[go: up one dir, main page]

JP2007163359A - Position adjustment mechanism - Google Patents

Position adjustment mechanism Download PDF

Info

Publication number
JP2007163359A
JP2007163359A JP2005361821A JP2005361821A JP2007163359A JP 2007163359 A JP2007163359 A JP 2007163359A JP 2005361821 A JP2005361821 A JP 2005361821A JP 2005361821 A JP2005361821 A JP 2005361821A JP 2007163359 A JP2007163359 A JP 2007163359A
Authority
JP
Japan
Prior art keywords
probe
sample
light
tip
along
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005361821A
Other languages
Japanese (ja)
Other versions
JP4525584B2 (en
Inventor
Nobuaki Takazawa
信明 高澤
Tomoyuki Hayashi
知征 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005361821A priority Critical patent/JP4525584B2/en
Publication of JP2007163359A publication Critical patent/JP2007163359A/en
Application granted granted Critical
Publication of JP4525584B2 publication Critical patent/JP4525584B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a position adjusting mechanism capable of easily setting a sample to be faced to the tip of a probe in the axial direction of the probe. <P>SOLUTION: A shift amount of the sample 16 to the probe 42 is confirmed along an X-direction from a reflection image of a mirror 44 provided in an X-directional side way, as to the sample 16 and the probe 42 on a sample block 14, and a shift amount of the sample 16 to the probe 42 is confirmed along a Y-direction from a reflection image of a mirror 50 provided in a Y-directional side way, as to the sample 16 and the probe 42 on the sample block 14. The sample block 14 is moved along the X-direction and the Y-direction until the sample 16 is overlapped with the tip of the probe 42, based on confirmation results therein, to oppose the sample 16 to the tip of the probe 42 along the axial direction of the probe 42. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、近接場分光装置等の観察試料にプローブを対向させた状態で試料を観察する構成の観察装置でプローブと試料との相対的な位置関係を調整するために用いられる位置調整機構に関する。   The present invention relates to a position adjustment mechanism used for adjusting the relative positional relationship between a probe and a sample in an observation device configured to observe the sample in a state where the probe is opposed to the observation sample such as a near-field spectroscopic device. .

例えば、下記特許文献1に開示されているような散乱型近接場分光顕微鏡は、試料を観察するにあたって試料とプローブの先端とをプローブの軸方向に沿って対向させなくてはならない。
特開2005−147745
For example, in a scattering near-field spectroscopic microscope as disclosed in Patent Document 1 below, when observing a sample, the sample and the tip of the probe must face each other along the axial direction of the probe.
JP 2005-147745 A

上記のように、プローブの軸方向に沿って試料とプローブの先端とが対向したか否かは、プローブの軸方向に沿ってプローブの試料とは反対側や、試料のプローブとは反対側にCCDカメラ等の観察手段を設けることが考えられる。しかしながら、プローブの試料とは反対側にはプローブを支持するための機構が設けられ、試料のプローブとは反対側には試料を載置する試料台や試料台を駆動させる駆動機構が設けられるため、このような位置に観察手段を設けることができず、試料及びプローブの何れか一方に対する他方の相対的な位置関係を把握することができず、何れか一方に対する他方の位置調整が難しい。   As described above, whether the sample and the tip of the probe face each other along the probe axial direction is determined on the side opposite to the sample of the probe or the side opposite to the probe of the sample along the probe axial direction. It is conceivable to provide observation means such as a CCD camera. However, a mechanism for supporting the probe is provided on the side opposite to the sample of the probe, and a sample stage for placing the sample and a drive mechanism for driving the sample stage are provided on the side opposite to the probe of the sample. The observation means cannot be provided at such a position, the relative positional relationship of the other to either the sample or the probe cannot be grasped, and it is difficult to adjust the position of the other to either one.

本発明は、上記事実を考慮して、プローブの軸方向に沿ってプローブの先端と向き合うように試料を容易にセットできる位置調整機構を得ることが目的である。   An object of the present invention is to obtain a position adjusting mechanism that can easily set a sample so as to face the tip of the probe along the axial direction of the probe in consideration of the above fact.

請求項1に記載の本発明に係る位置調整機構は、プローブの軸方向に沿って前記プローブの先端側方に試料を配置するための位置調整機構であって、前記軸方向に対して直交する軸直交方向に沿った前記プローブと前記試料との相対的な位置関係を光学的に示すと共に、前記軸方向に沿った前記プローブの延長上以外の観察位置で観察可能な位置情報光を形成する情報光形成手段と、前記観察位置に配置されて前記位置情報光を観察する観察手段と、を備えることを特徴としている。   The position adjusting mechanism according to the first aspect of the present invention is a position adjusting mechanism for arranging a sample on the side of the tip of the probe along the axial direction of the probe, and is orthogonal to the axial direction. Optically indicates the relative positional relationship between the probe and the sample along the direction orthogonal to the axis, and forms position information light that can be observed at an observation position other than the extension of the probe along the axis direction. It comprises information light forming means and observation means arranged at the observation position for observing the position information light.

請求項1に記載の本発明に係る位置調整機構では、情報光形成手段にて形成された位置情報光がプローブの軸方向に沿ったプローブの延長上以外の観察位置に設けられた観察手段にて観察される。情報光形成手段にて形成された位置情報光はプローブの軸方向に対して直交する方向(以下、この方向を便宜上、「軸直交方向」と称する)に沿ったプローブと試料との相対的な位置関係が示されるため、観察手段にて観察された位置情報光に基づいてプローブと試料とが重なり合うようにプローブと試料との相対的な位置関係を調整すると、プローブの軸方向に沿ってプローブの先端と向き合うように試料がセットされる。   In the position adjusting mechanism according to the first aspect of the present invention, the position information light formed by the information light forming means is applied to the observation means provided at an observation position other than on the extension of the probe along the probe axial direction. Observed. The positional information light formed by the information light forming means is relative to the probe and the sample along a direction perpendicular to the axial direction of the probe (hereinafter, this direction is referred to as “axial orthogonal direction” for convenience). Since the positional relationship is indicated, if the relative positional relationship between the probe and the sample is adjusted so that the probe and the sample overlap based on the positional information light observed by the observation means, the probe is aligned along the probe axial direction. The sample is set so as to face the tip.

請求項2に記載の本発明に係る位置調整機構は、請求項1に記載の本発明において、前記情報光形成手段は、前記軸直交方向のうちの一方向に沿った前記プローブ及び前記試料の側方に設けられ、前記プローブの先端及び前記試料からの光を、前記一方向に沿った前記プローブと前記試料との位置関係を示す位置情報光としての反射像として前記観察手段へ反射する反射手段を備えることを特徴としている。   According to a second aspect of the present invention, there is provided the position adjusting mechanism according to the first aspect of the present invention, wherein the information light forming means includes the probe and the sample along one of the axis orthogonal directions. Reflection that is provided on the side and reflects light from the tip of the probe and the sample to the observation means as a reflection image as positional information light indicating the positional relationship between the probe and the sample along the one direction. It is characterized by providing a means.

請求項2に記載の本発明に係る位置調整機構では、試料及びプローブの先端からの光が、軸直交方向の一方向に沿った試料及びプローブの側方に設けられた情報光形成手段を構成する反射手段にて反射される。反射手段にて反射された反射光は、軸直交方向の一方向に沿ったプローブと試料との位置関係を示す位置情報光としての反射像として観察手段へ反射される。このため、反射像においてプローブと試料とが重なり合う状態が、軸直交方向の一方向にプローブと試料とが重なり合う位置と認識できる。   In the position adjusting mechanism according to the second aspect of the present invention, the light from the tip of the sample and the probe constitutes the information light forming means provided on the side of the sample and the probe along one direction orthogonal to the axis. Reflected by the reflecting means. The reflected light reflected by the reflecting means is reflected to the observing means as a reflected image as position information light indicating the positional relationship between the probe and the sample along one direction orthogonal to the axis. For this reason, the state where the probe and the sample overlap in the reflected image can be recognized as the position where the probe and the sample overlap in one direction perpendicular to the axis.

請求項3に記載の本発明に係る位置調整機構は、請求項2に記載の本発明において、前記反射手段は、前記プローブの先端及び前記試料からの光の一部を透過し、前記軸方向及び前記一方向の双方に対して直交する方向に沿った前記プローブと前記試料との位置関係を示す透過像として前記反射像が入射する前記観察手段とは別に設けられた前記観察手段に入射することを特徴としている。   According to a third aspect of the present invention, there is provided the position adjusting mechanism according to the second aspect of the present invention, wherein the reflecting means transmits a part of light from the tip of the probe and the sample, and the axial direction. In addition, the reflected image is incident on the observation means provided separately from the observation means on which the reflected image is incident as a transmission image indicating the positional relationship between the probe and the sample along a direction orthogonal to both of the one direction. It is characterized by that.

請求項3に記載の本発明に係る位置調整機構では、試料及びプローブの先端からの光の一部が反射手段を透過する。この反射手段を透過した透過光は、軸直交方向及び上記の軸直交方向の一方向の双方に対して直交したプローブと試料との位置関係を示す位置情報光としての透過像として、上記の反射光が入射する観察手段とは別に設けられた観察手段に入射される。透過像においてプローブと試料とが重なり合う状態が、軸直交方向及び軸直交方向の一方向の双方に対して直交する方向に沿ってプローブと試料とが重なり合う位置と認識できる。したがって、透過像及び反射像の双方でプローブと試料とが重なり合う状態はプローブの軸方向に沿ってプローブの先端と試料とが対向する状態と確認できる。   In the position adjusting mechanism according to the third aspect of the present invention, part of the light from the tip of the sample and the probe passes through the reflecting means. The transmitted light transmitted through the reflecting means is reflected as a transmitted image as positional information light indicating the positional relationship between the probe and the sample orthogonal to both the axis orthogonal direction and one direction of the axis orthogonal direction. The light is incident on observation means provided separately from the observation means on which light is incident. A state where the probe and the sample overlap in the transmission image can be recognized as a position where the probe and the sample overlap along a direction orthogonal to both the axis orthogonal direction and one direction of the axis orthogonal direction. Therefore, the state where the probe and the sample overlap in both the transmission image and the reflection image can be confirmed as the state where the tip of the probe and the sample face each other along the axial direction of the probe.

