[go: up one dir, main page]

JP2007163042A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2007163042A
JP2007163042A JP2005360398A JP2005360398A JP2007163042A JP 2007163042 A JP2007163042 A JP 2007163042A JP 2005360398 A JP2005360398 A JP 2005360398A JP 2005360398 A JP2005360398 A JP 2005360398A JP 2007163042 A JP2007163042 A JP 2007163042A
Authority
JP
Japan
Prior art keywords
header
refrigerant
header tank
length
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005360398A
Other languages
Japanese (ja)
Inventor
Hironaka Sasaki
広仲 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2005360398A priority Critical patent/JP2007163042A/en
Priority to US11/610,203 priority patent/US20070131393A1/en
Priority to DE102006059477A priority patent/DE102006059477A1/en
Publication of JP2007163042A publication Critical patent/JP2007163042A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • F28F9/0204Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions
    • F28F9/0209Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions having only transversal partitions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05391Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • F28D2021/0073Gas coolers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat exchanger that can increase a heat radiation amount when used as a gas cooler in a supercritical refrigeration cycle. <P>SOLUTION: The heat exchanger 1 has a refrigerant inlet 12 and a refrigerant outlet 13 on an upper header section 8 and a lower header section 9 of a first header tank respectively. An average passage length L0 is defined by a numerical value represented by an expression: ä(L1+L2)/2}+(T×2N), where L1 is the total length of internal lengths Ia and Ib of both header sections 8 and 9 of the first header tank, L2 is an internal length Ic of header sections 11 of a second header tank, T is the length of flat tubes 4, and N is the number of header sections 11 of the second header tank. The refrigerant inlet 12 and refrigerant outlet 13 are positioned such that the relation of the average passage length L0 to a passage length LX for a refrigerant flowing into the upper header section 8 from the refrigerant inlet 12 and flowing out from the refrigerant outlet 13 on the header section 11 satisfies a relation: 0.8≤LX/L0≤1.2. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、熱交換器に関し、さらに詳しくは、たとえばCO(二酸化炭素)などの超臨界冷媒が用いられる超臨界冷凍サイクルのガスクーラに好適に使用される熱交換器に関する。 The present invention relates to a heat exchanger, and more particularly to a heat exchanger suitably used for a gas cooler of a supercritical refrigeration cycle in which a supercritical refrigerant such as CO 2 (carbon dioxide) is used.

この明細書および特許請求の範囲において、「超臨界冷凍サイクル」とは、高圧側において、冷媒が臨界圧力を超えた超臨界状態となる冷凍サイクルを意味するものとし、「超臨界冷媒」とは、超臨界冷凍サイクルに用いられる冷媒を意味するものとする。   In this specification and claims, the term “supercritical refrigeration cycle” means a refrigeration cycle in which the refrigerant is in a supercritical state exceeding the critical pressure on the high pressure side, and “supercritical refrigerant” It shall mean a refrigerant used in a supercritical refrigeration cycle.

圧縮機、ガスクーラ、エバポレータ、減圧器、およびガスクーラから出てきた冷媒とエバポレータから出てきた冷媒とを熱交換させる中間熱交換器を備えた超臨界冷凍サイクルのガスクーラに用いられる熱交換器として、互いに間隔をおいて配置された上下方向に伸びる1対のヘッダタンクと、両ヘッダタンク間に上下方向に間隔をおいて配置され、かつ両端部が両ヘッダタンクに接続された複数の扁平チューブとを備えており、第1のヘッダタンクに、上下2つのヘッダ部が設けられ、第2のヘッダタンクに、第1ヘッダタンクの隣り合う2つのヘッダ部に跨るように1つのヘッダ部が設けられ、第1ヘッダタンクの上側ヘッダ部に冷媒入口が設けられるとともに、下側ヘッダ部に冷媒出口が設けられ、すべての扁平チューブが、上下に連続して並んだ複数の扁平チューブからなりかつ上下2つのパスに区分されている熱交換器が知られている(特許文献1参照)。   As a heat exchanger used in a gas cooler of a supercritical refrigeration cycle having a compressor, a gas cooler, an evaporator, a decompressor, and an intermediate heat exchanger that exchanges heat between the refrigerant that has come out of the gas cooler and the refrigerant that has come out of the evaporator, A pair of vertically extending header tanks that are spaced apart from each other, and a plurality of flat tubes that are spaced vertically between the header tanks and that are connected to both header tanks at both ends. The first header tank is provided with two upper and lower header parts, and the second header tank is provided with one header part so as to straddle two adjacent header parts of the first header tank. A refrigerant inlet is provided in the upper header portion of the first header tank, and a refrigerant outlet is provided in the lower header portion, so that all flat tubes are connected vertically. To a plurality of flat tubes arranged and two upper and lower heat exchangers are divided into path is known (see Patent Document 1).

また、上述したガスクーラに用いられる熱交換器として、互いに間隔をおいて配置された上下方向に伸びる1対のヘッダタンクと、両ヘッダタンク間に上下方向に間隔をおいて配置され、かつ両端部が両ヘッダタンクに接続された複数の扁平チューブとを備えており、各ヘッダタンクに、上下2つのヘッダ部が設けられ、第1ヘッダタンクの下側ヘッダ部に冷媒入口が設けられるとともに、第2ヘッダタンクの上側ヘッダ部に冷媒出口が設けられ、すべての扁平チューブが、上下に連続して並んだ複数の扁平チューブからなりかつ上下方向に並んだ3つのパスに区分されている熱交換器も知られている(特許文献2参照)。   Moreover, as a heat exchanger used for the above-described gas cooler, a pair of header tanks extending in the vertical direction spaced apart from each other, and spaced apart in the vertical direction between both header tanks, and both end portions Are provided with a plurality of flat tubes connected to both header tanks, each header tank is provided with two upper and lower header parts, a refrigerant inlet is provided in the lower header part of the first header tank, and A heat exchanger in which a refrigerant outlet is provided in the upper header portion of the two header tanks, and all flat tubes are composed of a plurality of flat tubes arranged vertically and are divided into three paths arranged in the vertical direction. Is also known (see Patent Document 2).

しかしながら、本発明者が種々検討をした結果、特許文献1記載の熱交換器においては、冷媒入口および冷媒出口がヘッダ部の長さ方向の中央部に設けられているので、次のような問題が生じることが判明した。すなわち、冷媒入口から第1ヘッダタンクの上側ヘッダ部内に流入した冷媒は、上側ヘッダ部に通じている複数の扁平チューブ、すなわち上側パスの扁平チューブ内に流入し、当該扁平チューブを通って第2ヘッダタンクのヘッダ部内に流入し、ついで第1ヘッダタンクの下側ヘッダ部に通じている複数の扁平チューブ、すなわち下側パスの扁平チューブ内に流入し、当該扁平チューブを通って第1ヘッダタンクの下側ヘッダ部内に流入し、冷媒出口から流出するようになっている。そして、上側パスにおける冷媒入口近傍の高さ位置の扁平チューブを通過するとともに、下側パスにおける冷媒出口近傍近傍の高さ位置の扁平チューブを通過する冷媒の流路長と、上側パスの上端部の扁平チューブを通過するとともに、下側パスの下端部の扁平チューブを通過する冷媒の流路長とは大きく異なることになる。その結果、それぞれの扁平チューブを流れる冷媒の流量および流速のバランスが悪くなり、超臨界冷凍サイクルのガスクーラとしては放熱量が不十分である。   However, as a result of various studies by the present inventor, in the heat exchanger described in Patent Document 1, the refrigerant inlet and the refrigerant outlet are provided in the central portion in the length direction of the header portion. Was found to occur. That is, the refrigerant that has flowed into the upper header portion of the first header tank from the refrigerant inlet flows into a plurality of flat tubes communicating with the upper header portion, that is, into the flat tubes of the upper path, and passes through the flat tubes to be second. The first header tank flows into the header portion of the header tank, and then flows into a plurality of flat tubes connected to the lower header portion of the first header tank, that is, into the flat tubes of the lower path, and passes through the flat tubes. It flows in in the lower header part of the bottom and flows out from the refrigerant outlet. And the flow path length of the refrigerant passing through the flat tube at the height position near the refrigerant outlet in the lower path and passing through the flat tube at the height position near the refrigerant outlet in the lower path, and the upper end portion of the upper path The flow path length of the refrigerant passing through the flat tube and passing through the flat tube at the lower end of the lower path is greatly different. As a result, the balance between the flow rate and flow rate of the refrigerant flowing through each flat tube is deteriorated, and the amount of heat release is insufficient as a gas cooler of the supercritical refrigeration cycle.

