore size distribution with only one convex curve portion.

一方、サンプル3は、本発明の他の実施例であって、前記多孔性基材22とは構成の異なる他の多孔性基材を用いた膜−電極接合体である。このサンプル3に用いた多孔性基材は、図10に細孔径分布の一例を示すように、2つの凸曲線部を有する細孔分布を備えているが、これら2つの凸曲線部は、一方が0.10(μm)に高さdV/d(logD)=2.30×10-1(ml/g)程度のピークを有して0.03〜0.3(μm)の細孔径の範囲に亘っている。他方は、5(μm)に高さdV/d(logD)=4.80×10-1(ml/g)程度のピークを有して0.5〜15(μm)の細孔径の範囲に亘っている。すなわち、サンプル3を構成する多孔性基材は、ピーク位置や高さおよび分布曲線の形状が僅かに異なるが、全体として多孔性基材22と同様な細孔分布を備えている。 On the other hand, Sample 3 is another embodiment of the present invention, and is a membrane-electrode assembly using another porous substrate having a different configuration from the porous substrate 22. The porous substrate used in Sample 3 has a pore distribution having two convex curve portions as shown in FIG. 10 as an example of the pore diameter distribution. Has a peak of height dV / d (log D) = 2.30 × 10 −1 (ml / g) at 0.10 (μm) and covers a pore diameter range of 0.03 to 0.3 (μm). The other has a peak of height dV / d (log D) = 4.80 × 10 −1 (ml / g) at 5 (μm) and covers a pore diameter range of 0.5 to 15 (μm). That is, the porous substrate constituting the sample 3 has the same pore distribution as the porous substrate 22 as a whole, although the peak position, height, and shape of the distribution curve are slightly different.

上記のサンプル1〜3は、何れも前記基部26と同様にしてアルミナ粉にプレス成形および焼成処理を施して多孔性基材を作製し、その細孔に前記多孔性基材22の場合と同様にして電解質材料を充填して細孔充填型電解質を製造し、更に、これを触媒層14,16および電極18,20で挟んで膜−電極接合体を構成したものである。但し、これらにおいて多孔性基材を作製するに際しては、基部26の場合とは異なる原料粉末を用いると共に、焼成後の厚さ寸法を200(μm)程度とした。すなわち、サンプル1〜3を構成する多孔性基材の厚さ寸法は、膜−電極接合体10を構成する多孔性基材22全体の厚さ寸法と同一である。また、それぞれに用いた原料粉末は、サンプル1に用いたものが例えば平均粒子径が0.3(μm)程度のもの、サンプル2に用いたものが例えば平均粒子径が20(μm)程度のもの、サンプル3に用いたものが例えば平均粒子径が0.3(μm)程度のアルミナ粉と、平均粒子径が20(μm)程度のアルミナ粉とを、例えば20:80の割合で混合したものである。   In each of Samples 1 to 3, a porous base material was produced by subjecting alumina powder to press molding and baking treatment in the same manner as the base portion 26, and the pores were the same as in the case of the porous base material 22 In this way, the electrolyte material is filled to produce a pore-filled electrolyte, which is further sandwiched between the catalyst layers 14 and 16 and the electrodes 18 and 20 to form a membrane-electrode assembly. However, when producing a porous base material in these, raw material powder different from the case of the base part 26 was used, and the thickness dimension after baking was set to about 200 (μm). That is, the thickness dimension of the porous substrate constituting Samples 1 to 3 is the same as the thickness dimension of the entire porous substrate 22 constituting the membrane-electrode assembly 10. In addition, the raw material powders used for each sample are those used for sample 1, for example, having an average particle diameter of about 0.3 (μm), those used for sample 2, for example, having an average particle diameter of about 20 (μm), The sample 3 used is, for example, a mixture of alumina powder having an average particle size of about 0.3 (μm) and alumina powder having an average particle size of about 20 (μm) in a ratio of 20:80, for example.

前記の測定結果に示されるように、平均細孔径が0.1(μm)程度と小さい多孔性基材を用いたサンプル1では、開放電圧で1(V)弱すなわちサンプル4と同程度の特性を示すものの、電流密度を高めるに従って低下する端子電圧の低下の度合いがサンプル4に比較して大きく、200(mA/cm2)で0.7(V)を下回り、300(mA/cm2)では0.5(V)を下回る。この結果、出力密度は140(mW/cm2)以下に留まる。細孔容積が同程度であれば、細孔径が小さいほどプロトン伝導に対する抵抗が大きくなり、しかも、電流密度が高くなるほどプロトン伝導に対する抵抗は増大する。そのため、多孔性基材の細孔径が小さいサンプル1では、電流密度の小さい場合には高い端子電圧が得られるが、電流密度の増大に伴う電圧低下が大きく、延いては出力密度も比較的低い値に留まるのである。 As shown in the above measurement results, sample 1 using a porous base material having a small average pore diameter of about 0.1 (μm) shows a characteristic of about 1 (V) at the open circuit voltage, that is, the same level as sample 4. However, the degree of decrease in the terminal voltage, which decreases as the current density is increased, is larger than that of sample 4, being less than 0.7 (V) at 200 (mA / cm 2 ) and 0.5 (V) at 300 (mA / cm 2 ). ). As a result, the power density remains below 140 (mW / cm 2 ). If the pore volume is approximately the same, the resistance to proton conduction increases as the pore diameter decreases, and the resistance to proton conduction increases as the current density increases. Therefore, in Sample 1 in which the pore diameter of the porous substrate is small, a high terminal voltage can be obtained when the current density is small, but the voltage drop accompanying the increase in the current density is large, and the output density is also relatively low. It stays in value.

また、平均細孔径が5(μm)程度と大きい多孔性基材を用いたサンプル2では、開放電圧で0.6(V)程度に留まり、200(mA/cm2)で0.4(V)を下回る。この結果、出力密度は80(mW/cm2)以下に留まる。細孔径が大きくなるほど、膨潤抑制効果が減じられると共に、プロトン伝導性高分子24の充填性が低下して、細孔内に多孔性基材の厚み方向に貫通する隙間が形成され易くなるため、その隙間を通して燃料極側から空気極側に気体分子のまま漏れる水素ガス量が増大する。そのため、細孔径が大きくプロトン伝導に対する抵抗が小さいにも拘らず、端子電圧が低下し、延いては出力密度も得られないのである。 Moreover, in the sample 2 using the porous base material having a large average pore diameter of about 5 (μm), it remains at about 0.6 (V) at the open circuit voltage, and is below 0.4 (V) at 200 (mA / cm 2 ). As a result, the power density remains below 80 (mW / cm 2 ). As the pore diameter increases, the swelling suppression effect is reduced, and the filling property of the proton-conductive polymer 24 is reduced, so that a gap penetrating in the thickness direction of the porous substrate is easily formed in the pore. The amount of hydrogen gas that leaks in the form of gas molecules from the fuel electrode side to the air electrode side through the gap increases. For this reason, although the pore diameter is large and the resistance to proton conduction is small, the terminal voltage is lowered and the output density cannot be obtained.

これらに対して、サンプル4では、細孔径の大きい基部26においては、高いプロトン伝導性が得られる一方、細孔径の小さい表層部28,30においては、プロトン伝導性高分子24の膨潤が好適に抑制されると共に、細孔内壁面とプロトン伝導性高分子24との隙間が無く、或いは極めて小さいので、燃料極側から空気極側への水素ガスの漏れが抑制される。また、細孔径の小さい表層部28,30は、多孔性基材22の全厚みの一部に留められるので、全体を細孔径の小さい材料で構成した場合に比較して、プロトン伝導性の低下が抑制される。この結果、水素ガスの漏れを抑制しつつ高いプロトン伝導性が得られるので、前記図6、図7に示されるように、高い端子電圧が得られると共に高い出力密度が得られるのである。   On the other hand, in sample 4, high proton conductivity is obtained in the base portion 26 having a large pore diameter, while swelling of the proton conductive polymer 24 is suitably performed in the surface layer portions 28 and 30 having a small pore diameter. In addition to being suppressed, the gap between the inner wall surface of the pores and the proton conductive polymer 24 is absent or extremely small, so that leakage of hydrogen gas from the fuel electrode side to the air electrode side is suppressed. Further, since the surface layer portions 28 and 30 having a small pore diameter are limited to a part of the total thickness of the porous base material 22, the proton conductivity is reduced as compared with the case where the whole is made of a material having a small pore diameter. Is suppressed. As a result, high proton conductivity can be obtained while suppressing leakage of hydrogen gas, so that a high terminal voltage and a high output density can be obtained as shown in FIGS.

また、サンプル3は、前記のように2種類の平均粒子径のアルミナ粉を混合した粉体から多孔性基材が作製されることにより、0.1(μm)程度の小さい細孔径の細孔と5(μm)程度の大きい細孔径の細孔とが多孔性基材の全体に分散しているが、この結果、厚み方向に貫通する細孔は、殆どのものが大きい細孔径の部分と小さい細孔径の部分とを共に備えるものとなる。また、前記のように大きい細孔径のピークが小さい細孔径のピークに比較して高い(すなわち大きい細孔径の占める容積が相対的に大きい)ことから、十分に高いプロトン伝導性が得られる。したがって、開放電圧ではサンプル4よりも僅かに低くなるものの、これと同様な曲線を描き、200(mA/cm2)で0.6(V)以上、300(mA/cm2)でも0.5(V)以上の高い端子電圧を示し、出力密度の最大値も150(mW/cm2)程度得られる。 Sample 3 was prepared by preparing a porous substrate from a powder obtained by mixing alumina powders having two types of average particle diameters as described above, so that pores having a small pore diameter of about 0.1 (μm) and 5 As a result, most of the pores penetrating in the thickness direction are small and small pores penetrating in the thickness direction. Both are provided with a hole diameter portion. Further, since the large pore diameter peak is higher than the small pore diameter peak as described above (that is, the volume occupied by the large pore diameter is relatively large), sufficiently high proton conductivity can be obtained. Thus, although slightly lower than the sample 4 in the open circuit voltage, draws a similar curve and this, 200 (mA / cm 2) at 0.6 (V) or more, 300 (mA / cm 2) even 0.5 (V) or The maximum output density is about 150 (mW / cm 2 ).

なお、サンプル3の多孔性基材を構成するための2種の粉体の混合割合は、前述したように大径のものの方が多い80:20の割合である。これは、前記サンプル4を構成する多孔性基材22の基部26と表層部28,30の厚さ寸法の割合に等しい。そのため、多孔性基材全体としてみたとき、これらの細孔分布は略一致することとなるので、同様な特性が得られるのである。但し、混合粉で作製したサンプル3の多孔性基材は、大径の細孔が厚み方向に貫通することを避け難いので、燃料極側から空気極側への水素ガスの漏れが膜−電極接合体10に比較すると多くなる。そのため、サンプル3の開放電圧は、サンプル4のそれに比較して低下し、延いては出力密度も低下する。   In addition, the mixing ratio of the two kinds of powders for constituting the porous base material of the sample 3 is a ratio of 80:20, which is larger in the case of the large diameter as described above. This is equal to the ratio of the thickness dimension of the base portion 26 and the surface layer portions 28 and 30 of the porous base material 22 constituting the sample 4. For this reason, when viewed as the whole porous substrate, these pore distributions substantially coincide with each other, so that similar characteristics can be obtained. However, since the porous base material of Sample 3 made of the mixed powder is difficult to avoid large-diameter pores penetrating in the thickness direction, leakage of hydrogen gas from the fuel electrode side to the air electrode side is a membrane-electrode. Compared to the joined body 10, the number is increased. Therefore, the open circuit voltage of the sample 3 is lower than that of the sample 4, and the output density is also lowered.

因みに、本実施例の燃料電池44において、開放電圧の理論値は1(V)程度であり、これに対する低下の度合いが燃料極側から空気極側への水素ガスの漏れの程度に対応する。上述したように平均細孔径が5(μm)程度の大きい細孔が存在する場合には、水素ガスの漏れが生じ得るが、大きい細孔の割合が多くなるほどその漏れ量は増大する。そのため、サンプル2では水素ガスの漏れが著しく多くなるので、開放電圧が著しく低くなり、延いては出力密度も低いのである。   Incidentally, in the fuel cell 44 of the present embodiment, the theoretical value of the open circuit voltage is about 1 (V), and the degree of decrease with respect to this corresponds to the degree of leakage of hydrogen gas from the fuel electrode side to the air electrode side. As described above, when there are large pores having an average pore diameter of about 5 (μm), hydrogen gas may leak, but the larger the proportion of large pores, the larger the amount of leakage. For this reason, in sample 2, the leakage of hydrogen gas is remarkably increased, so that the open circuit voltage is remarkably lowered, and the output density is also low.

なお、図6に示されるように、膜−電極接合体10(サンプル4)は、サンプル1に比較すると僅かに開放電圧が低くなる。これは、サンプル1の多孔性基材が専ら0.3(μm)程度の細孔径の細孔で構成されると共に平均細孔径は0.1(μm)程度であるのに対し、膜−電極接合体10の多孔性基材22が表層部28,30はサンプル1の多孔性基材と同様な組織を備えるものの、基部26は0.5〜15(μm)程度の細孔径を有するためである。すなわち、水素ガスの漏れを抑制する観点では、細孔径が0.1(μm)以下であることが望ましく、最大で0.3(μm)程度の細孔径の細孔が存在するサンプル1や膜−電極接合体10の表層部28,30には、水素ガスが気体分子のまま侵入し得る。このとき、膜−電極接合体10は細孔径の大きい基部26を有することから、そのような細孔径の大きい部分を有しないサンプル1に比較すると、侵入した水素ガスが空気極側に透過し易い。そのため、僅かではあるが、水素ガスの漏れ量が相対的に多くなるので、開放電圧が低くなるのである。但し、表層部28,30を透過し得る水素ガス量は僅かであるから、これらの差は例えば0.01(V)程度に過ぎない。   As shown in FIG. 6, the membrane-electrode assembly 10 (sample 4) has a slightly lower open circuit voltage than sample 1. This is because the porous substrate of sample 1 is composed exclusively of pores having a pore diameter of about 0.3 (μm) and the average pore diameter is about 0.1 (μm), whereas the membrane-electrode assembly 10 This is because the porous base material 22 has the same structure as the porous base material of the sample 1 in the surface layer portions 28 and 30, but the base portion 26 has a pore diameter of about 0.5 to 15 (μm). That is, from the viewpoint of suppressing hydrogen gas leakage, it is desirable that the pore diameter is 0.1 (μm) or less, and Sample 1 or a membrane-electrode assembly having pores with a maximum pore diameter of about 0.3 (μm) exists. Hydrogen gas can enter the 10 surface layer portions 28 and 30 as gas molecules. At this time, since the membrane-electrode assembly 10 has the base portion 26 having a large pore diameter, the invading hydrogen gas easily permeates to the air electrode side as compared with the sample 1 having no portion having such a large pore diameter. . For this reason, although the amount of leakage of hydrogen gas is relatively large, the open circuit voltage is lowered. However, since the amount of hydrogen gas that can permeate the surface layer portions 28 and 30 is very small, the difference between these is only about 0.01 (V), for example.

要するに、本実施例によれば、多孔性基材22には、0.03〜0.3(μm)の細孔径の細孔34,36と、0.5〜15(μm)細孔径の細孔32とが厚み方向において分離して設けられていることから、これらが互いに接続された細孔は、その連通経路上に上記2種の細孔32〜36を共に備えたものとなる。そのため、相対的に小径の細孔34,36はプロトン伝導性高分子24の膨潤抑制に寄与し、相対的に大径の細孔32はプロトン伝導性の向上に寄与することから、それら2種の細孔32〜36が互いに連通させられた連通細孔は、両特性を兼ね備えたものとなる。したがって、プロトン伝導性が高く且つプロトン伝導性高分子24の膨潤が生じ難い固体電解質12を構成可能な多孔性基材22が得られる。   In short, according to this embodiment, the porous substrate 22 has pores 34 and 36 having a pore diameter of 0.03 to 0.3 (μm) and pores 32 having a pore diameter of 0.5 to 15 (μm) in the thickness direction. Therefore, the pores connected to each other are provided with the two kinds of pores 32 to 36 on the communication path. Therefore, the relatively small diameter pores 34 and 36 contribute to suppression of swelling of the proton conducting polymer 24, and the relatively large diameter pore 32 contributes to improvement of proton conductivity. The communicating pores in which the pores 32 to 36 are communicated with each other have both characteristics. Therefore, the porous base material 22 that can form the solid electrolyte 12 that has high proton conductivity and hardly swells the proton conductive polymer 24 is obtained.

また、本実施例によれば、このような多孔性基材22が用いられることから、プロトン伝導性が高く且つ劣化し難い膜−電極接合体10が得られ、延いては発電能力が高く且つ長寿命を備えた固体高分子形燃料電池44が得られる。   Further, according to this example, since such a porous substrate 22 is used, the membrane-electrode assembly 10 having high proton conductivity and hardly deteriorated can be obtained, and the power generation capacity is high. A polymer electrolyte fuel cell 44 having a long life is obtained.

以上、本発明を図面を参照して詳細に説明したが、本発明は更に別の態様でも実施でき、その主旨を逸脱しない範囲で種々変更を加え得るものである。   As mentioned above, although this invention was demonstrated in detail with reference to drawings, this invention can be implemented also in another aspect, A various change can be added in the range which does not deviate from the main point.

本発明の一実施例の膜−電極接合体の構成を模式的に示す図である。It is a figure which shows typically the structure of the membrane-electrode assembly of one Example of this invention. 図1の膜−電極接合体を構成するための多孔性基材の断面構造を模式的に示す図である。It is a figure which shows typically the cross-sectional structure of the porous base material for comprising the membrane-electrode assembly of FIG. 図2の多孔性基材にプロトン伝導性高分子が充填された構造を模式的に示す図である。It is a figure which shows typically the structure where the proton-conductive polymer was filled in the porous base material of FIG. 図2の多孔性基材の細孔径分布の一例を、横軸に細孔径を、縦軸にlog微分細孔容積をとって示す図である。It is a figure which shows an example of the pore diameter distribution of the porous base material of FIG. 2, taking the pore diameter on the horizontal axis and the log differential pore volume on the vertical axis. 図1の膜−電極接合体を用いた高分子形燃料電池の構成を説明する図である。It is a figure explaining the structure of the polymer fuel cell using the membrane-electrode assembly of FIG. 図5に示す燃料電池における発電特性の測定結果を電流密度と電圧との関係について示す図である。It is a figure which shows the measurement result of the electric power generation characteristic in the fuel cell shown in FIG. 5 regarding the relationship between a current density and a voltage. 図5に示す燃料電池における発電特性の測定結果を電流密度と出力密度との関係について示す図である。It is a figure which shows the measurement result of the electric power generation characteristic in the fuel cell shown in FIG. 5 about the relationship between an electric current density and an output density. 比較例(サンプル1)の多孔性基材の細孔径分布の一例を、横軸に細孔径を、縦軸にlog微分細孔容積をとって示す図である。It is a figure which shows an example of the pore diameter distribution of the porous base material of a comparative example (sample 1), taking the pore diameter on the horizontal axis and the log differential pore volume on the vertical axis. 比較例(サンプル2)図2の多孔性基材の細孔径分布の一例を、横軸に細孔径を、縦軸にlog微分細孔容積をとって示す図である。Comparative Example (Sample 2) FIG. 3 is a diagram showing an example of the pore diameter distribution of the porous substrate of FIG. 2 with the horizontal axis representing the pore diameter and the vertical axis representing the log differential pore volume. 本発明の他の実施例の多孔性基材の細孔径分布の一例を、横軸に細孔径を、縦軸にlog微分細孔容積をとって示す図である。It is a figure which shows an example of the pore diameter distribution of the porous base material of the other Example of this invention, taking a pore diameter on a horizontal axis and taking log differential pore volume on a vertical axis | shaft.

符号の説明Explanation of symbols

10:膜−電極接合体、12:固体電解質、22:多孔性基材、24:プロトン伝導性高分子、26:基部、28,30:表層部、44:燃料電池 10: membrane-electrode assembly, 12: solid electrolyte, 22: porous substrate, 24: proton conductive polymer, 26: base, 28, 30: surface layer, 44: fuel cell

Claims (6)

厚み方向に貫通する多数の連通細孔を備え且つその細孔内にプロトン伝導性材料を充填して固体電解質膜を構成するために用いられる多孔性基材であって、
log微分細孔容積を表す曲線が所定の第1細孔径範囲に亘る第1凸曲線部と、その第1凸曲線部よりも大径側の所定の第2細孔径範囲に亘る第2凸曲線部とを含む細孔径分布を備え、前記多数の連通細孔の少なくとも一部は、前記第1細孔径範囲内の細孔径を有する部分と前記第2細孔径範囲内の細孔径を有する部分とを連通経路上に共に備えたことを特徴とする多孔性基材。
A porous substrate having a large number of communicating pores penetrating in the thickness direction and filling a proton conductive material in the pores to form a solid electrolyte membrane,
A first convex curve portion in which a curve representing a log differential pore volume extends over a predetermined first pore diameter range, and a second convex curve over a predetermined second pore diameter range on a larger diameter side than the first convex curve portion A portion having a pore diameter within the first pore diameter range and a portion having a pore diameter within the second pore diameter range. A porous base material characterized in that both are provided on the communication path.
前記多孔性基材は、前記第1凸曲線部に対応する細孔径分布を備えた第1層と、前記第2凸曲線部に対応する細孔径分布を備え且つその第1層に積層された第2層とを含むものである請求項1の多孔性基材。   The porous substrate has a first layer having a pore size distribution corresponding to the first convex curve portion, and a pore size distribution corresponding to the second convex curve portion, and is laminated on the first layer. The porous substrate according to claim 1, comprising a second layer. 前記第1凸曲線部は0.01〜0.3(μm)の範囲内にピークを有し、前記第2凸曲線部は0.5〜15(μm)の範囲内にピークを有するものである請求項1または請求項2の多孔性基材。   The first convex curve portion has a peak in a range of 0.01 to 0.3 (µm), and the second convex curve portion has a peak in a range of 0.5 to 15 (µm). Item 3. A porous substrate according to Item 2. 前記第1凸曲線部は0.005〜3.0(μm)の範囲内に位置するものであり、前記第2凸曲線部は0.1〜50(μm)の範囲内に位置するものである請求項1乃至請求項3の何れかの多孔性基材。   The first convex curve portion is located within a range of 0.005 to 3.0 (µm), and the second convex curve portion is located within a range of 0.1 to 50 (µm). Item 4. The porous substrate according to any one of items 3 to 4. 請求項1乃至請求項4の何れかの多孔性基材にプロトン伝導性材料を充填した細孔充填型電解質膜の一面に空気極を、他面に燃料極をそれぞれ設けたことを特徴とする膜−電極接合体。   An air electrode is provided on one surface of a pore-filled electrolyte membrane in which the porous substrate according to any one of claims 1 to 4 is filled with a proton conductive material, and a fuel electrode is provided on the other surface. Membrane-electrode assembly. 請求項5の膜−電極接合体を備えたことを特徴とする燃料電池。
A fuel cell comprising the membrane-electrode assembly according to claim 5.
JP2005362518A 2005-12-15 2005-12-15 Porous base material, membrane-electrode junction, and fuel cell Pending JP2007165204A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005362518A JP2007165204A (en) 2005-12-15 2005-12-15 Porous base material, membrane-electrode junction, and fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005362518A JP2007165204A (en) 2005-12-15 2005-12-15 Porous base material, membrane-electrode junction, and fuel cell

Publications (1)

Publication Number Publication Date
JP2007165204A true JP2007165204A (en) 2007-06-28

Family

ID=38247874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005362518A Pending JP2007165204A (en) 2005-12-15 2005-12-15 Porous base material, membrane-electrode junction, and fuel cell

Country Status (1)

Country Link
JP (1) JP2007165204A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007287553A (en) * 2006-04-19 2007-11-01 Toyota Motor Corp Porous material for electrolyte membrane for fuel cell, production method thereof, electrolyte membrane for polymer electrolyte fuel cell, membrane-electrode assembly (MEA), and fuel cell
JP2009048975A (en) * 2007-08-23 2009-03-05 Toyota Motor Corp Laminated porous electrolyte membrane and fuel cell electrode
WO2012046777A1 (en) * 2010-10-07 2012-04-12 旭化成イーマテリアルズ株式会社 Fluorine-containing polymer electrolyte membrane
WO2024135616A1 (en) * 2022-12-21 2024-06-27 日本電気硝子株式会社 Solid electrolyte sheet and all-solid-state secondary battery

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9070910B2 (en) * 2006-04-19 2015-06-30 Toyota Jidosha Kabushiki Kaisha Porous material for fuel cell electrolyte membrane, method for producing the same, electrolyte membrane for solid polymer fuel cell, membrane electrode assembly (MEA), and fuel cell
US9147892B2 (en) * 2006-04-19 2015-09-29 Toyota Jidosha Kabushiki Kaisha Porous material for fuel cell electrolyte membrane, method for producing the same, electrolyte membrane for solid polymer fuel cell, membrane electrode assembly (MEA), and fuel cell
US9160012B2 (en) * 2006-04-19 2015-10-13 Toyota Jidosha Kabushiki Kaisha Porous material for fuel cell electrolyte membrane, method for producing the same, electrolyte membrane for solid polymer fuel cell, membrane electrode assembly (MEA), and fuel cell
US20090169957A1 (en) * 2006-04-19 2009-07-02 Hiroshi Harada Porous material for fuel cell electrolyte membrane, method for producing the same, electrolyte membrane for solid polymer fuel cell, membrane electrode assembly (mea), and fuel cell
US20120048456A1 (en) * 2006-04-19 2012-03-01 Toyota Jidosha Kabushiki Kaisha Porous material for fuel cell electrolyte membrane, method for producing the same, electrolyte membrane for solid polymer fuel cell, membrane electrode assembly (mea), and fuel cell
US20120058412A1 (en) * 2006-04-19 2012-03-08 Toyota Jidosha Kabushiki Kaisha Porous material for fuel cell electrolyte membrane, method for producing the same, electrolyte membrane for solid polymer fuel cell, membrane electrode assembly (mea), and fuel cell
JP2007287553A (en) * 2006-04-19 2007-11-01 Toyota Motor Corp Porous material for electrolyte membrane for fuel cell, production method thereof, electrolyte membrane for polymer electrolyte fuel cell, membrane-electrode assembly (MEA), and fuel cell
WO2007123267A1 (en) * 2006-04-19 2007-11-01 Toyota Jidosha Kabushiki Kaisha Porous material for electrolyte membrane for fuel cell, method for producing the same, electrolyte membrane for solid polymer fuel cell, membrane-electrode assembly (mea), and fuel cell
JP2009048975A (en) * 2007-08-23 2009-03-05 Toyota Motor Corp Laminated porous electrolyte membrane and fuel cell electrode
US9570773B2 (en) 2010-10-07 2017-02-14 Asahi Kasei E-Materials Corporation Fluorine-based polymer electrolyte membrane
JPWO2012046777A1 (en) * 2010-10-07 2014-02-24 旭化成イーマテリアルズ株式会社 Fluorine polymer electrolyte membrane
WO2012046777A1 (en) * 2010-10-07 2012-04-12 旭化成イーマテリアルズ株式会社 Fluorine-containing polymer electrolyte membrane
CN103155251A (en) * 2010-10-07 2013-06-12 旭化成电子材料株式会社 Fluorine-containing polymer electrolyte membrane
WO2024135616A1 (en) * 2022-12-21 2024-06-27 日本電気硝子株式会社 Solid electrolyte sheet and all-solid-state secondary battery

Similar Documents

Publication Publication Date Title
US7803495B2 (en) Polymer electrolyte membrane for fuel cell, method for preparing the same, and fuel cell system comprising the same
JP4612569B2 (en) Membrane electrode structure for polymer electrolyte fuel cell
CN104303352A (en) Electrolyte film - electrode assembly
US6893763B2 (en) Composite polymer electrolyte membrane for polymer electrolyte membrane fuel cells
CN106328956A (en) Preparation method and application of high-temperature membrane fuel cell gas diffusion electrode
JP2007250279A (en) Membrane-electrode structural body for solid polymer fuel cell
US8420274B2 (en) Membrane electrode assembly for fuel cell, method of manufacturing the same, and fuel cell including the membrane electrode assembly
KR100714361B1 (en) Membrane electrode assembly and method of producing the same
KR100658739B1 (en) Polymer electrolyte membrane for fuel cell and manufacturing method thereof
KR101312971B1 (en) Hydrocarbon based polyelectrolyte separation membrane surface-treated with fluorinated ionomer, membrane electrode assembly, and fuel cell
KR101064225B1 (en) Membrane-electrode assembly with reinforcing gasket
Nishikawa et al. Preparation of the electrode for high temperature PEFCs using novel polymer electrolytes based on organic/inorganic nanohybrids
Scott Membrane electrode assemblies for polymer electrolyte membrane fuel cells
CA2685798C (en) Membraneless fuel cell and method of operating same
Xing et al. High-performance and durable membrane electrode assemblies based on CeO2 and ePTFE double-reinforcement strategy for proton exchange membrane fuel cells operating at elevated temperatures
JP2007165204A (en) Porous base material, membrane-electrode junction, and fuel cell
US20100273086A1 (en) Membrane Electrode Assembly, Manufacturing Method Thereof and Fuel Cell
JP4866127B2 (en) Electrode-electrolyte integrated membrane electrode assembly and method for producing the same
KR101112693B1 (en) Membrane Electrode Assembly for Fuel Cell and Manufacturing Method Thereof
JP2006269266A (en) Composite polymer solid electrolyte membrane with reinforcing material
KR101073014B1 (en) A membrane electrode assembly for fuel cell and a fuel cell comprising the same
Liu Optimizing membrane electrode assembly of direct methanol fuel cells for portable power
KR100705553B1 (en) A method of forming a catalyst layer on a hydrogen ion exchange membrane of a fuel cell membrane electrode assembly
JP2010238411A (en) Catalyst for fuel cell, method for producing the same, and fuel cell
JP2023106794A (en) Laminate electrolyte membrane, membrane electrode assembly and solid polymer-type fuel battery