請求項4に記載の本発明に係る位置調整機構は、請求項1に記載の本発明において、前記情報光形成手段は、前記軸方向に広がりを持つ線状に形成されて前記観察手段により観察可能な照準光を前記位置情報光として形成する照準光形成手段を備えることを特徴としている。   According to a fourth aspect of the present invention, there is provided the position adjusting mechanism according to the first aspect of the present invention, wherein the information light forming means is formed in a linear shape extending in the axial direction and is observed by the observation means. It is characterized by comprising aiming light forming means for forming possible aiming light as the position information light.

請求項4に記載の本発明に係る位置調整機構では、情報光形成手段を構成する照準光形成手段によって照準光が位置情報光として形成される。照準光はプローブの軸方向に広がりを持つ線状であるため、プローブの先端と試料の双方が照準光で照らされた状態では、プローブの軸方向に沿ってプローブの先端と試料とが対向している。したがって、この状態を観察手段で観察することでプローブの先端と試料とが対向しているか否かを確認できる。   In the position adjusting mechanism according to the fourth aspect of the present invention, the aiming light is formed as the position information light by the aiming light forming means constituting the information light forming means. Since the aiming light is a linear shape that spreads in the probe axial direction, the probe tip and the sample face each other along the probe axial direction when both the probe tip and the sample are illuminated by the aiming light. ing. Therefore, it is possible to confirm whether or not the tip of the probe and the sample face each other by observing this state with the observation means.

請求項5に記載の本発明に係る位置調整機構は、請求項4に記載の本発明において、前記軸直交方向のうちの一方向に沿って前記プローブ及び前記試料の側方に設けられ、前記軸方向に広がりを持った光を発する第1発光手段と、前記軸方向を中心軸として所定角度傾斜した方向に沿って前記プローブ及び前記試料の側方に設けられ、前記軸方向に広がりを持った光を発する第2発光手段と、を含めて前記照準光形成手段を構成し、前記第1発光手段及び前記第2発光手段の双方が発した光を交差させることで当該交差位置に前記照準光を形成することを特徴としている。   The position adjustment mechanism according to the present invention described in claim 5 is provided in a side of the probe and the sample along one direction of the axis orthogonal direction in the present invention according to claim 4, A first light emitting means for emitting light having a spread in the axial direction; and provided on a side of the probe and the sample along a direction inclined by a predetermined angle with the axial direction as a central axis, and having a spread in the axial direction The aiming light forming means includes a second light emitting means that emits the emitted light, and crosses the light emitted by both the first light emitting means and the second light emitting means, so that the aiming position is at the crossing position. It is characterized by forming light.

請求項5に記載の本発明に係る位置調整機構によれば、プローブの軸方向に対して直交する方向に沿ったプローブ及び試料の側方からは第1発光手段及び第2発光手段の各々から光が発せられる。ここで、第1発光手段及び第2発光手段の各々の位置は、プローブの軸方向を中心軸として所定角度傾斜している。したがって、第1発光手段から発せられた光と、第2発光手段から発せられた光は互いに交差する。しかも、第1発光手段及び第2発光手段の各々から発せられた光は何れもプローブの軸方向に広がりを持つ。このため、第1発光手段から発せられた光と第2発光手段から発せられた光とが交差する位置では、プローブの軸方向に沿って光が強く光る。   According to the position adjusting mechanism of the present invention described in claim 5, from the side of the probe and the sample along the direction orthogonal to the axial direction of the probe, from each of the first light emitting means and the second light emitting means. Light is emitted. Here, each position of the first light emitting means and the second light emitting means is inclined by a predetermined angle with the axial direction of the probe as the central axis. Therefore, the light emitted from the first light emitting means and the light emitted from the second light emitting means intersect each other. In addition, the light emitted from each of the first light emitting means and the second light emitting means spreads in the axial direction of the probe. For this reason, at the position where the light emitted from the first light emitting means and the light emitted from the second light emitting means intersect, the light is strongly emitted along the axial direction of the probe.

この強く光る光が照準光となり、他の位置より強く光る照準光にプローブの先端と試料とが照らされることでプローブの軸方向に沿ってプローブの先端と試料とが対向したことを認識できる。   This intensely shining light becomes the aiming light, and the tip of the probe and the sample are illuminated by the aiming light that shines stronger than the other positions, so that it can be recognized that the tip of the probe and the sample face each other along the axial direction of the probe.

ここで、本発明に係る位置調整機構では、プローブの軸方向に沿った線状の照準光を形成するにあたり、複数の発光手段(第1発光手段及び第2発光手段)を用いるが、これらの発光手段は何れもプローブの軸方向に対して直交する方向に沿ったプローブ及び試料の側方に設けられるため、試料を載置する載置台やプローブを支持する支持手段が照準光の障害になったり、また、このような載置台や支持手段に特別な加工を施したりしなくても、上記の照準光を形成することができる。   Here, in the position adjusting mechanism according to the present invention, a plurality of light emitting means (first light emitting means and second light emitting means) are used to form linear aiming light along the axial direction of the probe. Since all of the light emitting means are provided on the side of the probe and the sample along the direction orthogonal to the axial direction of the probe, the mounting table for mounting the sample and the support means for supporting the probe become an obstacle to the aiming light. In addition, the above-described aiming light can be formed without performing special processing on the mounting table or the support means.

請求項6に記載の本発明に係る位置調整機構は、請求項5に記載の本発明において、前記第2発光手段が発する光の波長を前記第1発光手段が発する光の波長とは異なる値に設定したことを特徴としている。   A position adjusting mechanism according to a sixth aspect of the present invention is the position adjusting mechanism according to the fifth aspect of the present invention, wherein the wavelength of the light emitted by the second light emitting means is different from the wavelength of the light emitted by the first light emitting means. It is characterized by being set to.

請求項6に記載の本発明に係る位置調整機構によれば、第1発光手段が発する光と第2発光手段が発する光とで波長が異なり、したがって、第1発光手段が発する光の色と第2発光手段が発する光の色とが異なる。このため、第1発光手段から発せられた光と第2発光手段から発せられた光との交差位置では、第1発光手段及び第2発光手段の各々が発した光とは異なる色となる。このため、プローブの先端及び試料の各々は、この交差位置に到達した状態でのみ、第1発光手段が発した光と第2発光手段が発した光とが交わることで生じた色の光(すなわち、照準光)で照らされる。これにより、交差位置にプローブの先端や試料が到達した否かの判別が容易になる。   According to the position adjusting mechanism of the present invention described in claim 6, the wavelength of the light emitted from the first light emitting means is different from that of the light emitted from the second light emitting means, and accordingly, the color of the light emitted from the first light emitting means The color of the light emitted by the second light emitting means is different. For this reason, in the intersection position of the light emitted from the 1st light emission means and the light emitted from the 2nd light emission means, it becomes a color different from the light which each of the 1st light emission means and the 2nd light emission means emitted. For this reason, each of the tip of the probe and the sample has a color light generated by the intersection of the light emitted from the first light emitting means and the light emitted from the second light emitting means only in a state where the probe has reached this intersection position ( That is, it is illuminated with aiming light. This facilitates the determination of whether or not the tip of the probe or the sample has reached the crossing position.

請求項1に記載の本発明に係る位置調整機構では、観察手段にて観察された位置情報光に基づいてプローブと試料とが重なり合うようにプローブと試料との相対的な位置関係を調整することでプローブの軸方向に沿ってプローブの先端と向き合うように試料を容易にセットできる。   In the position adjustment mechanism according to the first aspect of the present invention, the relative positional relationship between the probe and the sample is adjusted based on the position information light observed by the observation means so that the probe and the sample overlap each other. Thus, the sample can be easily set so as to face the tip of the probe along the axial direction of the probe.

請求項2に記載の本発明に係る位置調整機構では、観察手段にて観察される反射像においてプローブと試料とが重なり合うようにプローブと試料との相対的な位置関係を調整することで、軸直交方向の一方向に沿ったプローブと試料とのずれを解消できる。   In the position adjustment mechanism according to the second aspect of the present invention, the relative positional relationship between the probe and the sample is adjusted so that the probe and the sample overlap each other in the reflected image observed by the observation unit. Deviation between the probe and the sample along one direction in the orthogonal direction can be eliminated.

請求項3に記載の本発明に係る位置調整機構では、透過像及び反射像の双方でプローブと試料とが重なり合うようにプローブと試料との相対的な位置関係を調整することで、プローブの軸方向に沿ってプローブの先端と試料とを対向させることができる。   In the position adjustment mechanism according to the third aspect of the present invention, by adjusting the relative positional relationship between the probe and the sample so that the probe and the sample overlap in both the transmission image and the reflection image, the axis of the probe is adjusted. The tip of the probe and the sample can be made to face each other along the direction.

請求項4に記載の本発明に係る位置調整機構では、線状の照準光でプローブの先端と試料とを照らすことでプローブの軸方向に沿ってプローブの先端と試料とを対向させることができる。   In the position adjusting mechanism according to the fourth aspect of the present invention, the tip of the probe and the sample can be made to face each other along the axial direction of the probe by illuminating the tip of the probe and the sample with linear aiming light. .