特許文献2記載の熱交換器においても、冷媒入口および冷媒出口がヘッダ部の長さ方向の中央部に設けられているので、特許文献1記載の熱交換器の場合と同様に、超臨界冷凍サイクルのガスクーラとしては放熱量が不十分である。
特開2003−279194号公報 特開2004−138306号公報
Also in the heat exchanger described in Patent Document 2, since the refrigerant inlet and the refrigerant outlet are provided in the central portion in the length direction of the header portion, as in the case of the heat exchanger described in Patent Document 1, supercritical refrigeration is performed. The heat dissipation is insufficient as a cycle gas cooler.
JP 2003-279194 A JP 2004-138306 A

この発明は上記実情に鑑みてなされたものであって、超臨界冷凍サイクルのガスクーラとして用いた場合の放熱量を増加させうる熱交換器を提供することにある。   This invention is made in view of the said situation, Comprising: It is providing the heat exchanger which can increase the thermal radiation amount at the time of using as a gas cooler of a supercritical refrigerating cycle.

本発明は、上記目的を達成するために以下の態様からなる。   In order to achieve the above object, the present invention comprises the following aspects.

1)互いに間隔をおいて配置された1対のヘッダタンクと、両ヘッダタンク間にヘッダタンクの長さ方向に間隔をおいて配置され、かつ両端部が両ヘッダタンクに接続された複数の扁平チューブとを備えており、第1のヘッダタンクに、その長さ方向に並んだ複数のヘッダ部が設けられ、第2のヘッダタンクに、第1ヘッダタンクのヘッダ部の数よりも1つ少ないヘッダ部が、第1ヘッダタンクの隣り合う2つのヘッダ部に跨るように設けられ、第1ヘッダタンクの長さ方向の一端部のヘッダ部に冷媒入口が設けられるとともに、同他端部のヘッダ部に冷媒出口が設けられ、すべての扁平チューブが、ヘッダタンクの長さ方向に連続して並んだ複数の扁平チューブからなりかつ第1ヘッダタンクのヘッダ数と同数のパスに区分されている熱交換器において、
第1ヘッダタンクにおける全ヘッダ部の内部長さの合計長さをL1、第2ヘッダタンクにおける全ヘッダ部の内部長さの合計長さをL2、扁平チューブの長さをT、第2ヘッダタンクのヘッダ部の数をNとした場合、{(L1+L2)/2}+(T×2N)という式で表される数値を平均流路長L0と定義すると、冷媒入口から第1ヘッダタンクに流入した冷媒が、全ヘッダ部および全パスの扁平チューブを通って冷媒出口から流出する際の流路長LXと、平均流路長L0との関係が0.8≦LX/L0≦1.2という関係を満たすように、冷媒入口の位置および冷媒出口の位置が決められている熱交換器。
1) A pair of header tanks that are spaced apart from each other, and a plurality of flat tanks that are spaced between the header tanks in the length direction of the header tank and that are connected to both header tanks at both ends. The first header tank is provided with a plurality of header portions arranged in the length direction, and the second header tank is one less than the number of header portions of the first header tank. The header portion is provided so as to straddle two adjacent header portions of the first header tank, the refrigerant inlet is provided in the header portion at one end portion in the length direction of the first header tank, and the header at the other end portion The refrigerant outlet is provided in the section, and all the flat tubes are made up of a plurality of flat tubes arranged continuously in the length direction of the header tank and are divided into the same number of paths as the number of headers of the first header tank. Exchange In,
L1 is the total internal length of all header sections in the first header tank, L2 is the total internal length of all header sections in the second header tank, T is the length of the flat tube, and the second header tank. When the number of header parts of N is defined as N, if the numerical value represented by the expression {(L1 + L2) / 2} + (T × 2N) is defined as the average flow path length L0, it flows into the first header tank from the refrigerant inlet The relationship between the flow path length LX and the average flow path length L0 when the refrigerant flows out from the refrigerant outlet through the flat tubes of all header sections and all paths is 0.8 ≦ LX / L0 ≦ 1.2 A heat exchanger in which the position of the refrigerant inlet and the position of the refrigerant outlet are determined so as to satisfy the relationship.

2)第1ヘッダタンクのヘッダ部の数が2であり、第2ヘッダタンクのヘッダ部の数が1であり、パスの数が2である上記1)記載の熱交換器。   2) The heat exchanger according to 1) above, wherein the number of header portions of the first header tank is 2, the number of header portions of the second header tank is 1, and the number of passes is 2.

3)使用される冷媒への圧縮機潤滑油の混入量が1質量%以下である上記1)または2)記載の熱交換器。   3) The heat exchanger according to 1) or 2) above, wherein the amount of compressor lubricant mixed in the refrigerant used is 1% by mass or less.

4)互いに間隔をおいて配置された1対のヘッダタンクと、両ヘッダタンク間にヘッダタンクの長さ方向に間隔をおいて配置され、かつ両端部が両ヘッダタンクに接続された複数の扁平チューブとを備えており、第1のヘッダタンクに、その長さ方向に並んだ複数のヘッダ部が設けられ、第2のヘッダタンクに、第1ヘッダタンクのヘッダ部と同数のヘッダ部がその長さ方向に並んで設けられ、第1ヘッダタンクの長さ方向の一端部のヘッダ部に冷媒入口が設けられるとともに、第2ヘッダタンクにおける冷媒入口とは反対側の端部のヘッダ部に冷媒出口が設けられ、すべての扁平チューブが、ヘッダタンクの長さ方向に連続して並んだ複数の扁平チューブからなりかつ両ヘッダタンクのヘッダ数よりも1つ多い数のパスに区分されている熱交換器において、
第1ヘッダタンクにおける全ヘッダ部の内部長さの合計長さをL1、第2ヘッダタンクにおける全ヘッダ部の内部長さの合計長さをL2、扁平チューブの長さをT、各ヘッダタンクのヘッダ部の数をNとした場合、{(L1+L2)/2}+{T×(N+1)}という式で表される数値を平均流路長L0と定義すると、冷媒入口から第1ヘッダタンクに流入した冷媒が、全ヘッダ部および全パスの扁平チューブを通って冷媒出口から流出する際の流路長LXと、平均流路長L0との関係が0.8≦LX/L0≦1.2という関係を満たすように、冷媒入口の位置および冷媒出口の位置が決められている熱交換器。
4) A pair of header tanks arranged at a distance from each other, and a plurality of flat tanks arranged between the header tanks in the length direction of the header tank and having both ends connected to both header tanks A plurality of header portions arranged in the length direction in the first header tank, and the same number of header portions as the header portions of the first header tank are provided in the second header tank. A refrigerant inlet is provided in the header portion at one end in the length direction of the first header tank, and is provided in the header portion at the end opposite to the refrigerant inlet in the second header tank. An outlet is provided, and all the flat tubes are made up of a plurality of flat tubes arranged in a row in the length direction of the header tanks, and are divided into one more path than the number of headers of both header tanks. Exchange In the vessel,
The total internal length of all header sections in the first header tank is L1, the total internal length of all header sections in the second header tank is L2, the flat tube length is T, When the number of header parts is N, if the numerical value represented by the expression {(L1 + L2) / 2} + {T × (N + 1)} is defined as the average flow path length L0, the refrigerant inlet to the first header tank The relationship between the flow path length LX and the average flow path length L0 when the inflowing refrigerant flows out from the refrigerant outlet through the flat tubes of all header sections and all paths is 0.8 ≦ LX / L0 ≦ 1.2. A heat exchanger in which the position of the refrigerant inlet and the position of the refrigerant outlet are determined so as to satisfy the relationship.

5)各ヘッダタンクのヘッダ部の数が2であり、パスの数が3である上記4)記載の熱交換器。   5) The heat exchanger according to 4) above, wherein the number of header portions of each header tank is 2, and the number of passes is 3.

6)使用される冷媒への圧縮機潤滑油の混入量が1質量%以下である上記4)または5)記載の熱交換器。   6) The heat exchanger according to 4) or 5) above, wherein the amount of compressor lubricant mixed in the refrigerant used is 1% by mass or less.

7)圧縮機、ガスクーラ、エバポレータ、減圧器、およびガスクーラから出てきた冷媒とエバポレータから出てきた冷媒とを熱交換させる中間熱交換器を備えており、かつ超臨界冷媒を用いる冷凍サイクルであって、ガスクーラが上記1)〜6)のうちのいずれかに記載の熱交換器からなる超臨界冷凍サイクル。   7) A refrigeration cycle equipped with a compressor, gas cooler, evaporator, decompressor, and intermediate heat exchanger that exchanges heat between the refrigerant coming out of the gas cooler and the refrigerant coming out of the evaporator, and that uses supercritical refrigerant. A supercritical refrigeration cycle in which the gas cooler includes the heat exchanger according to any one of 1) to 6) above.

8)超臨界冷媒が二酸化炭素からなる上記7)記載の超臨界冷凍サイクル。   8) The supercritical refrigeration cycle according to 7) above, wherein the supercritical refrigerant is carbon dioxide.

9)超臨界冷媒に混入している圧縮機潤滑油の量が1質量%以下である上記7)または8)記載の熱交換器。   9) The heat exchanger according to 7) or 8) above, wherein the amount of compressor lubricant mixed in the supercritical refrigerant is 1% by mass or less.

10)上記7)〜9)のうちのいずれかに記載の超臨界冷凍サイクルがカーエアコンとして搭載されている車両。   10) A vehicle equipped with the supercritical refrigeration cycle according to any one of 7) to 9) as a car air conditioner.

上記1)の熱交換器によれば、第1ヘッダタンクにおける全ヘッダ部の内部長さの合計長さをL1、第2ヘッダタンクにおける全ヘッダ部の内部長さの合計長さをL2、扁平チューブの長さをT、第2ヘッダタンクのヘッダ部の数をNとした場合、{(L1+L2)/2}+(T×2N)という式で表される数値を平均流路長L0と定義すると、冷媒入口から第1ヘッダタンクに流入した冷媒が、全ヘッダ部および全パスの扁平チューブを通って冷媒出口から流出する際の流路長LXと、平均流路長L0との関係が0.8≦LX/L0≦1.2という関係を満たすように、冷媒入口の位置および冷媒出口の位置が決められているので、冷媒が、熱交換器における各パスのどの位置の扁平チューブを通過した場合にもその流路長LXが大きく異なることはなく、それぞれの扁平チューブを流れる冷媒の流量および流速のバランスが良くなる。したがって、超臨界冷凍サイクルのガスクーラとして用いた場合の放熱量が、特許文献1および2記載の熱交換器に比べて増加する。   According to the heat exchanger of 1) above, the total length of all header sections in the first header tank is L1, the total length of all header sections in the second header tank is L2, flat When the tube length is T and the number of header parts of the second header tank is N, the numerical value represented by the formula {(L1 + L2) / 2} + (T × 2N) is defined as the average flow path length L0. Then, the relationship between the flow path length LX when the refrigerant flowing into the first header tank from the refrigerant inlet flows out of the refrigerant outlet through the flat tubes of all header portions and all paths, and the average flow path length L0 is 0. Since the position of the refrigerant inlet and the position of the refrigerant outlet are determined so as to satisfy the relationship of 8 ≦ LX / L0 ≦ 1.2, the refrigerant passes through the flat tube at any position of each path in the heat exchanger. The flow path length LX does not differ greatly even when the Balance of flow and flow rate of the refrigerant flowing through the cube is improved. Therefore, the amount of heat released when used as a gas cooler of a supercritical refrigeration cycle is increased as compared with the heat exchangers described in Patent Documents 1 and 2.

上記3)の熱交換器によれば、超臨界冷凍サイクルのガスクーラとして用いた場合の放熱量の低下を防止することができる。すなわち、使用される冷媒への圧縮機潤滑油の混入量が1質量%を越えると、ヘッダ部の下部や、各パスの下側の扁平チューブに多くの冷媒が流れ、その結果上記流路長がほぼ等しい場合であっても、放熱量が低下するおそれがある。   According to the heat exchanger of 3) above, it is possible to prevent a decrease in the amount of heat release when used as a gas cooler of a supercritical refrigeration cycle. That is, when the amount of compressor lubricant mixed in the refrigerant used exceeds 1% by mass, a large amount of refrigerant flows through the lower portion of the header section and the flat tube below each path. Even if they are substantially equal, the amount of heat release may be reduced.

上記4)の熱交換器によれば、第1ヘッダタンクにおける全ヘッダ部の内部長さの合計長さをL1、第2ヘッダタンクにおける全ヘッダ部の内部長さの合計長さをL2、扁平チューブの長さをT、各ヘッダタンクのヘッダ部の数をNとした場合、{(L1+L2)/2}+{T×(N+1)}という式で表される数値を平均流路長L0と定義すると、冷媒入口から第1ヘッダタンクに流入した冷媒が、全ヘッダ部および全パスの扁平チューブを通って冷媒出口から流出する際の流路長LXと、平均流路長L0との関係が0.8≦LX/L0≦1.2という関係を満たすように、冷媒入口の位置および冷媒出口の位置が決められているので、冷媒が、熱交換器における各パスのどの位置の扁平チューブを通過した場合にもその流路長LXが大きく異なることはなく、それぞれの扁平チューブを流れる冷媒の流量および流速のバランスが良くなる。したがって、超臨界冷凍サイクルのガスクーラとして用いた場合の放熱量が、特許文献1および2記載の熱交換器に比べて増加する。   According to the heat exchanger of 4) above, the total length of all header sections in the first header tank is L1, the total length of all header sections in the second header tank is L2, flat When the tube length is T and the number of header portions of each header tank is N, the numerical value represented by the formula {(L1 + L2) / 2} + {T × (N + 1)} is the average flow path length L0. When defined, the relationship between the flow path length LX when the refrigerant flowing into the first header tank from the refrigerant inlet flows out from the refrigerant outlet through the flat tubes of all header sections and all paths, and the average flow path length L0 is Since the position of the refrigerant inlet and the position of the refrigerant outlet are determined so as to satisfy the relationship of 0.8 ≦ LX / L0 ≦ 1.2, the refrigerant passes through the flat tube at which position of each path in the heat exchanger. Even if it passes, the flow path length LX does not differ greatly. Balance of flow and flow rate of the refrigerant flowing through the flat tubes is improved. Therefore, the amount of heat released when used as a gas cooler of a supercritical refrigeration cycle is increased as compared with the heat exchangers described in Patent Documents 1 and 2.

上記6)の熱交換器によれば、超臨界冷凍サイクルのガスクーラとして用いた場合の放熱量の低下を防止することができる。すなわち、使用される冷媒への圧縮機潤滑油の混入量が1質量%を越えると、ヘッダ部の下部や、各パスの下側の扁平チューブに多くの冷媒が流れ、その結果上記流路長がほぼ等しい場合であっても、放熱量が低下するおそれがある。   According to the heat exchanger of 6) above, it is possible to prevent a decrease in the amount of heat release when used as a gas cooler of a supercritical refrigeration cycle. That is, when the amount of compressor lubricant mixed in the refrigerant used exceeds 1% by mass, a large amount of refrigerant flows through the lower portion of the header section and the flat tube below each path. Even if they are substantially equal, the amount of heat release may be reduced.

以下、この発明の実施形態を、図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

なお、以下の説明において、図1および図3の上下、左右を上下、左右というものとする。また、以下の説明において、「アルミニウム」という用語には、純アルミニウムの他にアルミニウム合金を含むものとする。   In the following description, the top and bottom, left and right in FIGS. 1 and 3 are referred to as top and bottom and left and right. In the following description, the term “aluminum” includes aluminum alloys in addition to pure aluminum.

実施形態1
この実施形態は図1および図2に示すものである。
Embodiment 1
This embodiment is shown in FIG. 1 and FIG.

図1はこの発明による熱交換器の全体構成を示し、図2は熱交換器における冷媒の流れを示す。   FIG. 1 shows the overall configuration of a heat exchanger according to the present invention, and FIG. 2 shows the flow of refrigerant in the heat exchanger.

図1において、熱交換器(1)は、左右方向に間隔をおいて平行に配置され、かつ上下方向に伸びるアルミニウム製ヘッダタンク(2)(3)と、両ヘッダタンク(2)(3)間に上下方向に間隔をおいて並列状に配置されかつ両端がそれぞれ両ヘッダタンク(2)(3)に接続された複数のアルミニウム製扁平チューブ(4)と、隣り合う扁平チューブ(4)間の通風間隙(5)および上下両端の扁平チューブ(4)の外側に配置されるとともに、扁平チューブ(4)にろう付されたアルミニウム製コルゲートフィン(6)と、上下両端のコルゲートフィン(6)の外側に配置されてコルゲートフィン(6)にろう付されたアルミニウム製サイドプレート(7)とを備えている。   In FIG. 1, the heat exchanger (1) includes aluminum header tanks (2) (3) arranged in parallel in the left-right direction and extending in the vertical direction, and both header tanks (2) (3). Between a plurality of flat aluminum tubes (4) and adjacent flat tubes (4), which are arranged in parallel with a space in the vertical direction between them and whose both ends are connected to both header tanks (2) and (3), respectively. The aluminum corrugated fin (6) brazed to the flat tube (4) and the corrugated fin (6) And an aluminum side plate (7) brazed to the corrugated fin (6).

