[go: up one dir, main page]

JP2007161944A - Phosphor - Google Patents

Phosphor Download PDF

Info

Publication number
JP2007161944A
JP2007161944A JP2005362978A JP2005362978A JP2007161944A JP 2007161944 A JP2007161944 A JP 2007161944A JP 2005362978 A JP2005362978 A JP 2005362978A JP 2005362978 A JP2005362978 A JP 2005362978A JP 2007161944 A JP2007161944 A JP 2007161944A
Authority
JP
Japan
Prior art keywords
light
mol
phosphor according
phosphor
excitation light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005362978A
Other languages
Japanese (ja)
Inventor
Shunsuke Fujita
俊輔 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2005362978A priority Critical patent/JP2007161944A/en
Publication of JP2007161944A publication Critical patent/JP2007161944A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/068Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Glass Compositions (AREA)
  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a massive phosphor that has excellent heat resistance, light resistance and weather resistance and controls deterioration of emission intensity of a device such as light emitting diode, etc., caused by deterioration of conventional resin and a shortened life and a light emitting diode using the same. <P>SOLUTION: The massive phosphor is composed of only an inorganic material and has a surface roughness (Ra) in the range of 0.05-3 μm. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、蛍光体に関するものである。   The present invention relates to a phosphor.

1993年に発表された青色の発光ダイオード(LED:Light Emitting Diode)により光の3原色RGB(R:赤色、G:緑色、B:青色)のLEDが揃い、これらのLEDを並べて用いることによって白色光を得ることが提案されている。しかし、三色のLEDの発光出力が異なるため、各色個別の駆動回路が必要であり、制御性に問題があった。また、各色の発光ダイオードの色劣化速度が異なるため、白色光の長期安定性に問題があった。   The LEDs of the three primary colors RGB (R: red, G: green, B: blue) are aligned by blue light-emitting diodes (LEDs: Light Emitting Diodes) announced in 1993, and these LEDs are used side by side to produce white. It has been proposed to obtain light. However, since the light emission outputs of the three color LEDs are different, a drive circuit for each color is necessary, and there is a problem in controllability. Further, since the color deterioration rates of the light emitting diodes of the respective colors are different, there is a problem in long-term stability of white light.

これを解決するために、青色LEDチップと、青色LEDチップから発せられた青色光線によって黄色発光するYAG蛍光体を組合せたLEDが開発された(例えば、特許文献1:特開2000−208815号公報参照。)。これは、1種類のLEDで白色光が得られるため、低コストで、白色光の長期安定性にも優れる。また、この白色LEDは、従来の照明装置等の光源に比べ、長寿命、高効率、高安定性、低消費電力、高応答速度、環境負荷物質を含まない等の利点を有しているため、現在、ほとんどの携帯電話やデジタルカメラ等の液晶バックライトにはこの形態の白色LEDが使用されている。今後はこの白色LEDは、白熱電球や蛍光灯に替わる次世代の光源として照明用途への応用が期待されている。
特開2000−208815号公報
In order to solve this problem, an LED that combines a blue LED chip and a YAG phosphor that emits yellow light by blue light emitted from the blue LED chip has been developed (for example, Patent Document 1: JP 2000-208815 A). reference.). Since white light is obtained with one type of LED, this is low in cost and excellent in long-term stability of white light. In addition, this white LED has advantages such as long life, high efficiency, high stability, low power consumption, high response speed, and no environmental load substances compared to the light source such as a conventional lighting device. Currently, this type of white LED is used in the liquid crystal backlight of most mobile phones and digital cameras. In the future, this white LED is expected to be applied to illumination as a next-generation light source to replace incandescent bulbs and fluorescent lamps.
JP 2000-208815 A

しかし、特許文献1に記載の白色LEDは、青色の光を発光する発光素子の上に、粉末状の蛍光体と樹脂からなる複合体(コーティング部材)が設けられた構造を有し、発光素子から発せられた青色の励起光を粉末状の蛍光体に当てることによって、蛍光体から発せられた黄色の蛍光と、樹脂を透過した青色の励起光とが混色して、粉末状の蛍光体と樹脂とからなる複合体(コーティング部材)が白色光を発するが、長期使用時に、この樹脂がLEDチップの発熱、あるいはそれから発せられる光によって、徐々に劣化して変色あるいは変形し、これが白色発光ダイオードの発光強度や寿命を低下させる原因となっている。   However, the white LED described in Patent Document 1 has a structure in which a composite (coating member) made of a powdered phosphor and a resin is provided on a light emitting element that emits blue light. When the blue excitation light emitted from the phosphor is applied to the powdered phosphor, the yellow fluorescence emitted from the phosphor and the blue excitation light transmitted through the resin are mixed, and the powdered phosphor A composite (coating member) made of a resin emits white light, but during long-term use, the resin gradually deteriorates and discolors or deforms due to heat generated from the LED chip or light emitted from the LED chip. This is a white light emitting diode. This is a cause of lowering the light emission intensity and life of the product.

また、粉末状の蛍光体と樹脂とからなる複合体(コーティング部材)がLEDチップを覆うように固定されるため、その樹脂の塗布条件によっては粉末状の蛍光体と樹脂とからなる複合体(コーティング部材)の厚みにばらつきが生じやすく、それが発光色の配光性を低下させる原因となっている。また、特許文献1に記載の白色LEDは、蛍光体を固定するための樹脂や、LEDチップ及びコーティング部材全体を保護するための樹脂からなるモールド部材が必要となり、複雑な構造を有する。   In addition, since a composite (coating member) made of powdered phosphor and resin is fixed so as to cover the LED chip, a composite made of powdered phosphor and resin (depending on the application condition of the resin) Variations in the thickness of the coating member) are likely to occur, which causes a reduction in the light distribution of the luminescent color. Further, the white LED described in Patent Document 1 requires a mold member made of a resin for fixing the phosphor and a resin for protecting the LED chip and the entire coating member, and has a complicated structure.

このように、白色LEDは、耐熱性や耐光性に優れることが要求され、さらに屋外や水中等の厳しい環境での使用を考えると耐候性に優れることも必要である。   As described above, the white LED is required to be excellent in heat resistance and light resistance, and is also required to be excellent in weather resistance in consideration of use in severe environments such as outdoors and underwater.

本発明は、耐熱性、耐光性及び耐候性に優れ、従来の樹脂の劣化による発光ダイオード等のデバイスの発光強度劣化や短寿命化を抑制できる塊状蛍光体を提供することを目的とする。   An object of the present invention is to provide a bulk phosphor that is excellent in heat resistance, light resistance, and weather resistance, and that can suppress deterioration in light emission intensity and shortening of lifetime of a device such as a light emitting diode due to deterioration of a conventional resin.

本発明の塊状蛍光体は、無機材料のみから構成され、その表面粗さ(Ra)が0.05〜3μmの範囲内にあることを特徴とする。   The bulk phosphor of the present invention is composed only of an inorganic material and has a surface roughness (Ra) in the range of 0.05 to 3 μm.