請求項5に記載の本発明に係る位置調整機構では、試料を載置する載置台やプローブを支持する支持手段が照準光の障害になったり、また、このような載置台や支持手段に特別な加工を施したりしなくても線状の照準光を形成でき、この照準光でプローブの先端と試料とを照らしてプローブの先端と試料とを対向させることができる。   In the position adjustment mechanism according to the fifth aspect of the present invention, the mounting table on which the sample is mounted and the support means for supporting the probe obstruct the aiming light. A linear aiming light can be formed without performing any special processing, and the tip of the probe and the sample can be opposed to each other by illuminating the tip of the probe and the sample with this aiming light.

請求項6に記載の本発明に係る位置調整機構では、照準光にプローブの先端や試料が照らされているか否かの判別、すなわち、プローブの軸方向にプローブの先端と試料とが対向しているか否かの判別が極めて容易になる。   In the position adjusting mechanism according to the sixth aspect of the present invention, it is determined whether or not the tip of the probe or the sample is illuminated by the aiming light, that is, the tip of the probe and the sample face each other in the axial direction of the probe. It is very easy to determine whether or not it exists.

<第1の実施の形態の構成>
図1には本発明の第1の実施の形態に係る位置調整機構10を適用した近接場分光測定装置11の構成の概略が正面図とブロック図の複合図により示されており、図2には本位置調整機構10を適用した近接場分光測定装置11の要部の構成の概略が斜視図により示されている。なお、近接場分光測定装置11における試料16を観察、測定するための機構に関しては周知の技術であるため、図示を含めてその詳細な説明は省略し、本実施の形態の要部である位置調整機構10に関わる構成のみを以下に説明する。
<Configuration of First Embodiment>
FIG. 1 shows an outline of the configuration of a near-field spectrometer 11 to which a position adjusting mechanism 10 according to the first embodiment of the present invention is applied, as a composite diagram of a front view and a block diagram. FIG. 3 is a perspective view schematically showing the configuration of the main part of the near-field spectrometer 11 to which the position adjusting mechanism 10 is applied. Since the mechanism for observing and measuring the sample 16 in the near-field spectrometer 11 is a well-known technique, a detailed description thereof including illustration is omitted, and a position that is a main part of the present embodiment. Only the configuration related to the adjustment mechanism 10 will be described below.

図1に示されるように、近接場分光測定装置11はスキャナ12を備えている。スキャナ12は、シリコンにより平面視矩形の平板状にシリコンにより形成された試料載置面を含めて構成された試料台14を備えており、この試料台14上(更に言えば、試料載置面上)に観察する試料16がセットされる。試料台14の下方には駆動機構18が設けられている。駆動機構18はピエゾ素子20X、20Y、20Zを備えている。ピエゾ素子20X〜20Zは電圧が印加されることで結晶が一定の方向に伸縮する構造で、ピエゾ素子20Xは結晶の伸縮で試料台14をその試料載置面に対して平行な一方向(X方向)に微小変位させる。   As shown in FIG. 1, the near-field spectrometer 11 includes a scanner 12. The scanner 12 includes a sample stage 14 configured to include a sample mounting surface formed of silicon in a flat plate shape with a rectangular shape in plan view with silicon, and on the sample stage 14 (more specifically, the sample mounting surface). The sample 16 to be observed is set in (above). A drive mechanism 18 is provided below the sample stage 14. The drive mechanism 18 includes piezo elements 20X, 20Y, and 20Z. The piezo elements 20X to 20Z have a structure in which the crystal expands and contracts in a certain direction when a voltage is applied. The piezo element 20X extends the sample stage 14 in one direction parallel to the sample mounting surface (X Direction).

また、ピエゾ素子20Yは結晶の伸縮で試料台14をその試料載置面に対して平行で且つ上記のX方向対して直交する方向(Y方向)に微小変位させる。さらに、ピエゾ素子20Zは結晶の伸縮で試料台14をその試料載置面の向き、すなわち、上記のX方向及びY方向の双方に対して直交する方向(Z方向)に微小変位させる。ピエゾ素子20X、20YはX,Y走査機構26に接続されている。X,Y走査機構26は一種のドライバ回路を含めて構成されており、図示しない電源とピエゾ素子20X、20Yとの間に介在している。また、X,Y走査機構26はCPU28に接続されており、CPU28からの走査制御信号がX,Y走査機構26に入力されると、X,Y走査機構26がピエゾ素子20X及びピエゾ素子20Yの少なくとも何れか一方に走査制御信号に応じた電圧を印加する。   The piezo element 20Y slightly displaces the sample stage 14 in a direction (Y direction) parallel to the sample placement surface and perpendicular to the X direction by crystal expansion and contraction. Furthermore, the piezo element 20Z slightly displaces the sample stage 14 in the direction of the sample placement surface, that is, in the direction orthogonal to both the X direction and the Y direction (Z direction) by crystal expansion and contraction. The piezo elements 20X and 20Y are connected to an X and Y scanning mechanism 26. The X and Y scanning mechanism 26 includes a kind of driver circuit, and is interposed between a power source (not shown) and the piezo elements 20X and 20Y. The X and Y scanning mechanism 26 is connected to the CPU 28. When a scanning control signal from the CPU 28 is input to the X and Y scanning mechanism 26, the X and Y scanning mechanism 26 detects the piezoelectric element 20X and the piezoelectric element 20Y. A voltage corresponding to the scanning control signal is applied to at least one of them.

また、CPU28はキーボードやマウス等により構成される入力部30に直接又は間接的に接続されている。試料16を上記のX方向やY方向にスキャン(変位)させるために、入力部30で入力操作を行なうと、この入力操作に応じた入力信号がCPU28に入力され、更に、入力信号に応じた走査制御信号がCPU28から出力される。   The CPU 28 is directly or indirectly connected to the input unit 30 configured with a keyboard, a mouse, and the like. When an input operation is performed at the input unit 30 in order to scan (displace) the sample 16 in the X direction or the Y direction, an input signal corresponding to the input operation is input to the CPU 28, and further according to the input signal. A scan control signal is output from the CPU 28.

さらに、CPU28はZ軸サーボ機構32に接続されている。Z軸サーボ機構32は一種のドライバ回路を含めて構成されており図示しない電源に接続されていると共に、ピエゾ素子20Zに接続されている。CPU28にてサーボ信号が出力されるとZ軸サーボ機構32では入力されたサーボ信号に基づいてピエゾ素子20Zに電圧を印加し、試料台14を微小に昇降させる構成になっている。   Further, the CPU 28 is connected to the Z-axis servo mechanism 32. The Z-axis servo mechanism 32 is configured to include a kind of driver circuit, and is connected to a power source (not shown) and to the piezo element 20Z. When the servo signal is output by the CPU 28, the Z-axis servo mechanism 32 applies a voltage to the piezo element 20Z based on the input servo signal, and the sample stage 14 is slightly raised and lowered.

一方、図1及び図2に示されるように、上記の構成の試料台14の上方にはプローブ支持部40が配置され、このプローブ支持部40に金属製のプローブ42が支持されている。プローブ42は、試料台14の試料載置面の向きに軸方向となる棒状で、試料台14側、すなわち、下方へ向けて漸次先細となっている。近接場分光測定装置11では試料台14を構成するシリコン基板の試料載置面に赤外線を通すとエバネスセント波と呼ばれる近接場が試料載置面の表面に生じる。この近接場をプローブ42により伝搬光に変換し、この伝搬光を検出器で集光して検出することで局所的な赤外分光が可能となる構成である。   On the other hand, as shown in FIGS. 1 and 2, a probe support portion 40 is disposed above the sample stage 14 having the above-described configuration, and a metal probe 42 is supported on the probe support portion 40. The probe 42 has a rod shape that is axial in the direction of the sample mounting surface of the sample stage 14, and is gradually tapered toward the sample stage 14, that is, downward. In the near-field spectrometer 11, when infrared rays are passed through the sample mounting surface of the silicon substrate constituting the sample stage 14, a near field called an evanescent centimeter wave is generated on the surface of the sample mounting surface. This near field is converted into propagating light by the probe 42, and this propagating light is collected and detected by a detector, thereby enabling local infrared spectroscopy.

プローブ42の軸方向に対して直交する方向(換言すると、試料台14の試料載置面に対して平行な方向で、以下、この方向を、便宜上、「軸直交方向」と称する)のうち、上記のピエゾ素子20Xに電圧が印加されることで試料台14が微小変位する方向と同じ方向、すなわち、X方向に沿った試料台14の側方には、反射手段として情報光形成手段を構成するミラー44が配置されている。本実施の形態においてミラー44は、赤外不活性な結晶、一例としては、臭化カリウム(KBr)、塩化ナトリウム(NaCl)、フッ化カルシウム(CaF)、ダイヤモンド等により形成された基板の表面に、金(Au)、白金(Pt)、アルミニウム(Al)、銀(Ag)等の光沢金属を反射膜として蒸着することで形成されている。   Of the directions orthogonal to the axial direction of the probe 42 (in other words, in the direction parallel to the sample mounting surface of the sample stage 14, this direction is hereinafter referred to as “axis orthogonal direction” for convenience). An information light forming unit is configured as a reflecting unit in the same direction as the sample table 14 is slightly displaced by applying a voltage to the piezo element 20X, that is, on the side of the sample table 14 along the X direction. A mirror 44 is disposed. In this embodiment, the mirror 44 is formed on the surface of a substrate formed of infrared inactive crystals, for example, potassium bromide (KBr), sodium chloride (NaCl), calcium fluoride (CaF), diamond, or the like. , Gold (Au), platinum (Pt), aluminum (Al), silver (Ag), etc. are formed by vapor deposition as a reflective film.