右側の第1ヘッダタンク(2)には、高さの中程に位置する仕切部(10)を介して上下方向に並んだ複数、ここでは2つのヘッダ部(8)(9)が設けられている。左側の第2ヘッダタンク(3)には、第1ヘッダタンク(2)のヘッダ部(8)(9)よりも1つ少ない数、ここでは1つのヘッダ部(11)が、第1ヘッダタンク(2)の隣り合う2つのヘッダ部(8)(9)に跨るように設けられている。そして、第1ヘッダタンク(2)の上側ヘッダ部(8)の周壁に冷媒入口(12)が設けられ、下側ヘッダ部(9)の周壁に冷媒出口(13)が設けられている。   The first header tank (2) on the right side is provided with a plurality of, in this case, two header sections (8) and (9) arranged vertically through a partition section (10) located in the middle of the height. ing. The second header tank (3) on the left side is one less than the header sections (8) and (9) of the first header tank (2), in this case, one header section (11) is the first header tank. It is provided so as to straddle two adjacent header parts (8) and (9) of (2). A refrigerant inlet (12) is provided on the peripheral wall of the upper header portion (8) of the first header tank (2), and a refrigerant outlet (13) is provided on the peripheral wall of the lower header portion (9).

すべての扁平チューブ(4)は、右端部が第1ヘッダタンク(2)の上側ヘッダ部(8)内に通じるとともに左端部が第2ヘッダタンク(3)のヘッダ部(11)内の上部に通じる複数の扁平チューブ(4)からなるチューブ群と、右端部が第1ヘッダタンク(2)の下側ヘッダ部(9)内に通じるとともに左端部が第2ヘッダタンク(3)のヘッダ部(11)内の下部に通じる複数の扁平チューブ(4)からなるチューブ群とに分けられることにより、第1および第2の2つのパス(P1)(P2)(冷媒通路群)に区分されており、各パス(P1)(P2)を構成する全ての扁平チューブ(4)における冷媒の流れ方向が同一となっているとともに、2つのパス(P1)(P2)の扁平チューブ(4)における冷媒の流れ方向が異なっている。なお、図示は省略したが、扁平チューブ(4)は、その内部に複数の冷媒通路が幅方向に並んで形成されており、その幅方向を通風方向(図1の紙面表裏方向)に向けて配置されている。   All flat tubes (4) have a right end communicating with the upper header (8) of the first header tank (2) and a left end at the upper part of the header (11) of the second header tank (3). A tube group consisting of a plurality of flat tubes (4) communicating with the right header portion of the first header tank (2) in the lower header portion (9) and the left end portion of the header section of the second header tank (3) ( 11) It is divided into the first and second two paths (P1) and (P2) (refrigerant passage group) by being divided into a tube group consisting of a plurality of flat tubes (4) leading to the lower part inside The flow direction of the refrigerant in all the flat tubes (4) constituting each path (P1) (P2) is the same, and the refrigerant flow in the flat tubes (4) of the two paths (P1) (P2) The flow direction is different. Although not shown, the flat tube (4) has a plurality of refrigerant passages arranged in the width direction in the flat tube (4), and the width direction is directed toward the ventilation direction (the front and back direction in FIG. 1). Has been placed.

各パス(P1)(P2)を構成する扁平チューブ(4)の数を全扁平チューブ(4)の数で除した値を「チューブ比」と定義した場合、各パス(P1)(P2)のチューブ比は0.45〜0.55となっていることが好ましい。なお、第1パス(P1)のチューブ比と第2パス(P2)のチューブ比の合計は1となる。上記チューブ比が0.45未満であるか、あるいは0.55を超えた場合、この熱交換器(1)を、たとえばCOなどの超臨界冷媒が用いられ、かつ高圧側の冷媒圧力が冷媒の臨界圧力以上となる超臨界冷凍サイクルのガスクーラに使用した場合、いずれか一方のパス(P1)(P2)における扁平チューブ(4)内で発生する圧力損失が増大するおそれがある。各パス(P1)(P2)のチューブ比は、0.48〜0.52であることが好ましい。この場合も、第1パス(P1)のチューブ比と第2パス(P2)のチューブ比の合計は1となる。 When the value obtained by dividing the number of flat tubes (4) composing each path (P1) (P2) by the number of all flat tubes (4) is defined as `` tube ratio '', each path (P1) (P2) The tube ratio is preferably 0.45 to 0.55. The sum of the tube ratio of the first pass (P1) and the tube ratio of the second pass (P2) is 1. When the tube ratio is less than 0.45 or exceeds 0.55, a supercritical refrigerant such as CO 2 is used for the heat exchanger (1), and the refrigerant pressure on the high pressure side is refrigerant. When used in a gas cooler of a supercritical refrigeration cycle that exceeds the critical pressure, there is a risk that the pressure loss generated in the flat tube (4) in either one of the paths (P1) (P2) will increase. The tube ratio of each path (P1) (P2) is preferably 0.48 to 0.52. Also in this case, the sum of the tube ratio of the first pass (P1) and the tube ratio of the second pass (P2) is 1.

ここで、冷媒が、熱交換器(1)内を図2に示すように流れるとすると、第1ヘッダタンク(2)における上側ヘッダ部(8)の内部長さIaと下側ヘッダ部(9)の内部長さIbの合計長さをL1(=Ia+Ib)、第2ヘッダタンク(3)におけるヘッダ部(11)の内部長さIcの合計長さをL2(=Ic)、扁平チューブ(4)の長さをT、第2ヘッダタンク(3)のヘッダ部(11)の数をNとした場合、{(L1+L2)/2}+(T×2N)という式で表される数値を平均流路長L0と定義することができる。そして、冷媒入口(12)から第1ヘッダタンク(2)の上側ヘッダ部(8)に流入した冷媒が、全ヘッダ部(8)(9)(11)および全パス(P1)(P2)の扁平チューブ(4)を通って冷媒出口(13)から流出する際の実際の流路長LXと、平均流路長L0との関係が0.8≦LX/L0≦1.2という関係を満たすように、冷媒入口(12)の上下方向(ヘッダ部(8)長さ方向)の位置および冷媒出口(13)の上下方向(ヘッダ部(9)長さ方向)の位置が決められている。   Here, assuming that the refrigerant flows in the heat exchanger (1) as shown in FIG. 2, the internal length Ia of the upper header portion (8) in the first header tank (2) and the lower header portion (9 ) Is the total length of the internal length Ib of L1 (= Ia + Ib), the total length of the internal length Ic of the header portion (11) in the second header tank (3) is L2 (= Ic), and the flat tube (4 ) Is T, and the number of header parts (11) of the second header tank (3) is N. The average value is represented by the formula {(L1 + L2) / 2} + (T × 2N). It can be defined as a flow path length L0. Then, the refrigerant that has flowed from the refrigerant inlet (12) into the upper header portion (8) of the first header tank (2) passes through all the header portions (8) (9) (11) and all the paths (P1) (P2). The relationship between the actual flow path length LX when flowing out from the refrigerant outlet (13) through the flat tube (4) and the average flow path length L0 satisfies the relationship 0.8 ≦ LX / L0 ≦ 1.2. Thus, the position of the refrigerant inlet (12) in the vertical direction (header part (8) length direction) and the position of the refrigerant outlet (13) in the vertical direction (header part (9) length direction) are determined.

たとえば、冷媒入口(12)が図2に点X1で示す位置にある場合、上側ヘッダ部(8)に流入して第1パス(P1)の上端の扁平チューブ(4)を流れる冷媒の実際の流路長LXは、平均流路長L0よりも長さY1分だけ長くなる。一方、上側ヘッダ部(8)に流入して第1パス(P1)の下端の扁平チューブ(4)を流れる冷媒の実際の流路長LXは、平均流路長L0よりも長さY1分だけ短くなる。そこで、(L0+Y1)/L0および(L0−Y1)/L0が0.8〜1.2の範囲内になるように、冷媒入口(12)の上下方向の位置が決められているのである。また、冷媒出口(13)が図2に点X2で示す位置にある場合、第2パス(P2)の下端の扁平チューブ(4)を通って下側ヘッダ部(9)に流入した冷媒の実際の流路長LXは、平均流路長L0よりも長さY2分だけ長くなる。一方、第2パス(P2)の上端の扁平チューブ(4)を通って下側ヘッダ部(9)に流入した冷媒の実際の流路長LXは、平均流路長L0よりも長さY2分だけ短くなる。そこで、(L0+Y2)/L0および(L0−Y2)/L0が0.8〜1.2の範囲内になるように、冷媒出口(13)の上下方向の位置が決められているのである。   For example, when the refrigerant inlet (12) is at the position indicated by the point X1 in FIG. 2, the actual refrigerant flowing into the upper header (8) and flowing through the flat tube (4) at the upper end of the first path (P1) is shown. The channel length LX is longer than the average channel length L0 by the length Y1. On the other hand, the actual flow path length LX of the refrigerant flowing into the upper header section (8) and flowing through the flat tube (4) at the lower end of the first path (P1) is only Y1 longer than the average flow path length L0. Shorter. Therefore, the vertical position of the refrigerant inlet (12) is determined so that (L0 + Y1) / L0 and (L0−Y1) / L0 are in the range of 0.8 to 1.2. In addition, when the refrigerant outlet (13) is at the position indicated by the point X2 in FIG. 2, the actual refrigerant flowing into the lower header (9) through the flat tube (4) at the lower end of the second path (P2). The flow path length LX is longer than the average flow path length L0 by the length Y2. On the other hand, the actual flow path length LX of the refrigerant flowing into the lower header section (9) through the flat tube (4) at the upper end of the second path (P2) is Y2 longer than the average flow path length L0. Only shortened. Therefore, the vertical position of the refrigerant outlet (13) is determined so that (L0 + Y2) / L0 and (L0−Y2) / L0 are within the range of 0.8 to 1.2.

実施形態2
この実施形態は図3および図4に示すものである。
Embodiment 2
This embodiment is shown in FIG. 3 and FIG.

図3はこの発明による熱交換器の全体構成を示し、図4は熱交換器における冷媒の流れを示す。   FIG. 3 shows the overall configuration of the heat exchanger according to the present invention, and FIG. 4 shows the flow of refrigerant in the heat exchanger.

この実施形態の熱交換器(20)の場合、左側のヘッダタンクが第1ヘッダタンク(21)であり、右側のヘッダタンクが第2ヘッダタンク(22)である。第1ヘッダタンク(21)には、高さの中程よりも上方に位置する仕切部(23)を介して上下方向に並んだ複数、ここでは2つのヘッダ部(24)(25)が設けられている。第2ヘッダタンク(22)には、第1ヘッダタンク(21)のヘッダ部(24)(25)と同数のヘッダ部(27)(28)が、高さの中程よりも下方に位置する仕切部(26)を介して上下方向に並んで設けられている。そして、第1ヘッダタンク(21)の上側ヘッダ部(22)の周壁に冷媒入口(12)が設けられ、第2ヘッダタンク(22)の下側ヘッダ部(28)の周壁に冷媒出口(13)が設けられている。   In the heat exchanger (20) of this embodiment, the left header tank is the first header tank (21), and the right header tank is the second header tank (22). The first header tank (21) is provided with a plurality of, in this case, two header parts (24), (25) arranged vertically through a partition part (23) located above the middle of the height. It has been. In the second header tank (22), the same number of header portions (27) and (28) as the header portions (24) and (25) of the first header tank (21) are located below the middle of the height. They are arranged side by side in the vertical direction via the partition (26). A refrigerant inlet (12) is provided in the peripheral wall of the upper header portion (22) of the first header tank (21), and a refrigerant outlet (13 is provided in the peripheral wall of the lower header portion (28) of the second header tank (22). ) Is provided.

すべての扁平チューブ(4)は、左端部が第1ヘッダタンク(21)の上側ヘッダ部(24)内に通じるとともに右端部が第2ヘッダタンク(22)の上側ヘッダ部(27)内の上部に通じる複数の扁平チューブ(4)からなるチューブ群と、左端部が第1ヘッダタンク(21)の下側ヘッダ部(25)内の上部に通じるとともに右端部が第2ヘッダタンク(22)の上側ヘッダ部(27)内の下部に通じる複数の扁平チューブ(4)からなるチューブ群と、左端部が第1ヘッダタンク(21)の下側ヘッダ部(25)内の下部に通じるとともに右端部が第2ヘッダタンク(22)の下側ヘッダ部(28)内に通じる複数の扁平チューブ(4)からなるチューブ群とに分けられることにより、第1〜第3の3つのパス(P1)(P2)(P3)(冷媒通路群)に区分されており、各パス(P1)(P2)(P3)を構成する全ての扁平チューブ(4)における冷媒の流れ方向が同一となっているとともに、隣り合う2つのパス(P1)(P2)および(P2)(P3)の扁平チューブ(4)における冷媒の流れ方向が異なっている。
各パス(P1)(P2)(P3)を構成する扁平チューブ(4)の数を全扁平チューブ(4)の数で除した値を「チューブ比」と定義した場合、各パス(P1)(P2)(P3)のチューブ比は0.3〜0.4となっている。上記チューブ比が0.3未満であるか、あるいは0.4を超えた場合、この熱交換器(20)を、たとえばCOなどの超臨界冷媒が用いられ、かつ高圧側の冷媒圧力が冷媒の臨界圧力以上となる超臨界冷凍サイクルのガスクーラに使用した場合、いずれかのパス(P1)(P2)(P3)における扁平チューブ(4)内で発生する圧力損失が増大するおそれがある。各パスのチューブ比は、0.32〜0.0.34であることが好ましい。
All flat tubes (4) have a left end communicating with the upper header portion (24) of the first header tank (21) and a right end portion of the upper header portion (27) of the second header tank (22). A tube group consisting of a plurality of flat tubes (4) leading to the upper end of the lower header portion (25) of the first header tank (21) and the right end portion of the second header tank (22) A tube group consisting of a plurality of flat tubes (4) leading to the lower part in the upper header part (27), and the left end part leading to the lower part in the lower header part (25) of the first header tank (21) and the right end part Are divided into a tube group consisting of a plurality of flat tubes (4) communicating with the lower header portion (28) of the second header tank (22), whereby the first to third three passes (P1) ( P2) (P3) (refrigerant passage group), and the refrigerant flow in all flat tubes (4) constituting each path (P1) (P2) (P3) Direction together with are the same, the flow direction of the refrigerant in the two paths adjacent (P1) (P2) and (P2) (P3) of the flat tubes (4) are different.
When the value obtained by dividing the number of flat tubes (4) composing each path (P1) (P2) (P3) by the number of all flat tubes (4) is defined as `` tube ratio '', each path (P1) ( The tube ratio of P2) and (P3) is 0.3 to 0.4. When the tube ratio is less than 0.3 or exceeds 0.4, a supercritical refrigerant such as CO 2 is used for the heat exchanger (20), and the refrigerant pressure on the high pressure side is refrigerant. When used in a gas cooler of a supercritical refrigeration cycle that exceeds the critical pressure, there is a risk that the pressure loss generated in the flat tube (4) in any of the paths (P1, P2, P3) will increase. The tube ratio of each pass is preferably 0.32 to 0.0.34.

その他の構成は上記実施形態1と同様であり、同一物には同一符号を付して重複する説明を省略する。   Other configurations are the same as those in the first embodiment, and the same components are denoted by the same reference numerals and redundant description is omitted.

ここで、冷媒が、熱交換器(1)内を図4に示すように流れるとすると、第1ヘッダタンク(21)における上側ヘッダ部(24)の内部長さIdと下側ヘッダ部(25)の内部長さIeの合計長さをL1(=Id+Ie)、第2ヘッダタンク(22)における上側ヘッダ部(27)の内部長さIfと下側ヘッダ部(28)の内部長さIgの合計長さをL2(=If+Ig)、扁平チューブの長さをT、各ヘッダタンク(21)(22)のヘッダ部(24)(25)(27)(28)の数をNとした場合、{(L1+L2)/2}+{T×(N+1)}という式で表される数値を平均流路長L0と定義することができる。そして、冷媒入口(12)から第1ヘッダタンク(21)の上側ヘッダ部(24)に流入した冷媒が、全ヘッダ部(24)(25)(27)(28)および全パス(P1)(P2)(P3)の扁平チューブ(4)を通って冷媒出口(13)から流出する際の実際の流路長LXと、平均流路長L0との関係が0.8≦LX/L0≦1.2という関係を満たすように、冷媒入口(12)の上下方向(ヘッダ部(24)長さ方向)の位置および冷媒出口(13)の上下方向(ヘッダ部(28)長さ方向)の位置が決められている。   Here, if the refrigerant flows in the heat exchanger (1) as shown in FIG. 4, the internal length Id of the upper header portion (24) in the first header tank (21) and the lower header portion (25 ) Is the total length of the internal length Ie of L1 (= Id + Ie), the internal length If of the upper header portion (27) in the second header tank (22) and the internal length Ig of the lower header portion (28) When the total length is L2 (= If + Ig), the length of the flat tube is T, and the number of header parts (24) (25) (27) (28) of each header tank (21) (22) is N, A numerical value represented by the expression {(L1 + L2) / 2} + {T × (N + 1)} can be defined as an average flow path length L0. Then, the refrigerant flowing into the upper header portion (24) of the first header tank (21) from the refrigerant inlet (12) passes through all the header portions (24) (25) (27) (28) and all the paths (P1) ( The relationship between the actual flow path length LX and the average flow path length L0 when flowing out from the refrigerant outlet (13) through the flat tube (4) of P2) and (P3) is 0.8 ≦ LX / L0 ≦ 1 .2 position of the refrigerant inlet (12) in the vertical direction (header part (24) length direction) and the position of the refrigerant outlet (13) in the vertical direction (header part (28) length direction) Is decided.

たとえば、冷媒入口(12)が図4に点X3で示す位置にある場合、第1ヘッダタンク(21)の上側ヘッダ部(24)に流入して第1パス(P1)の上端の扁平チューブ(4)を流れる冷媒の実際の流路長LXは、平均流路長L0よりも長さY3分だけ長くなる。一方、第1ヘッダタンク(21)の上側ヘッダ部(24)に流入して第1パス(P1)の下端の扁平チューブ(4)を流れる冷媒の実際の流路長LXは、平均流路長L0よりも長さY3分だけ短くなる。そこで、(L0+Y3)/L0および(L0−Y3)/L0が0.8〜1.2の範囲内になるように、冷媒入口(12)の上下方向の位置が決められているのである。また、冷媒出口(13)が図4に点X4で示す位置にある場合、第3パス(P3)の下端の扁平チューブ(4)を通って第2ヘッダタンク(22)の下側ヘッダ部(28)に流入した冷媒の実際の流路長LXは、平均流路長L0よりも長さY4分だけ長くなる。一方、第3パス(P3)の上端の扁平チューブ(4)を通って第2ヘッダタンク(22)の下側ヘッダ部(28)に流入した冷媒の実際の流路長LXは、平均流路長L0よりも長さY4分だけ短くなる。そこで、(L0+Y4)/L0および(L0−Y4)/L0が0.8〜1.2の範囲内になるように、冷媒出口(13)の上下方向の位置が決められているのである。   For example, when the refrigerant inlet (12) is at the position indicated by the point X3 in FIG. 4, it flows into the upper header portion (24) of the first header tank (21) and enters the flat tube at the upper end of the first path (P1) ( The actual flow path length LX of the refrigerant flowing through 4) is longer by the length Y3 than the average flow path length L0. On the other hand, the actual flow path length LX of the refrigerant flowing into the upper header section (24) of the first header tank (21) and flowing through the flat tube (4) at the lower end of the first path (P1) is the average flow path length. It is shorter than L0 by length Y3. Therefore, the vertical position of the refrigerant inlet (12) is determined so that (L0 + Y3) / L0 and (L0−Y3) / L0 are in the range of 0.8 to 1.2. Further, when the refrigerant outlet (13) is at the position indicated by the point X4 in FIG. 4, the lower header portion (2) of the second header tank (22) passes through the flat tube (4) at the lower end of the third path (P3). The actual flow path length LX of the refrigerant that has flowed into 28) is longer than the average flow path length L0 by the length Y4. On the other hand, the actual flow path length LX of the refrigerant flowing into the lower header section (28) of the second header tank (22) through the flat tube (4) at the upper end of the third path (P3) is the average flow path. It is shorter than the length L0 by the length Y4. Therefore, the vertical position of the refrigerant outlet (13) is determined so that (L0 + Y4) / L0 and (L0−Y4) / L0 are in the range of 0.8 to 1.2.

実施形態1および2の熱交換器(1)(20)は、圧縮機、ガスクーラ、エバポレータ、気液分離器としてのアキュムレータ、減圧器としての膨張弁、およびガスクーラから出てきた高温高圧の冷媒とエバポレータから出るとともにアキュムレータを通過してきた低温低圧の冷媒とを熱交換させる中間熱交換器からなり、かつCOからなる超臨界冷媒を使用する超臨界冷凍サイクルにおいて、ガスクーラとして好適に用いられる。このような超臨界冷凍サイクルにおいて、超臨界冷媒に混入している圧縮機潤滑油の量は1質量%以下であることが好ましい。 The heat exchangers (1) and (20) of Embodiments 1 and 2 include a compressor, a gas cooler, an evaporator, an accumulator as a gas-liquid separator, an expansion valve as a decompressor, and a high-temperature and high-pressure refrigerant that has come out of the gas cooler. It is suitably used as a gas cooler in a supercritical refrigeration cycle that includes an intermediate heat exchanger that exchanges heat with a low-temperature and low-pressure refrigerant that has exited an evaporator and passed through an accumulator, and that uses a supercritical refrigerant made of CO 2 . In such a supercritical refrigeration cycle, the amount of compressor lubricating oil mixed in the supercritical refrigerant is preferably 1% by mass or less.

超臨界冷凍サイクルは、カーエアコンとして車両、たとえば自動車に搭載される。なお、超臨界冷凍サイクルの超臨界冷媒として、COが使用されているが、これに限定されるものではなく、エチレン、エタン、酸化窒素なども使用可能である。 The supercritical refrigeration cycle is mounted on a vehicle such as an automobile as a car air conditioner. Note that CO 2 is used as a supercritical refrigerant in the supercritical refrigeration cycle, but is not limited to this, and ethylene, ethane, nitrogen oxide, and the like can also be used.

次に、実施形態1の熱交換器を用いた行った実験例を示す。   Next, an example of an experiment performed using the heat exchanger of Embodiment 1 is shown.

実験例1
扁平チューブ(4)およびコルゲートフィン(6)からなる熱交換コア部の高さHc:380mm、熱交換コア部の幅Wc:660mm、扁平チューブ(4)の幅:16mm、扁平チューブ(4)の総数:51本 とし、第1パス(P1)の扁平チューブ(4)の数:26本(チューブ比0.51)、第2パス(P2)の扁平チューブ(4)の数:25本(チューブ比0.49)である熱交換器を使用し、上記流路長LXの上記平均流路長L0に対する比率LX/L0を種々変化させて、入口空気温度(熱交換コア部に流入する空気の温度):35〜40℃、前面風速(熱交換コア部に流入する空気の流速):1.5〜2.5m/Sという条件で放熱量を求めた。
Experimental example 1
The height Hc of the heat exchange core part consisting of the flat tube (4) and the corrugated fin (6): 380 mm, the width Wc of the heat exchange core part: 660 mm, the width of the flat tube (4): 16 mm, the flat tube (4) Total number: 51, number of flat tubes (4) in the first pass (P1): 26 (tube ratio 0.51), number of flat tubes (4) in the second pass (P2): 25 (tubes) The ratio LX / L0 of the flow path length LX to the average flow path length L0 is variously changed by using a heat exchanger having a ratio of 0.49), and the inlet air temperature (of the air flowing into the heat exchange core section) is changed. Temperature): 35 to 40 ° C., front wind speed (flow velocity of air flowing into the heat exchange core): 1.5 to 2.5 m / S.

上記比率LX/L0と放熱量との関係を図5に示す。図5に示す結果から、上記比率LX/L0が0.8〜1.2の範囲内にあるときに、熱交換器の放熱性能が優れていることが分かる。   FIG. 5 shows the relationship between the ratio LX / L0 and the heat dissipation amount. From the results shown in FIG. 5, it is understood that the heat dissipation performance of the heat exchanger is excellent when the ratio LX / L0 is in the range of 0.8 to 1.2.

この発明による熱交換器の実施形態1を示す全体正面図である。It is a whole front view which shows Embodiment 1 of the heat exchanger by this invention. 図1の熱交換器における冷媒の流れを示す図である。It is a figure which shows the flow of the refrigerant | coolant in the heat exchanger of FIG. この発明による熱交換器の実施形態2を示す全体正面図である。It is a whole front view which shows Embodiment 2 of the heat exchanger by this invention. 図3の熱交換器における冷媒の流れを示す図である。It is a figure which shows the flow of the refrigerant | coolant in the heat exchanger of FIG. 実験例1の結果を示すグラフである。6 is a graph showing the results of Experimental Example 1.

符号の説明Explanation of symbols

(1)(20):熱交換器
(2)(21):第1ヘッダタンク
(3)(22):第2ヘッダタンク
(4):扁平チューブ
(8)(9)(11)(24)(25)(27)(28):ヘッダ部
(12):冷媒入口
(13):冷媒出口
(P1)(P2)(P3):パス
Ia〜Ig:ヘッダ部の内部長さ
T:扁平チューブの長さ
(1) (20): Heat exchanger
(2) (21): First header tank
(3) (22): Second header tank
(4): Flat tube
(8) (9) (11) (24) (25) (27) (28): Header
(12): Refrigerant inlet
(13): Refrigerant outlet
(P1) (P2) (P3): Path
Ia to Ig: Internal length of header part T: Length of flat tube

Claims (10)

互いに間隔をおいて配置された1対のヘッダタンクと、両ヘッダタンク間にヘッダタンクの長さ方向に間隔をおいて配置され、かつ両端部が両ヘッダタンクに接続された複数の扁平チューブとを備えており、第1のヘッダタンクに、その長さ方向に並んだ複数のヘッダ部が設けられ、第2のヘッダタンクに、第1ヘッダタンクのヘッダ部の数よりも1つ少ないヘッダ部が、第1ヘッダタンクの隣り合う2つのヘッダ部に跨るように設けられ、第1ヘッダタンクの長さ方向の一端部のヘッダ部に冷媒入口が設けられるとともに、同他端部のヘッダ部に冷媒出口が設けられ、すべての扁平チューブが、ヘッダタンクの長さ方向に連続して並んだ複数の扁平チューブからなりかつ第1ヘッダタンクのヘッダ数と同数のパスに区分されている熱交換器において、
第1ヘッダタンクにおける全ヘッダ部の内部長さの合計長さをL1、第2ヘッダタンクにおける全ヘッダ部の内部長さの合計長さをL2、扁平チューブの長さをT、第2ヘッダタンクのヘッダ部の数をNとした場合、{(L1+L2)/2}+(T×2N)という式で表される数値を平均流路長L0と定義すると、冷媒入口から第1ヘッダタンクに流入した冷媒が、全ヘッダ部および全パスの扁平チューブを通って冷媒出口から流出する際の流路長LXと、平均流路長L0との関係が0.8≦LX/L0≦1.2という関係を満たすように、冷媒入口の位置および冷媒出口の位置が決められている熱交換器。
A pair of header tanks that are spaced apart from each other, and a plurality of flat tubes that are spaced between the header tanks in the length direction of the header tank and that are connected to both header tanks at both ends. The first header tank is provided with a plurality of header portions arranged in the length direction, and the second header tank has a header portion that is one less than the number of header portions of the first header tank. Is provided so as to straddle two adjacent header portions of the first header tank, and a refrigerant inlet is provided at one header portion in the length direction of the first header tank, and at the header portion at the other end portion. A heat exchanger provided with a refrigerant outlet, wherein all flat tubes are composed of a plurality of flat tubes arranged continuously in the length direction of the header tank, and are divided into the same number of paths as the number of headers of the first header tank. Oite,
L1 is the total internal length of all header sections in the first header tank, L2 is the total internal length of all header sections in the second header tank, T is the length of the flat tube, and the second header tank. When the number of header parts of N is defined as N, if the numerical value represented by the expression {(L1 + L2) / 2} + (T × 2N) is defined as the average flow path length L0, it flows into the first header tank from the refrigerant inlet The relationship between the flow path length LX and the average flow path length L0 when the refrigerant flows out from the refrigerant outlet through the flat tubes of all header sections and all paths is 0.8 ≦ LX / L0 ≦ 1.2 A heat exchanger in which the position of the refrigerant inlet and the position of the refrigerant outlet are determined so as to satisfy the relationship.
第1ヘッダタンクのヘッダ部の数が2であり、第2ヘッダタンクのヘッダ部の数が1であり、パスの数が2である請求項1記載の熱交換器。 The heat exchanger according to claim 1, wherein the number of header parts of the first header tank is 2, the number of header parts of the second header tank is 1, and the number of passes is 2. 使用される冷媒への圧縮機潤滑油の混入量が1質量%以下である請求項1または2記載の熱交換器。 The heat exchanger according to claim 1 or 2, wherein a mixing amount of the compressor lubricating oil into the refrigerant to be used is 1% by mass or less. 互いに間隔をおいて配置された1対のヘッダタンクと、両ヘッダタンク間にヘッダタンクの長さ方向に間隔をおいて配置され、かつ両端部が両ヘッダタンクに接続された複数の扁平チューブとを備えており、第1のヘッダタンクに、その長さ方向に並んだ複数のヘッダ部が設けられ、第2のヘッダタンクに、第1ヘッダタンクのヘッダ部と同数のヘッダ部がその長さ方向に並んで設けられ、第1ヘッダタンクの長さ方向の一端部のヘッダ部に冷媒入口が設けられるとともに、第2ヘッダタンクにおける冷媒入口とは反対側の端部のヘッダ部に冷媒出口が設けられ、すべての扁平チューブが、ヘッダタンクの長さ方向に連続して並んだ複数の扁平チューブからなりかつ両ヘッダタンクのヘッダ数よりも1つ多い数のパスに区分されている熱交換器において、
第1ヘッダタンクにおける全ヘッダ部の内部長さの合計長さをL1、第2ヘッダタンクにおける全ヘッダ部の内部長さの合計長さをL2、扁平チューブの長さをT、各ヘッダタンクのヘッダ部の数をNとした場合、{(L1+L2)/2}+{T×(N+1)}という式で表される数値を平均流路長L0と定義すると、冷媒入口から第1ヘッダタンクに流入した冷媒が、全ヘッダ部および全パスの扁平チューブを通って冷媒出口から流出する際の流路長LXと、平均流路長L0との関係が0.8≦LX/L0≦1.2という関係を満たすように、冷媒入口の位置および冷媒出口の位置が決められている熱交換器。
A pair of header tanks that are spaced apart from each other, and a plurality of flat tubes that are spaced between the header tanks in the length direction of the header tank and that are connected to both header tanks at both ends. The first header tank is provided with a plurality of header portions arranged in the length direction, and the second header tank has the same number of header portions as the header portions of the first header tank. The refrigerant inlet is provided in the header portion at one end in the length direction of the first header tank, and the refrigerant outlet is provided at the header portion at the end opposite to the refrigerant inlet in the second header tank. Heat exchange is provided, and all flat tubes are composed of a plurality of flat tubes arranged in a row in the length direction of the header tanks, and are divided into one more path than the number of headers in both header tanks. In,
The total internal length of all header sections in the first header tank is L1, the total internal length of all header sections in the second header tank is L2, the flat tube length is T, When the number of header parts is N, if the numerical value represented by the expression {(L1 + L2) / 2} + {T × (N + 1)} is defined as the average flow path length L0, the refrigerant inlet to the first header tank The relationship between the flow path length LX and the average flow path length L0 when the inflowing refrigerant flows out from the refrigerant outlet through the flat tubes of all header sections and all paths is 0.8 ≦ LX / L0 ≦ 1.2. A heat exchanger in which the position of the refrigerant inlet and the position of the refrigerant outlet are determined so as to satisfy the relationship.
各ヘッダタンクのヘッダ部の数が2であり、パスの数が3である請求項4記載の熱交換器。 The heat exchanger according to claim 4, wherein the number of header portions of each header tank is two and the number of passes is three. 使用される冷媒への圧縮機潤滑油の混入量が1質量%以下である請求項4または5記載の熱交換器。 The heat exchanger according to claim 4 or 5, wherein a mixing amount of the compressor lubricating oil into the refrigerant to be used is 1% by mass or less. 圧縮機、ガスクーラ、エバポレータ、減圧器、およびガスクーラから出てきた冷媒とエバポレータから出てきた冷媒とを熱交換させる中間熱交換器を備えており、かつ超臨界冷媒を用いる冷凍サイクルであって、ガスクーラが請求項1〜6のうちのいずれかに記載の熱交換器からなる超臨界冷凍サイクル。 A compressor, a gas cooler, an evaporator, a decompressor, and a refrigeration cycle that includes an intermediate heat exchanger that exchanges heat between the refrigerant that has come out of the gas cooler and the refrigerant that has come out of the evaporator, and uses a supercritical refrigerant, A supercritical refrigeration cycle, wherein the gas cooler comprises the heat exchanger according to any one of claims 1 to 6. 超臨界冷媒が二酸化炭素からなる請求項7記載の超臨界冷凍サイクル。 The supercritical refrigeration cycle according to claim 7, wherein the supercritical refrigerant comprises carbon dioxide. 超臨界冷媒に混入している圧縮機潤滑油の量が1質量%以下である請求項7または8記載の熱交換器。 The heat exchanger according to claim 7 or 8, wherein the amount of compressor lubricating oil mixed in the supercritical refrigerant is 1% by mass or less. 請求項7〜9のうちのいずれかに記載の超臨界冷凍サイクルがカーエアコンとして搭載されている車両。 A vehicle on which the supercritical refrigeration cycle according to any one of claims 7 to 9 is mounted as a car air conditioner.
JP2005360398A 2005-12-14 2005-12-14 Heat exchanger Pending JP2007163042A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005360398A JP2007163042A (en) 2005-12-14 2005-12-14 Heat exchanger
US11/610,203 US20070131393A1 (en) 2005-12-14 2006-12-13 Heat exchanger
DE102006059477A DE102006059477A1 (en) 2005-12-14 2006-12-14 heat exchangers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005360398A JP2007163042A (en) 2005-12-14 2005-12-14 Heat exchanger

Publications (1)

Publication Number Publication Date
JP2007163042A true JP2007163042A (en) 2007-06-28

Family

ID=38109060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005360398A Pending JP2007163042A (en) 2005-12-14 2005-12-14 Heat exchanger

Country Status (3)

Country Link
US (1) US20070131393A1 (en)
JP (1) JP2007163042A (en)
DE (1) DE102006059477A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013501909A (en) * 2009-08-12 2013-01-17 ヴァレオ システム テルミク Heat exchanger having at least one two-stroke cycle and an air conditioning loop including such a heat exchanger
JP2013541466A (en) * 2010-11-10 2013-11-14 ルノー・トラックス Air conditioning system for automobile cabin
JP2019132513A (en) * 2018-01-31 2019-08-08 ダイキン工業株式会社 Refrigeration device

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2928448B1 (en) * 2008-03-04 2015-05-01 Valeo Systemes Thermiques IMPROVED GAS COOLER
EP2107328B1 (en) * 2008-04-02 2012-07-11 Behr GmbH & Co. KG Vaporiser
JP4388994B1 (en) * 2008-12-25 2009-12-24 シャープ株式会社 Heat exchanger
US20110108259A1 (en) * 2009-11-06 2011-05-12 Twin Air B.V. Holland Oil Cooler For A Motorized Vehicle
JP5732258B2 (en) 2010-02-16 2015-06-10 株式会社ケーヒン・サーマル・テクノロジー Capacitor
US9115934B2 (en) * 2010-03-15 2015-08-25 Denso International America, Inc. Heat exchanger flow limiting baffle
CN102052807B (en) * 2011-01-26 2012-11-28 西安交通大学 Condenser
CN102226651B (en) * 2011-05-30 2013-08-07 广州迪森家用锅炉制造有限公司 Tube-band-type main heat exchanger for gas heating water heater and manufacturing method thereof
US20140231059A1 (en) * 2013-02-20 2014-08-21 Hamilton Sundstrand Corporation Heat exchanger
JP5741657B2 (en) * 2013-09-11 2015-07-01 ダイキン工業株式会社 Heat exchanger and air conditioner
WO2018179198A1 (en) * 2017-03-30 2018-10-04 日本電気株式会社 Heat exchanger, heat exchange system, and heat exchange method
EP3891456A1 (en) * 2018-12-06 2021-10-13 Johnson Controls Technology Company Microchannel heat exchanger with varying fin density
US12152814B2 (en) * 2020-05-22 2024-11-26 Mitsubishi Electric Corporation Heat exchanger and air-conditioning apparatus including the heat exchanger

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1114288A (en) * 1997-06-24 1999-01-22 Denso Corp Heat exchanger
JPH11248266A (en) * 1998-03-05 1999-09-14 Mitsubishi Electric Corp Air conditioner and condenser
JP2001221580A (en) * 2000-02-08 2001-08-17 Sanden Corp Heat exchanger
JP2001343173A (en) * 2000-05-31 2001-12-14 Matsushita Electric Ind Co Ltd Refrigeration cycle device for CO2 refrigerant
JP2002048421A (en) * 2000-08-01 2002-02-15 Matsushita Electric Ind Co Ltd Refrigeration cycle device
JP2005257094A (en) * 2004-03-09 2005-09-22 Sanyo Electric Co Ltd Heat exchanger

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5482112A (en) * 1986-07-29 1996-01-09 Showa Aluminum Kabushiki Kaisha Condenser
JPH0729416Y2 (en) * 1990-04-05 1995-07-05 株式会社ゼクセル Heat exchanger tank partitioning device
US5682944A (en) * 1992-11-25 1997-11-04 Nippondenso Co., Ltd. Refrigerant condenser
JP2001165532A (en) * 1999-12-09 2001-06-22 Denso Corp Refrigerant condenser
KR20040017323A (en) * 2001-07-19 2004-02-26 쇼와 덴코 가부시키가이샤 Heat exchanger

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1114288A (en) * 1997-06-24 1999-01-22 Denso Corp Heat exchanger
JPH11248266A (en) * 1998-03-05 1999-09-14 Mitsubishi Electric Corp Air conditioner and condenser
JP2001221580A (en) * 2000-02-08 2001-08-17 Sanden Corp Heat exchanger
JP2001343173A (en) * 2000-05-31 2001-12-14 Matsushita Electric Ind Co Ltd Refrigeration cycle device for CO2 refrigerant
JP2002048421A (en) * 2000-08-01 2002-02-15 Matsushita Electric Ind Co Ltd Refrigeration cycle device
JP2005257094A (en) * 2004-03-09 2005-09-22 Sanyo Electric Co Ltd Heat exchanger

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013501909A (en) * 2009-08-12 2013-01-17 ヴァレオ システム テルミク Heat exchanger having at least one two-stroke cycle and an air conditioning loop including such a heat exchanger
JP2013541466A (en) * 2010-11-10 2013-11-14 ルノー・トラックス Air conditioning system for automobile cabin
JP2019132513A (en) * 2018-01-31 2019-08-08 ダイキン工業株式会社 Refrigeration device
JP7078841B2 (en) 2018-01-31 2022-06-01 ダイキン工業株式会社 Refrigeration equipment

Also Published As

Publication number Publication date
US20070131393A1 (en) 2007-06-14
DE102006059477A1 (en) 2007-06-28

Similar Documents

Publication Publication Date Title
US20070131393A1 (en) Heat exchanger
US20110056667A1 (en) Integrated multi-circuit microchannel heat exchanger
US10041710B2 (en) Heat exchanger and air conditioner
JP2007232287A (en) Heat exchanger and integral type heat exchanger
JP2010070071A (en) Cold storage heat exchanger
EP2031334B1 (en) Heat exchanger
JP2011133126A (en) Evaporator with cold storage function
JP6842915B6 (en) Evaporator
JP2005127529A (en) Heat exchanger
JP2005037054A (en) Heat exchanger for refrigerant cycle device
JP2010175167A (en) Cold storage heat exchanger
JP2005106329A (en) Subcool type condenser
JP5194279B2 (en) Evaporator
KR20040075717A (en) Heat exchanger
KR20070102172A (en) Heat exchanger with condenser and oil cooler
JP5674376B2 (en) Evaporator
JP2010149813A (en) Air conditioner for vehicle and intermediate heat exchanger used for the same
JP6785137B2 (en) Evaporator
US11867466B2 (en) Compact heat exchanger assembly for a refrigeration system
JP5238408B2 (en) Heat exchanger
KR20030027611A (en) Heat exchanger
JP2017116195A (en) Evaporator with cold storage function
JP2007003183A (en) Heat exchanger
JP2007040605A (en) Heat exchanger for multistage compression type refrigeration cycle device
JP2006153437A (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110719