このような構成によれば、耐熱性、耐光性及び耐候性に優れ、従来の樹脂の劣化による発光ダイオード等のデバイスの発光強度劣化や短寿命化を抑制できる。すなわち、蛍光体が有機物質である樹脂を含まず、耐熱性、耐光性及び耐候性に優れた無機材料のみから構成され、これを発光ダイオード等のデバイスに使用した場合、樹脂を使用せずにデバイスを構成できるため、従来の発光ダイオードにおいて見られるようなLEDチップの発熱、あるいはそれから発せられる光による樹脂の着色や変形による劣化がない。その結果、発光ダイオード等のデバイスの発光強度が劣化し難く寿命が長くなる。また、高温の厳しい環境下においても、例えば150℃の高温下で600時間保持しても、発光ダイオードの発光特性が変化し難くなる。また、太陽光等からの紫外線に曝されても、樹脂を含まないため樹脂による着色や劣化がない。また、厳しい長期間の高温高湿環境下(2000時間、温度85℃、湿度85%)においても、発光ダイオードの発光特性が変化し難くなる。   According to such a structure, it is excellent in heat resistance, light resistance, and weather resistance, and can suppress the light emission intensity degradation and lifetime shortening of devices, such as a light emitting diode, by the deterioration of the conventional resin. That is, the phosphor does not contain an organic resin and is composed of only an inorganic material having excellent heat resistance, light resistance and weather resistance. When this is used for a device such as a light emitting diode, the resin is not used. Since the device can be configured, there is no deterioration due to the coloration or deformation of the resin due to the heat generation of the LED chip as seen in conventional light emitting diodes or the light emitted therefrom. As a result, the light emission intensity of a device such as a light-emitting diode is unlikely to deteriorate and the life is prolonged. Further, even in a severe environment of high temperature, for example, even if it is held at a high temperature of 150 ° C. for 600 hours, the light emission characteristics of the light emitting diode are difficult to change. Further, even when exposed to ultraviolet rays from sunlight or the like, the resin is not contained, and therefore, there is no coloring or deterioration due to the resin. In addition, the light-emitting characteristics of the light-emitting diode hardly change even under a severe long-term high-temperature and high-humidity environment (2000 hours, temperature 85 ° C., humidity 85%).

しかも、塊状蛍光体は、表面粗さ(Ra)が0.05〜3μmの範囲内にあるため、それを用いた発光ダイオードの発光効率が高い。すなわち、表面粗さが0.05μmよりも小さいと、反射による損失が大きくなり発光効率は低下する。逆に表面粗さ(Ra)が3μmよりも大きいと散乱による損失が大きくなり発光効率が低下する。表面粗さの好ましい範囲は0.1〜0.5μm、より好ましい範囲は0.15〜0.25μmである。   Moreover, since the bulk phosphor has a surface roughness (Ra) in the range of 0.05 to 3 μm, the light emitting diode using the phosphor has high luminous efficiency. That is, when the surface roughness is less than 0.05 μm, the loss due to reflection increases and the light emission efficiency decreases. On the other hand, if the surface roughness (Ra) is larger than 3 μm, the loss due to scattering increases and the light emission efficiency decreases. A preferable range of the surface roughness is 0.1 to 0.5 μm, and a more preferable range is 0.15 to 0.25 μm.

上記した構成において、塊状蛍光体が、紫外光線又は可視光線からなる励起光を入射すると、該励起光よりも長波長の蛍光を発すると、これを用いた発光ダイオード等のデバイスの構造が簡単になるため好ましい。   In the above-described configuration, when the bulk phosphor emits excitation light composed of ultraviolet light or visible light, and emits fluorescence having a wavelength longer than that of the excitation light, the structure of a device such as a light emitting diode using the light can be simplified. Therefore, it is preferable.

上記した構成において、可視光線からなる励起光を入射すると、該励起光の色相に対して補色の蛍光を発し、かつ該励起光を一部透過すると、それ自身を透過した透過励起光と蛍光との混色により、白色光を発光するため、白色発光デバイスに好適に使用できる。   In the configuration described above, when excitation light composed of visible light is incident, fluorescence of complementary color is emitted with respect to the hue of the excitation light, and when part of the excitation light is transmitted, transmitted excitation light and fluorescence transmitted through itself Since white light is emitted by the color mixture, it can be suitably used for a white light emitting device.

上記した構成において、前記可視光線からなる励起光は、中心波長が430〜490nmの光線であり、前記蛍光は、中心波長が530〜590nmの光線であると、白色光を得やすいため好ましい。   In the above-described configuration, it is preferable that the excitation light composed of visible light is light having a central wavelength of 430 to 490 nm, and the fluorescence is light having a central wavelength of 530 to 590 nm because white light can be easily obtained.

上記した構成において、塊状蛍光体が、板状体からなると、従来の白色発光ダイオードにおける粉末状の蛍光体と樹脂からなる複合体の代替材料として、あるいはその板状体の下面に青色LEDを複数個設置することによって、発光機能と拡散機能を兼ね備えた面発光デバイスの構成部材として利用することが可能である。また、青色発光ダイオードチップ上に固定せずにカバーガラスとして用いるだけで白色光を発し、シンプルな構造の白色発光ダイオードを構成することも可能である。また、厚みを一定にすることが容易となり、均質な白色光を得ることができる。また、厚みを変化させるだけで、励起光強度と蛍光強度とのバランスを自由に変化させることができるため、所望の色度あるいは色温度の白色光が得られる。   In the above-described configuration, when the massive phosphor is made of a plate-like body, a plurality of blue LEDs are used as an alternative material for the composite of powdered phosphor and resin in the conventional white light emitting diode, or on the lower surface of the plate-like body. By installing them individually, it can be used as a constituent member of a surface emitting device having both a light emitting function and a diffusing function. Further, it is possible to form a white light emitting diode having a simple structure by emitting white light only by using it as a cover glass without being fixed on the blue light emitting diode chip. Moreover, it becomes easy to make thickness constant and uniform white light can be obtained. Further, since the balance between the excitation light intensity and the fluorescence intensity can be freely changed simply by changing the thickness, white light having a desired chromaticity or color temperature can be obtained.

上記した構成において、板状体の蛍光体の肉厚が0.1mm〜2mmであると、色温度の高い白色光から低い白色光までの所望の白色光が得られるため好ましい。肉厚が0.1mmよりも薄いと、励起光に対する蛍光強度が小さく、全体として青みが強く白色光が得られ難い。肉厚が2mmよりも厚いと、逆に励起光に対して蛍光強度が強く、黄色味が強く白色が得られにくい。より好ましい肉厚は、0.1〜1mmであり、さらに好ましくは0.3mm〜0.7mmである。   In the above-described configuration, it is preferable that the thickness of the plate-like phosphor is 0.1 mm to 2 mm because desired white light from white light having a high color temperature to low white light can be obtained. When the wall thickness is less than 0.1 mm, the fluorescence intensity with respect to the excitation light is small, and the whole is strongly bluish and it is difficult to obtain white light. If the wall thickness is thicker than 2 mm, on the contrary, the fluorescence intensity is strong with respect to the excitation light, and the yellow color is strong and it is difficult to obtain white. More preferable thickness is 0.1-1 mm, More preferably, it is 0.3 mm-0.7 mm.

上記した構成において、前記板状体の表裏面のうち少なくとも一方の面の表面粗さ(Ra)が0.05〜3μmであれば、高い発光効率が得られるため好ましい。   In the above configuration, it is preferable that the surface roughness (Ra) of at least one of the front and back surfaces of the plate-like body is 0.05 to 3 μm because high luminous efficiency can be obtained.

また、上記した構成において、塊状蛍光体が、結晶化ガラスからなると、用途に応じて、任意形状、例えば、板形状、球形状、非球面レンズ形状、ロッド形状、円筒形状、円板形状、ファイバー形状等に容易に成形して使用することが可能となる。   In the above-described configuration, when the bulk phosphor is made of crystallized glass, it has an arbitrary shape, for example, a plate shape, a spherical shape, an aspheric lens shape, a rod shape, a cylindrical shape, a disc shape, a fiber, depending on the application. It can be easily formed into a shape and used.

また、上記した構成において、前記結晶化ガラスが、120MPa以上の曲げ強度を有していることが好ましい。このようにすれば蛍光体を大型化しても割れることがなく、また、加工プロセスにおける割れの問題も生じ難い。   In the above configuration, the crystallized glass preferably has a bending strength of 120 MPa or more. In this way, even if the phosphor is increased in size, it does not break, and the problem of cracking in the processing process hardly occurs.

また、上記した構成において、前記結晶化ガラスが、2.00W/m/K以上の熱伝導率を有していることが好ましい。このようにすれば、蛍光体が放熱性に優れ、励起用青色LEDチップと接した状態で使用する場合、LEDチップからの熱を放出しやすい。   In the above-described configuration, the crystallized glass preferably has a thermal conductivity of 2.00 W / m / K or more. In this way, the phosphor is excellent in heat dissipation, and when used in contact with the excitation blue LED chip, it is easy to release heat from the LED chip.

上記した構成において、前記結晶化ガラスが、Ce3+を含有したガーネット結晶を析出してなると、ガーネット結晶中に含まれるCe3+が発光中心となり、青色の励起光を吸収し、黄色の蛍光を発するようになり、青色の励起光の一部が透過し、透過励起光と蛍光の混色により白色光を発する蛍光体となる。 In the above configuration, the crystallized glass and formed by precipitating garnet crystal containing Ce 3+, Ce 3+ contained in the garnet crystal becomes a luminescent center, absorbs the blue excitation light, yellow fluorescence Thus, a part of the blue excitation light is transmitted, and a phosphor that emits white light by mixing the transmitted excitation light and the fluorescence is obtained.

上記した構成において、前記結晶化ガラスが、非晶質ガラスを熱処理することによってガーネット結晶を析出してなると、ガーネット結晶が結晶化ガラスのマトリックスガラス中に泡を巻き込むことなく分散して存在する。そのため、蛍光や透過励起光の一部があらゆる方向に散乱して、蛍光体自身が散乱板の役目も果たし、白色光が広角度に広がる。また、マトリックスガラス中又はマトリックスガラスと析出結晶の界面には、二種以上の異なる材料の複合体中又は異なる材料の界面に見られるような泡がないため、蛍光や透過励起光のうち、析出結晶によって散乱しない蛍光や透過励起光が透過しやすく、そのため発光効率が高くなる。   In the above-described configuration, when the crystallized glass is formed by precipitating garnet crystals by heat-treating amorphous glass, the garnet crystals are dispersed and present in the crystallized glass matrix glass without entraining bubbles. Therefore, a part of the fluorescence and transmitted excitation light is scattered in all directions, the phosphor itself also serves as a scattering plate, and white light spreads over a wide angle. In addition, there are no bubbles in the matrix glass or at the interface between the matrix glass and the precipitated crystal, as seen in the composite of two or more different materials or at the interface between different materials. Fluorescence that is not scattered by the crystal or transmitted excitation light is likely to be transmitted, so that the luminous efficiency is increased.

尚、ガーネット結晶とは、一般的にはA32312で表される結晶(A=Mg、Mn、Fe、Ca、Y、Gd、Tb、Yb等:B=Al、Cr、Fe、Ga、Sc等:C=Al、Si、Ga、Ge等)であり、上記したガーネット結晶として、特に、YAG結晶(Y3Al512結晶)又はYAG結晶固溶体であると、所望の黄色の蛍光を発するため好ましい。YAG結晶固溶体としては、Yの一部をGd、Sc、Ca、Tb、Yb及びMgからなる群から選択された少なくとも1種の元素で、及び/又はAlの一部をGa、Si、Ge及びScからなる群から選択された少なくとも1種の元素で置換したYAG結晶固溶体であってもよい。 The garnet crystal is generally a crystal represented by A 3 B 2 C 3 O 12 (A = Mg, Mn, Fe, Ca, Y, Gd, Tb, Yb, etc .: B = Al, Cr, Fe, Ga, Sc, etc .: C = Al, Si, Ga, Ge, etc.), and the above garnet crystal is particularly desired to be a YAG crystal (Y 3 Al 5 O 12 crystal) or a YAG crystal solid solution. This is preferable because it emits yellow fluorescence. As a YAG crystal solid solution, a part of Y is at least one element selected from the group consisting of Gd, Sc, Ca, Tb, Yb and Mg, and / or a part of Al is Ga, Si, Ge and It may be a YAG crystal solid solution substituted with at least one element selected from the group consisting of Sc.

発光中心となるCe23は、結晶化ガラス中に0.01〜5モル%含有することが好ましい。Ce23の含有量が0.01モル%よりも少ないと、発光中心成分としての役割を果たし難く、蛍光強度が充分でない。また、5モル%よりも多いと、濃度消光により発光効率が低くなるため好ましくない。Ce23の好ましい範囲は0.01〜4モル%であり、より好ましくは0.3〜3モル%である。 Ce 2 O 3 serving as an emission center is preferably contained in the crystallized glass in an amount of 0.01 to 5 mol%. When the content of Ce 2 O 3 is less than 0.01 mol%, it is difficult to serve as a luminescent center component, and the fluorescence intensity is not sufficient. On the other hand, if it exceeds 5 mol%, the light emission efficiency is lowered by concentration quenching, which is not preferable. The preferred range of ce 2 O 3 is 0.01 to 4 mol%, more preferably from 0.3 to 3 mol%.

本発明の塊状蛍光体は、例えば、モル%で、SiO2+B23 10〜60%、Al23+GeO2+Ga23 15〜50%、Y23+Gd23+Tb23+Yb23 5〜30%、Li2O 0〜25%、Ce23 0.01〜5%含有する結晶化ガラスからなることが好ましい。 The bulk phosphor of the present invention is, for example, in mol%, SiO 2 + B 2 O 3 10-60%, Al 2 O 3 + GeO 2 + Ga 2 O 3 15-50%, Y 2 O 3 + Gd 2 O 3 + Tb 2. It is preferably made of crystallized glass containing 5 to 30% of O 3 + Yb 2 O 3 , 0 to 25% of Li 2 O, and 0.01 to 5% of Ce 2 O 3 .

また、本発明の塊状蛍光体は、モル%でSiO2 10〜50%、Al23 15〜45%、Y23 5〜30%、GeO2 0〜15%、Gd23 0〜20%、Li2O 0〜15%、CaO+MgO+Sc23 0〜30%、Ce23 0.01〜5%含有してなる結晶化ガラスからなることがより好ましい。 In addition, the bulk phosphor of the present invention is SiO 2 10-50%, Al 2 O 3 15-45%, Y 2 O 3 5-30%, GeO 2 0-15%, Gd 2 O 3 0 in mol%. ~20%, Li 2 O 0~15% , CaO + MgO + Sc 2 O 3 0~30%, more preferably consisting of Ce 2 O 3 0.01~5% content was formed by crystallized glass.

次に、本発明の結晶化ガラスの組成を限定した理由を次に示す。   Next, the reason why the composition of the crystallized glass of the present invention is limited will be described below.

SiO2とB23は、ガラスの網目形成酸化物で、母ガラス作成時にともに失透を抑制する成分であり、SiO2とB23の含有量は合量で10〜60モル%であることが好ましい。SiO2とB23の合量が10モル%よりも少ないとガラス化せず、60モル%よりも多いと所望の結晶が析出しにくくなる。SiO2とB23の合量の好ましい範囲は、30〜47モル%である。SiO2の含有量は10〜50モル%であることが好ましい。SiO2が10モル%よりも少ないとガラス化しにくく、50モル%よりも多いと所望の結晶が析出しにくくなる。 SiO 2 and B 2 O 3 are glass network-forming oxides and are components that suppress devitrification at the time of making the mother glass. The total content of SiO 2 and B 2 O 3 is 10 to 60 mol%. It is preferable that When the total amount of SiO 2 and B 2 O 3 is less than 10 mol%, it does not vitrify, and when it exceeds 60 mol%, desired crystals are difficult to precipitate. A preferable range of the total amount of SiO 2 and B 2 O 3 is 30 to 47 mol%. The content of SiO 2 is preferably 10 to 50 mol%. When SiO 2 is less than 10 mol%, it is difficult to vitrify, and when it is more than 50 mol%, desired crystals are hardly precipitated.

Al23とGa23とGeO2も、ガーネット結晶の構成成分であるとともに、化学的耐久性を向上させる成分であり、Al23とGa23とGeO2の含有量は合量で15〜50モル%であることが好ましい。Al23とGa23とGeO2の含有量が合量で15モル%よりも少ないと、ガーネット結晶が析出しにくく、また、化学的耐久性が低下する。また50モル%よりも多いと、ガラス化しにくくなるとともにガーネット結晶が析出しにくくなるため好ましくない。Al23とGa23とGeO2の合量の好ましい範囲は、20〜40モル%である。Al23の含有量は15〜45モル%であることが好ましい。Al23含有量が15モル%よりも少ないと、ガーネット結晶が析出しにくく、また、化学的耐久性が低下しやすい。また45モル%よりも多いと、ガラス化しにくくなるとともに、異種結晶が析出するため好ましくない。また、GeO2はガーネット結晶中に一部固溶し、結晶析出量を増加させる効果を有する。GeO2の含有量は0〜15モル%であることが好ましい。 Al 2 O 3 , Ga 2 O 3, and GeO 2 are also constituents of the garnet crystal and are components that improve chemical durability. The contents of Al 2 O 3 , Ga 2 O 3, and GeO 2 are as follows: The total amount is preferably 15 to 50 mol%. If the total content of Al 2 O 3 , Ga 2 O 3 and GeO 2 is less than 15 mol%, garnet crystals are difficult to precipitate and the chemical durability is lowered. On the other hand, if it is more than 50 mol%, it is difficult to vitrify and garnet crystals are difficult to precipitate. A preferable range of the total amount of Al 2 O 3 , Ga 2 O 3 and GeO 2 is 20 to 40 mol%. The content of Al 2 O 3 is preferably 15 to 45 mol%. If the Al 2 O 3 content is less than 15 mol%, garnet crystals are difficult to precipitate and the chemical durability tends to decrease. On the other hand, when it is more than 45 mol%, it is difficult to vitrify and a different crystal is precipitated, which is not preferable. Further, GeO 2 has a partly solid solution in the garnet crystal and has an effect of increasing the amount of crystal precipitation. The GeO 2 content is preferably 0 to 15 mol%.

23、Gd23、Tb23及びYb23は、ガーネット結晶の構成成分であるとともに、Ceの均一分散能を向上させ、濃度消光を抑制する成分であり、Y23、Gd23、Tb23及びYb23の含有量は合量で5〜30モル%であることが好ましい。Y23、Gd23、Tb23及びYb23の含有量が合量で5モル%よりも少ないと、ガーネット結晶が析出しにくく、30モル%よりも多いと、ガラス化しにくくなるため好ましくない。Y23、Gd23、Tb23及びYb23の合量の好ましい範囲は、10〜25モル%である。Y23含有量は5〜30モル%であることが好ましい。Y23の含有量が5モル%よりも少ないと、ガーネット結晶が析出しにくく、30モル%よりも多いと、ガラス化しにくくなると共に、異種結晶が析出するため好ましくない。また、Gd23は蛍光波長を長波長化する効果や、母ガラスを作成する際ガラス化範囲を広げる効果も有する。Gd23の含有量は0〜20モル%であることが好ましい。Gd23が20モル%よりも多い場合はガーネット結晶が析出しにくくなる。Tb23はガラス化範囲を広げる効果や蛍光波長を調整する効果を有する。Tb23の含有量は0〜30モル%であることが好ましい。30モル%よりも多い場合はガーネット結晶が析出しにくくなる。Yb23はガラス化範囲を広げる効果や蛍光波長を調整する効果とともに、蛍光体の熱的安定性を向上させる働きがある。Yb23の含有量は0〜30モル%であることが好ましい。30モル%よりも多い場合はガーネット結晶が析出しにくくなる。 Y 2 O 3 , Gd 2 O 3 , Tb 2 O 3 and Yb 2 O 3 are components of the garnet crystal, are components that improve the uniform dispersibility of Ce and suppress concentration quenching, and Y 2 The total content of O 3 , Gd 2 O 3 , Tb 2 O 3 and Yb 2 O 3 is preferably 5 to 30 mol%. If the total content of Y 2 O 3 , Gd 2 O 3 , Tb 2 O 3 and Yb 2 O 3 is less than 5 mol%, garnet crystals are difficult to precipitate, and if it is more than 30 mol%, glass This is not preferable because it becomes difficult to convert. A preferable range of the total amount of Y 2 O 3 , Gd 2 O 3 , Tb 2 O 3 and Yb 2 O 3 is 10 to 25 mol%. The Y 2 O 3 content is preferably 5 to 30 mol%. If the content of Y 2 O 3 is less than 5 mol%, garnet crystals are difficult to precipitate, and if it is more than 30 mol%, it is difficult to vitrify and foreign crystals precipitate, which is not preferable. Gd 2 O 3 also has the effect of increasing the fluorescence wavelength and the effect of expanding the vitrification range when preparing the mother glass. The content of Gd 2 O 3 is preferably 0 to 20 mol%. When the amount of Gd 2 O 3 is more than 20 mol%, garnet crystals are hardly precipitated. Tb 2 O 3 has the effect of expanding the vitrification range and the effect of adjusting the fluorescence wavelength. The content of Tb 2 O 3 is preferably 0 to 30 mol%. When the amount is more than 30 mol%, garnet crystals are hardly precipitated. Yb 2 O 3 has the effect of improving the thermal stability of the phosphor as well as the effect of expanding the vitrification range and the effect of adjusting the fluorescence wavelength. The content of Yb 2 O 3 is preferably 0 to 30 mol%. When the amount is more than 30 mol%, garnet crystals are hardly precipitated.

Li2Oは、結晶サイズを粗大化させず、また析出結晶量を減少させずに網目修飾酸化物としてガラスの粘性を調整する成分であり、Li2Oの含有量は0〜25モル%であることが好ましい。Li2Oが25モル%よりも多いとガラス成型時に多量の失透が発生しガラス化しにくく、結晶化のための熱処理を行なっても失透が消失せず好ましくない。特にLi2Oが2モル%よりも多いと、ガーネット結晶が析出しやすくなるため好ましい。Li2Oの好ましい範囲は、2〜16モル%であり、さらに好ましい範囲は、2.5〜4.8モル%である。またLi2Oが4モル%よりも少ない場合、及びLi2Oが4モル%以上であってもSiO2とB23の合量が40.5モル%以上である場合には、ガラス成形時に全く失透が見られないためより好ましい。尚、Li2Oが4モル%よりも多く且つSiO2とB23の合量が40.5モル%よりも少ない場合には、ガラス成形時に少量の失透が見られることがあるが、この失透は結晶化のための熱処理によって消失し、緻密なガーネット結晶が析出するため特に問題はない。 Li 2 O is a component that adjusts the viscosity of the glass as a network-modifying oxide without coarsening the crystal size and reducing the amount of precipitated crystals, and the content of Li 2 O is 0 to 25 mol%. Preferably there is. When the amount of Li 2 O is more than 25 mol%, a large amount of devitrification occurs during glass molding and it is difficult to vitrify, and devitrification does not disappear even when heat treatment for crystallization is performed. In particular, when Li 2 O is more than 2 mol%, garnet crystals are likely to precipitate, which is preferable. A preferable range of Li 2 O is 2 to 16 mol%, and a more preferable range is 2.5 to 4.8 mol%. Further, when Li 2 O is less than 4 mol%, and when Li 2 O is 4 mol% or more, the total amount of SiO 2 and B 2 O 3 is 40.5 mol% or more, glass It is more preferable because no devitrification is observed at the time of molding. When Li 2 O is more than 4 mol% and the total amount of SiO 2 and B 2 O 3 is less than 40.5 mol%, a small amount of devitrification may be observed during glass forming. This devitrification disappears by heat treatment for crystallization, and a dense garnet crystal is precipitated, so that there is no particular problem.

CaO、MgO、Sc23はガーネット結晶中に固溶し、Ceの発光波長を調整することができる成分である。CaO、MgO、Sc23は合量で0〜30モル%含有することが好ましい。30モル%よりも多いと失透する。 CaO, MgO, and Sc 2 O 3 are components that can be dissolved in the garnet crystal to adjust the emission wavelength of Ce. CaO, MgO, and Sc 2 O 3 are preferably contained in a total amount of 0 to 30 mol%. When it exceeds 30 mol%, it devitrifies.

上記した成分以外にも、Na2O、CaO、MgO、K2O等を単独又は合量で15モル%まで添加できる。 In addition to the above components, Na 2 O, CaO, MgO, K 2 O, etc. can be added alone or in a total amount up to 15 mol%.

以上のように本発明の塊状蛍光体によれば、それを発光ダイオード等のデバイスに用いた場合、無機材料のみから構成され、樹脂を使用せずにデバイスを構成できるため、耐熱性、耐光性及び耐候性に優れ、従来の樹脂の劣化によるデバイスの発光強度劣化や短寿命化を防止できる。しかも、その表面粗さ(Ra)が0.05μm〜3μmの範囲内にあるため、それを用いた発光ダイオードの発光効率が高い。また、用途に応じて、任意形状、例えば、板形状、球形状、非球面レンズ形状、ロッド形状、円筒形状、円板形状、ファイバー形状等に容易に成形して使用することが可能となる。   As described above, according to the bulk phosphor of the present invention, when it is used for a device such as a light-emitting diode, it is composed of only an inorganic material, and the device can be constructed without using a resin. Moreover, it is excellent in weather resistance, and can prevent deterioration of the light emission intensity and shortening of the lifetime of the device due to deterioration of the conventional resin. And since the surface roughness (Ra) exists in the range of 0.05 micrometer-3 micrometers, the light emission efficiency of the light emitting diode using it is high. Further, it can be easily formed into an arbitrary shape, for example, a plate shape, a spherical shape, an aspherical lens shape, a rod shape, a cylindrical shape, a disk shape, a fiber shape, etc. depending on the application.

以下、実施例について説明する。   Examples will be described below.

表1は本発明の実施例1〜8及び比較例1、2を示したものである。   Table 1 shows Examples 1 to 8 and Comparative Examples 1 and 2 of the present invention.

実施例の結晶化ガラスは以下のようにして作製した。   The crystallized glass of the example was produced as follows.

まず、表1に示した組成となるように調合したガラス原料を白金坩堝に入れ、1650℃にて3時間溶融した後、融液をカーボン板上に流し出すことによって結晶性ガラスを得た。次いでこれらの結晶性ガラスを表1中に示す結晶化温度で0.5〜20時間熱処理することによって実施例1〜8及び比較例1、2の結晶化ガラスを得た。   First, a glass raw material prepared to have the composition shown in Table 1 was put in a platinum crucible, melted at 1650 ° C. for 3 hours, and then the melt was poured onto a carbon plate to obtain a crystalline glass. Next, the crystallized glasses of Examples 1 to 8 and Comparative Examples 1 and 2 were obtained by heat-treating these crystalline glasses at the crystallization temperature shown in Table 1 for 0.5 to 20 hours.

得られた結晶化ガラスを所望の形状に加工した後、研磨紙を用いて所望の表面粗さに仕上げた。表面粗さ(Ra)は(株)東京精密製のサーフコム756Aを用いて測定した。   The obtained crystallized glass was processed into a desired shape, and then finished to a desired surface roughness using abrasive paper. The surface roughness (Ra) was measured using Surfcom 756A manufactured by Tokyo Seimitsu Co., Ltd.

析出結晶種は、粉末X線回折法により同定し、表1において、析出結晶としてYAG結晶が析出したものについては“YAG”とし、YAG結晶固溶体が析出したものについては“YAGs.s.”とした。表1からわかるように、実施例1、2ではYAG結晶が析出し、実施例3〜8及び比較例1、2ではYAG結晶固溶体が析出していた。   Precipitated crystal seeds were identified by powder X-ray diffraction method. In Table 1, “YAG” was used when YAG crystals were deposited as precipitated crystals, and “YAGs.s.” was used when YAG crystal solid solutions were precipitated. did. As can be seen from Table 1, YAG crystals were precipitated in Examples 1 and 2, and YAG crystal solid solutions were precipitated in Examples 3 to 8 and Comparative Examples 1 and 2.

表1中の発光特性は次のようにして評価した。同じ厚みで異なる表面粗さを有するサンプルの後方から、青色LEDによって各サンプルを励起し、サンプル前方から発せられる光を積分球内で測定し、その発光スペクトルを得た。得られたスペクトルから発光効率を算出しその値が高いものについては、発光特性“〇”、低いものについては発光特性"דとした。図1は実施例5の発光スペクトルを示している。図1からわかるように、実施例5の発光スペクトルでは、中心波長が430〜490nmにある透過励起光および、中心波長が530〜590nmにある蛍光が観察された。他の実施例及び比較例についても同様形状の発光スペクトルが得られた。実施例1〜8については発光効率が高く発光特性は"〇"であった。また、実施例2の結晶化ガラスを、研磨方法を変えて表面粗さを変えた試料の発光効率を測定したところ、図2に示すように、実表面粗さ(Ra)が、0.05〜3μmにおいて、高い発光効率を示すことがわかる。一方、比較例1及び2は、実施例5と同じ組成で表面粗さのみ異なるものであるが、比較例1については、表面粗さが大きく発光効率が低かった。また、比較例2については、表面粗さが小さく発光効率が小さかった。   The light emission characteristics in Table 1 were evaluated as follows. Each sample was excited by a blue LED from the back of the sample having the same thickness and different surface roughness, and the light emitted from the front of the sample was measured in an integrating sphere to obtain its emission spectrum. The light emission efficiency is calculated from the obtained spectrum, and the light emission characteristic is “◯” for the high value and the light emission characteristic “×” for the low value. FIG. 1 shows the emission spectrum of Example 5. As can be seen from FIG. 1, in the emission spectrum of Example 5, transmitted excitation light having a center wavelength of 430 to 490 nm and fluorescence having a center wavelength of 530 to 590 nm were observed. The emission spectrum of the same shape was obtained also about the other Example and the comparative example. In Examples 1 to 8, the light emission efficiency was high and the light emission characteristic was “◯”. In addition, when the crystallized glass of Example 2 was measured for the light emission efficiency of the sample with the surface roughness varied by changing the polishing method, the actual surface roughness (Ra) was 0.05 as shown in FIG. It can be seen that high luminous efficiency is exhibited at ˜3 μm. On the other hand, Comparative Examples 1 and 2 had the same composition as Example 5 but differed only in surface roughness, but Comparative Example 1 had a large surface roughness and low luminous efficiency. In Comparative Example 2, the surface roughness was small and the light emission efficiency was low.

また、実施例5について150℃で600時間熱処理した際、熱処理前の発光強度に対する熱処理後の発光強度が97%以上であり、耐熱性に優れていた。また、実施例2について、温度85℃、湿度85%の環境下で2000時間処理する前の発光強度に対する処理後の発光強度が93%以上であり、耐候性に優れていた。   Further, when heat treatment was performed at 150 ° C. for 600 hours in Example 5, the light emission intensity after the heat treatment with respect to the light emission intensity before the heat treatment was 97% or more, and the heat resistance was excellent. Moreover, about Example 2, the light emission intensity after a process with respect to the light emission intensity before processing for 2000 hours in the environment of temperature 85 degreeC and humidity 85% was 93% or more, and was excellent in the weather resistance.

以上説明したように、本発明の塊状蛍光体は、耐熱性、耐光性及び耐候性に優れ、樹脂の劣化による発光ダイオード等のデバイスの発光強度劣化や短寿命化を抑制できるため、照明装置、車載用、表示板、液晶用バックライト、医療器具等に使用される発光ダイオードにおける粉末状の蛍光体と樹脂からなる複合体(コーティング部材)の代替材料として、あるいは発光機能と拡散機能を兼ね備えた大面積面発光デバイスの構成部材として好適である。   As described above, the bulk phosphor of the present invention is excellent in heat resistance, light resistance and weather resistance, and can suppress deterioration in light emission intensity and shortening of the life of a device such as a light emitting diode due to deterioration of the resin. As an alternative material for composites (coating members) made of powdered phosphor and resin in light-emitting diodes used in in-vehicle devices, display panels, liquid crystal backlights, medical devices, etc., or has both a light emission function and a diffusion function It is suitable as a constituent member of a large area surface light emitting device.

実施例5の発光スペクトルを示すグラフである。6 is a graph showing an emission spectrum of Example 5. 実施例2の組成を有する結晶化ガラスの表面粗さと発光効率との関係を示すグラフである。3 is a graph showing the relationship between the surface roughness of the crystallized glass having the composition of Example 2 and the luminous efficiency.

Claims (13)

無機材料のみから構成され、表面粗さ(Ra)が0.05〜3μmであることを特徴とする塊状蛍光体。 A block phosphor composed of only an inorganic material and having a surface roughness (Ra) of 0.05 to 3 μm. 紫外光線又は可視光線からなる励起光を入射すると、該励起光よりも長波長の蛍光を発することを特徴とする請求項1に記載の塊状蛍光体。 2. The bulk phosphor according to claim 1, wherein excitation light composed of ultraviolet rays or visible rays emits fluorescence having a longer wavelength than the excitation light. 可視光線からなる励起光を入射すると、該励起光の色相に対して補色の蛍光を発し、かつ該励起光を一部透過することを特徴とする請求項1又は2に記載の塊状蛍光体。 3. The bulk phosphor according to claim 1, wherein when excitation light composed of visible light is incident, fluorescent light of a complementary color is emitted with respect to a hue of the excitation light and part of the excitation light is transmitted. 前記可視光線からなる励起光は、中心波長が430〜490nmの光線であり、前記蛍光は、中心波長が530〜590nmの光線であることを特徴とする請求項1〜3のいずれかに記載の塊状蛍光体。 The excitation light comprising the visible light is light having a central wavelength of 430 to 490 nm, and the fluorescence is light having a central wavelength of 530 to 590 nm. Bulk phosphor. 板状体からなることを特徴とする請求項1〜4のいずれかに記載の塊状蛍光体。 It consists of a plate-shaped object, The block fluorescent substance in any one of Claims 1-4 characterized by the above-mentioned. 前記板状体が0.1〜2mmの肉厚を有することを特徴とする請求項5に記載の塊状蛍光体。 6. The block phosphor according to claim 5, wherein the plate-like body has a thickness of 0.1 to 2 mm. 前記板状体の表裏面のうち少なくとも一方の面の表面粗さ(Ra)が0.05〜3μmであることを特徴とする請求項5又は6に記載の塊状蛍光体。 The block phosphor according to claim 5 or 6, wherein the surface roughness (Ra) of at least one of the front and back surfaces of the plate-like body is 0.05 to 3 µm. 前記無機材料が結晶化ガラスからなることを特徴とする請求項1〜7のいずれかに記載の塊状蛍光体。 The bulk phosphor according to claim 1, wherein the inorganic material is made of crystallized glass. 前記結晶化ガラスが、Ce3+を含有したガーネット結晶を析出してなることを特徴とする請求項8に記載の塊状蛍光体。 The bulk phosphor according to claim 8, wherein the crystallized glass is formed by depositing a garnet crystal containing Ce 3+ . 該ガーネット結晶がYAG結晶又はYAG結晶固溶体であることを特徴とする請求項9に記載の塊状蛍光体。 The bulk phosphor according to claim 9, wherein the garnet crystal is a YAG crystal or a YAG crystal solid solution. 前記結晶化ガラスがCe23を0.01〜5モル%含有することを特徴とする請求項8〜10のいずれかに記載の塊状蛍光体。 Bulk phosphor according to claim 8, wherein the crystallized glass is characterized by containing Ce 2 O 3 0.01 to 5 mol%. 前記結晶化ガラスは、モル%で、SiO2+B23 10〜60%、Al23+GeO2+Ga23 15〜50%、Y23+Gd23+Tb23+Yb23 5〜30%、Li2O 0〜25%、Ce23 0.01〜5%含有することを特徴とする請求項8〜11のいずれかに記載の塊状蛍光体。 The crystallized glass is in mol%, SiO 2 + B 2 O 3 10-60%, Al 2 O 3 + GeO 2 + Ga 2 O 3 15-50%, Y 2 O 3 + Gd 2 O 3 + Tb 2 O 3 + Yb 2. The bulk phosphor according to any one of claims 8 to 11, containing 5 to 30% of O 3 , 0 to 25% of Li 2 O, and 0.01 to 5% of Ce 2 O 3 . 前記結晶化ガラスは、モル%でSiO2 10〜50%、Al23 15〜45%、Y23 5〜30%、GeO2 0〜15%、Gd23 0〜20%、Li2O 0〜15%、CaO+MgO+Sc23 0〜30%、Ce23 0.01〜5%含有することを特徴とする請求項1〜12のいずれかに記載の塊状蛍光体。 The crystallized glass is SiO 2 10-50%, Al 2 O 3 15-45%, Y 2 O 3 5-30%, GeO 2 0-15%, Gd 2 O 3 0-20% in mol%, li 2 O 0~15%, CaO + MgO + Sc 2 O 3 0~30%, bulk phosphor according to any one of the preceding claims, characterized in that it contains Ce 2 O 3 0.01~5%.
JP2005362978A 2005-12-16 2005-12-16 Phosphor Pending JP2007161944A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005362978A JP2007161944A (en) 2005-12-16 2005-12-16 Phosphor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005362978A JP2007161944A (en) 2005-12-16 2005-12-16 Phosphor

Publications (1)

Publication Number Publication Date
JP2007161944A true JP2007161944A (en) 2007-06-28

Family

ID=38245215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005362978A Pending JP2007161944A (en) 2005-12-16 2005-12-16 Phosphor

Country Status (1)

Country Link
JP (1) JP2007161944A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008123148A1 (en) 2007-03-30 2008-10-16 Ntt Docomo, Inc. Mobile communication system, base station device, and user device and method
JP2010059018A (en) * 2008-09-04 2010-03-18 Hoya Corp Preform lot and optical element manufacturing method
JP2011122067A (en) * 2009-12-11 2011-06-23 Nippon Electric Glass Co Ltd Wavelength conversion member and method for manufacturing the same
JP2011222751A (en) * 2010-04-09 2011-11-04 Nippon Electric Glass Co Ltd Wavelength conversion member and semiconductor light-emitting element device having and using the wavelength conversion member
DE102011080832A1 (en) 2010-08-18 2012-02-23 Covalent Materials Corp. Ceramic composite
JP2012519127A (en) * 2009-06-26 2012-08-23 海洋王照明科技股▲ふん▼有限公司 Luminescent glass element, manufacturing method thereof and light emitting method thereof
JP2012519126A (en) * 2009-06-26 2012-08-23 海洋王照明科技股▲ふん▼有限公司 Luminescent glass element, manufacturing method thereof and light emitting method thereof
JP2012519147A (en) * 2009-06-26 2012-08-23 海洋王照明科技股▲ふん▼有限公司 Luminescent glass element, manufacturing method thereof and light emitting method thereof
JP2012519145A (en) * 2009-06-26 2012-08-23 海洋王照明科技股▲ふん▼有限公司 Luminescent glass element, manufacturing method thereof and light emitting method thereof
JP2012519146A (en) * 2009-06-26 2012-08-23 海洋王照明科技股▲ふん▼有限公司 Luminescent glass element, manufacturing method thereof and light emitting method thereof
JP2012521340A (en) * 2009-03-25 2012-09-13 オーシャンズ キング ライティング サイエンスアンドテクノロジー カンパニー リミテッド Green light emitting glass and manufacturing method thereof
JP2012533508A (en) * 2009-07-23 2012-12-27 海洋王照明科技股▲ふん▼有限公司 Borate luminescent glass and manufacturing method thereof
JP2013502375A (en) * 2009-08-26 2013-01-24 海洋王照明科技股▲ふん▼有限公司 LIGHT EMITTING ELEMENT, METHOD FOR MANUFACTURING THE SAME
JP2013521346A (en) * 2010-03-05 2013-06-10 海洋王照明科技股▲ふん▼有限公司 Luminescent nanocrystalline glass used for white light LED light source and method for producing the same
US8633121B2 (en) 2009-08-26 2014-01-21 Hoya Corporation Fluorophosphate glass, glass material for press molding, optical element blank, optical element, processes for production of same, and process for production of glass moldings
US8637415B2 (en) 2008-03-28 2014-01-28 Hoya Corporation Fluorophosphate glass, precision press molding preform, optical element blank, optical element and methods of manufacturing the same
US8642490B2 (en) 2008-03-28 2014-02-04 Hoya Corporation Fluorophosphate glass, precision press molding preform, optical element blank, optical element and method of manufacturing the same
JP2015119172A (en) * 2013-11-13 2015-06-25 株式会社日本セラテック Light emitting element, light emitting device, and manufacturing method thereof
WO2018101348A1 (en) * 2016-11-30 2018-06-07 富士フイルム株式会社 Wavelength conversion member and backlight unit
JP2018145088A (en) * 2015-02-02 2018-09-20 フエロ コーポレーション Manufacturing method of light emitting diode package
WO2019021846A1 (en) * 2017-07-27 2019-01-31 日本電気硝子株式会社 Wavelength conversion member and light emitting device
JP2019029648A (en) * 2017-07-27 2019-02-21 日本電気硝子株式会社 Wavelength conversion member and light emitting device
KR20190018863A (en) * 2017-08-16 2019-02-26 나노씨엠에스(주) Infrared luminescent material excited by infrared ray and method of manufacturing the same
JPWO2020246274A1 (en) * 2019-06-03 2020-12-10

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000171563A (en) * 1998-09-30 2000-06-23 Toshiba Corp Producing method for ceramic scintillator, ceramic scintillator, scintillator block, x-ray detector and x-ray ct imaging device
JP2005191197A (en) * 2003-12-25 2005-07-14 Kyocera Corp Light emitting device
WO2005097938A1 (en) * 2004-03-31 2005-10-20 Nippon Electric Glass Co., Ltd. Fluorescent substance and light emitting diode

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000171563A (en) * 1998-09-30 2000-06-23 Toshiba Corp Producing method for ceramic scintillator, ceramic scintillator, scintillator block, x-ray detector and x-ray ct imaging device
JP2005191197A (en) * 2003-12-25 2005-07-14 Kyocera Corp Light emitting device
WO2005097938A1 (en) * 2004-03-31 2005-10-20 Nippon Electric Glass Co., Ltd. Fluorescent substance and light emitting diode

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008123148A1 (en) 2007-03-30 2008-10-16 Ntt Docomo, Inc. Mobile communication system, base station device, and user device and method
US8642490B2 (en) 2008-03-28 2014-02-04 Hoya Corporation Fluorophosphate glass, precision press molding preform, optical element blank, optical element and method of manufacturing the same
US8637415B2 (en) 2008-03-28 2014-01-28 Hoya Corporation Fluorophosphate glass, precision press molding preform, optical element blank, optical element and methods of manufacturing the same
JP2010059018A (en) * 2008-09-04 2010-03-18 Hoya Corp Preform lot and optical element manufacturing method
JP2012521340A (en) * 2009-03-25 2012-09-13 オーシャンズ キング ライティング サイエンスアンドテクノロジー カンパニー リミテッド Green light emitting glass and manufacturing method thereof
JP2012519147A (en) * 2009-06-26 2012-08-23 海洋王照明科技股▲ふん▼有限公司 Luminescent glass element, manufacturing method thereof and light emitting method thereof
JP2012519127A (en) * 2009-06-26 2012-08-23 海洋王照明科技股▲ふん▼有限公司 Luminescent glass element, manufacturing method thereof and light emitting method thereof
JP2012519126A (en) * 2009-06-26 2012-08-23 海洋王照明科技股▲ふん▼有限公司 Luminescent glass element, manufacturing method thereof and light emitting method thereof
JP2012519145A (en) * 2009-06-26 2012-08-23 海洋王照明科技股▲ふん▼有限公司 Luminescent glass element, manufacturing method thereof and light emitting method thereof
JP2012519146A (en) * 2009-06-26 2012-08-23 海洋王照明科技股▲ふん▼有限公司 Luminescent glass element, manufacturing method thereof and light emitting method thereof
JP2012533508A (en) * 2009-07-23 2012-12-27 海洋王照明科技股▲ふん▼有限公司 Borate luminescent glass and manufacturing method thereof
JP2013502375A (en) * 2009-08-26 2013-01-24 海洋王照明科技股▲ふん▼有限公司 LIGHT EMITTING ELEMENT, METHOD FOR MANUFACTURING THE SAME
US8633121B2 (en) 2009-08-26 2014-01-21 Hoya Corporation Fluorophosphate glass, glass material for press molding, optical element blank, optical element, processes for production of same, and process for production of glass moldings
JP2011122067A (en) * 2009-12-11 2011-06-23 Nippon Electric Glass Co Ltd Wavelength conversion member and method for manufacturing the same
JP2013521346A (en) * 2010-03-05 2013-06-10 海洋王照明科技股▲ふん▼有限公司 Luminescent nanocrystalline glass used for white light LED light source and method for producing the same
JP2011222751A (en) * 2010-04-09 2011-11-04 Nippon Electric Glass Co Ltd Wavelength conversion member and semiconductor light-emitting element device having and using the wavelength conversion member
US8940390B2 (en) 2010-08-18 2015-01-27 Covalent Materials Corporation Ceramics composite
DE102011080832A1 (en) 2010-08-18 2012-02-23 Covalent Materials Corp. Ceramic composite
JP2012062459A (en) * 2010-08-18 2012-03-29 Covalent Materials Corp Ceramic composite
JP2015119172A (en) * 2013-11-13 2015-06-25 株式会社日本セラテック Light emitting element, light emitting device, and manufacturing method thereof
JP2018145088A (en) * 2015-02-02 2018-09-20 フエロ コーポレーション Manufacturing method of light emitting diode package
JPWO2018101348A1 (en) * 2016-11-30 2019-10-24 富士フイルム株式会社 Wavelength conversion member and backlight unit
WO2018101348A1 (en) * 2016-11-30 2018-06-07 富士フイルム株式会社 Wavelength conversion member and backlight unit
US10781369B2 (en) 2016-11-30 2020-09-22 Fujifilm Corporation Wavelength conversion member and backlight unit
WO2019021846A1 (en) * 2017-07-27 2019-01-31 日本電気硝子株式会社 Wavelength conversion member and light emitting device
JP2019029648A (en) * 2017-07-27 2019-02-21 日本電気硝子株式会社 Wavelength conversion member and light emitting device
JP7090842B2 (en) 2017-07-27 2022-06-27 日本電気硝子株式会社 Wavelength conversion member and light emitting device
CN110494776B (en) * 2017-07-27 2021-08-06 日本电气硝子株式会社 Wavelength conversion member and light-emitting device
CN110494776A (en) * 2017-07-27 2019-11-22 日本电气硝子株式会社 Wavelength conversion member and light emitting device
TWI757521B (en) * 2017-07-27 2022-03-11 日商日本電氣硝子股份有限公司 Wavelength conversion member and light-emitting device
KR101978366B1 (en) 2017-08-16 2019-05-15 나노씨엠에스(주) Infrared luminescent material excited by infrared ray and method of manufacturing the same
KR20190018863A (en) * 2017-08-16 2019-02-26 나노씨엠에스(주) Infrared luminescent material excited by infrared ray and method of manufacturing the same
WO2020246274A1 (en) * 2019-06-03 2020-12-10 Agc株式会社 Glass, chemically tempered glass, and method for producing same
CN113905992A (en) * 2019-06-03 2022-01-07 Agc株式会社 Glass, chemically strengthened glass and method for producing the same
JPWO2020246274A1 (en) * 2019-06-03 2020-12-10
JP7533456B2 (en) 2019-06-03 2024-08-14 Agc株式会社 Glass, chemically strengthened glass and method for producing same

Similar Documents

Publication Publication Date Title
JP2007161944A (en) Phosphor
JP4894186B2 (en) Phosphor and light emitting diode
JP5013405B2 (en) Phosphor and light emitting diode
CN109301057B (en) Wavelength converting member and light-emitting device using the same
CN109415622B (en) Wavelength conversion member and light emitting device using same
JP4895541B2 (en) Wavelength conversion member, light emitting device, and method of manufacturing wavelength conversion member
WO2011111462A1 (en) Wavelength conversion member, optical device, and process for production of wavelength conversion member
JP2014234487A (en) Wavelength conversion member and light-emitting device
JP5532508B2 (en) Wavelength conversion member and manufacturing method thereof
TW201815717A (en) Wavelength conversion member and light-emitting device using same
JP2013219123A (en) Wavelength conversion member and method for producing the same
CN111153594B (en) YAG-Ce glass ceramic and preparation method and application thereof
JP2013055269A (en) Wavelength conversion member and light-emitting device
JP2010261048A (en) Light-emitting device and its manufacturing method
WO2015093267A1 (en) Wavelength-conversion member and light-emitting device
JP2011222751A (en) Wavelength conversion member and semiconductor light-emitting element device having and using the wavelength conversion member
JP6168284B2 (en) Wavelength conversion material, wavelength conversion member, and light emitting device
JP6004250B2 (en) Wavelength conversion member and light emitting device
JP2013095849A (en) Wavelength conversion member and light emitting device using the same
WO2019065011A1 (en) Glass for use in wavelength conversion material, wavelength conversion material, wavelength conversion member, and light-emitting device
JP2010248530A (en) Manufacturing method for wavelength conversion member, light-emitting device, and wavelength conversion member
JP5713273B2 (en) Joining material and member joining method using the same
JP5807780B2 (en) Wavelength converting member and light emitting device using the same
JP2016052968A (en) Raw material powder for wavelength conversion member
JP7382013B2 (en) Wavelength conversion member and light emitting device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110905

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120110