このような構造のミラー44は、プローブ42の軸方向に沿って試料台14の試料載置面よりも上方で、ミラー44の反射面が試料台14の試料載置面に対して略平行になるように配置されている。図1に示されるように、ミラー44は試料台14の試料載置面上に載置された試料16、及び、この試料16の近傍に配置されたプローブ42の先端近傍からの光Lを、反射光として下方へ反射できるようになっている。ミラー44の下方には観察手段としてのCCDカメラ46が配置されており、ミラー44での反射光により形成される位置情報光としての反射像をCCDカメラ46で撮像できるようになっている。   The mirror 44 having such a structure is above the sample placement surface of the sample stage 14 along the axial direction of the probe 42 and the reflection surface of the mirror 44 is substantially parallel to the sample placement surface of the sample stage 14. It is arranged to be. As shown in FIG. 1, the mirror 44 receives the light L from the vicinity of the tip of the sample 16 placed on the sample placement surface of the sample stage 14 and the probe 42 arranged in the vicinity of the sample 16. It can be reflected downward as reflected light. A CCD camera 46 as observation means is disposed below the mirror 44, and a reflected image as position information light formed by reflected light from the mirror 44 can be captured by the CCD camera 46.

CCDカメラ46は、CPU28に接続されており、CCDカメラ46から出力された電気的な画像信号がCPU28で処理されると、CPU28に接続されたモニタ48にミラー44での反射像が表示される。図3の(X)に示されるように、例えば、プローブ42の先端に対して試料16がX方向にずれているような状態では、モニタ48のX−Y分割画像のうちの一方として表示されるミラー44での反射像は、モニタ48の画面横方向にプローブ42の先端に対して試料16がずれて表示される。   The CCD camera 46 is connected to the CPU 28, and when the electrical image signal output from the CCD camera 46 is processed by the CPU 28, a reflection image at the mirror 44 is displayed on the monitor 48 connected to the CPU 28. . As shown in (X) of FIG. 3, for example, in a state where the sample 16 is displaced in the X direction with respect to the tip of the probe 42, it is displayed as one of the X-Y divided images of the monitor 48. The reflected image from the mirror 44 is displayed with the sample 16 shifted in the horizontal direction of the screen of the monitor 48 with respect to the tip of the probe 42.

一方、図2に示されるように、プローブ42の軸方向に対して直交する方向(換言すると、試料台14の試料載置面に対して平行な方向で、以下、この方向を、便宜上、「軸直交方向」と称する)のうち、上記のピエゾ素子20Yに電圧が印加されることで試料台14が微小変位する方向と同じ方向、すなわち、Y方向に沿った試料台14の側方には、反射手段として情報光形成手段を構成するミラー50が配置されている。本実施の形態においてミラー50は、構造的にはミラー44と同様の構造とされ、プローブ42の軸方向に沿って試料台14の試料載置面よりも上方で、ミラー50の反射面が試料台14の試料載置面に対して略平行になるように配置されている。ミラー44と同様にミラー50は試料台14の試料載置面上に載置された試料16、及び、この試料16の近傍に配置されたプローブ42の先端近傍からの光を、反射光として下方へ反射できるようになっている。   On the other hand, as shown in FIG. 2, a direction orthogonal to the axial direction of the probe 42 (in other words, a direction parallel to the sample placement surface of the sample stage 14, hereinafter, this direction is referred to as “ In the same direction as the direction in which the sample stage 14 is slightly displaced by applying a voltage to the piezo element 20Y, that is, on the side of the sample stage 14 along the Y direction. The mirror 50 constituting the information light forming means is disposed as the reflecting means. In the present embodiment, the mirror 50 is structurally similar to the mirror 44, and the mirror 50 has a reflecting surface above the sample placement surface of the sample stage 14 along the axial direction of the probe 42. It arrange | positions so that it may become substantially parallel with respect to the sample mounting surface of the base 14. FIG. Similar to the mirror 44, the mirror 50 uses the light from the sample 16 placed on the sample placement surface of the sample stage 14 and the tip of the probe 42 arranged in the vicinity of the sample 16 as reflected light. Can be reflected.

図2に示されるように、ミラー50の下方には観察手段としてのCCDカメラ52が配置されており、ミラー50での反射光により形成される位置情報光としての反射像をCCDカメラ52で撮像できるようになっている。CCDカメラ52は、CPU28に接続されており、CCDカメラ52から出力された電気的な画像信号がCPU28で処理されると、CPU28に接続されたモニタ48にミラー50での反射像が表示される。図3の(Y)に示されるように、例えば、プローブ42の先端に対して試料16がY方向にずれているような状態では、モニタ48のX−Y分割画像のうちの他方として表示されるミラー50での反射像は、モニタ48の画面横方向にプローブ42の先端に対して試料16がずれて表示される。   As shown in FIG. 2, a CCD camera 52 as observation means is arranged below the mirror 50, and a reflected image as position information light formed by the reflected light from the mirror 50 is picked up by the CCD camera 52. It can be done. The CCD camera 52 is connected to the CPU 28, and when the electrical image signal output from the CCD camera 52 is processed by the CPU 28, a reflection image from the mirror 50 is displayed on the monitor 48 connected to the CPU 28. . As shown in (Y) of FIG. 3, for example, in a state where the sample 16 is displaced in the Y direction with respect to the tip of the probe 42, it is displayed as the other of the XY divided images of the monitor 48. The reflected image from the mirror 50 is displayed with the sample 16 shifted in the horizontal direction of the screen of the monitor 48 with respect to the tip of the probe 42.

<第1の実施の形態の作用、効果>
以上の構成の本実施の形態では、ミラー44、50での反射光により形成される反射像がCCDカメラ46、52の各々により撮像される。各CCDカメラ46、52が反射像を撮像すると、この撮像データに対応した電気的な画像信号がCPU28で処理されてモニタ48に表示される。
<Operation and Effect of First Embodiment>
In the present embodiment configured as described above, the reflected images formed by the reflected light from the mirrors 44 and 50 are captured by the CCD cameras 46 and 52, respectively. When each of the CCD cameras 46 and 52 captures a reflected image, an electrical image signal corresponding to the captured data is processed by the CPU 28 and displayed on the monitor 48.

ここで、上記のように、プローブ42の先端に対して試料16がX方向にずれているような状態では、モニタ48の分割画像の一方でモニタ48の画面横方向にプローブ42の先端に対して試料16がずれて表示される。このように、プローブ42の先端に対して試料16がずれている場合には、ピエゾ素子20Xに電圧を印加し、試料台14をX方向に変位させる。このように試料台14をX方向に変位させることでプローブ42の先端と試料16とが重なり合うと、X方向に沿ったプローブ42と試料16とのずれが解消される。   Here, as described above, in a state where the sample 16 is displaced in the X direction with respect to the tip of the probe 42, one of the divided images of the monitor 48 is lateral to the tip of the probe 42 in the horizontal direction of the screen of the monitor 48. The sample 16 is displayed in a shifted manner. Thus, when the sample 16 is displaced with respect to the tip of the probe 42, a voltage is applied to the piezo element 20X, and the sample stage 14 is displaced in the X direction. When the tip of the probe 42 and the sample 16 overlap each other by displacing the sample stage 14 in the X direction in this manner, the deviation between the probe 42 and the sample 16 along the X direction is eliminated.

また、プローブ42の先端に対して試料16がY方向にずれているような状態では、モニタ48の分割画像の他方でモニタ48の画面横方向にプローブ42の先端に対して試料16がずれて表示される。このように、プローブ42の先端に対して試料16がずれている場合には、ピエゾ素子20Yに電圧を印加し、試料台14をY方向に変位させる。このように試料台14をY方向に変位させることでプローブ42の先端と試料16とが重なり合うと、Y方向に沿ったプローブ42と試料16とのずれが解消される。   When the sample 16 is displaced in the Y direction with respect to the tip of the probe 42, the sample 16 is displaced with respect to the tip of the probe 42 in the horizontal direction of the screen of the monitor 48 on the other side of the divided image of the monitor 48. Is displayed. Thus, when the sample 16 is displaced with respect to the tip of the probe 42, a voltage is applied to the piezo element 20Y, and the sample stage 14 is displaced in the Y direction. When the tip of the probe 42 and the sample 16 are overlapped by displacing the sample stage 14 in the Y direction in this way, the deviation between the probe 42 and the sample 16 along the Y direction is eliminated.

このように、X方向及びY方向の双方に沿ったプローブ42と試料16とのずれを解消することで、プローブ42の軸方向に沿ってプローブ42の先端と試料16とを簡単に対向させることができる。   Thus, the tip of the probe 42 and the sample 16 can be easily made to face each other along the axial direction of the probe 42 by eliminating the deviation between the probe 42 and the sample 16 along both the X direction and the Y direction. Can do.

しかも、本実施の形態では、軸直交に沿った試料台14の側方にミラー44、50を配置し、これらのミラー44、50での反射像を確認しながらX方向及びY方向の双方に沿ったプローブ42と試料16とのずれを解消させるため、プローブ42の先端や試料16をCCDカメラ46、52で撮像するにあたり、プローブ支持部40や試料台14が障害になることがなく、また、プローブ支持部40や試料台14の構造を特に変更しなくてもよい。   In addition, in the present embodiment, mirrors 44 and 50 are arranged on the side of the sample stage 14 along the axis orthogonal, and the reflected images at these mirrors 44 and 50 are confirmed in both the X direction and the Y direction. In order to eliminate the deviation between the probe 42 and the sample 16 along the probe 42, the probe support unit 40 and the sample stage 14 are not obstructed when the tip of the probe 42 and the sample 16 are imaged by the CCD cameras 46 and 52. The structure of the probe support unit 40 and the sample stage 14 need not be particularly changed.

なお、本実施の形態では、反射面が試料台14の試料載置面に対して略平行になるようにミラー44、50を配置したり、ミラー44、50の下方にCCDカメラ46、52を配置した構成であったが、X方向及びY方向の各方向に沿ったプローブ42の先端と試料16とのずれを反射像として捕らえることができる構成であれば、ミラー44、50やCCDカメラ46、52の配置態様が上述した本実施の形態の態様に限定されるものではない。   In the present embodiment, the mirrors 44 and 50 are arranged so that the reflection surface is substantially parallel to the sample placement surface of the sample stage 14, or the CCD cameras 46 and 52 are disposed below the mirrors 44 and 50. However, the mirrors 44 and 50 and the CCD camera 46 can be used as long as the displacement between the tip of the probe 42 and the sample 16 along each direction in the X direction and the Y direction can be captured as a reflected image. , 52 is not limited to the above-described embodiment.

