JP2007158298A - Light-emitting device - Google Patents
Light-emitting device Download PDFInfo
- Publication number
- JP2007158298A JP2007158298A JP2006218502A JP2006218502A JP2007158298A JP 2007158298 A JP2007158298 A JP 2007158298A JP 2006218502 A JP2006218502 A JP 2006218502A JP 2006218502 A JP2006218502 A JP 2006218502A JP 2007158298 A JP2007158298 A JP 2007158298A
- Authority
- JP
- Japan
- Prior art keywords
- light
- light emitting
- phosphor
- emitting
- wavelength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims abstract description 136
- 238000006243 chemical reaction Methods 0.000 claims abstract description 56
- 229910052693 Europium Inorganic materials 0.000 claims abstract description 35
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 claims abstract description 34
- 229910052788 barium Inorganic materials 0.000 claims abstract description 22
- 229910052791 calcium Inorganic materials 0.000 claims abstract description 22
- 239000000203 mixture Substances 0.000 claims abstract description 22
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 20
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 13
- 229910052733 gallium Inorganic materials 0.000 claims abstract description 12
- 229910052688 Gadolinium Inorganic materials 0.000 claims abstract description 9
- 229910052738 indium Inorganic materials 0.000 claims abstract description 9
- 229910052727 yttrium Inorganic materials 0.000 claims abstract description 9
- 150000004767 nitrides Chemical class 0.000 claims abstract description 8
- 229910052765 Lutetium Inorganic materials 0.000 claims abstract description 6
- 229910052746 lanthanum Inorganic materials 0.000 claims abstract description 6
- 229910052706 scandium Inorganic materials 0.000 claims abstract description 6
- 239000004065 semiconductor Substances 0.000 claims description 15
- 229910052712 strontium Inorganic materials 0.000 claims description 15
- 150000004645 aluminates Chemical class 0.000 claims description 12
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 claims description 11
- 239000011572 manganese Substances 0.000 claims description 11
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 10
- 229910052751 metal Inorganic materials 0.000 claims description 9
- 239000002184 metal Substances 0.000 claims description 9
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 8
- 229910052748 manganese Inorganic materials 0.000 claims description 8
- 229910052725 zinc Inorganic materials 0.000 claims description 6
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims description 5
- 150000001342 alkaline earth metals Chemical class 0.000 claims description 5
- 150000004760 silicates Chemical class 0.000 claims description 5
- 229910002601 GaN Inorganic materials 0.000 claims description 4
- 230000003287 optical effect Effects 0.000 claims description 2
- 229910052681 coesite Inorganic materials 0.000 abstract 1
- 229910052906 cristobalite Inorganic materials 0.000 abstract 1
- -1 europium inactivated silicate Chemical class 0.000 abstract 1
- 239000000377 silicon dioxide Substances 0.000 abstract 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract 1
- 229910052682 stishovite Inorganic materials 0.000 abstract 1
- 229910052905 tridymite Inorganic materials 0.000 abstract 1
- 229920005989 resin Polymers 0.000 description 31
- 239000011347 resin Substances 0.000 description 31
- 239000002245 particle Substances 0.000 description 15
- 230000000052 comparative effect Effects 0.000 description 14
- 238000011156 evaluation Methods 0.000 description 9
- 239000000126 substance Substances 0.000 description 7
- 238000004383 yellowing Methods 0.000 description 5
- 239000013078 crystal Substances 0.000 description 4
- 238000010030 laminating Methods 0.000 description 4
- 229910052684 Cerium Inorganic materials 0.000 description 3
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 3
- 239000011362 coarse particle Substances 0.000 description 3
- 230000002596 correlated effect Effects 0.000 description 3
- 230000000875 corresponding effect Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000009877 rendering Methods 0.000 description 3
- 230000005457 Black-body radiation Effects 0.000 description 2
- 229910004283 SiO 4 Inorganic materials 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- YLZOPXRUQYQQID-UHFFFAOYSA-N 3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]propan-1-one Chemical compound N1N=NC=2CN(CCC=21)CCC(=O)N1CCN(CC1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F YLZOPXRUQYQQID-UHFFFAOYSA-N 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 102100032047 Alsin Human genes 0.000 description 1
- 101710187109 Alsin Proteins 0.000 description 1
- 229910020068 MgAl Inorganic materials 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- GEIAQOFPUVMAGM-UHFFFAOYSA-N ZrO Inorganic materials [Zr]=O GEIAQOFPUVMAGM-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000005273 aeration Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32151—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/32221—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/32245—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73265—Layer and wire connectors
Landscapes
- Led Device Packages (AREA)
Abstract
Description
本発明は、1次光を発する半導体発光素子とその1次光を吸収して2次光を発する蛍光体を含む波長変換部とを備えた発光装置に関し、特に高効率で低色温度の白色光を放射し得る発光装置に関するものである。 The present invention relates to a light-emitting device including a semiconductor light-emitting element that emits primary light and a wavelength conversion unit that includes a phosphor that absorbs the primary light and emits secondary light, and in particular, white light having high efficiency and low color temperature. The present invention relates to a light emitting device that can emit light.
そのような半導体発光素子と波長変換部とを組み合わせた発光装置は、低消費電力、小型、高輝度、さらに広範囲な色再現性が期待される次世代の発光装置として注目され、その研究開発が活発に行われている。 Light-emitting devices that combine such semiconductor light-emitting elements and wavelength conversion units are attracting attention as next-generation light-emitting devices that are expected to have low power consumption, small size, high brightness, and a wide range of color reproducibility. It is active.
発光素子から発せられる1次光としては、通常は紫外線の長波長側から青色の範囲、すなわち約380nmから480nmの範囲内の波長を有するものが用いられる。また、このような1次光を2次光に変換する用途に適した様々な蛍光体を用いた波長変換部も提案されている。 As the primary light emitted from the light emitting element, one having a wavelength in the blue range from the long wavelength side of ultraviolet rays, that is, in the range of about 380 nm to 480 nm is usually used. In addition, wavelength conversion units using various phosphors suitable for use in converting such primary light into secondary light have also been proposed.
さらに、最近では、この種の発光装置に関して、効率(明るさ)のみならず、色彩感覚の多様化から種々の色温度(温白色〜電球色)での発光が望まれるようになっている。 Furthermore, recently, with respect to this type of light emitting device, light emission at various color temperatures (warm white to light bulb color) has been desired due to diversification of color sense as well as efficiency (brightness).
現在の既存の白色発光装置においては、青色発光の発光素子(ピーク波長、450nm前後)とその青色光によって励起されて黄色発光を示す3価のセリウムで付活された(Y,Gd)3(Al,Ga)5O12蛍光体または2価のユーロピウムで付活された(Sr,Ba,Ca)2SiO4蛍光体との組み合わせが主として利用されている。 In the present existing white light emitting device, a blue light emitting element (peak wavelength, around 450 nm) and activated by trivalent cerium which is excited by the blue light and emits yellow light (Y, Gd) 3 ( Combinations with Al, Ga) 5 O 12 phosphors or (Sr, Ba, Ca) 2 SiO 4 phosphors activated with divalent europium are mainly used.
ただし、これらの発光装置では、4000K以下の色温度の光を得ることが非常に困難であり、たとえば3000Kの色温度を再現しようとすれば、後述の偏差(duv)が+0.04前後となり、非常に黄ばんだ白色光しか得られず、クリアな3000Kの色温度を得ることは困難である。 However, in these light emitting devices, it is very difficult to obtain light having a color temperature of 4000 K or less. For example, if a color temperature of 3000 K is to be reproduced, a deviation (duv) described later becomes around +0.04, Only very yellowish white light can be obtained, and it is difficult to obtain a clear color temperature of 3000K.
したがって、この種の発光装置に関して、市場のニーズに答えるべく、クリアな低色温度の光を放射し得る製品の開発が急務となっている。
この種の発光装置に関し、特許文献1の特開2004−186278号公報における(実施例2−2)では、(Ca0.15Eu0.06)(Si,Al)12(O,N)16蛍光体は350〜500nmに励起ピークを有し、550〜650nmに発光ピ−クを示すことが記載されている。さらに、特許文献1中の種々の実施例では、種々の蛍光体の励起と発光の特性が記載されている。しかしながら、特許文献1は基本的には赤色の演色性を改善することに着目したものであり、低色温度の白色光については言及していない。
Regarding this type of light emitting device, in (Example 2-2) in Japanese Patent Application Laid-Open No. 2004-186278 of
特許文献2の特開2003−124527号公報における図14は、青色LED(波長460nm)と、GO−蛍光体(黄色−オレンジ色に発光する2価のユーロピウムで付活されたサイアロン)0.5〜9%の混合割合でのGO−蛍光体との間の混合物の色座標を示している。そして、特許文献2においては、所望の色の有色LEDが実現され、青色、ピンク色〜黄オレンジ色までの結合線上の色座標が達成される旨が記載されている。しかしながら、この特許文献2においても、具体的な低色温度の白色光については言及されていない。
FIG. 14 in Japanese Patent Application Laid-Open No. 2003-124527 of
特許文献3の特開2001−127346号公報においては、青色発光素子、黄色発光蛍光体(YAG蛍光体)、および赤色発光蛍光体(CuS蛍光体:波長630nm付近の発光)の組み合わせが開示されており、それによって演色性を高くし得ることが記載されるとともに、青、黄、および赤の三色の光を含有しているので色調が広がっている旨が記載されている。しかしながら、CuS蛍光体は水分と反応しかつ酸化され易く、化学的に不安定であるとともに、特許文献3においても具体的な低色温度の白色光については言及されていない。
Japanese Patent Application Laid-Open No. 2001-127346 of
特許文献4の特開2005−109085号公報では、紫外光を発するLEDチップと、そのLEDチップから発せれる紫外光で励起されて黄色系の可視光を放射するα型窒化珪素蛍光体および青色系の可視光を放射する酸化物蛍光体とを組み合わせた白色発光ダイオ−ドが記載されている。この特許文献4の場合でも、従来の白色発光装置と全く変わらず、低色温度の製品を得ることは困難である。 Japanese Patent Application Laid-Open No. 2005-109085 of Patent Document 4 discloses an LED chip that emits ultraviolet light, an α-type silicon nitride phosphor that emits yellow visible light when excited by ultraviolet light emitted from the LED chip, and a blue system. A white light emitting diode is described in combination with an oxide phosphor that emits visible light. Even in the case of Patent Document 4, it is difficult to obtain a product with a low color temperature, which is completely different from the conventional white light emitting device.
他方、青色発光の発光素子(ピ−ク波長が450nm前後)とその青色光により励起されて黄色発光を示す3価のセリウムで付活された(Y,Gd)3(Al,Ga)5O12蛍光体とを用いた場合、高効率に白色光を発し得るのは発光素子からの1次光のピ−ク波長が450nm前後の場合だけであり、1次光のピ−ク波長が380nmから480nmの範囲にある場合の全ての波長領域にわたって適用することはできない。 On the other hand, (Y, Gd) 3 (Al, Ga) 5 O activated by a blue light emitting element (peak wavelength is around 450 nm) and trivalent cerium which is excited by the blue light and emits yellow light. When 12 phosphors are used, white light can be emitted with high efficiency only when the peak wavelength of the primary light from the light emitting element is around 450 nm, and the peak wavelength of the primary light is 380 nm. Cannot be applied over the entire wavelength region in the range from 480 nm to 480 nm.
上述のような先行技術における課題を十分に調査および検討を行った結果、本発明は、半導体発光素子からの380nmから480nmの範囲内の光によって高効率で発光する特定の蛍光体を用いることにより、高効率かつ低色温度の白色系の光を発する発光装置を提供することを目的とする。 As a result of sufficiently investigating and examining the problems in the prior art as described above, the present invention uses a specific phosphor that emits light with high efficiency by light within a range of 380 nm to 480 nm from a semiconductor light emitting device. Another object of the present invention is to provide a light emitting device that emits white light with high efficiency and low color temperature.
本発明の一つの態様による発光装置は、1次光を発する発光素子と、その1次光の一部を吸収してその波長以上の波長を含む2次光を発する波長変換部とを含み、その波長変換部は1種以上の黄色系発光蛍光体および1種以上の赤色系発光蛍光体を含み、黄色系発光蛍光体は、一般式:2(M11-aEua)O・SiO2(式中、M1は少なくともSrを含み、かつSrを含めたMg、CaおよびBaから選ばれた1つあるいは複数の元素からなり、aは0.005≦a≦0.10を満足する数であり、M1、Euを合わせた組成を1とした場合にSrの組成は0.5以上である)で実質的に表される2価のユーロピウム付活珪酸塩蛍光体を含み、赤色系発光蛍光体は、一般式:(M21-bEub)M3SiN3(式中、M2はMg、Ca、SrおよびBaから選ばれる少なくとも1種の元素を示し、M3はAl、Ga、In、Sc、Y、La、GdおよびLuから選ばれる少なくとも1種の元素を示し、bは0.001≦b≦0.05を満足する数である)で実質的に表される2価のユーロピウム付活窒化物蛍光体を含むことを特徴としている。 A light-emitting device according to an aspect of the present invention includes a light-emitting element that emits primary light, and a wavelength conversion unit that absorbs part of the primary light and emits secondary light including a wavelength equal to or greater than the wavelength. The wavelength conversion unit includes one or more yellow light-emitting phosphors and one or more red light-emitting phosphors, and the yellow light-emitting phosphors are represented by the general formula: 2 (M1 1-a Eu a ) O.SiO 2. (In the formula, M1 includes at least Sr and is composed of one or more elements selected from Mg, Ca and Ba including Sr, and a is a number satisfying 0.005 ≦ a ≦ 0.10. And a divalent europium-activated silicate phosphor substantially represented by the following formula: Sr composition is 0.5 or more when the combined composition of M1 and Eu is 1. The body has the general formula: (M2 1-b Eu b ) M3SiN 3 (wherein M2 is Mg, Ca, S at least one element selected from r and Ba; M3 represents at least one element selected from Al, Ga, In, Sc, Y, La, Gd and Lu; and b is 0.001 ≦ b ≦ And a divalent europium-activated nitride phosphor substantially represented by the formula (1).
なお、この場合には、発光素子は窒化ガリウム系半導体で形成されており、その発光素子が発する1次光のピーク波長が430nmから480nmの範囲内にあればよい。 In this case, the light emitting element is formed of a gallium nitride semiconductor, and the peak wavelength of the primary light emitted from the light emitting element may be in the range of 430 nm to 480 nm.
本発明の他の態様による発光装置は、1次光を発する発光素子と、その1次光の一部を吸収してその波長以上の波長を含む2次光を発する波長変換部とを含み、その波長変換部は1種以上の青色系発光蛍光体、1種以上の黄色系発光蛍光体、および1種以上の赤色系発光蛍光体を含み、青色系発光蛍光体は、一般式:(M4,Eu)10(PO4)6・Cl2(式中、M4はアルカリ土類金属元素であり、Mg、Ca、SrおよびBaから選ばれる少なくとも1種の元素を示す)で実質的に表される2価のユーロピウム付活ハロ燐酸塩蛍光体、一般式:c(M5,Eu)O・dAl2O3(式中、M5は2価の金属元素であり、Mg、Ca、Sr、BaおよびZnから選ばれる少なくとも1種の元素を示し、cおよびdはc>0、d>0、および0.1≦c/d≦1.0を満足する数である)で実質的に表される2価のユーロピウム付活アルミン酸塩蛍光体、および一般式:c(M5,Eue,Mnf)O・dAl2O3(式中、M5は2価の金属元素であり、Mg、Ca、Sr、BaおよびZnから選ばれる少なくとも1種の元素を示し、c、d、eおよびfはc>0、d>0、0.1≦c/d≦1.0、および0.001≦f/e≦0.2を満足する数である)で実質的に表される2価のユーロピウムおよびマンガン付活アルミン酸塩蛍光体から選ばれる少なくとも1種を含み、黄色系発光蛍光体は、一般式:2(M11-aEua)O・SiO2(式中、M1は少なくともSrを含み、かつSrを含めたMg、CaおよびBaから選ばれた1つあるいは複数の元素からなり、aは0.005≦a≦0.10を満足する数であり、M1、Euを合わせた組成を1とした場合にSrの組成は0.5以上である)で実質的に表される2価のユーロピウム付活珪酸塩蛍光体を含み、赤色系発光蛍光体は、一般式:(M21-bEub)M3SiN3(式中、M2はMg、Ca、SrおよびBaから選ばれる少なくとも1種の元素を示し、M3はAl、Ga、In、Sc、Y、La、GdおよびLuから選ばれる少なくとも1種の元素を示し、bは0.001≦b≦0.05を満足する数である)で実質的に表される2価のユーロピウム付活窒化物蛍光体を含むことを特徴としている。 A light-emitting device according to another aspect of the present invention includes a light-emitting element that emits primary light, and a wavelength conversion unit that absorbs part of the primary light and emits secondary light including a wavelength equal to or greater than the wavelength. The wavelength conversion unit includes one or more blue light-emitting phosphors, one or more yellow light-emitting phosphors, and one or more red light-emitting phosphors, and the blue light-emitting phosphor has a general formula: (M4 , Eu) 10 (PO 4 ) 6 · Cl 2 (wherein M4 is an alkaline earth metal element and represents at least one element selected from Mg, Ca, Sr and Ba). Divalent europium activated halophosphate phosphor, general formula: c (M5, Eu) O.dAl 2 O 3 (wherein M5 is a divalent metal element, Mg, Ca, Sr, Ba and And at least one element selected from Zn, c and d are c> 0, d> 0, and 0.1 ≦ c / d ≦ 1.0 is a number satisfying) substantially bivalent with europium activated aluminate phosphor represented by, and the general formula: c (M5, Eu e, Mn f ) O.dAl 2 O 3 (wherein M5 is a divalent metal element and represents at least one element selected from Mg, Ca, Sr, Ba and Zn, and c, d, e and f are c) > 0, d> 0, 0.1 ≦ c / d ≦ 1.0, and 0.001 ≦ f / e ≦ 0.2). It contains at least one selected from manganese-activated aluminate phosphors, and the yellow light-emitting phosphor has the general formula: 2 (M1 1-a Eu a ) O.SiO 2 (wherein M1 contains at least Sr) And one or a plurality of elements selected from Mg, Ca and Ba including Sr, and a is 0 0.005 ≦ a ≦ 0.10, and the composition of Sr is 0.5 or more when the combined composition of M1 and Eu is 1, the divalent europium substantially represented by The red light emitting phosphor includes an activated silicate phosphor, and has a general formula: (M2 1-b Eu b ) M3SiN 3 (wherein M2 is at least one element selected from Mg, Ca, Sr and Ba) M3 represents at least one element selected from Al, Ga, In, Sc, Y, La, Gd and Lu, and b is a number satisfying 0.001 ≦ b ≦ 0.05. A divalent europium activated nitride phosphor substantially represented is included.
なお、この場合には、発光素子は窒化ガリウム系半導体で形成されており、その発光素子が発する1次光のピ−ク波長が380nmから420nmの範囲内にあることが好ましい。 In this case, the light emitting element is formed of a gallium nitride semiconductor, and the peak wavelength of the primary light emitted from the light emitting element is preferably in the range of 380 nm to 420 nm.
以上の蛍光体組成中のM3は、Al、GaおよびInから選ばれる少なくとも1種の元素であり得る。また、波長変換部に含まれる複数種の蛍光体は、発光素子から発せられる1次光の光路に沿って、より波長の長い2次光を発する蛍光体の順に積層されていることが好ましい。このように波長変換部を積層構造にすることによって、長波長の2次光を発する蛍光体が短波長の2次光を発する蛍光体からの発光を吸収して励起されることを防ぐことができ、これによって波長変換時における特に短波長光の発光ロスを避けることができる。 M3 in the above phosphor composition may be at least one element selected from Al, Ga and In. Moreover, it is preferable that the multiple types of phosphors included in the wavelength conversion unit are stacked in the order of phosphors that emit secondary light having a longer wavelength along the optical path of the primary light emitted from the light emitting element. Thus, by making the wavelength conversion part into a laminated structure, it is possible to prevent the phosphor that emits the secondary light having the long wavelength from being excited by absorbing the light emitted from the phosphor that emits the secondary light having the short wavelength. This makes it possible to avoid a light emission loss of particularly short wavelength light during wavelength conversion.
以上のような発光装置は、色温度が4000K以下の白色光を放射することができる。なお、発光装置からの白色光の色温度が4000Kを超える場合には、従来の青色発光の発光素子(ピーク波長が450nm前後)とその青色光により励起されて黄色発光を示す3価のセリウムで付活された(Y,Gd)3(Al,Ga)5O12蛍光体または2価のユーロピウムで付活された(Sr,Ba,Ca)2SiO4蛍光体との組み合わせにおいても、比較的偏差(duv)の小さいクリアな白色光を得ることができる。 The light emitting device as described above can emit white light having a color temperature of 4000K or less. When the color temperature of white light from the light emitting device exceeds 4000K, a conventional blue light emitting element (peak wavelength is around 450 nm) and trivalent cerium that emits yellow light when excited by the blue light. Even in combination with activated (Y, Gd) 3 (Al, Ga) 5 O 12 phosphor or (Sr, Ba, Ca) 2 SiO 4 phosphor activated with divalent europium, Clear white light with a small deviation (duv) can be obtained.
以上のような本発明による蛍光体を含む波長変換部を有する発光装置では、発光素子からの発光を効率良く吸収して高効率で白色光を発するとともに、黄色みのないクリアな白色光を得ることができる。 In the light emitting device having the wavelength conversion unit including the phosphor according to the present invention as described above, the light emitted from the light emitting element is efficiently absorbed to emit white light with high efficiency, and clear white light without yellowing is obtained. be able to.
本発明の発光装置は、1次光を発する発光素子と、前記1次光の一部を吸収して、1次光の波長以上の長さの波長を有する2次光を発する波長変換部とを基本的に備える。本発明の発光装置における波長変換部は、1種以上の黄色系発光蛍光体および1種以上の赤色系発光蛍光体を含む。 A light-emitting device of the present invention includes a light-emitting element that emits primary light, a wavelength conversion unit that absorbs a part of the primary light and emits secondary light having a wavelength longer than the wavelength of the primary light, and Is basically provided. The wavelength conversion unit in the light emitting device of the present invention includes one or more yellow light emitting phosphors and one or more red light emitting phosphors.
本発明の発光装置における波長変換部に用いられる黄色系発光蛍光体は、
一般式:2(M11-aEua)O・SiO2
で実質的に表される2価のユーロピウム付活珪酸塩蛍光体である。
The yellow light-emitting phosphor used for the wavelength conversion unit in the light-emitting device of the present invention is
General formula: 2 (M1 1-a Eu a ) O.SiO 2
Is a divalent europium activated silicate phosphor substantially represented by
上記一般式中、M1はアルカリ土類金属であり、少なくともSrを含み、かつSrを含めたMg、CaおよびBaから選ばれた1つあるいは複数の元素からなることが好ましい。 In the above general formula, M1 is an alkaline earth metal, and preferably contains at least Sr and is composed of one or more elements selected from Mg, Ca and Ba including Sr.
また上記一般式中、aの値は、0.005≦a≦0.10であり、0.01≦a≦0.05であるのが好ましい。aの値が0.005未満であると、十分な明るさが得られないという不具合があり、aの値が0.10を越えると、明るさが大きく低下するという不具合がある。また上記一般式中、M1、Euを合わせた組成を1とした場合にSrの組成は0.5以上である。 In the above general formula, the value of a is 0.005 ≦ a ≦ 0.10, and preferably 0.01 ≦ a ≦ 0.05. When the value of a is less than 0.005, there is a problem that sufficient brightness cannot be obtained, and when the value of a exceeds 0.10, there is a problem that the brightness is greatly reduced. In the above general formula, when the total composition of M1 and Eu is 1, the composition of Sr is 0.5 or more.
また、本発明の発光装置の波長変換部における黄色系発光蛍光体の粒径(平均粒径、通気法)については特に制限されるものではないが、6〜15μmの範囲内であるのが好ましく、8〜13μmの範囲内であるのがより好ましい。黄色系発光蛍光体の粒径が6μm未満であると、結晶成長が不十分であり、明るさが大きく低下する傾向にあり、また15μmを超えると、通常の樹脂中では、沈降の制御が難しくなる傾向にあるためである。 Further, the particle size (average particle size, ventilation method) of the yellow light-emitting phosphor in the wavelength conversion part of the light emitting device of the present invention is not particularly limited, but is preferably in the range of 6 to 15 μm. More preferably, it is in the range of 8 to 13 μm. If the particle size of the yellow light-emitting phosphor is less than 6 μm, crystal growth is insufficient and the brightness tends to decrease greatly. If it exceeds 15 μm, it is difficult to control sedimentation in ordinary resins. It is because it tends to become.
また本発明の発光装置における波長変換部に用いられる赤色系発光蛍光体は、
一般式:(M21-bEub)M3SiN3
で実質的に表される2価のユーロピウム付活窒化物蛍光体である。
Moreover, the red light emitting phosphor used for the wavelength conversion unit in the light emitting device of the present invention,
General formula: (M2 1-b Eu b ) M3SiN 3
Is a divalent europium activated nitride phosphor substantially represented by
上記一般式中、M2はアルカリ土類金属であり、Mg、Ca、SrおよびBaから選ばれる少なくとも1種の元素を示す。また上記一般式中、M3は3価の金属元素であり、Al、Ga、In、Sc、Y、La、GdおよびLuから選ばれる少なくとも1種の元素を示す。 In the above general formula, M2 is an alkaline earth metal and represents at least one element selected from Mg, Ca, Sr and Ba. In the above general formula, M3 is a trivalent metal element and represents at least one element selected from Al, Ga, In, Sc, Y, La, Gd, and Lu.
また上記一般式中、bの値は、0.001≦b≦0.05であり、0.005≦b≦0.02であるのが好ましい。bの値が0.001未満であると、十分な明るさが得られないという不具合があり、bの値が0.05を越えると、濃度消光等により、明るさが大きく低下するという不具合がある。 In the above general formula, the value of b is 0.001 ≦ b ≦ 0.05, and preferably 0.005 ≦ b ≦ 0.02. When the value of b is less than 0.001, there is a problem that sufficient brightness cannot be obtained. When the value of b exceeds 0.05, there is a problem that the brightness is greatly reduced due to concentration quenching or the like. is there.
また、本発明の発光装置の波長変換部における赤色系発光蛍光体の粒径(平均粒径、通気法)についても特に制限されるものではないが、3〜10μmの範囲内であるのが好ましく、4〜7μmの範囲内であるのがより好ましい。赤色系発光蛍光体の粒径が3μm未満であると、結晶成長が不十分であり、明るさが大きく低下する傾向にある。一方、10μmを超える粒径のものを調製する場合には、異常成長した粗大粒子が生成しやすく、実用的ではない。 Further, the particle diameter (average particle diameter, aeration method) of the red light emitting phosphor in the wavelength conversion part of the light emitting device of the present invention is not particularly limited, but is preferably in the range of 3 to 10 μm. More preferably, it is in the range of 4 to 7 μm. When the particle size of the red light emitting phosphor is less than 3 μm, crystal growth is insufficient and the brightness tends to be greatly reduced. On the other hand, when a particle having a particle size exceeding 10 μm is prepared, abnormally grown coarse particles are likely to be generated, which is not practical.
また本発明の発光装置においては、前記赤色系発光蛍光体として、上記一般式中、M3がAl、GaおよびInから選ばれる少なくとも1種の元素である、2価のユーロピウム付活窒化物蛍光体を用いてなることが、好ましい。当該2価のユーロピウム付活窒化物蛍光体を赤色系発光蛍光体として用いることで、より一層高効率に赤色系を発光することができる。 In the light emitting device of the present invention, as the red light emitting phosphor, a divalent europium activated nitride phosphor in which M3 is at least one element selected from Al, Ga and In in the above general formula It is preferable to use. By using the divalent europium activated nitride phosphor as a red light emitting phosphor, it is possible to emit red light with higher efficiency.
本発明の発光装置において前記波長変換部に用いられる複数の蛍光体は、波長変換部の1次光の入射側から出射側に向かって、2次光の波長の長い蛍光体順に積層されたものであることが好ましい。このように積層されてなることによって、蛍光体層から発せられた可視光はその上に積層された蛍光体層に殆ど吸収されることなく、良好に外部に取り出すことができるという効果を発揮する発光装置を提供することができる。蛍光体は、具体的には、赤色系発光蛍光体、黄色系発光蛍光体(、青色系発光蛍光体)という順で、波長変換部の1次光の入射側から出射側に向かって積層されてなるのが好適である。 In the light emitting device of the present invention, the plurality of phosphors used in the wavelength conversion unit are stacked in the order of phosphors having a long wavelength of secondary light from the primary light incident side to the emission side of the wavelength conversion unit. It is preferable that By being laminated in this manner, the visible light emitted from the phosphor layer is hardly absorbed by the phosphor layer laminated thereon and can be effectively taken out to the outside. A light-emitting device can be provided. Specifically, the phosphors are stacked in the order of red light emitting phosphors and yellow light emitting phosphors (and blue light emitting phosphors) from the primary light incident side to the emission side of the wavelength conversion unit. It is preferable that
本発明の発光装置における波長変換部は、上述した黄色系発光蛍光体および赤色系発光蛍光体を含有し、発光素子から発せられる1次光の一部を吸収して、1次光の波長以上の長さの波長を有する2次光を発し得るものであれば、その媒質は特に制限されるものではない。媒質(透明樹脂)としては、たとえばエポキシ樹脂、シリコーン樹脂、尿素樹脂等を用いることができる。 The wavelength conversion unit in the light emitting device of the present invention contains the above-described yellow light emitting phosphor and red light emitting phosphor, absorbs a part of the primary light emitted from the light emitting element, and has a wavelength equal to or greater than the wavelength of the primary light. The medium is not particularly limited as long as it can emit secondary light having a wavelength of λ. As the medium (transparent resin), for example, an epoxy resin, a silicone resin, a urea resin, or the like can be used.
また、波長変換部は、上述した蛍光体および媒質以外に、本発明の効果を阻害しない範囲で、適宜のSiO2、TiO2、ZrO2、Al2O3、Y2O3などの添加剤を含有していても勿論よい。 In addition to the phosphor and the medium described above, the wavelength conversion unit is a suitable additive such as SiO 2 , TiO 2 , ZrO 2 , Al 2 O 3 , and Y 2 O 3 as long as the effects of the present invention are not impaired. Of course, it may be contained.
本発明の発光装置に用いられる発光素子としては、効率の観点から、窒化ガリウム(GaN)系半導体を好ましく用いることができる。本発明の発光装置を効率的に発光させる観点から、本発明の発光装置に用いられる発光素子はピーク波長が430nm〜480nm(より好ましくは460nm〜480nm)の範囲の1次光を発するものであることが好ましい。発光素子が発する1次光のピーク波長が430nm未満の場合には、演色性が悪くなり、本発明の目的に合致しなくなる虞がある。また、480nmを超えると、白色での明るさが低下し、実用的でなくなる傾向にある。 As the light-emitting element used in the light-emitting device of the present invention, a gallium nitride (GaN) -based semiconductor can be preferably used from the viewpoint of efficiency. From the viewpoint of efficiently emitting light from the light emitting device of the present invention, the light emitting element used in the light emitting device of the present invention emits primary light having a peak wavelength in the range of 430 nm to 480 nm (more preferably 460 nm to 480 nm). It is preferable. When the peak wavelength of the primary light emitted from the light emitting element is less than 430 nm, the color rendering is deteriorated, and there is a possibility that it does not meet the object of the present invention. On the other hand, if it exceeds 480 nm, the brightness in white tends to be reduced, which tends to be impractical.
また本発明は、上述した1種以上の黄色系発光蛍光体および1種以上の赤色系発光蛍光体に加え、1種以上の青色系発光蛍光体をさらに含む波長変換部を備える発光装置を提供する。この場合、青色系発光蛍光体としては、以下の2価のユーロピウム付活ハロ燐酸塩蛍光体、2価のユーロピウム付活アルミン酸塩蛍光体、および2価のユーロピウム及びマンガン付活アルミン酸塩蛍光体から選ばれる少なくともいずれかが、好ましい。 The present invention also provides a light emitting device including a wavelength conversion unit further including one or more blue light emitting phosphors in addition to the one or more yellow light emitting phosphors and one or more red light emitting phosphors. To do. In this case, as the blue light emitting phosphor, the following divalent europium activated halophosphate phosphor, divalent europium activated aluminate phosphor, and divalent europium and manganese activated aluminate fluorescence At least one selected from the body is preferable.
本発明において青色系発光蛍光体として用いられる2価のユーロピウム付活ハロ燐酸塩蛍光体は、
一般式:(M4,Eu)10(PO4)6・Cl2
で実質的に表される。ここで、上記一般式中、M4はアルカリ土類金属であり、Mg、Ca、SrおよびBaから選ばれる少なくとも1種の元素を示す。
The divalent europium activated halophosphate phosphor used as the blue light-emitting phosphor in the present invention is:
General formula: (M4, Eu) 10 (PO 4 ) 6 · Cl 2
Is substantially represented by Here, in the above general formula, M4 is an alkaline earth metal and represents at least one element selected from Mg, Ca, Sr and Ba.
また本発明において青色系発光蛍光体として用いられる2価のユーロピウム付活アルミン酸塩蛍光体は、
一般式:c(M5,Eu)O・dAl2O3
で実質的に表される。ここで、上記一般式中、M5は2価の金属元素であり、Mg、Ca、Sr、BaおよびZnから選ばれる少なくとも1種の元素を示す。
In addition, the divalent europium activated aluminate phosphor used as the blue light-emitting phosphor in the present invention,
General formula: c (M5, Eu) O.dAl 2 O 3
Is substantially represented by Here, in the above general formula, M5 is a divalent metal element and represents at least one element selected from Mg, Ca, Sr, Ba and Zn.
また上記一般式中、2価の金属元素とAlとの比率(c/d)は0.1≦c/d≦1.0であり、これ以外の組成では、満足な青色系発光蛍光体としての特性が得られない。なお、上記一般式中、c>0、d>0である。 In the above general formula, the ratio (c / d) between the divalent metal element and Al is 0.1 ≦ c / d ≦ 1.0. With other compositions, a satisfactory blue light-emitting phosphor is obtained. The characteristics cannot be obtained. In the above general formula, c> 0 and d> 0.
また、本発明において青色系発光蛍光体として用いられる2価のユーロピウム及びマンガン付活アルミン酸塩蛍光体は、
一般式:c(M5,Eue,Mnf)O・dAl2O3
で実質的に表される。上記一般式中、M5は2価の金属元素であり、上述と同様に、Mg、Ca、Sr、BaおよびZnから選ばれる少なくとも1種の元素を示す。
In addition, the divalent europium and manganese activated aluminate phosphor used as the blue light-emitting phosphor in the present invention,
General formula: c (M5, Eu e, Mn f) O · dAl 2
Is substantially represented by In the above general formula, M5 is a divalent metal element and represents at least one element selected from Mg, Ca, Sr, Ba and Zn, as described above.
2価の金属元素とAlとの比率(c/d)は0.1≦c/d≦1.0であるのが好ましく、これ以外の組成では、満足な青色系発光蛍光体としての特性が得られない。また、ユーロピウムとマンガンとの比率(e/f)は、0.001≦e/f≦0.2であるのが好ましく、0.001未満では、マンガンの発光の寄与が認められず、0.2を超えると、白色での明るさが低下し、実用的ではない。なお、上記一般式において、c>0、d>0である。 The ratio (c / d) of the divalent metal element to Al is preferably 0.1 ≦ c / d ≦ 1.0. With other compositions, satisfactory characteristics as a blue light-emitting phosphor are obtained. I can't get it. Further, the ratio (e / f) between europium and manganese is preferably 0.001 ≦ e / f ≦ 0.2, and if it is less than 0.001, the contribution of light emission of manganese is not recognized. When it exceeds 2, the brightness in white decreases, which is not practical. In the above general formula, c> 0 and d> 0.
本発明の発光装置の波長変換部における青色系発光蛍光体の粒径についても特に制限されるものではないが、2価のユーロピウム付活ハロ燐酸塩蛍光体の場合には、3.0〜9.0μmの範囲内であるのが好ましく、4.5〜6.5μmの範囲内であるのがより好ましい。2価のユーロピウム付活ハロ燐酸塩蛍光体の粒径が3.0μm未満であると、結晶成長が不十分であり、明るさが大きく低下する傾向にある。一方、9.0μmを超える粒径のものを調製する場合には、異常成長した粗大粒子が生成しやすく、実用的でなくなる傾向にある。また2価のユーロピウム付活アルミン酸塩蛍光体あるいは2価のユーロピウムおよびマンガン付活アルミン酸塩蛍光体の場合には、2.0〜7.0μmの範囲内であるのが好ましく、3.0〜5.0μmの範囲内であるのがより好ましい。2価のユーロピウム付活アルミン酸塩蛍光体あるいは2価のユーロピウムおよびマンガン付活アルミン酸塩蛍光体の粒径が2.0μm未満であると、結晶成長が不十分であり、明るさが大きく低下する傾向にある。一方、7.0μmを超える粒径のものを調製する場合には、異常成長した粗大粒子が生成しやすく、実用的でなくなる傾向にあるためである。 The particle size of the blue light-emitting phosphor in the wavelength conversion part of the light-emitting device of the present invention is not particularly limited, but in the case of a divalent europium-activated halophosphate phosphor, 3.0 to 9 It is preferably within a range of 0.0 μm, and more preferably within a range of 4.5 to 6.5 μm. When the particle diameter of the divalent europium activated halophosphate phosphor is less than 3.0 μm, crystal growth is insufficient and the brightness tends to be greatly reduced. On the other hand, when a particle having a particle diameter exceeding 9.0 μm is prepared, abnormally grown coarse particles are likely to be generated, which tends to be impractical. In the case of a divalent europium activated aluminate phosphor or a divalent europium and manganese activated aluminate phosphor, it is preferably in the range of 2.0 to 7.0 μm, 3.0 More preferably, it is in the range of ˜5.0 μm. If the particle size of the divalent europium activated aluminate phosphor or the divalent europium and manganese activated aluminate phosphor is less than 2.0 μm, crystal growth is insufficient and the brightness is greatly reduced. Tend to. On the other hand, when a particle having a particle diameter exceeding 7.0 μm is prepared, abnormally grown coarse particles are likely to be generated and tend to be impractical.
上述した黄色系発光蛍光体および赤色系発光蛍光体に加えて、青色系発光蛍光体をさらに含む波長変換部を備える発光装置において、黄色系発光蛍光体および赤色系発光蛍光体として好適なものは上述したのと同様である。また、このような態様の発光装置においても、前記波長変換部に用いられる複数の蛍光体は、波長変換部の光の入射側から出射側に向かって、2次光の波長の長い蛍光体順に積層されたものであることが好ましい。また、波長変換部の形成に用いられる媒質としても、上述と同様のものを好適に用いることができる。 In addition to the yellow light-emitting phosphor and the red light-emitting phosphor described above, in a light emitting device including a wavelength conversion unit further including a blue light-emitting phosphor, those suitable as the yellow light-emitting phosphor and the red light-emitting phosphor are The same as described above. Also in the light emitting device of such an aspect, the plurality of phosphors used in the wavelength conversion unit are arranged in the order of phosphors having a long wavelength of secondary light from the light incident side to the emission side of the wavelength conversion unit. It is preferable that they are laminated. Also, the same medium as described above can be suitably used as the medium used for forming the wavelength conversion section.
上述した黄色系発光蛍光体および赤色系発光蛍光体に加えて、青色系発光蛍光体をさらに含む波長変換部を備える発光装置において用いられる発光素子としては、効率の観点から、窒化ガリウム(GaN)系半導体を好ましく用いることができる。 From the viewpoint of efficiency, gallium nitride (GaN) is used as a light emitting device used in a light emitting device including a wavelength conversion unit further including a blue light emitting phosphor in addition to the yellow light emitting phosphor and the red light emitting phosphor described above. A system semiconductor can be preferably used.
また黄色系発光蛍光体および赤色系発光蛍光体に加えて、青色系発光蛍光体をさらに含む波長変換部を備える発光装置に用いられる発光素子は、青色系発光蛍光体を効率よく発光させる観点から、ピーク波長が380nm〜420nmの範囲の一次光を発するものであることが好ましく、395nm〜410nmの範囲の一次光を発するものであることがより好ましい。発光素子が発する一次光のピーク波長が380nm未満の場合、樹脂等の劣化が無視できなくなり、実用的ではない虞がある。また、420nmを超えると、青色系発光蛍光体の発光強度が大きく低下し、実用的ではない虞がある。 In addition to the yellow light-emitting phosphor and the red light-emitting phosphor, the light-emitting element used in the light-emitting device including the wavelength conversion unit further including the blue light-emitting phosphor is from the viewpoint of efficiently emitting the blue light-emitting phosphor. In addition, it is preferable to emit primary light having a peak wavelength in the range of 380 nm to 420 nm, and it is more preferable to emit primary light in the range of 395 nm to 410 nm. When the peak wavelength of the primary light emitted from the light emitting element is less than 380 nm, the deterioration of the resin or the like cannot be ignored, and there is a possibility that it is not practical. On the other hand, if it exceeds 420 nm, the emission intensity of the blue light-emitting phosphor is greatly reduced, which may be impractical.
また本発明の発光装置は、相関色温度が4000K以下の白色光を発するものであることが、好ましい。ここで、相関色温度は、JIS−Z8725に規格されたものを指す。 In addition, the light emitting device of the present invention preferably emits white light having a correlated color temperature of 4000 K or less. Here, the correlated color temperature refers to that specified in JIS-Z8725.
本発明の発光装置に用いられる黄色系発光蛍光体、赤色系発光蛍光体および青色系発光蛍光体は、従来公知の適宜の方法にて作製したものを用いてもよいし、また市販のものを用いても勿論よい。また、本発明の発光装置における波長変換部は、上述した黄色系発光蛍光体、赤色系発光蛍光体(および場合によっては青色系発光蛍光体)を適宜の樹脂中に分散させ、適宜の条件で成形することによって作製することが可能であり、その作製方法は特に制限されるものではない。 The yellow light-emitting phosphor, red light-emitting phosphor and blue light-emitting phosphor used in the light-emitting device of the present invention may be those prepared by a conventionally known appropriate method, or those commercially available. Of course, it may be used. In addition, the wavelength conversion unit in the light emitting device of the present invention disperses the above-described yellow light emitting phosphor and red light emitting phosphor (and sometimes the blue light emitting phosphor) in an appropriate resin, and under appropriate conditions. It can be produced by molding, and its production method is not particularly limited.
以下、実施例および比較例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。 EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated in detail, this invention is not limited to these.
(実施例1)
図1は、本発明による実施例1の発光装置を模式的縦断面図で示している。この発光装置10は、1次光を発する発光素子11と、1次光の少なくとも一部を吸収してその1次光の波長以上の波長を有する2次光を発する波長変換部12とを備えている。この波長変換部12は、樹脂中に分散された赤色系発光蛍光体13と黄色系発光蛍光体14とを含んでいる。
Example 1
FIG. 1 is a schematic longitudinal sectional view showing a light emitting device of Example 1 according to the present invention. The
本実施例1においては、発光素子11の発光層として、450nmに発光ピーク波長を有する窒化ガリウム(GaN)系半導体が利用された。波長変換部12では、黄色系発光蛍光体14として2(Sr0.93Ba0.05Eu0.02)O・SiO2が利用され、赤色系発光蛍光体13として(Ca0.98Eu0.02)AlSiN3が利用された。
In Example 1, a gallium nitride (GaN) -based semiconductor having an emission peak wavelength at 450 nm was used as the light emitting layer of the light emitting element 11. In the
すなわち、これらの黄色系発光蛍光体14と赤色系発光蛍光体13とを1:0.2の割合で混合して所定の樹脂中に分散させることによって、波長変換部12が作製されている。このように、発光素子11と波長変換部12とを組み込んだ発光装置10の特性が評価され、その評価結果が表1に示されている。
That is, the
他方、波長変換部12において黄色系発光蛍光体14の組成が(Y0.50Gd0.35Ce0.15)3Al5O12に変更されたこと以外は実施例1と同じ条件で、比較例1の発光装置も作製された。この比較例1の発光装置の特性も評価され、その評価結果も表1に示されている。
On the other hand, the light-emitting device of Comparative Example 1 is the same as Example 1 except that the composition of the yellow light-emitting
表1から明らかなように、本実施例1の発光装置は、従来品に対応する比較例1に比べて、黄色みのないクリアな白色光が得られることが分かる。すなわち、本実施例1においては、比較例1に比べて、偏差(duv)が遥かに小さくなっている。 As is apparent from Table 1, it can be seen that the light emitting device of Example 1 can obtain clear white light without yellowing as compared with Comparative Example 1 corresponding to the conventional product. That is, in the first embodiment, the deviation (duv) is much smaller than that in the first comparative example.
ここで、Tcは発光装置の発光色の相関色温度を表し、duvは発光色度点の黒体輻射軌跡からの偏差(U*V*W*色度図(CIE1964均等色空間)上における発光色の色度点から黒体
輻射軌跡に降ろした垂線の長さ)を表す。duvが0.01以下であれば通常のタングステンフィラメント電球などと同様に、着色のない白色と感じられるとされている。
Here, Tc represents the correlated color temperature of the light emission color of the light emitting device, and duv represents the light emission on the deviation (U * V * W * chromaticity diagram (CIE1964 uniform color space)) of the light emission chromaticity point from the black body radiation locus. Represents the length of the perpendicular drawn from the chromaticity point of the color to the blackbody radiation locus). If duv is 0.01 or less, it is said that it is perceived as uncolored white like a normal tungsten filament bulb.
なお、表1において本実施例1の発光装置の明るさは比較例1に比べて低くなっているが、比較例1と同じTc−duvの値を生じるように本発明における蛍光体の組成範囲を調整した場合には、比較例1に比べて概略同等以上の明るさを得ることができる。 In Table 1, although the brightness of the light emitting device of Example 1 is lower than that of Comparative Example 1, the composition range of the phosphor in the present invention so as to produce the same Tc-duv value as Comparative Example 1. In the case of adjusting the brightness, it is possible to obtain a brightness approximately equal to or higher than that of Comparative Example 1.
他方、比較例1の場合においては、その蛍光体組成範囲をどのように調整しても、本実施例1に比べて同等のTc−duvにすることはできない。 On the other hand, in the case of Comparative Example 1, no matter how the phosphor composition range is adjusted, it is not possible to make the Tc-duv equivalent to that of Example 1.
(実施例2)
図2は、本発明による実施例2の発光装置を模式的縦断面図で示している。この発光装置は、1次光を発する発光素子11と、1次光の少なくとも一部を吸収してその1次光の波長以上の波長を有する2次光を発する波長変換部20とを備えている。この波長変換部20は、分散された赤色系発光蛍光体を含む樹脂層21と分散された黄色系発光蛍光体を含む樹脂層22とを含んでいる。そして、赤色系発光蛍光体を含む樹脂層21は発光素子11に近接して配置され、その上に黄色系発光蛍光体を含む樹脂層22が積層されている。
(Example 2)
FIG. 2 is a schematic longitudinal sectional view of the light emitting device of Example 2 according to the present invention. The light emitting device includes a light emitting element 11 that emits primary light, and a
本実施例2においては、発光素子11の発光層として、450nmに発光ピーク波長を有する窒化ガリウム(GaN)系半導体が利用された。波長変換部20では、黄色系発光蛍光体として2(Sr0.900Ba0.075Ca0.010Eu0.015)O・SiO2が利用され、赤色系発光蛍光体として(Ca0.97Sr0.01Eu0.02)(Al0.98Ga0.02)SiN3が利用された。
In Example 2, a gallium nitride (GaN) -based semiconductor having an emission peak wavelength at 450 nm was used as the light emitting layer of the light emitting element 11. In the
すなわち、これらの黄色系発光蛍光体と赤色系発光蛍光体とをそれぞれ個別の樹脂中に分散させ、赤色系発光蛍光体を含む樹脂層21と黄色系発光蛍光体を含む樹脂層22をこの順に積層して波長変換部22が作製された。このように、発光素子11と波長変換部20とを組み込んだ発光装置の特性が評価され、その評価結果が表2に示されている。
That is, the yellow light-emitting phosphor and the red light-emitting phosphor are dispersed in separate resins, respectively, and the
他方、本実施例2の黄色系発光蛍光体と赤色系発光蛍光体とを混合して同一樹脂層中に分散させたこと以外は本実施例2と同一の条件で、参考例1の発光装置が作製された。この参考例1の発光装置の特性も評価され、その評価結果も表2に示されている。 On the other hand, the light emitting device of Reference Example 1 was used under the same conditions as in Example 2 except that the yellow light emitting phosphor and red light emitting phosphor of Example 2 were mixed and dispersed in the same resin layer. Was made. The characteristics of the light emitting device of Reference Example 1 were also evaluated, and the evaluation results are also shown in Table 2.
表2から明らかなように、本実施例2の発光装置でも黄色みのないクリアな白色光が得られている。また、参考例1との比較から明らかなように、2次光の波長がより長い蛍光体を含む樹脂層を発光素子11に近い方から順に積層することによって、その発光装置の明るさも著しく向上することが分かる。 As is clear from Table 2, clear white light without yellowing is also obtained in the light emitting device of Example 2. As is clear from comparison with Reference Example 1, the brightness of the light-emitting device is also significantly improved by laminating a resin layer containing a phosphor having a longer secondary light wavelength in order from the side closer to the light-emitting element 11. I understand that
(実施例3)
本発明による実施例3においては、発光素子の発光層として、435nmに発光ピーク波長を有する窒化ガリウム(GaN)系半導体が利用された。波長変換部には、黄色系発光蛍光体として2(Sr0.90Ba0.07Ca0.01Eu0.02)O・SiO2が利用され赤色系発光蛍光体として(Ca0.985Eu0.015)(Al0.99In0.01)SiN3が利用された。これらの黄色系発光蛍光体と赤色系発光蛍光体とを所定の割合で混合して同一樹脂層中に分散させることによって、波長変換部が作製された。このような発光素子と波長変換部とを組み込んだ本実施例3の発光装置についてその特性を評価し、その評価結果が表3に示されている。
(Example 3)
In Example 3 according to the present invention, a gallium nitride (GaN) -based semiconductor having an emission peak wavelength at 435 nm was used as the light emitting layer of the light emitting element. In the wavelength conversion section, 2 (Sr 0.90 Ba 0.07 Ca 0.01 Eu 0.02 ) O.SiO 2 is used as the yellow light emitting phosphor, and (Ca 0.985 Eu 0.015 ) (Al 0.99 In 0.01 ) SiN 3 is used as the red light emitting phosphor. Was used. These yellow light-emitting phosphors and red light-emitting phosphors were mixed at a predetermined ratio and dispersed in the same resin layer, whereby a wavelength conversion unit was produced. The characteristics of the light emitting device of Example 3 incorporating such a light emitting element and a wavelength conversion unit were evaluated, and the evaluation results are shown in Table 3.
他方、発光素子の発光層として460nmにピーク波長を有する窒化ガリウム(GaN)系半導体を用いかつ黄色系発光蛍光体が(Y0.45Gd0.42Ce0.13)3Al5O12に変更されたこと以外は実施例3と同一の条件で、比較例2の発光装置が作製された。この比較例2の発光装置の特性も評価され、その評価結果も表3に示されている。 On the other hand, except that a gallium nitride (GaN) based semiconductor having a peak wavelength at 460 nm is used as the light emitting layer of the light emitting element and the yellow light emitting phosphor is changed to (Y 0.45 Gd 0.42 Ce 0.13 ) 3 Al 5 O 12. A light emitting device of Comparative Example 2 was fabricated under the same conditions as in Example 3. The characteristics of the light emitting device of Comparative Example 2 were also evaluated, and the evaluation results are also shown in Table 3.
表3から明らかなように、本実施例3の発光装置においても、従来品に対応する比較例2に比べて、黄色みのないクリアな白色光が得られることが分かる。 As is apparent from Table 3, it can be seen that the light emitting device of the third embodiment can obtain clear white light without yellowing as compared with the comparative example 2 corresponding to the conventional product.
(実施例4)
図3は、本発明による実施例4の発光装置を模式的縦断面図で示している。この発光装置は、1次光を発する発光素子30と、1次光の少なくとも一部を吸収してその1次光の波長以上の波長を有する2次光を発する波長変換部31とを備えている。この波長変換部31は、分散された赤色系発光蛍光体を含む樹脂層21と、分散された黄色系発光蛍光体を含む樹脂層22と、分散された青色系発光蛍光体を含む樹脂層32とを含んでいる。そして、赤色系発光蛍光体を含む樹脂層21が発光素子30に近接して配置され、その上に黄色系発光蛍光体を含む樹脂層22と青色系発光蛍光体を含む樹脂層32とが順次積層されている。
Example 4
FIG. 3 is a schematic longitudinal sectional view of the light emitting device of Example 4 according to the present invention. The light emitting device includes a
本実施例4においては、発光素子30の発光層として、380nmに発光ピーク波長を有する窒化ガリウム(GaN)系半導体が利用された。波長変換部31には、青色系発光蛍光体としての(Ba0.50Sr0.35Eu0.15)MgAl10O17、黄色系発光蛍光体としての2(Sr0.900Ba0.075Ca0.010Eu0.015)O・SiO2、および赤色系発光蛍光体としての(Ca0.97Sr0.01Eu0.02)(Al0.98Ga0.02)SiN3が利用された。すなわち、これらの青色系発光蛍光体、黄色系発光蛍光体、および赤色系発光蛍光体とをそれぞれ個別の樹脂中に分散させ、発光素子側から赤色系発光蛍光体を含む樹脂層21、黄色系発光蛍光体を含む樹脂層22、および青色系発光蛍光体を含む樹脂層32の順に積層することによって、波長変換部31が作製された。このように、発光素子30と波長変換部31とを組み込んだ本実施例4の発光装置についてその特性を評価し、その評価結果が表4に示されている。
In Example 4, a gallium nitride (GaN) -based semiconductor having an emission peak wavelength at 380 nm was used as the light emitting layer of the
他方、本実施例4の黄色系発光蛍光体、赤色系発光蛍光体、および青色系発光蛍光体とを混合して同一樹脂層中に分散させたこと以外は本実施例4と同一の条件で、参考例2の発光装置が作製された。この参考例2の発光装置の特性も評価され、その評価結果も表4に示されている。 On the other hand, under the same conditions as in Example 4, except that the yellow light-emitting phosphor, red light-emitting phosphor, and blue light-emitting phosphor of Example 4 were mixed and dispersed in the same resin layer. A light emitting device of Reference Example 2 was produced. The characteristics of the light emitting device of Reference Example 2 were also evaluated, and the evaluation results are also shown in Table 4.
表4から明らかなように、本実施例4の発光装置では黄色みのないクリアな白色光が得られる。また、また、参考例3との比較から明らかなように、2次光の波長がより長い蛍光体を含む樹脂層を発光素子30に近い方から順に積層することによって、その発光装置の明るさも著しく向上することが分かる。
As is clear from Table 4, the light emitting device of Example 4 can obtain clear white light without yellowishness. Further, as apparent from comparison with Reference Example 3, the brightness of the light emitting device can be improved by laminating a resin layer containing a phosphor having a longer secondary light wavelength in order from the
(実施例5〜10)
実施例1に類似しているが発光素子の発光ピーク波長と蛍光体の組成を種々に変更することによって、本発明による実施例5〜10と比較例3〜8の発光装置が作製された。そして、それらの発光装置について種々の特性が評価され、それらの評価結果が表5にまとめて示されている。
(Examples 5 to 10)
Although it is similar to Example 1, the light emission device of Examples 5-10 and Comparative Examples 3-8 by this invention was produced by changing the light emission peak wavelength of a light emitting element, and the composition of a fluorescent substance variously. Various characteristics of these light emitting devices are evaluated, and the evaluation results are summarized in Table 5.
表5から明らかなように、本発明による実施例5〜10の発光装置においては、従来品に相当する比較例3〜8に比べて、黄色みのないクリアな白色光が得られることが分かる。 As is clear from Table 5, in the light emitting devices of Examples 5 to 10 according to the present invention, clear white light without yellowing can be obtained as compared with Comparative Examples 3 to 8 corresponding to conventional products. .
なお、上述の各実施例の発光素子の発光ピーク波長は、それらの実施例に示された値に限定されるわけではなく、実施例1〜3および5〜8においては430〜480nmの範囲内にあればよく、実施例4、9、および10では380〜420nmの範囲内にあればよい。 In addition, the light emission peak wavelength of the light emitting element of each above-mentioned Example is not necessarily limited to the value shown in those Examples, and in Examples 1-3 and 5-8, it exists in the range of 430-480 nm. In Examples 4, 9, and 10, it may be in the range of 380 to 420 nm.
また、蛍光体に関しても上述の各実施例に記載された組成範囲に限定されるわけではなく、「課題を解決するための手段」の欄に記載した各構成元素の組成範囲内であればよい。 Further, the phosphor is not limited to the composition range described in each of the above-described embodiments, and may be within the composition range of each constituent element described in the column of “Means for Solving the Problems”. .
今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 It should be understood that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
以上のように、本発明によれば、半導体発光素子からの380nmから480nmの範囲の光によって高効率で発光する特定の蛍光体を用いることにより、高効率かつ低色温度の白色系の光を発する発光装置を提供することができる。 As described above, according to the present invention, by using a specific phosphor that emits light with high efficiency by light in the range of 380 nm to 480 nm from a semiconductor light emitting device, white light with high efficiency and low color temperature can be obtained. A light emitting device that emits light can be provided.
10 発光装置、11 発光素子、12 波長変換部、13 赤色系発光蛍光体、14 黄色系発光蛍光体、20 波長変換部、21 赤色系発光蛍光体を含む樹脂層、22 黄色系発光蛍光体を含む樹脂層、30 発光素子、31 波長変換部、32 青色系発光蛍光体を含む樹脂層。
DESCRIPTION OF
Claims (7)
前記波長変換部は1種以上の黄色系発光蛍光体および1種以上の赤色系発光蛍光体を含み、
前記黄色系発光蛍光体は、
一般式:2(M11-aEua)O・SiO2
(式中、M1は少なくともSrを含み、かつSrを含めたMg、CaおよびBaから選ばれた1つあるいは複数の元素からなり、aは0.005≦a≦0.10を満足する数であり、M1、Euを合わせた組成を1とした場合にSrの組成は0.5以上である)
で実質的に表される2価のユーロピウム付活珪酸塩蛍光体を含み、
前記赤色系発光蛍光体は、
一般式:(M21-bEub)M3SiN3
(式中、M2はMg、Ca、SrおよびBaから選ばれる少なくとも1種の元素を示し、M3はAl、Ga、In、Sc、Y、La、GdおよびLuから選ばれる少なくとも1種の元素を示し、bは0.001≦b≦0.05を満足する数である)
で実質的に表される2価のユーロピウム付活窒化物蛍光体を含むことを特徴とする発光装置。 A light emitting element that emits primary light, and a wavelength conversion unit that absorbs part of the primary light and emits secondary light including a wavelength equal to or greater than the wavelength of the primary light,
The wavelength conversion unit includes one or more yellow light-emitting phosphors and one or more red light-emitting phosphors,
The yellow light-emitting phosphor is
General formula: 2 (M1 1-a Eu a ) O.SiO 2
(In the formula, M1 includes at least Sr and is composed of one or more elements selected from Mg, Ca and Ba including Sr, and a is a number satisfying 0.005 ≦ a ≦ 0.10. Yes, the composition of Sr is 0.5 or more when the combined composition of M1 and Eu is 1.
A divalent europium activated silicate phosphor substantially represented by:
The red light emitting phosphor is
General formula: (M2 1-b Eu b ) M3SiN 3
(Wherein M2 represents at least one element selected from Mg, Ca, Sr and Ba, and M3 represents at least one element selected from Al, Ga, In, Sc, Y, La, Gd and Lu. And b is a number satisfying 0.001 ≦ b ≦ 0.05)
And a divalent europium activated nitride phosphor substantially represented by the formula:
前記波長変換部は1種以上の青色系発光蛍光体、1種以上の黄色系発光蛍光体、および1種以上の赤色系発光蛍光体を含み、
前記青色系発光蛍光体は、
一般式:(M4,Eu)10(PO4)6・Cl2
(式中、M4はアルカリ土類金属元素であり、Mg、Ca、SrおよびBaから選ばれる少なくとも1種の元素を示す)
で実質的に表される2価のユーロピウム付活ハロ燐酸塩蛍光体、
一般式:c(M5,Eu)O・dAl2O3
(式中、M5は2価の金属元素であり、Mg、Ca、Sr、BaおよびZnから選ばれる少なくとも1種の元素を示し、cとdはc>0、d>0、および0.1≦c/d≦1.0を満足する数である)
で実質的に表される2価のユーロピウム付活アルミン酸塩蛍光体、および
一般式:c(M5,Eue,Mnf)O・dAl2O3
(式中、M5は2価の金属元素であり、Mg、Ca、Sr、BaおよびZnから選ばれる少なくとも1種の元素を示し、c、d、eおよびfはc>0、d>0、0.1≦c/d≦1.0、および0.001≦f/e≦0.2を満足する数である)
で実質的に表される2価のユーロピウムおよびマンガン付活アルミン酸塩蛍光体から選ばれる少なくとも1種を含み、
前記黄色系発光蛍光体は、
一般式:2(M11-aEua)O・SiO2
(式中、M1は少なくともSrを含み、かつSrを含めたMg、CaおよびBaから選ばれた1つあるいは複数の元素からなり、aは0.005≦a≦0.10を満足する数であり、M1、Euを合わせた組成を1とした場合にSrの組成は0.5以上である)
で実質的に表される2価のユーロピウム付活珪酸塩蛍光体を含み、
前記赤色系発光蛍光体は、
一般式:(M21-bEub)M3SiN3
(式中、M2はMg、Ca、SrおよびBaから選ばれる少なくとも1種の元素を示し、M3はAl、Ga、In、Sc、Y、La、GdおよびLuから選ばれる少なくとも1種の元素を示し、bは0.001≦b≦0.05を満足する数である)
で実質的に表される2価のユーロピウム付活窒化物蛍光体を含むことを特徴とする発光装置。 A light emitting element that emits primary light, and a wavelength conversion unit that absorbs part of the primary light and emits secondary light including a wavelength equal to or greater than the wavelength of the primary light,
The wavelength conversion unit includes one or more blue light-emitting phosphors, one or more yellow light-emitting phosphors, and one or more red light-emitting phosphors,
The blue light emitting phosphor is
General formula: (M4, Eu) 10 (PO 4 ) 6 · Cl 2
(In the formula, M4 is an alkaline earth metal element and represents at least one element selected from Mg, Ca, Sr and Ba)
A divalent europium-activated halophosphate phosphor substantially represented by:
General formula: c (M5, Eu) O.dAl 2 O 3
(Wherein M5 is a divalent metal element and represents at least one element selected from Mg, Ca, Sr, Ba and Zn, and c and d are c> 0, d> 0, and 0.1 ≦ c / d ≦ 1.0 is satisfied)
In divalent europium-activated aluminate phosphor substantially represented, and the general formula: c (M5, Eu e, Mn f) O · dAl 2 O 3
(Wherein, M5 is a divalent metal element and represents at least one element selected from Mg, Ca, Sr, Ba and Zn, and c, d, e and f are c> 0, d> 0, 0.1 ≦ c / d ≦ 1.0 and 0.001 ≦ f / e ≦ 0.2)
At least one selected from divalent europium and manganese-activated aluminate phosphors substantially represented by:
The yellow light-emitting phosphor is
General formula: 2 (M1 1-a Eu a ) O.SiO 2
(In the formula, M1 includes at least Sr and is composed of one or more elements selected from Mg, Ca and Ba including Sr, and a is a number satisfying 0.005 ≦ a ≦ 0.10. Yes, the composition of Sr is 0.5 or more when the combined composition of M1 and Eu is 1.
A divalent europium activated silicate phosphor substantially represented by:
The red light emitting phosphor is
General formula: (M2 1-b Eu b ) M3SiN 3
(Wherein M2 represents at least one element selected from Mg, Ca, Sr and Ba, and M3 represents at least one element selected from Al, Ga, In, Sc, Y, La, Gd and Lu. And b is a number satisfying 0.001 ≦ b ≦ 0.05)
And a divalent europium activated nitride phosphor substantially represented by the formula:
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006218502A JP4890152B2 (en) | 2005-11-08 | 2006-08-10 | Light emitting device |
US11/515,512 US20070052342A1 (en) | 2005-09-01 | 2006-08-31 | Light-emitting device |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005323499 | 2005-11-08 | ||
JP2005323499 | 2005-11-08 | ||
JP2006218502A JP4890152B2 (en) | 2005-11-08 | 2006-08-10 | Light emitting device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007158298A true JP2007158298A (en) | 2007-06-21 |
JP4890152B2 JP4890152B2 (en) | 2012-03-07 |
Family
ID=38242182
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006218502A Expired - Fee Related JP4890152B2 (en) | 2005-09-01 | 2006-08-10 | Light emitting device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4890152B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102008028251A1 (en) | 2007-06-15 | 2008-12-18 | Ricoh Printing Systems, Ltd. | Sheet feeder |
JP2010056398A (en) * | 2008-08-29 | 2010-03-11 | Toshiba Corp | Light emitting device and light emitting apparatus |
JP2010135693A (en) * | 2008-12-08 | 2010-06-17 | Toshiba Corp | Optical semiconductor device and method of manufacturing optical semiconductor device |
JP2010538453A (en) * | 2007-08-31 | 2010-12-09 | エルジー イノテック カンパニー リミテッド | Light emitting device package |
JP2011204840A (en) * | 2010-03-25 | 2011-10-13 | Toshiba Corp | Semiconductor light emitting device and method for manufacturing the same |
US8581488B2 (en) | 2009-08-26 | 2013-11-12 | Mitsubishi Chemical Corporation | White light-emitting semiconductor devices |
JP2018014331A (en) * | 2011-09-02 | 2018-01-25 | シチズン電子株式会社 | Lighting method and light emitting device |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001127346A (en) * | 1999-10-22 | 2001-05-11 | Stanley Electric Co Ltd | Light emitting diode |
JP2003110150A (en) * | 2001-10-01 | 2003-04-11 | Matsushita Electric Ind Co Ltd | Semiconductor light emitting element and light emitting device using the same |
JP2003347588A (en) * | 2002-05-28 | 2003-12-05 | Sumitomo Electric Ind Ltd | White-light emitting device |
JP2004161982A (en) * | 2002-09-24 | 2004-06-10 | Nichia Chem Ind Ltd | Light-emitting device |
JP2004161806A (en) * | 2002-11-08 | 2004-06-10 | Nichia Chem Ind Ltd | Phosphor and light-emitting device |
JP2005239985A (en) * | 2004-02-27 | 2005-09-08 | Dowa Mining Co Ltd | Phosphor and light source and LED |
WO2005091387A1 (en) * | 2004-03-24 | 2005-09-29 | Toshiba Lighting & Technology Corporation | Light-emitting device and illuminating device |
JP2005298805A (en) * | 2004-03-16 | 2005-10-27 | Mitsubishi Chemicals Corp | Light emitting device and lighting device |
-
2006
- 2006-08-10 JP JP2006218502A patent/JP4890152B2/en not_active Expired - Fee Related
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001127346A (en) * | 1999-10-22 | 2001-05-11 | Stanley Electric Co Ltd | Light emitting diode |
JP2003110150A (en) * | 2001-10-01 | 2003-04-11 | Matsushita Electric Ind Co Ltd | Semiconductor light emitting element and light emitting device using the same |
JP2003347588A (en) * | 2002-05-28 | 2003-12-05 | Sumitomo Electric Ind Ltd | White-light emitting device |
JP2004161982A (en) * | 2002-09-24 | 2004-06-10 | Nichia Chem Ind Ltd | Light-emitting device |
JP2004161806A (en) * | 2002-11-08 | 2004-06-10 | Nichia Chem Ind Ltd | Phosphor and light-emitting device |
JP2005239985A (en) * | 2004-02-27 | 2005-09-08 | Dowa Mining Co Ltd | Phosphor and light source and LED |
JP2005298805A (en) * | 2004-03-16 | 2005-10-27 | Mitsubishi Chemicals Corp | Light emitting device and lighting device |
WO2005091387A1 (en) * | 2004-03-24 | 2005-09-29 | Toshiba Lighting & Technology Corporation | Light-emitting device and illuminating device |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102008028251A1 (en) | 2007-06-15 | 2008-12-18 | Ricoh Printing Systems, Ltd. | Sheet feeder |
JP2010538453A (en) * | 2007-08-31 | 2010-12-09 | エルジー イノテック カンパニー リミテッド | Light emitting device package |
JP2010056398A (en) * | 2008-08-29 | 2010-03-11 | Toshiba Corp | Light emitting device and light emitting apparatus |
US8581291B2 (en) | 2008-12-08 | 2013-11-12 | Kabushiki Kaisha Toshiba | Semiconductor device and method for manufacturing the same |
JP2010135693A (en) * | 2008-12-08 | 2010-06-17 | Toshiba Corp | Optical semiconductor device and method of manufacturing optical semiconductor device |
US8906716B2 (en) | 2008-12-08 | 2014-12-09 | Kabushiki Kaisha Toshiba | Semiconductor device and method for manufacturing the same |
US9431588B2 (en) | 2008-12-08 | 2016-08-30 | Kabushiki Kaisha Toshiba | Semiconductor device and method for manufacturing the same |
US8581488B2 (en) | 2009-08-26 | 2013-11-12 | Mitsubishi Chemical Corporation | White light-emitting semiconductor devices |
US8829778B2 (en) | 2009-08-26 | 2014-09-09 | Mitsubishi Chemical Corporation | White light-emitting semiconductor devices |
JP2011204840A (en) * | 2010-03-25 | 2011-10-13 | Toshiba Corp | Semiconductor light emitting device and method for manufacturing the same |
US8436378B2 (en) | 2010-03-25 | 2013-05-07 | Kabushiki Kaisha Toshiba | Semiconductor light emitting device and method for manufacturing same |
TWI508329B (en) * | 2010-03-25 | 2015-11-11 | Toshiba Kk | Semiconductor light emitting device and method of manufacturing same |
JP2018014331A (en) * | 2011-09-02 | 2018-01-25 | シチズン電子株式会社 | Lighting method and light emitting device |
Also Published As
Publication number | Publication date |
---|---|
JP4890152B2 (en) | 2012-03-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4769132B2 (en) | Light emitting device | |
US20210057615A1 (en) | System and method for selected pump leds with multiple phosphors | |
JP4832995B2 (en) | Light emitting device | |
US20070052342A1 (en) | Light-emitting device | |
JP4833212B2 (en) | A new phosphor system for white light emitting diodes | |
EP2172983B1 (en) | Light emitting device | |
TWI387635B (en) | A phosphor particle group and a light-emitting device using the same | |
CN103311413B (en) | White light emitting device | |
JP2009019163A (en) | Phosphor particle assembly for light emitting device, light emitting device, and backlight device for liquid crystal display | |
JP4890152B2 (en) | Light emitting device | |
JPWO2009110285A1 (en) | Light emitting device | |
JP2005101651A5 (en) | ||
JP2008081631A (en) | Light-emitting device | |
US11621377B2 (en) | LED and phosphor combinations for high luminous efficacy lighting with superior color control | |
US20130234591A1 (en) | White light emitting device | |
JP2008135725A (en) | Semiconductor light emitting device | |
JP2021502446A (en) | Fluorescent combination, conversion element, optoelectronic device | |
JP4912176B2 (en) | Light emitting device | |
JP2005146172A (en) | Light emitter and phosphor for light emitter | |
JP2006104413A (en) | Phosphor and white light emitting device using the same | |
EP3900058B1 (en) | Cyan phosphor-converted led module | |
JP2008521994A (en) | Illumination system including radiation source and fluorescent material | |
JP2011091414A (en) | Light-emitting device | |
KR101524946B1 (en) | White phosphor composition having high color rendering properties, and light emitting diode comprising the same | |
JP2023057392A (en) | Light-emitting device, lighting device, image display device, and vehicle indicator light |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080806 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110329 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110329 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110525 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20110621 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110914 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20110922 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111206 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111214 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4890152 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141222 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |