JP2007154300A - Aluminum alloy anodic oxidation method and power source for aluminum alloy anodic oxidation - Google Patents
Aluminum alloy anodic oxidation method and power source for aluminum alloy anodic oxidation Download PDFInfo
- Publication number
- JP2007154300A JP2007154300A JP2005376323A JP2005376323A JP2007154300A JP 2007154300 A JP2007154300 A JP 2007154300A JP 2005376323 A JP2005376323 A JP 2005376323A JP 2005376323 A JP2005376323 A JP 2005376323A JP 2007154300 A JP2007154300 A JP 2007154300A
- Authority
- JP
- Japan
- Prior art keywords
- aluminum alloy
- anodic oxidation
- anodizing
- current
- power source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910000838 Al alloy Inorganic materials 0.000 title claims abstract description 34
- 238000000034 method Methods 0.000 title claims abstract description 29
- 230000003647 oxidation Effects 0.000 title claims abstract description 19
- 238000007254 oxidation reaction Methods 0.000 title claims abstract description 19
- 238000007743 anodising Methods 0.000 claims description 28
- 239000011248 coating agent Substances 0.000 abstract 1
- 238000000576 coating method Methods 0.000 abstract 1
- 230000002708 enhancing effect Effects 0.000 abstract 1
- 230000001590 oxidative effect Effects 0.000 abstract 1
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 12
- 229910052782 aluminium Inorganic materials 0.000 description 11
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 11
- 239000000463 material Substances 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 7
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 6
- 230000004888 barrier function Effects 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 238000002048 anodisation reaction Methods 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 238000005868 electrolysis reaction Methods 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 239000010407 anodic oxide Substances 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 235000006408 oxalic acid Nutrition 0.000 description 2
- 238000013019 agitation Methods 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 235000020681 well water Nutrition 0.000 description 1
- 239000002349 well water Substances 0.000 description 1
Images
Landscapes
- Other Surface Treatments For Metallic Materials (AREA)
Abstract
Description
本発明はアルミニウム合金陽極酸化方法およびアルミニウム合金陽極酸化用電源に関する。 The present invention relates to an aluminum alloy anodizing method and an aluminum alloy anodizing power source.
従来から、アルミニウム合金表面の硬度や耐磨耗性、耐食性を向上及び着色を目的として、硫酸、蓚酸、燐酸等の水溶液浴中で陽極酸化し該アルミニウム合金の表面に酸化皮膜を形成することが行われている。この陽極酸化皮膜は、緻密なバリヤー層と多孔質のポーラス層で構成されており、組成はAl2O3である。Conventionally, for the purpose of improving the hardness, wear resistance and corrosion resistance of the aluminum alloy surface and coloring it, an anodized film can be formed on the surface of the aluminum alloy by anodizing in an aqueous solution of sulfuric acid, oxalic acid, phosphoric acid or the like. Has been done. This anodized film is composed of a dense barrier layer and a porous porous layer, and the composition is Al 2 O 3 .
希望する特性の皮膜を得るため、加える電力の方法としては、直流法、電流反転法、交直重畳法、パルス波形法等が報告されている(非特許文献1、2、特許文献1、2)。 In order to obtain a film having a desired characteristic, a direct current method, a current inversion method, an AC / DC superposition method, a pulse waveform method, and the like have been reported as methods of applying electric power (Non-patent
直流法で高い成膜速度を得るために、大電流を流すべく高電圧を印加すると、前記バリヤー層で発生するジュール熱の発熱量が大きくなり、焼けと呼ばれる酸化皮膜に欠陥が発生する。したがって、直流法では、特に多量のSi、Cu、Fe等を含み電流の流れ難いアルミニウム鋳造材及びアルミニウムダイカスト材に対して短時間で厚い陽極酸化皮膜を形成することは、困難であった。 When a high voltage is applied to flow a large current in order to obtain a high film formation rate by the direct current method, the amount of Joule heat generated in the barrier layer increases, and defects occur in the oxide film called burn. Therefore, in the direct current method, it has been difficult to form a thick anodic oxide film in a short time on an aluminum cast material and an aluminum die cast material that contain a large amount of Si, Cu, Fe and the like and hardly flow current.
これに対し、希望する酸化皮膜を「皮膜焼け」と呼ばれる欠陥を発生させることなく生産性良く短時間に形成するには、直流法よりも電流反転法を含むパルス電解法が良いといわれている。例えば下記非特許文献1には、硫酸浴において、間歇的に負電流を流す電流反転法による陽極酸化で、直流法による陽極酸化よりも低い酸化電圧において高速で酸化皮膜が形成できることが報告されている。また、非特許文献2では、アルミニウムA1080Pを20℃の20Wt%硫酸+10g/lシュウ酸浴中で、電流反転法、周波数13.3Hz、電流密度4A/dm2、duty95%の条件で65分電解を行い92μmのアルミニウム陽極酸化皮膜を得ている(1.4μm/min)。しかし、これ等の方法は数10Hzオーダの周波数、特に合金元素の多いアルミニウムダイカスト材においては成膜速度を早くできないという問題があった。また、正電圧、負電圧を印加しなければならず、用いる電源がバイポーラで複雑になるという問題があった。On the other hand, it is said that the pulse electrolysis method including the current reversal method is better than the direct current method in order to form the desired oxide film in a short time with good productivity without causing a defect called “film burn”. . For example, the following Non-Patent
特許文献1には、交流に直流を印加した交直重畳法で交流成分が負成分を含まず且つ交流成分が直流成分の5%以上含まれる電解条件で耐熱性に優れしかも耐食性も良好なアルミニウム陽極酸化皮膜がアルミニウム合金表面に形成できることが示されている。しかし、好適とされる電流密度は0.1〜2A/dm2と低く、この電流密度では成膜速度は遅く、生産性並びにコスト上に問題があった。さらにこの方法においても、交流電源と直流電源が必要で電源系が複雑になるという問題があった。
また下記特許文献2には、生産性の観点からアルミニウム陽極酸化皮膜の成膜速度を向上する方法として、硫酸水溶液浴中で200〜5000Hz(好ましくは600〜2000Hz)の正弦波高周波電流に直流電流を重畳した電流を通電する方法を提案している。即ち、アルミニウム合金ADC12を、17℃の10%の硫酸水溶液中で、周波数が1000Hzで電圧が±20Vの正弦波の高周波に19.8Vの直流電圧を重畳させ電解処理時間20分で22μmの陽極酸化膜を得ている(成長速度1.1μm/min)。なお、電解開始5分後の電流密度は13.8A/dm2であったと報告している。しかしながら、周波数が200〜5000Hzに限定されておりかつ実際に使用されているのが正弦波であるため短時間内に流せる電流が矩形波より少ないと言う問題を残している。また、交流電源と直流電源が必要で電源系が複雑になるという問題があった。
上述のように、アルミニウム合金の陽極酸化には電流反転法または交直重畳法が好ましいことが分かっているが、そのためには正電圧、負電圧を印加しなければならず、用いる電源がバイポーラで複雑になるという問題があった。 As described above, it is known that the current reversal method or the AC / DC superimposition method is preferable for anodization of an aluminum alloy. However, for this purpose, a positive voltage and a negative voltage must be applied, and the power source used is bipolar and complicated. There was a problem of becoming.
本発明は上記の問題点や制約に鑑みてなされたものであり、本発明が解決しようとする課題は、負電圧を印加することなく、皮膜の品質を維持しながら成膜速度を高め生産性を向上できるアルミニウム合金陽極酸化方法およびアルミニウム合金陽極酸化用電源を提供することにある。 The present invention has been made in view of the above problems and limitations, and the problem to be solved by the present invention is to increase the deposition rate while maintaining the quality of the film without applying a negative voltage, and to improve productivity. It is an object to provide a method for anodizing an aluminum alloy and a power source for anodizing an aluminum alloy.
本発明は、上記目的を達成するために、請求項1に記載したように、パルス電力によってアルミニウム合金を陽極酸化するアルミニウム合金陽極酸化方法において、パルス電圧不印加時に陽極酸化用陽極と陽極酸化用陰極とを短絡することを特徴とするアルミニウム合金陽極酸化方法を構成する。 In order to achieve the above object, the present invention provides an aluminum alloy anodizing method for anodizing an aluminum alloy by pulse power as described in
また、本発明は、請求項2に記載したように、パルス電力によってアルミニウム合金を陽極酸化するアルミニウム合金陽極酸化用電源において、パルス非発生時に陽極酸化用陽極に接続する端子と陽極酸化用陰極に接続する端子とを短絡することを特徴とするアルミニウム合金陽極酸化用電源を構成する。 According to a second aspect of the present invention, in the aluminum alloy anodizing power source for anodizing an aluminum alloy by pulse power, the terminal connected to the anodizing anode and the anodizing cathode when no pulse is generated. A power supply for anodizing an aluminum alloy is characterized in that the terminal to be connected is short-circuited.
本発明の実施により、負電圧を印加することなく、皮膜の品質を維持しながら成膜速度を高め生産性を向上できるアルミニウム合金陽極酸化方法およびアルミニウム合金陽極酸化用電源を提供することが可能となる。 By carrying out the present invention, it is possible to provide an aluminum alloy anodizing method and an aluminum alloy anodizing power source capable of increasing the film forming speed and improving the productivity while maintaining the quality of the film without applying a negative voltage. Become.
本発明者らは、バリヤー層及び電解液の抵抗低減のために負電流を簡便に流す方法を追及した。その結果、正電圧印加後、電解槽中のアルミニウム合金陽極と対極の炭素陰極を短絡させることによって負電流が流れることを見出した。その事例は、図4の実施例1に見られるように設定電流密度18A/dm2に対し実効電流密度が5.2A/dm2である。“実効電流密度=設定電流密度一短絡時の負電流密度”であるから、12.8A/dm2の逆電流が流れたことを示している。また、実効電流密度と皮膜成長速度とは図1のようによい直線関係にある。これはバリヤー層内のAl3+、O2−イオン濃度勾配の緩和(または反応して生じたばかりのアモルファス状Al2O3が電池の正極剤としての放電)及び固液界面に生じている電気二重層の放電(特に炭素陰極近傍には発生期の水素原子が多数存在し、これが電気化学的にOH−と反応してH2Oに戻るものも含め)によるものと推定される。この負電流は、逆電圧を印加して逆電流を流したのと同じ効果のあることが分かった。The present inventors have sought a method of simply passing a negative current in order to reduce the resistance of the barrier layer and the electrolytic solution. As a result, it was found that after applying a positive voltage, a negative current flows by short-circuiting the aluminum alloy anode in the electrolytic cell and the carbon cathode of the counter electrode. In this case, as shown in Example 1 of FIG. 4, the effective current density is 5.2 A / dm 2 with respect to the set current density 18 A / dm 2 . Since “effective current density = set current density minus negative current density at one short circuit”, it indicates that a reverse current of 12.8 A / dm 2 flows. The effective current density and the film growth rate are in a good linear relationship as shown in FIG. This is because the Al 3+ and O 2− ion concentration gradient in the barrier layer is relaxed (or the discharge of amorphous Al 2 O 3 just generated as a reaction as a positive electrode agent of the battery) and the electric liquid generated at the solid-liquid interface. It is presumed that this is due to the discharge of the multilayer (particularly, in the vicinity of the carbon cathode, there are a large number of hydrogen atoms in the nascent stage, which includes electrochemically reacting with OH − and returning to H 2 O). This negative current was found to have the same effect as applying a reverse voltage to flow a reverse current.
図2に本発明の電源構成を示す。電源10は、正側直流電源11、くり返し周波数発生器12、正側パルス発生回路13、短絡側パルス発生回路14、正側チョッパーゲートアンプ25、短絡側チョッパーゲートアンプ26、正側チョッパースイッチ15、逆流防止ダイオード16、短絡電流制御回路17より構成され、その出力端子18は電解槽19中の陽極20、陰極21に接続されている。また正側出力電圧計(E1)22、電解槽電圧計(EB)23および電解槽電流計(AB)24が取り付けられている。FIG. 2 shows a power supply configuration of the present invention. The
図3に、前記電源10の作動状況を示す。くり返し周波数発生器12より運転くり返し周期T(周波数f=1/T)(図3(A))が、正側パルス発生回路13より正側パルス幅t+(図3(B))、短絡側パルス発生回路より短絡パルス幅ts(図3(C))が出力され、これに応じて正側チョッパーゲート信号(図3(D))、短絡側チョッパーゲート信号(図3(E))が発生し、これ等に連動して正側チョッパー出力(図3(F))、短絡側チョッパー出力(図3(G))が出力され、この結果出力電圧(E1)(図3(H))を発生する。なお、該T、t+、ts、E1は許容範囲内で自由に設定することができる。FIG. 3 shows the operating state of the
上記出力電圧E1に応じて、該電解槽19内の該陽極20と該陰極21との間にかかる電解電圧EBは図3(I)に示すように、また該両極間に流れる電解槽電流(IB)は図3(J)に示すようになる。このような形状になるのは、バリヤ層内のイオン濃度勾配の緩和及び電極固液界面に生じている電気二重層の放電によるものと推定される。Depending on the output voltage E 1, the electrolysis voltage E B applied between the
上述のように短絡により逆電流が流れ、バリヤ層内のイオン濃度勾配が緩和され、また電極の固液界面の電気二重層が放電されて解消されることは、次の正パルス時に低電圧下で大電流を流すことを可能にしている。短絡により逆電流を流さないで連続して正パルス電流を流し続けると、定電圧制御の場合は電流値が減少し成膜速度を低下させることになり、又定電流制御の場合は電圧が上昇しジュール熱の増大をもたらし、焼け現象を起こすことになる。以上のように、本発明の電源、即ちパルス電力を用いる陽極酸化において、陽極酸化が進行している状況下において電圧印加を停止しかつ任意の時間陽極と陰極を短絡し逆電流を流すことのできる電源を用いることによって、焼けなど陽極酸化皮膜の品質を劣化させることなく成膜速度を高め生産性を向上できる。また、負電圧を印加する必要がないので、負電源を必要とせず電源構成が簡潔になりこの点からもコスト低減に大きく寄与できるものである。 As described above, a reverse current flows due to a short circuit, the ion concentration gradient in the barrier layer is relaxed, and the electric double layer at the solid-liquid interface of the electrode is discharged and eliminated. Makes it possible to pass a large current. If a positive pulse current continues to flow without flowing a reverse current due to a short circuit, the current value decreases and the film formation rate decreases in the case of constant voltage control, and the voltage increases in the case of constant current control. This causes an increase in Joule heat and causes a burning phenomenon. As described above, in the anodic oxidation using the power source of the present invention, that is, the pulsed power, the voltage application is stopped and the anode and the cathode are short-circuited for an arbitrary time and the reverse current is allowed to flow in the situation where the anodic oxidation is in progress. By using a power source that can be used, the deposition rate can be increased and the productivity can be improved without deteriorating the quality of the anodized film such as burning. Further, since it is not necessary to apply a negative voltage, a negative power supply is not required, and the power supply configuration is simplified, which can greatly contribute to cost reduction.
以下に、実施例を通して本発明の効果を具体的に説明する。アルミニウム合金の陽極酸化は、上記の電源を用い下記の実験条件で行った。
試験片には、基本的な特性評価のためのA1100P材、通常の酸化処理では電解電圧が高くなるなど電解処理が比較的難しいA2017P材、A6063P材および均質な皮膜生成が困難なADC12材を用いた。また、比較のために99.99%純度のアルミニウム材も用いた。試験片のサイズは60mm×60mm×2mmである。
電解槽は電解液量約2001、液循環及びミクロ爆気による撹拌、プレート型熱交換器による冷却、陰極バーは鉛、陰極板は炭素である。浴組成は遊離硫酸濃度約200g/l、浴温度10℃とした。
陽極酸化条件は、電流密度6、12、14、18A/dm2、周波数1.0、2.5、5.0、7.5、10.0、15.0KHz、デュティ20−20、30−30、40−40、45−45%のいずれかとし、陽極酸化時間は15分(ソフトスタート時間3分を含む)である。
陽極酸化処理後、井水流水で約2分間水洗し、温風による強制乾燥を施した。
(実施例1、2)The effects of the present invention will be specifically described below through examples. Anodization of the aluminum alloy was performed using the above power source under the following experimental conditions.
For the test piece, A1100P material for basic characteristic evaluation, A2017P material, A6063P material, which is relatively difficult to be electrolyzed, such as an electrolysis voltage is increased by ordinary oxidation treatment, and ADC12 material, which is difficult to generate a uniform film, are used. It was. For comparison, an aluminum material having a purity of 99.99% was also used. The size of the test piece is 60 mm × 60 mm × 2 mm.
The electrolytic cell has an electrolyte amount of about 2001, liquid circulation and agitation by micro explosion, cooling by a plate heat exchanger, the cathode bar is lead, and the cathode plate is carbon. The bath composition was a free sulfuric acid concentration of about 200 g / l and a bath temperature of 10 ° C.
The anodizing conditions were:
After the anodizing treatment, it was washed with running well water for about 2 minutes and subjected to forced drying with warm air.
(Examples 1 and 2)
アルミニウム合金A1100P材について、電流密度18A/dm2、周波数10.0KHz、デュティ45−45%(Tを1/2にし、その1/2に対する正電圧の印加割合、および残りの1/2に対する短絡時間の割合)で行った陽極酸化の結果を図4に示す。図4中の比較例1はデュティ45−45%の短絡時に−4Vの負電圧を印加し逆電流を強制的に流したものである。短絡により逆電流を流したものは焼けなどの品質低下を起こすことなく15分間の陽極酸化で20μm厚の酸化膜(皮膜成長速度1.33μm/min)を得ている。負電圧を印加し強制的に逆電流を流した比較例1は1.15μm/minであった。即ち、焼け防止を目的に逆電流を流したものよりも大きい成膜速度で焼けを発生させることなく成膜できている。
(実施例3、4、5)For aluminum alloy A1100P material, current density 18 A / dm 2 , frequency 10.0 KHz, duty 45-45% (T is halved, positive voltage application ratio to ½, and short circuit to remaining ½. The results of the anodic oxidation performed at the time ratio) are shown in FIG. In Comparative Example 1 in FIG. 4, a negative voltage of −4 V is applied and a reverse current is forced to flow when the duty is 45 to 45% short-circuited. In the case of a reverse current caused by a short circuit, a 20 μm thick oxide film (film growth rate: 1.33 μm / min) is obtained by anodic oxidation for 15 minutes without causing deterioration in quality such as burning. Comparative Example 1 in which a negative voltage was applied and a reverse current was forced to flow was 1.15 μm / min. That is, the film can be formed without causing burning at a film forming rate higher than that in which a reverse current is passed for the purpose of preventing burning.
(Examples 3, 4, and 5)
通常の酸化処理では電解電圧が高くなるなど電解処理が比較的難しいと言われているアルミニウム合金A2017P材を18、12A/dm2、5.0KHz、デュティ45−45%及びデュティ30−30%で陽極酸化を行った結果を図4に示す。図4中の比較例2、3に比べいづれも高速成膜ができていることがわかる。また焼けなどによる品質の低下はなかった。
(実施例6、7)Aluminum alloy A2017P, which is said to be relatively difficult to electrolyze due to high electrolytic voltage in normal oxidation treatment, is 18, 12 A / dm 2 , 5.0 KHz, duty 45-45% and duty 30-30%. The result of the anodization is shown in FIG. It can be seen that high-speed film formation can be achieved compared to Comparative Examples 2 and 3 in FIG. There was no deterioration in quality due to burning.
(Examples 6 and 7)
アルミニウム合金A6061P材について、18、12A/dm2、7.5、5.0KHz、デュティ30−30%で陽極酸化を行った結果を図4に示す。この場合も表中の比較例4、5よりも高速成膜が焼けなどの品質低下を起こすことなくできている。
(実施例8、9)FIG. 4 shows the results of anodizing the aluminum alloy A6061P material at 18, 12 A / dm 2 , 7.5, 5.0 KHz, and a duty of 30-30%. Also in this case, the high-speed film formation can be performed without causing deterioration in quality such as burning as compared with Comparative Examples 4 and 5 in the table.
(Examples 8 and 9)
均質な皮膜生成が困難と言われているアルミニウム合金ADC12材について、電流密度18A/dm2、周波数5.0KHz、デュティ40−40%及び30−30%で陽極酸化を行った結果を比較例6、7と共に図4に示す。この場合においても、焼け防止のために強制的に逆電流を流した比較例6、7よりも高速な1.6μm/minオーダの成膜が焼けなどの品質を落とすことなく達成できている。
(実施例10、11)Comparative Example 6 shows the results of anodizing the aluminum alloy ADC12, which is said to be difficult to form a uniform film, at a current density of 18 A / dm 2 , a frequency of 5.0 KHz, a duty of 40-40%, and 30-30%. 4 together with FIG. Even in this case, film formation of 1.6 μm / min order, which is faster than Comparative Examples 6 and 7 in which a reverse current is forcibly passed to prevent burning, can be achieved without degrading quality such as burning.
(Examples 10 and 11)
99.99%純度のアルミニウムについて、電流密度18A/dm2、周波数5.0、10.0KHz、デュティ30−30%で、負電圧を印加して強制的に逆電流を流すことなく陽極酸化を行った結果を図4に示す。5.0KHzの場合、15分間の陽極酸化で実に58.4μm厚(成膜速度3.90μm/min)の均質な皮膜を得ることができた。図5にこの膜の断面を示す。For 99.99% purity aluminum, anodization is performed at a current density of 18 A / dm 2 , a frequency of 5.0, 10.0 KHz, and a duty of 30-30% without applying a negative voltage and forcing a reverse current to flow. The results are shown in FIG. In the case of 5.0 KHz, a homogeneous film having a thickness of 58.4 μm (deposition rate: 3.90 μm / min) could be obtained by anodic oxidation for 15 minutes. FIG. 5 shows a cross section of this film.
10…陽極酸化用電源、11…正側直流電源、12…くり返し周波数発生器、13…正側パルス発生回路、14…短絡側パルス発生回路、15…正側チョッパースイッチ、16…逆流防止ダイオード、17…短絡電流制御回路、18…出力端子、19…電解槽,20…陽極,21…陰極、22…正側出力電圧計、23…電解槽電圧計、24…電解槽電流計、25…正側チョッパーゲートアンプ、26…短絡側チョッパーゲートアンプ。DESCRIPTION OF
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005376323A JP2007154300A (en) | 2005-11-30 | 2005-11-30 | Aluminum alloy anodic oxidation method and power source for aluminum alloy anodic oxidation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005376323A JP2007154300A (en) | 2005-11-30 | 2005-11-30 | Aluminum alloy anodic oxidation method and power source for aluminum alloy anodic oxidation |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007154300A true JP2007154300A (en) | 2007-06-21 |
Family
ID=38239032
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005376323A Pending JP2007154300A (en) | 2005-11-30 | 2005-11-30 | Aluminum alloy anodic oxidation method and power source for aluminum alloy anodic oxidation |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007154300A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009060844A1 (en) * | 2007-11-08 | 2009-05-14 | Showa Denko K.K. | Method for anodizing aluminum pipe for base of photoconductor drum, and base of photoconductor drum |
JP2010236043A (en) * | 2009-03-31 | 2010-10-21 | Suzuki Motor Corp | Anodic oxide coating film and anodizing oxidation method |
KR101219603B1 (en) * | 2010-09-01 | 2013-01-08 | (주) 에치케이씨 | Valve actuator of enhanced corrosion resistance using pulse anodizing and Process for surface treatment thereof |
US8692235B2 (en) | 2010-03-22 | 2014-04-08 | National Cheng Kung University | Organic photoelectric semiconductor device and method for fabricating the same |
US8691403B2 (en) | 2008-12-26 | 2014-04-08 | Denso Corporation | Method for anodizing aluminum and anodized aluminum |
CN113981500A (en) * | 2021-12-09 | 2022-01-28 | 陕西宝成航空仪表有限责任公司 | Oxalic acid anodizing process method for hard aluminum alloy shell part |
-
2005
- 2005-11-30 JP JP2005376323A patent/JP2007154300A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009060844A1 (en) * | 2007-11-08 | 2009-05-14 | Showa Denko K.K. | Method for anodizing aluminum pipe for base of photoconductor drum, and base of photoconductor drum |
JP2009114524A (en) * | 2007-11-08 | 2009-05-28 | Showa Denko Kk | Method for anodizing aluminum pipe for base of photoconductor drum, and base of photoconductor drum |
US8691403B2 (en) | 2008-12-26 | 2014-04-08 | Denso Corporation | Method for anodizing aluminum and anodized aluminum |
JP2010236043A (en) * | 2009-03-31 | 2010-10-21 | Suzuki Motor Corp | Anodic oxide coating film and anodizing oxidation method |
US8692235B2 (en) | 2010-03-22 | 2014-04-08 | National Cheng Kung University | Organic photoelectric semiconductor device and method for fabricating the same |
KR101219603B1 (en) * | 2010-09-01 | 2013-01-08 | (주) 에치케이씨 | Valve actuator of enhanced corrosion resistance using pulse anodizing and Process for surface treatment thereof |
CN113981500A (en) * | 2021-12-09 | 2022-01-28 | 陕西宝成航空仪表有限责任公司 | Oxalic acid anodizing process method for hard aluminum alloy shell part |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102953108B (en) | One automatically controls Hard Anodic Oxidation Process | |
JP6004181B2 (en) | Anodized film and method for producing the same | |
KR101195458B1 (en) | Method for treating the surface of metal | |
JP5152574B2 (en) | Method for anodizing aluminum member | |
TWI418664B (en) | Surface processing method on valve metal using plasma electrolytic oxidation | |
TWI424096B (en) | Method for forming anodic oxide film | |
JP4888948B2 (en) | Method for forming high speed anodized film of aluminum material | |
JP5700235B2 (en) | Method of forming alumite film | |
EP2045367A1 (en) | Method for anodically oxidizing aluminum alloy and power supply for anodically oxidizing aluminum alloy | |
JP6867704B2 (en) | Aluminum or aluminum alloy coloring treatment method | |
JP5691135B2 (en) | Anodized film and anodizing method | |
JP2007154300A (en) | Aluminum alloy anodic oxidation method and power source for aluminum alloy anodic oxidation | |
JP2004035930A (en) | Aluminum alloy material and anodization treatment method therefor | |
JP2007154302A (en) | Power source system for aluminum alloy anodic oxidation | |
JP2007154301A (en) | Aluminum alloy anodic oxidation method and power source for aluminum alloy anodic oxidation | |
CN102312262B (en) | Mixed Acid Hard Anodizing of Copper and Aluminum Alloys | |
JP2022155917A (en) | Anodizing method for aluminum alloy and aluminum alloy material having anodized film | |
JP2008214742A (en) | Method for manufacturing hexavalent iron ion solution, anodization treating agent and anodization treatment method for titanium alloy and anodization treatment method for titanium alloy member surface | |
WO2020179427A1 (en) | Method for producing thin film made from oxide of titanium or titanium alloy and having sealed micropores | |
JPH0762595A (en) | Aluminum oxide laminated structure film produced by anodic oxidation of aluminum and method for producing the same | |
JPH04193998A (en) | High-speed anodization method by repeated instantaneous current application | |
JP2018145477A (en) | Method for removing oxide film on metal surface | |
JP2908105B2 (en) | Electrolytic coloring of aluminum or aluminum alloy | |
KR800000172B1 (en) | Aluminium color plating method | |
JP2018188702A (en) | Removal method of oxide film on metal surface |