<第2の実施の形態の構成>
次に、本発明のその他の実施の形態について説明する。なお、以下の各実施の形態を説明するにあたり、前記第1の実施の形態を含めて説明している実施の形態よりも前出の実施の形態と基本的に同一の部位に関しては、同一の符号を付与してその詳細な説明を省略する。
<Configuration of Second Embodiment>
Next, other embodiments of the present invention will be described. In describing each of the following embodiments, the same parts as those in the previous embodiment are basically the same as those in the embodiment described above including the first embodiment. Reference numerals are assigned and detailed description thereof is omitted.

図4には本発明の第2の実施の形態に係る位置調整機構70を適用した近接場分光測定装置72の構成の概略が正面図により示されており、図5には近接場分光測定装置72の構成の概略が斜視図により示されている。   FIG. 4 is a front view schematically showing a configuration of a near-field spectrometer 72 to which the position adjusting mechanism 70 according to the second embodiment of the present invention is applied, and FIG. 5 shows a near-field spectrometer. An outline of the configuration 72 is shown in a perspective view.

これらの図に示されるように、本近接場分光測定装置72にて適用した位置調整機構70はミラー50を備えていない。さらに、本位置調整機構70はミラー44を備えておらず、代わりに反射手段として情報光形成手段を構成するミラー74が設けられている。ミラー74の構造は基本的にミラー44と同様の構造であるが、入射した光の一部を反射せずに透過できるように、ミラー74の基板や反射膜の厚さが設定されている。   As shown in these drawings, the position adjusting mechanism 70 applied in the near-field spectrometer 72 does not include the mirror 50. Further, the position adjusting mechanism 70 does not include the mirror 44, but instead includes a mirror 74 constituting an information light forming unit as a reflecting unit. The structure of the mirror 74 is basically the same as that of the mirror 44, but the thickness of the substrate of the mirror 74 and the reflective film is set so that a part of the incident light can be transmitted without being reflected.

図4及び図5に示されるように、試料台14の試料載置面上に設けられた試料16及びこの試料16の近傍のプローブ42の先端を含む領域から、ミラー74に入射してミラー74を透過した光の光軸の延長上には観察手段としてのCCDカメラ76が設けられており、ミラー74を透過した透過光により形成される位置情報光としての透過像を撮像できるようになっている。図示は省略するが、CCDカメラ76もまたCCDカメラ46と同様にCPU28に接続されている。   As shown in FIGS. 4 and 5, from the region including the tip of the sample 16 provided on the sample placement surface of the sample stage 14 and the probe 42 in the vicinity of the sample 16, the light enters the mirror 74 and enters the mirror 74. A CCD camera 76 as an observation means is provided on the extension of the optical axis of the light that has passed through the light beam, and a transmission image as position information light formed by the transmitted light that has passed through the mirror 74 can be taken. Yes. Although not shown, the CCD camera 76 is also connected to the CPU 28 in the same manner as the CCD camera 46.

ミラー74を透過した透過光により形成される透過像は、図6の(Y)に示されるように、X方向側からプローブ42の先端及び試料16を見た画像となっており、プローブ42の先端と試料16とがY方向にずれている場合には、図6に示されるモニタ48のX−Y分割画像のうちの他方として表示されるミラー44での反射像で、モニタ48の画面横方向にプローブ42の先端に対して試料16がずれて表示される。   The transmitted image formed by the transmitted light that has passed through the mirror 74 is an image of the tip of the probe 42 and the sample 16 as viewed from the X direction side, as shown in FIG. When the tip and the sample 16 are displaced in the Y direction, the image reflected by the mirror 44 displayed as the other of the XY divided images of the monitor 48 shown in FIG. The sample 16 is displayed in a direction shifted from the tip of the probe 42.

<第2の実施の形態の作用、効果>
以上の構成の本実施の形態では、X方向に沿ったプローブ42の先端と試料16とのずれは、ミラー74での反射像に基づいてモニタ48に表示された画像により確認される。したがって、前記第1の実施の形態と同様にピエゾ素子20Xに電圧を印加し、試料台14をX方向に変位させる。このように試料台14をX方向に変位させることでプローブ42の先端と試料16とが重なり合うと、X方向に沿ったプローブ42と試料16とのずれが解消される。
<Operation and Effect of Second Embodiment>
In the present embodiment configured as described above, the deviation between the tip of the probe 42 and the sample 16 along the X direction is confirmed by the image displayed on the monitor 48 based on the reflection image at the mirror 74. Therefore, as in the first embodiment, a voltage is applied to the piezo element 20X, and the sample stage 14 is displaced in the X direction. When the tip of the probe 42 and the sample 16 overlap each other by displacing the sample stage 14 in the X direction in this manner, the deviation between the probe 42 and the sample 16 along the X direction is eliminated.

一方、Y方向に沿ったプローブ42の先端と試料16とのずれは、ミラー74を透過した透過像に基づいてモニタ48に表示された画像により確認され、この画像を確認しつつピエゾ素子20Yに電圧を印加し、プローブ42の先端と試料16とがプローブ42の軸方向に対向するまで試料台14をY方向に変位させられる。これにより、Y方向に沿ったプローブ42と試料16とのずれが解消される。   On the other hand, the deviation between the tip of the probe 42 and the sample 16 along the Y direction is confirmed by an image displayed on the monitor 48 based on the transmission image transmitted through the mirror 74, and the piezo element 20Y is confirmed while confirming this image. A voltage is applied, and the sample stage 14 is displaced in the Y direction until the tip of the probe 42 and the sample 16 face each other in the axial direction of the probe 42. Thereby, the shift | offset | difference of the probe 42 and the sample 16 along a Y direction is eliminated.

このように、X方向及びY方向の双方に沿ったプローブ42と試料16とのずれを解消することで、プローブ42の軸方向に沿ってプローブ42の先端と試料16とを簡単に対向させることができる。   Thus, the tip of the probe 42 and the sample 16 can be easily made to face each other along the axial direction of the probe 42 by eliminating the deviation between the probe 42 and the sample 16 along both the X direction and the Y direction. Can do.

しかも、本実施の形態は前記第1の実施の形態と同様に、軸直交に沿った試料台14の側方にミラー74を配置し、このミラー74での反射像及び透過像を確認しながらX方向及びY方向の双方に沿ったプローブ42と試料16とのずれを解消させるため、プローブ42の先端や試料16をCCDカメラ46、52で撮像するにあたり、プローブ支持部40や試料台14が障害になることがなく、また、プローブ支持部40や試料台14の構造を特に変更しなくてもよい。   In addition, in the present embodiment, as in the first embodiment, a mirror 74 is disposed on the side of the sample stage 14 along the axis orthogonal, and a reflected image and a transmitted image on the mirror 74 are confirmed. In order to eliminate the displacement between the probe 42 and the sample 16 along both the X direction and the Y direction, the probe support unit 40 and the sample stage 14 are used when the tip of the probe 42 and the sample 16 are imaged by the CCD cameras 46 and 52. There is no obstacle, and the structure of the probe support unit 40 and the sample stage 14 need not be particularly changed.

また、前記第1の実施の形態と比較すると、本実施の形態ではミラー44に代わるミラー74は設けられているが、ミラー50が設けられていない。これにより、前記第1の実施の形態におけるミラー50の設置スペースを他のスペースとして利用でき、また、ミラー50の設置スペースの分だけ位置調整機構70、ひいては近接場分光測定装置72を小型化できる。   Compared with the first embodiment, in this embodiment, a mirror 74 is provided in place of the mirror 44, but the mirror 50 is not provided. As a result, the installation space for the mirror 50 in the first embodiment can be used as another space, and the position adjustment mechanism 70 and thus the near-field spectrometer 72 can be reduced in size by the installation space for the mirror 50. .

<第3の実施の形態の構成>
次に、本発明の第3の実施の形態について説明する。
<Configuration of Third Embodiment>
Next, a third embodiment of the present invention will be described.

図7には本実施の形態に係る位置調整機構90を適用した近接場分光測定装置92の構成の概略が斜視図により示されており、図8には本位置調整機構90を適用した近接場分光測定装置92の構成の概略が平面図により示されている。   FIG. 7 is a perspective view schematically showing a configuration of a near-field spectrometer 92 to which the position adjusting mechanism 90 according to the present embodiment is applied, and FIG. 8 shows a near-field to which the position adjusting mechanism 90 is applied. A schematic configuration of the spectroscopic measurement device 92 is shown in a plan view.

本位置調整機構90は、第1発光手段として照準光形成手段、ひいては情報光形成手段を構成するレーザ光源94を備えている。レーザ光源94には、例えば、アルゴンレーザ光源が用いられ、430nmから460nmの波長、すなわち、青色のレーザ光L1を発光する。このレーザ光源94は、軸直交方向に沿った試料台14の側方で試料台14よりも上側に設けられており、下方へ向けてレーザ光L1を発光する。   The position adjusting mechanism 90 includes a laser light source 94 that constitutes an aiming light forming unit, and thus an information light forming unit, as the first light emitting unit. For example, an argon laser light source is used as the laser light source 94, and emits blue laser light L1 having a wavelength of 430 nm to 460 nm, that is, blue light. The laser light source 94 is provided above the sample table 14 on the side of the sample table 14 along the direction perpendicular to the axis, and emits a laser beam L1 downward.

レーザ光源94の下方にはレーザ光源94と共に照準光形成手段を構成する曲面反射部材96が設けられている。曲面反射部材96は試料台14上の試料16の側へ向けて所定の曲率で張り出すように湾曲した反射面を備えている。レーザ光源94から発せられたレーザ光L1は曲面反射部材96の反射面にて反射される。周知のとおりレーザ光は基本的に一定のスポット径で広がることなく直進するが、湾曲した曲面反射部材96の反射面にて反射されたレーザ光L1は、曲面反射部材96の反射面を要としてプローブ42の軸方向に沿って扇状に広がる。   Below the laser light source 94, a curved reflecting member 96 that constitutes the aiming light forming means together with the laser light source 94 is provided. The curved reflecting member 96 includes a reflecting surface that is curved so as to protrude toward the sample 16 on the sample table 14 with a predetermined curvature. The laser light L 1 emitted from the laser light source 94 is reflected by the reflecting surface of the curved reflecting member 96. As is well known, the laser beam basically travels straight without spreading at a constant spot diameter, but the laser beam L1 reflected by the curved reflecting surface of the curved reflecting member 96 requires the reflecting surface of the curved reflecting member 96 as a key. It spreads in a fan shape along the axial direction of the probe 42.

一方、本位置調整機構90は、第2発光手段として照準光形成手段、ひいては情報光形成手段を構成するレーザ光源98を備えている。レーザ光源98には、例えば、ヘリウムネオン(He−Ne)レーザ光源が用いられ、570nmから590nmの波長、すなわち、黄色のレーザ光L2を発光する。このレーザ光源98は、軸直交方向に沿った試料台14の側方で試料台14よりも上側に設けられており、下方へ向けてレーザ光L2を発光する。   On the other hand, the position adjustment mechanism 90 includes a laser light source 98 that constitutes an aiming light forming unit, and thus an information light forming unit, as the second light emitting unit. As the laser light source 98, for example, a helium neon (He-Ne) laser light source is used, and emits a laser beam L2 having a wavelength of 570 nm to 590 nm, that is, a yellow laser beam L2. The laser light source 98 is provided on the side of the sample stage 14 along the direction perpendicular to the axis and above the sample stage 14 and emits laser light L2 downward.

レーザ光源98の下方にはレーザ光源98と共に照準光形成手段を構成する曲面反射部材100が設けられている。曲面反射部材100は基本的に曲面反射部材96と同様の構成で、試料台14上の試料16の側へ向けて所定の曲率で張り出すように湾曲した反射面を備えている。レーザ光源98から発せられたレーザ光L2は曲面反射部材100の反射面にて反射される。このレーザ光L2もまた、レーザ光L1と同様に湾曲した曲面反射部材100の反射面にて反射されることで曲面反射部材100の反射面を要としてプローブ42の軸方向に沿って扇状に広がる。   Below the laser light source 98, a curved reflecting member 100 that constitutes an aiming light forming unit together with the laser light source 98 is provided. The curved reflecting member 100 has basically the same configuration as the curved reflecting member 96, and includes a reflecting surface that is curved so as to protrude toward the sample 16 on the sample stage 14 with a predetermined curvature. Laser light L <b> 2 emitted from the laser light source 98 is reflected by the reflecting surface of the curved reflecting member 100. This laser light L2 is also reflected by the curved reflecting surface of the curved reflecting member 100 in the same manner as the laser light L1, and spreads in a fan shape along the axial direction of the probe 42 using the reflecting surface of the curved reflecting member 100 as a main component. .

なお、上記の曲面反射部材96及び曲面反射部材100の各々は固定された構成であってもよいし、プローブ42の軸方向に対して平行な軸周りに回動可能な構成であってもよい。曲面反射部材96及び曲面反射部材100の各々が固定された構成では、当然、レーザ光L1、L2の反射方向が固定されているが、プローブ42の軸方向に対して平行な軸周りに曲面反射部材96及び曲面反射部材100の各々が回動可能な構成では、曲面反射部材96や曲面反射部材100で反射されたレーザ光L1、L2は、反射面を要としてプローブ42の軸方向に沿って扇状に広がることに変わりないが、プローブ42の軸方向に対して平行な軸周りに反射方向が変わる。   Each of the curved reflection member 96 and the curved reflection member 100 may be fixed, or may be rotatable about an axis parallel to the axial direction of the probe 42. . In the configuration in which each of the curved reflection member 96 and the curved reflection member 100 is fixed, the reflection direction of the laser beams L1 and L2 is naturally fixed, but the curved reflection is performed around an axis parallel to the axial direction of the probe 42. In the configuration in which each of the member 96 and the curved reflecting member 100 is rotatable, the laser beams L1 and L2 reflected by the curved reflecting member 96 and the curved reflecting member 100 are along the axial direction of the probe 42 with the reflecting surface as a main component. Although it spreads in a fan shape, the reflection direction changes around an axis parallel to the axial direction of the probe 42.

ここで、図8に示されるように、レーザ光源98及び曲面反射部材100は、レーザ光源94及び曲面反射部材96に対し、概ね試料16の位置又はその近傍を中心にしてプローブ42の軸方向周りに中心に所定角度傾斜した位置に設けられている。このため、曲面反射部材96により反射された青色のレーザ光L1と、曲面反射部材100により反射された黄色のレーザ光L2とは、試料16の位置又はその近傍で交差する。この交差位置では、青色のレーザ光L1と黄色のレーザ光L2とが交わるため、個々のレーザ光L1、L2の各々の色とは異なる緑色で、しかも、個々のレーザ光L1、L2よりも強く光る照準光Lsとなる。   Here, as shown in FIG. 8, the laser light source 98 and the curved reflecting member 100 are approximately around the position of the sample 16 or the vicinity thereof with respect to the laser light source 94 and the curved reflecting member 96. Is provided at a position inclined at a predetermined angle from the center. Therefore, the blue laser light L1 reflected by the curved reflecting member 96 and the yellow laser light L2 reflected by the curved reflecting member 100 intersect at the position of the sample 16 or in the vicinity thereof. At this crossing position, the blue laser beam L1 and the yellow laser beam L2 cross each other, so that the colors of the individual laser beams L1 and L2 are different from each other, and are stronger than the individual laser beams L1 and L2. It becomes the shining aiming light Ls.

しかも、曲面反射部材96により反射された青色のレーザ光L1及び曲面反射部材100により反射された黄色のレーザ光L2の各々は、上記のように曲面反射部材96、100の各反射面を要としてプローブ42の軸方向に沿って扇状に広がっている。このため、これらのレーザ光L1、L2が交わることで形成された上記の照準光Lsは、プローブ42の軸方向に沿った線状となる。   Moreover, each of the blue laser light L1 reflected by the curved reflecting member 96 and the yellow laser light L2 reflected by the curved reflecting member 100 requires the reflecting surfaces of the curved reflecting members 96 and 100 as described above. It extends in a fan shape along the axial direction of the probe 42. For this reason, the above-mentioned aiming light Ls formed by the crossing of these laser beams L 1 and L 2 is linear along the axial direction of the probe 42.

また、上記のように、プローブ42の軸方向に対して平行な軸周りに曲面反射部材96及び曲面反射部材100を回動可能な構成とした場合には、曲面反射部材96や曲面反射部材100を回動させることで照準光Lsの形成位置が変わる。   Further, as described above, when the curved reflecting member 96 and the curved reflecting member 100 are rotatable around an axis parallel to the axial direction of the probe 42, the curved reflecting member 96 and the curved reflecting member 100 are configured. Is rotated to change the formation position of the aiming light Ls.

一方、本位置調整機構90は観察手段としてのCCDカメラ102を備えている。CCDカメラ102は、概ね、照準光Lsを軸とする軸周りにレーザ光源94の配置位置及びレーザ光源98の配置の何れかの一方を介して何れかの他方とは反対側で、撮像方向が照準光Lsの側へ向いた状態で配置されている。CCDカメラ102はCPU28に電気的に接続されており、CCDカメラ102が撮像した画像はモニタ48の画面に表示される。   On the other hand, the position adjustment mechanism 90 includes a CCD camera 102 as observation means. The CCD camera 102 generally has an imaging direction on the opposite side to either one through either one of the arrangement position of the laser light source 94 and the arrangement of the laser light source 98 around an axis about the aiming light Ls. It arrange | positions in the state which faced the side of the aiming light Ls. The CCD camera 102 is electrically connected to the CPU 28, and an image captured by the CCD camera 102 is displayed on the screen of the monitor 48.

<第3の実施の形態の作用、効果>
以上の構成の本実施の形態では、レーザ光源94、98の各々からレーザ光L1、L2が発せられると、上記のようにプローブ42の軸方向に沿って線状の照準光Lsが形成される。ここで、図9に示されるように、プローブ42の軸方向に沿ってプローブ42の先端と照準光Lsとが重なっていない場合には、プローブ42の先端は照準光Lsにより照らされることがなく、レーザ光源94の青色のレーザ光L1及びレーザ光源98の黄色のレーザ光L2の何れか一方に照らされるか、又は、何れのレーザ光L1、L2にも照らされない。この状態で、プローブ支持部40をX方向やY方向にスライドさせ、又は、曲面反射部材96及び曲面反射部材100の各々が回動可能な構成であるならば、曲面反射部材96や曲面反射部材100を回動させて照準光Lsの形成位置が変えられる。
<Operation and Effect of Third Embodiment>
In the present embodiment configured as described above, when the laser beams L1 and L2 are emitted from the laser light sources 94 and 98, respectively, the linear aiming light Ls is formed along the axial direction of the probe 42 as described above. . Here, as shown in FIG. 9, when the tip of the probe 42 and the aiming light Ls do not overlap along the axial direction of the probe 42, the tip of the probe 42 is not illuminated by the aiming light Ls. The laser light source 94 is illuminated by any one of the blue laser light L1 and the laser light source 98 by the yellow laser light L2, or is not illuminated by any laser light L1, L2. In this state, if the probe support portion 40 is slid in the X direction or the Y direction, or each of the curved reflecting member 96 and the curved reflecting member 100 is rotatable, the curved reflecting member 96 or the curved reflecting member is used. 100 is rotated to change the formation position of the aiming light Ls.

このようにして、プローブ42の位置や照準光Lsの形成位置を適宜に調整することで、図10に示されるように、プローブ42の先端と照準光Lsとが重なり合うと、プローブ42の先端が照準光Lsの色である緑色で、しかも、レーザ光L1、L2の何れか一方にプローブ42の先端が照らされた場合よりも強く光る。この状態を、モニタ48の画面で確認することで、プローブ42の先端と照準光Lsとが重なり合ったことを確認できる。   In this way, by appropriately adjusting the position of the probe 42 and the formation position of the aiming light Ls, as shown in FIG. 10, when the tip of the probe 42 and the aiming light Ls overlap, the tip of the probe 42 is It is green, which is the color of the aiming light Ls, and shines stronger than when the tip of the probe 42 is illuminated by either one of the laser beams L1 and L2. By confirming this state on the screen of the monitor 48, it can be confirmed that the tip of the probe 42 and the aiming light Ls overlap each other.

このように、プローブ42の先端と照準光Lsとが重なり合った状態で、照準光Lsと試料16とが重なり合っていない場合には、試料16は照準光Lsにより照らされることがなく、レーザ光源94の青色のレーザ光L1及びレーザ光源98の黄色のレーザ光L2の何れか一方に照らされるか、又は、何れのレーザ光L1、L2にも照らされない。   As described above, when the tip of the probe 42 and the aiming light Ls overlap with each other and the aiming light Ls and the sample 16 do not overlap with each other, the sample 16 is not illuminated by the aiming light Ls, and the laser light source 94. The blue laser beam L1 and the yellow laser beam L2 of the laser light source 98 are illuminated, or none of the laser beams L1 and L2 is illuminated.

この状態で、ピエゾ素子20X,20Yの各々に適宜に電圧を印加し、試料台14をX方向やY方向に適宜に変位させる。このように試料台14を変位させることで図11に示されるように試料16と照準光Lsとが重なり合うと、試料16が照準光Lsの色である緑色で、しかも、レーザ光L1、L2の何れか一方に試料16が照らされた場合よりも強く光る。   In this state, a voltage is appropriately applied to each of the piezo elements 20X and 20Y, and the sample stage 14 is appropriately displaced in the X direction and the Y direction. When the sample 16 is displaced in this way and the sample 16 and the aiming light Ls overlap as shown in FIG. 11, the sample 16 is green, which is the color of the aiming light Ls, and the laser beams L1 and L2 It shines more intensely than when the sample 16 is illuminated on either one.

この状態を、モニタ48の画面で確認することで、試料16と照準光Lsとが重なり合ったことを確認でき、ひいては、プローブ42の軸方向に沿ってプローブ42の先端と試料16とが対向したことを確認できる。   By confirming this state on the screen of the monitor 48, it can be confirmed that the sample 16 and the aiming light Ls overlap each other. As a result, the tip of the probe 42 and the sample 16 face each other along the axial direction of the probe 42. I can confirm that.

このように、本実施の形態では、レーザ光源94から発せられた青色のレーザ光L1及びレーザ光源98から発せられた黄色のレーザ光L2の何れでもない緑色の照準光Lsにプローブ42の先端及び試料16が照らされることでプローブ42の軸方向に沿ってプローブ42の先端と試料16とが対向したことを確認するため、プローブ42の先端と試料16とが対向したか否かを色彩的に容易に確認できる。   Thus, in the present embodiment, the tip of the probe 42 and the green aiming light Ls, which is neither the blue laser light L1 emitted from the laser light source 94 nor the yellow laser light L2 emitted from the laser light source 98, In order to confirm that the tip of the probe 42 and the sample 16 face each other along the axial direction of the probe 42 by illuminating the sample 16, whether or not the tip of the probe 42 and the sample 16 face each other is colored. Easy to confirm.

しかも、照準光Lsはレーザ光L1、L2の何れよりも強く光り、このため、プローブ42の先端や試料16が照準光Lsに照らされた場合には、レーザ光L1、L2の何れにプローブ42の先端や試料16が照らされた場合よりもプローブ42の先端や試料16が強く光る。したがって、この光の強さによってもプローブ42の先端と試料16とが対向したか否かを容易に確認できる。   Moreover, the aiming light Ls shines stronger than either of the laser lights L1 and L2. Therefore, when the tip of the probe 42 or the sample 16 is illuminated by the aiming light Ls, either of the laser lights L1 or L2 is probed. The tip of the probe 42 and the sample 16 shine stronger than when the tip of the sample and the sample 16 are illuminated. Therefore, whether or not the tip of the probe 42 and the sample 16 face each other can be easily confirmed by the intensity of the light.

さらに、本実施の形態では、軸直交方向に沿ったプローブ42及び試料16の側方から、プローブ42の軸方向に扇状に広がったレーザ光L1、L2を交差させて照準光Lsを形成するため、プローブ支持部40や試料台14が、プローブ42の軸方向に沿って線状の照準光Lsを形成する際の障害になることがなく、また、プローブ支持部40や試料台14の構造を特に変更しなくても照準光Lsを形成できる。   Furthermore, in the present embodiment, the laser beams L1 and L2 spread in a fan shape in the axial direction of the probe 42 are intersected from the side of the probe 42 and the sample 16 along the direction orthogonal to the axis to form the aiming light Ls. The probe support unit 40 and the sample stage 14 do not become an obstacle when the linear aiming light Ls is formed along the axial direction of the probe 42, and the structure of the probe support unit 40 and the sample stage 14 is not affected. The aiming light Ls can be formed without any particular change.

また、このような構成で形成された照準光Lsにプローブ42の先端や試料16を照らしてプローブ42の先端と試料16とが対向するようにプローブ42の先端や試料16の位置を調整するため、プローブ42の先端や試料16の位置を調整するにあたりプローブ支持部40や試料台14が位置調整の障害になることがなく、また、プローブ支持部40や試料台14の構造を特に変更しなくても位置調整できる。   In addition, the tip of the probe 42 and the position of the sample 16 are adjusted so that the tip of the probe 42 and the sample 16 face each other by illuminating the tip of the probe 42 and the sample 16 with the aiming light Ls formed in such a configuration. In adjusting the tip of the probe 42 and the position of the sample 16, the probe support section 40 and the sample stage 14 do not obstruct the position adjustment, and the structure of the probe support section 40 and the sample stage 14 is not particularly changed. Even the position can be adjusted.

なお、本実施の形態では、レーザ光L1、L2を交差させて緑色の照準光Lsを形成する構成であったが、両レーザ光L1、L2は各々の色が異なり、且つ、両レーザ光L1、L2を交差させることで形成される照準光Lsが何れのレーザ光L1、L2とも色が明確に異なるのであれば、両レーザ光L1、L2の色や照準光Lsの色はなんら限定されるものではなく、レーザ光源94、98は適宜に選択すればよい。   In the present embodiment, the laser beams L1 and L2 are crossed to form the green aiming light Ls. However, the two laser beams L1 and L2 have different colors and the two laser beams L1. As long as the sighting light Ls formed by intersecting L2 is clearly different in color from any of the laser light L1 and L2, the colors of the laser light L1 and L2 and the color of the sighting light Ls are limited at all. The laser light sources 94 and 98 may be appropriately selected.

本発明の第1の実施の形態に係る位置調整機構を適用した近接場分光測定装置の構成の概略を示す正面図とブロック図との複合図である。It is a compound figure of the front view and block diagram which show the outline of the structure of the near-field spectrometer which applied the position adjustment mechanism which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る位置調整機構を適用した近接場分光測定装置の構成の概略を示す斜視図である。It is a perspective view showing the outline of the composition of the near-field spectrometer which applied the position adjustment mechanism concerning a 1st embodiment of the present invention. 本発明の第1の実施の形態に係る位置調整機構におけるモニタ画像を示す図である。It is a figure which shows the monitor image in the position adjustment mechanism which concerns on the 1st Embodiment of this invention. 本発明の第2の実施の形態に係る位置調整機構を適用した近接場分光測定装置の構成の概略を示す正面図である。It is a front view which shows the outline of a structure of the near-field spectrometer which applied the position adjustment mechanism which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施の形態に係る位置調整機構を適用した近接場分光測定装置の構成の概略を示す斜視図である。It is a perspective view which shows the outline of a structure of the near-field spectrometer which applied the position adjustment mechanism which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施の形態に係る位置調整機構におけるモニタ画像を示す図である。It is a figure which shows the monitor image in the position adjustment mechanism which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施の形態に係る位置調整機構を適用した近接場分光測定装置の構成の概略を示す斜視図である。It is a perspective view which shows the outline of a structure of the near-field spectrometer which applied the position adjustment mechanism which concerns on the 3rd Embodiment of this invention. 本発明の第3の実施の形態に係る位置調整機構を適用した近接場分光測定装置の構成の概略を示す平面図である。It is a top view which shows the outline of a structure of the near-field spectrometer which applied the position adjustment mechanism which concerns on the 3rd Embodiment of this invention. 本発明の第3の実施の形態に係る位置調整機構におけるモニタ画像を示す図で、プローブ及び試料と照準光とが重なっていない状態を示す図である。It is a figure which shows the monitor image in the position adjustment mechanism which concerns on the 3rd Embodiment of this invention, and is a figure which shows the state in which the probe, the sample, and aiming light have not overlapped. 本発明の第3の実施の形態に係る位置調整機構におけるモニタ画像を示す図で、プローブと照準光とが重なった状態を示す図である。It is a figure which shows the monitor image in the position adjustment mechanism which concerns on the 3rd Embodiment of this invention, and is a figure which shows the state with which the probe and aiming light overlapped. 本発明の第3の実施の形態に係る位置調整機構におけるモニタ画像を示す図で、プローブ及び試料と照準光とが重なった状態を示す図である。It is a figure which shows the monitor image in the position adjustment mechanism which concerns on the 3rd Embodiment of this invention, and is a figure which shows the state with which the probe, the sample, and the aiming light overlapped.

符号の説明Explanation of symbols

10 位置調整機構
16 試料
42 プローブ
44 ミラー(反射手段、情報光形成手段)
46 CCDカメラ(観察手段)
50 ミラー(反射手段、情報光形成手段)
52 CCDカメラ(観察手段)
70 位置調整機構
74 ミラー(反射手段、情報光形成手段)
76 CCDカメラ(観察手段)
90 位置調整機構
94 レーザ光源(第1発光手段、照準光形成手段、情報光形成手段)
96 曲面反射部材(照準光形成手段、情報光形成手段)
98 レーザ光源(第2発光手段、照準光形成手段、情報光形成手段)
100 曲面反射部材(照準光形成手段、情報光形成手段)
102 CCDカメラ(観察手段)
Ls 照準光(位置情報光)
10 Position adjustment mechanism 16 Sample 42 Probe 44 Mirror (reflection means, information light forming means)
46 CCD camera (observation means)
50 mirror (reflecting means, information light forming means)
52 CCD camera (observation means)
70 Position adjustment mechanism 74 Mirror (reflection means, information light forming means)
76 CCD camera (observation means)
90 Position adjustment mechanism 94 Laser light source (first light emitting means, aiming light forming means, information light forming means)
96 Curved reflection member (aiming light forming means, information light forming means)
98 Laser light source (second light emitting means, aiming light forming means, information light forming means)
100 Curved reflection member (aiming light forming means, information light forming means)
102 CCD camera (observation means)
Ls Aiming light (position information light)

Claims (6)

プローブの軸方向に沿って前記プローブの先端側方に試料を配置するための位置調整機構であって、
前記軸方向に対して直交する軸直交方向に沿った前記プローブと前記試料との相対的な位置関係を光学的に示すと共に、前記軸方向に沿った前記プローブの延長上以外の観察位置で観察可能な位置情報光を形成する情報光形成手段と、
前記観察位置に配置されて前記位置情報光を観察する観察手段と、
を備えることを特徴とする位置調整機構。
A position adjusting mechanism for arranging a sample on the side of the tip of the probe along the axial direction of the probe,
Optically shows the relative positional relationship between the probe and the sample along the axis orthogonal direction orthogonal to the axis direction, and observes at an observation position other than on the extension of the probe along the axis direction Information light forming means for forming possible position information light;
An observation means arranged at the observation position to observe the position information light;
A position adjusting mechanism comprising:
前記情報光形成手段は、前記軸直交方向のうちの一方向に沿った前記プローブ及び前記試料の側方に設けられ、前記プローブの先端及び前記試料からの光を、前記一方向に沿った前記プローブと前記試料との位置関係を示す位置情報光としての反射像として前記観察手段へ反射する反射手段を備えることを特徴とする請求項1に記載の位置調整機構。   The information light forming means is provided on a side of the probe and the sample along one direction of the axis orthogonal direction, and the light from the tip of the probe and the sample is transmitted along the one direction. 2. The position adjusting mechanism according to claim 1, further comprising reflecting means for reflecting to the observation means as a reflected image as position information light indicating a positional relationship between the probe and the sample. 前記反射手段は、前記プローブの先端及び前記試料からの光の一部を透過し、前記軸方向及び前記一方向の双方に対して直交する方向に沿った前記プローブと前記試料との位置関係を示す透過像として前記反射像が入射する前記観察手段とは別に設けられた前記観察手段に入射することを特徴とする請求項2に記載の位置調整機構。   The reflecting means transmits a part of the light from the tip of the probe and the sample, and determines the positional relationship between the probe and the sample along a direction orthogonal to both the axial direction and the one direction. The position adjusting mechanism according to claim 2, wherein the reflected light is incident on the observation unit provided separately from the observation unit on which the reflected image is incident. 前記情報光形成手段は、前記軸方向に広がりを持つ線状に形成されて前記観察手段により観察可能な照準光を前記位置情報光として形成する照準光形成手段を備えることを特徴とする請求項1に記載の位置調整機構。   The said information light formation means is provided with the aiming light formation means which forms the aiming light which is formed in the linear form extended in the said axial direction, and can be observed by the said observation means as said position information light. The position adjustment mechanism according to 1. 前記軸直交方向のうちの一方向に沿って前記プローブ及び前記試料の側方に設けられ、前記軸方向に広がりを持った光を発する第1発光手段と、
前記軸方向を中心軸として所定角度傾斜した方向に沿って前記プローブ及び前記試料の側方に設けられ、前記軸方向に広がりを持った光を発する第2発光手段と、
を含めて前記照準光形成手段を構成し、前記第1発光手段及び前記第2発光手段の双方が発した光を交差させることで当該交差位置に前記照準光を形成することを特徴とする請求項4に記載の位置調整機構。
A first light emitting means that is provided on a side of the probe and the sample along one direction of the axis orthogonal direction and emits light having a spread in the axial direction;
A second light emitting means that is provided on a side of the probe and the sample along a direction inclined by a predetermined angle with the axial direction as a central axis, and emits light having a spread in the axial direction;
The aiming light forming means is configured to include, and the aiming light is formed at the intersecting position by intersecting light emitted from both the first light emitting means and the second light emitting means. Item 5. The position adjustment mechanism according to Item 4.
前記第2発光手段が発する光の波長を前記第1発光手段が発する光の波長とは異なる値に設定したことを特徴とする請求項5に記載の位置調整機構。   6. The position adjusting mechanism according to claim 5, wherein the wavelength of the light emitted from the second light emitting unit is set to a value different from the wavelength of the light emitted from the first light emitting unit.
JP2005361821A 2005-12-15 2005-12-15 Position adjustment mechanism Expired - Fee Related JP4525584B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005361821A JP4525584B2 (en) 2005-12-15 2005-12-15 Position adjustment mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005361821A JP4525584B2 (en) 2005-12-15 2005-12-15 Position adjustment mechanism

Publications (2)

Publication Number Publication Date
JP2007163359A true JP2007163359A (en) 2007-06-28
JP4525584B2 JP4525584B2 (en) 2010-08-18

Family

ID=38246416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005361821A Expired - Fee Related JP4525584B2 (en) 2005-12-15 2005-12-15 Position adjustment mechanism

Country Status (1)

Country Link
JP (1) JP4525584B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104374954A (en) * 2014-11-24 2015-02-25 苏州飞时曼精密仪器有限公司 Probe and sample approaching device and method for scanning probe microscope

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03257302A (en) * 1990-03-08 1991-11-15 Toshiba Corp Positioning apparatus of probe and scanning-type tunnel microscope
JPH0534143A (en) * 1991-07-29 1993-02-09 Tokyo Seimitsu Co Ltd Apparatus and method for monitoring surface of sample
JPH05126516A (en) * 1991-10-31 1993-05-21 Kurabo Ind Ltd Magnifying glass for scanning tunneling microscope
JP2001124688A (en) * 1999-10-22 2001-05-11 Jeol Ltd Scanning probe microscope and optical image observation method in scanning probe microscope
JP2005147745A (en) * 2003-11-12 2005-06-09 Shimadzu Corp Near-field scattered light measurement system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03257302A (en) * 1990-03-08 1991-11-15 Toshiba Corp Positioning apparatus of probe and scanning-type tunnel microscope
JPH0534143A (en) * 1991-07-29 1993-02-09 Tokyo Seimitsu Co Ltd Apparatus and method for monitoring surface of sample
JPH05126516A (en) * 1991-10-31 1993-05-21 Kurabo Ind Ltd Magnifying glass for scanning tunneling microscope
JP2001124688A (en) * 1999-10-22 2001-05-11 Jeol Ltd Scanning probe microscope and optical image observation method in scanning probe microscope
JP2005147745A (en) * 2003-11-12 2005-06-09 Shimadzu Corp Near-field scattered light measurement system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104374954A (en) * 2014-11-24 2015-02-25 苏州飞时曼精密仪器有限公司 Probe and sample approaching device and method for scanning probe microscope

Also Published As

Publication number Publication date
JP4525584B2 (en) 2010-08-18

Similar Documents

Publication Publication Date Title
JP5137488B2 (en) Laser irradiation apparatus and laser processing system using the same
US8614415B2 (en) Defect inspection method of fine structure object and defect inspection apparatus
JP2009036969A (en) Cover glass, slide glass, preparation, observation method, and microscopic device
JP2008272806A (en) Laser beam machining apparatus
JP4653500B2 (en) Coordinate detection apparatus and subject inspection apparatus
JP5911365B2 (en) Combined microscope
US7239384B2 (en) Laser-scanning fluoroscopy apparatus
JP2000009443A (en) Method and device for measuring form
JP4525584B2 (en) Position adjustment mechanism
JP4410335B2 (en) Confocal microscope
JPH1068901A (en) Two-dimensional scanner device
JP2003035510A (en) Position detector
JP2003014611A (en) Scanning type probe microscope
JP2541440B2 (en) Laser process equipment
JP3939028B2 (en) Oblique incidence interferometer
US6331891B1 (en) Apparatus and method for assembling semiconductor device and semiconductor device thus fabricated
JP2008051892A (en) Microscope apparatus
JP2001165625A (en) Height measuring device, focus detector, focus detecting unit and optical device having focusing function
JP7568067B2 (en) microscope
JPH10232352A (en) Laser scan microscope
CN111983795B (en) Method and device for monitoring the focus state of a microscope
JP2024059249A (en) Scan-type probe microscope
JPH06294638A (en) Surface profile measuring equipment
JP2004170573A (en) Two-dimensional test pattern used for color confocal microscope system and adjustment of the system
JP2008032995A (en) Confocal microscope

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100524

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees