[go: up one dir, main page]

JP2007143490A - A method for diagnosing vegetation by aerial balloon multiband sensing - Google Patents

A method for diagnosing vegetation by aerial balloon multiband sensing Download PDF

Info

Publication number
JP2007143490A
JP2007143490A JP2005343163A JP2005343163A JP2007143490A JP 2007143490 A JP2007143490 A JP 2007143490A JP 2005343163 A JP2005343163 A JP 2005343163A JP 2005343163 A JP2005343163 A JP 2005343163A JP 2007143490 A JP2007143490 A JP 2007143490A
Authority
JP
Japan
Prior art keywords
vegetation
camera
image
balloon
infrared camera
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005343163A
Other languages
Japanese (ja)
Inventor
Haruhiko Yamamoto
晴彦 山本
Kiyoshi Iwatani
潔 岩谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaguchi University NUC
Original Assignee
Yamaguchi University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaguchi University NUC filed Critical Yamaguchi University NUC
Priority to JP2005343163A priority Critical patent/JP2007143490A/en
Publication of JP2007143490A publication Critical patent/JP2007143490A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Radiation Pyrometers (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

【課題】 画像解析による植生の診断において、植生のバイオマス量とストレス度合とを同時に診断し、植生の量的形質とともに、水分ストレスや病虫害ストレスのような質的形質の評価を行えるようにする。
【解決手段】 可視光カメラ、近赤外カメラ、熱赤外カメラをリモコン式に撮影制御可能に気球に搭載し、気球を飛行させて空中から診断すべき範囲の植生を可視光カメラ、近赤外カメラ、熱赤外カメラにより撮影し、可視光カメラにより得られたR画像と近赤外カメラにより得られた画像とからNDVI画像を取得し、NDVI画像と熱赤外カメラにより得られた熱赤外画像とにより植生を診断する。
【選択図】 図2
PROBLEM TO BE SOLVED: To simultaneously diagnose the amount of vegetation biomass and the degree of stress in vegetation diagnosis by image analysis, and to evaluate qualitative traits such as moisture stress and pest damage stress as well as quantitative characteristics of vegetation.
SOLUTION: A visible light camera, a near-infrared camera, and a thermal infrared camera are mounted on a balloon that can be controlled by remote control, and a vegetation in a range to be diagnosed from the air by flying the balloon is visible light camera, near-red An NDVI image is obtained from an R image obtained by an outside camera and a thermal infrared camera, obtained from a visible light camera and an image obtained by a near infrared camera, and the thermal obtained by the NDVI image and the thermal infrared camera. Vegetation is diagnosed by infrared image.
[Selection] Figure 2

Description

本発明は、気球空撮マルチバンドセンシングによる植生診断の方法に関する。   The present invention relates to a method for vegetation diagnosis by balloon aerial imaging multiband sensing.

地表における植物の生育状況の調査、豪雨や長雨により森林や丘陵地で発生する地滑り、土砂崩れ、土石流の状況の調査、広がりを有する森林や丘陵のモニタリングを行う手法として、人工衛星や航空機からの撮影、センシングの技術の開発が進められている。衛星によるリモートセンシングは、わが国のような雨量の多い国で、豪雨、長雨の時期には対象とする地域を十分に観測できず、観測回数が限られるため、必要な時期に必要な画像を取得できないというような問題がある。   Shooting from artificial satellites and aircraft as methods for investigating the growth of plants on the surface, investigating landslides, landslides and debris flows in forests and hills caused by heavy and long rains, and monitoring widespread forests and hills Development of sensing technology is underway. Remote sensing by satellite is a country with a lot of rainfall like Japan, and the target area cannot be observed sufficiently during heavy rain and long rain, and the number of observations is limited. There is a problem that you can't.

航空機を用いることにより、対象とする地域の画像、写真を必要とする時期に取得することが可能であるが、必要経費が多くなるという難点がある。空撮手法として、ラジコン機、セスナ機、ヘリコプター用いる手法が開発されているが、経費、安全性等においての問題がある。空撮に用いるには、気球を用いたものが経費、安全性等の面からは有利であると考えられる。   By using an aircraft, it is possible to obtain an image and a photograph of the target area at a time when it is necessary, but there is a problem that the necessary cost increases. As aerial photography methods, methods using radio control aircraft, Cessna aircraft, and helicopters have been developed, but there are problems in terms of cost, safety, and the like. For aerial photography, balloons are considered advantageous from the standpoints of cost and safety.

地表の状態、植生の状態の評価、診断について、例えば次のような文献に開示されている。
特開2004−151092号公報 特開2004−147651号公報 山本晴彦外2名「熱赤外画像によるイネ葉いもち病の発生箇所の隔測検出」」(日本作物学会、64、467−474、1995) 山本晴彦外2名「熱赤外映像による樹木の燃焼状態の隔測評価と雲仙普賢岳の火砕流被害への適用」(地盤工学分野でのリモートセンシングデータの活用に関するシンポジウム論文集、213−220、1993) 特許文献1には、自然斜面内部の亀裂などの異常部を検地する植生のヘルスモニタリング方法について記載されており、これは、植生を赤外線熱画像撮影し植生の表面温度挙動を定量的に把握し温度上昇箇所の描出を行い、一方、同植生の分光反射特性を検出し植生の活性度を定量的に把握し活性度低下箇所を描出し、これら温度上昇箇所及び活性度低下箇所を可視デジタル画像上に表示し、植生の活性度低下箇所を特定するようにしたものである。
For example, the following literature discloses the evaluation and diagnosis of the surface condition and vegetation condition.
JP 2004-151092 A JP 2004-147651 A Haruhiko Yamamoto and two others "Detection of the location of rice blast disease using thermal infrared images" (Japan Crop Science Society, 64, 467-474, 1995) Haruhiko Yamamoto and two others "A remote measurement evaluation of the burning state of trees by thermal infrared imaging and application to pyroclastic flow damage at Unzen Fugendake" (Symposium on the use of remote sensing data in the field of geotechnical engineering, 213-220, 1993) Patent Document 1 describes a vegetation health monitoring method for detecting abnormal parts such as cracks in natural slopes. This is based on infrared thermal imaging of vegetation to quantitatively grasp the surface temperature behavior of vegetation. On the other hand, the temperature rise location is depicted, while the spectral reflection characteristics of the vegetation are detected, the vegetation activity is quantitatively grasped and the activity fall location is depicted, and these temperature rise locations and activity fall locations are visible digital images It is displayed on the top to identify the vegetation activity drop.

特許文献2には、対象とする植生を赤外線熱画像撮像し植生の表面温度挙動を定量的に把握し温度上昇植生を描出し活性度低下の可能性を把握し、一方、同植生の分光反射特性を検出し植生の活性度を確認し、活性度が低い場合は肥料散布、植え替えなどのメンテナンスを行う植生のヘルスモニタリング方法について記載されている。   In Patent Document 2, an infrared thermal image of the target vegetation is captured, the surface temperature behavior of the vegetation is quantitatively grasped, a temperature rising vegetation is depicted, and the possibility of a decrease in the activity is grasped. It describes the health monitoring method of vegetation by detecting the characteristics and confirming the vegetation activity, and when the activity is low, performing maintenance such as fertilizer application and replanting.

これら特許文献1、2においては、赤外線熱画像と分光反射特性により植生の表面温度上昇と活性度低下とを求めており、植生指標としてRVIあるいはNDVIを用いる。NDVIは正規化植生指数と呼ばれ、一般的に植生の活性度を表す指標として用いられている。また、可視画像のR画像は植生のクロロフィル量に基づく赤色の選択吸収量の大小による反射率の高低に依存している。このことから、植生の繁茂度合とクロロフィル量との積がバイオマス量(生物資源量)と考えられる。しかしながら、植生の診断には、バイオマス量のような量的形質の評価以外に、水分ストレスや病害虫ストレスの程度を示す質的形質の評価が必要であり、特許文献1、2においては、この点にについて考慮されていはいない。   In these Patent Documents 1 and 2, an increase in the surface temperature and a decrease in the activity of the vegetation are obtained from an infrared thermal image and spectral reflection characteristics, and RVI or NDVI is used as a vegetation index. NDVI is called a normalized vegetation index and is generally used as an index representing the degree of vegetation activity. Further, the R image of the visible image depends on the level of reflectance due to the amount of red selective absorption based on the amount of chlorophyll in the vegetation. From this, the product of the degree of vegetation overgrowth and the amount of chlorophyll is considered as the amount of biomass (amount of biological resources). However, the diagnosis of vegetation requires the evaluation of qualitative traits indicating the degree of water stress and pest stress in addition to the evaluation of quantitative traits such as biomass amount. Is not taken into account.

非特許文献1では、イネのいもち病害による蒸散量の低下を熱赤外画像の計測と解析に基づいて診断することについて、また、非特許文献2では、熱赤外画像を樹木の燃焼状態の隔測評価に用いることについて記載されているが、NDVI画像と熱赤外画像とを併せて評価するものではなく、適切な植生の診断を行う上で十分なものではなかった。   In Non-Patent Document 1, diagnosis of decrease in transpiration due to rice blast disease is based on measurement and analysis of thermal infrared images. In Non-Patent Document 2, thermal infrared images are used to indicate the state of combustion of trees. Although it describes about using for remote measurement evaluation, it was not evaluated together with an NDVI image and a thermal infrared image, and it was not enough to perform an appropriate vegetation diagnosis.

従来の画像解析による植生の診断においては、植生のバイオマス量とストレス度合とを同時に診断することはなされておらず、植生の量的形質を評価してはいるが、水分ストレスや病虫害ストレスのような質的形質の評価はなされておらず、植生の診断として不十分なものであった。   In the conventional diagnosis of vegetation by image analysis, the amount of vegetation biomass and the degree of stress are not diagnosed at the same time, and quantitative characteristics of vegetation are evaluated. The qualitative traits have not been evaluated, which is insufficient for vegetation diagnosis.

本発明は、前述の課題を解決すべくなしたものであり、可視光カメラ、近赤外カメラ、熱赤外カメラをリモコン式に撮影制御可能に気球に搭載することと、気球を飛行させて空中から診断すべき範囲の植生を前記可視光カメラ、近赤外カメラ、熱赤外カメラにより撮影することと、前記可視光カメラにより得られたR画像と近赤外カメラにより得られた画像とからNDVI画像を取得することと、該NDVI画像と前記熱赤外カメラにより得られた熱赤外画像とにより植生を診断するようにしたものである。   The present invention has been made to solve the above-mentioned problems. A visible light camera, a near-infrared camera, and a thermal infrared camera are mounted on a balloon so as to be controllable in a remote control manner, and the balloon is allowed to fly. Photographing vegetation in a range to be diagnosed from the air with the visible light camera, near infrared camera, thermal infrared camera, R image obtained by the visible light camera and image obtained by the near infrared camera, Vegetation is diagnosed by acquiring an NDVI image from the NDVI image and the thermal infrared image obtained by the thermal infrared camera.

本発明によれば、気球に搭載した可視カメラで得られる可視R画像、近赤外カメラで得られる近赤外画像から得られるNDVI画像と、熱赤外CCDカメラで得られる熱赤外画像を用いて植生の状態を診断するので、広範囲に詳細な植生の状態が判断でき、必要な経費を格段に少なくすることができる。   According to the present invention, a visible R image obtained by a visible camera mounted on a balloon, an NDVI image obtained from a near infrared image obtained by a near infrared camera, and a thermal infrared image obtained by a thermal infrared CCD camera are obtained. Since the vegetation state is diagnosed by using this, a detailed vegetation state can be judged in a wide range, and the necessary expenses can be significantly reduced.

本発明において、植生の診断のために、図1に示すようなカメラユニットを用いる。カメラユニット10は可視光カメラ1、近赤外カメラ2、熱赤外カメラ3のデジタルカメラを各1台ずつと、カメラ1〜3の撮影操作、送受信のための制御装置4とを備えている。各カメラ1〜3は撮影画像を記憶保持するのに必要なメモリーを備え、制御装置4は送受信の機能を備え、遠隔操作による各カメラ1〜3の撮影動作の指令信号を受けて撮影動作の制御を行い、各カメラ1〜3のモニター画像を送信できるようにするのがよい。   In the present invention, a camera unit as shown in FIG. 1 is used for vegetation diagnosis. The camera unit 10 includes a visible light camera 1, a near-infrared camera 2, and a thermal infrared camera 3, each of which has a digital camera, and a control device 4 for photographing operation and transmission / reception of the cameras 1 to 3. . Each of the cameras 1 to 3 has a memory necessary for storing and holding the photographed image, and the control device 4 has a transmission / reception function, and receives a command signal of the photographing operation of each of the cameras 1 to 3 by remote operation. It is preferable to perform control so that monitor images of the cameras 1 to 3 can be transmitted.

図2は図1に示すようなカメラユニット10を気球20に搭載したものを地上において操作制御装置30により撮影操作を行う状況を示している。各カメラ1〜3、制御装置4として軽量小型のものを採用することにより、気球の大きさとして全長6〜7m程度の小規模のものを用いることができる。   FIG. 2 shows a situation in which a camera unit 10 as shown in FIG. 1 mounted on a balloon 20 is photographed by the operation control device 30 on the ground. By adopting a lightweight and small camera 1 to 3 and the control device 4, a small balloon having a total length of about 6 to 7 m can be used.

操作制御装置30はカメラユニット10の各カメラ1〜3の撮影操作を行うように操作指令信号の送信を行い、気球20に搭載されたカメラユニット10から送信される信号、モニター画像信号を受信し、それらのデータのモニターを行う表示装置を備えている。各カメラ1〜3のモニター画像がカメラユニット10側から送信されるものであれば、そのモニター画像を見ながら撮影操作を行うことができる。   The operation control device 30 transmits an operation command signal so as to perform the photographing operation of each of the cameras 1 to 3 of the camera unit 10 and receives a signal transmitted from the camera unit 10 mounted on the balloon 20 and a monitor image signal. And a display device for monitoring the data. If the monitor images of the cameras 1 to 3 are transmitted from the camera unit 10, the shooting operation can be performed while viewing the monitor images.

気球を例えば地上200m程度の高さに係留した状態で地表面の撮影操作を行う。カメラユニット10における各カメラ1〜3は姿勢制御の機能を備えていれば、操作制御装置30側でのモニターにより各カメラ1〜3でのモニター画像を見ながらカメラ1〜3の姿勢制御を行って撮影することができる。カメラ1〜3の姿勢制御を備えていない場合、予めカメラ1〜3を想定される地表からの位置において適切な画像が撮影できる状態に設定しておき、その想定された位置において撮影を行うことになる。   The ground surface is photographed while the balloon is moored at a height of, for example, about 200 m above the ground. If the cameras 1 to 3 in the camera unit 10 have a posture control function, the posture control of the cameras 1 to 3 is performed while viewing the monitor images of the cameras 1 to 3 by the monitor on the operation control device 30 side. Can be taken. If the cameras 1 to 3 are not equipped with posture control, the cameras 1 to 3 are set in advance in a state where an appropriate image can be taken at the assumed position from the ground surface, and shooting is performed at the assumed position. become.

各カメラ1〜3のレンズは、地上200m程度の高さを主に考えると、標準から広角系のレンズであり、簡易なものとしては、固定焦点レンズでもよいが、ある程度撮影の高度が変わることを考慮する場合には自動合焦機能を有するレンズとし、また画角を変化する必要があれば広角系ズームレンズとするのがよい。しかしながら、気球に搭載することを考えた場合、その機能はカメラユニット10の重量から適宜なものとすることになる。   The lens of each camera 1 to 3 is a standard to wide-angle lens considering the height of about 200 m above the ground. As a simple lens, a fixed focus lens may be used, but the altitude of shooting changes to some extent. When taking this into consideration, it is preferable to use a lens having an automatic focusing function, and if it is necessary to change the angle of view, a wide-angle zoom lens is preferable. However, when considering mounting on a balloon, the function is appropriate from the weight of the camera unit 10.

植生診断のために撮影を行う際に、カメラユニット10を搭載した気球で撮影を行う位置に係留し、各カメラ1〜3の操作により撮影を行う。各カメラ1〜3は必要な撮影画像フレーム分のメモリーを有しており、撮影画像が記憶保持される。   When photographing for vegetation diagnosis, the camera unit 10 is moored at a position where photographing is performed with a balloon equipped with the camera unit 10, and photographing is performed by operating each of the cameras 1-3. Each of the cameras 1 to 3 has a memory for a necessary captured image frame, and the captured image is stored and held.

このように気球に搭載された各カメラ1〜3により撮影された画像を用いて植生診断を行う。可視光カメラ1の画像のうちのR画像と近赤外カメラ2の画像とによりNDVI画像を取得し、このNDVI画像と熱赤外カメラ3による得られる熱赤外画像とを併せて植生の診断を行う。植生診断のために、画像解析を行うためのアプリケーション、必要な記憶手段を有するパーソナルコンピュータを用いる。   In this way, vegetation diagnosis is performed using the images taken by the cameras 1 to 3 mounted on the balloon. An NDVI image is acquired from the R image of the image of the visible light camera 1 and the image of the near-infrared camera 2, and the NDVI image and the thermal infrared image obtained by the thermal infrared camera 3 are combined to diagnose vegetation. I do. For vegetation diagnosis, an application for performing image analysis and a personal computer having necessary storage means are used.

NDVI画像では植生の量的形質としてのバイオマス量の評価がなされ、また、熱赤外画像により水分ストレスや病虫害ストレスの程度を表現する質的評価がなされ、植生の状態を的確に検知し、生育量とストレス程度に見合った適切な処置を施すことにより、植生を健全な状態に維持、管理することが可能になる。   In the NDVI image, the amount of biomass is evaluated as a quantitative trait of vegetation, and the qualitative evaluation that expresses the degree of water stress and pest damage stress is performed by a thermal infrared image to accurately detect the state of vegetation and grow. By taking appropriate measures according to the amount and the degree of stress, it becomes possible to maintain and manage the vegetation in a healthy state.

本発明による植生診断に用いられるカメラユニットの構成を概略的に示す図である。It is a figure which shows roughly the structure of the camera unit used for the vegetation diagnosis by this invention. カメラユニットを気球に搭載し地表において操作制御装置により撮影操作を行う状況を示す図である。It is a figure which shows the condition which mounts a camera unit in a balloon and performs imaging | photography operation by the operation control apparatus on the ground surface.

符号の説明Explanation of symbols

1 可視光カメラ
2 近赤外カメラ
3 熱赤外カメラ
4 制御装置
10 カメラユニット
20 気球
30 操作制御装置
DESCRIPTION OF SYMBOLS 1 Visible light camera 2 Near infrared camera 3 Thermal infrared camera 4 Control apparatus 10 Camera unit 20 Balloon 30 Operation control apparatus

Claims (1)

可視光カメラ、近赤外カメラ、熱赤外カメラをリモコン式に撮影制御可能に気球に搭載することと、
気球を飛行させて空中から診断すべき範囲の植生を前記可視光カメラ、近赤外カメラ、熱赤外カメラにより撮影することと、
前記可視光カメラにより得られたR画像と近赤外カメラにより得られた画像とからNDVI画像を取得することと、
該NDVI画像と前記熱赤外カメラにより得られた熱赤外画像とにより植生を診断することと、
からなることを特徴とする気球空撮マルチバンドセンシングにより植生を診断する方法。
Mounting a visible light camera, near-infrared camera, and thermal infrared camera on the balloon so that it can be controlled remotely.
Shooting vegetation in a range to be diagnosed from the air by flying a balloon with the visible light camera, near infrared camera, thermal infrared camera,
Obtaining an NDVI image from an R image obtained by the visible light camera and an image obtained by a near-infrared camera;
Diagnosing vegetation from the NDVI image and the thermal infrared image obtained by the thermal infrared camera;
A method of diagnosing vegetation by balloon aerial multiband sensing, comprising:
JP2005343163A 2005-11-29 2005-11-29 A method for diagnosing vegetation by aerial balloon multiband sensing Pending JP2007143490A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005343163A JP2007143490A (en) 2005-11-29 2005-11-29 A method for diagnosing vegetation by aerial balloon multiband sensing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005343163A JP2007143490A (en) 2005-11-29 2005-11-29 A method for diagnosing vegetation by aerial balloon multiband sensing

Publications (1)

Publication Number Publication Date
JP2007143490A true JP2007143490A (en) 2007-06-14

Family

ID=38205652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005343163A Pending JP2007143490A (en) 2005-11-29 2005-11-29 A method for diagnosing vegetation by aerial balloon multiband sensing

Country Status (1)

Country Link
JP (1) JP2007143490A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010068719A (en) * 2008-09-16 2010-04-02 Hitachi Software Eng Co Ltd System for monitoring green space, and delivery method for monitoring green space
WO2013088175A1 (en) * 2011-12-17 2013-06-20 Apem Limited Image processing method
US9488630B2 (en) 2013-11-08 2016-11-08 Dow Agrosciences Llc Integrated remote aerial sensing system
WO2016203689A1 (en) * 2015-06-19 2016-12-22 パナソニックIpマネジメント株式会社 Image capture device
KR101759130B1 (en) * 2016-07-14 2017-08-01 주식회사 공간정보 System For Crop Database Using Unmanned Aerial Vehicle
JP2017131116A (en) * 2016-01-25 2017-08-03 株式会社トプコン Plant sensor apparatus
WO2017195534A1 (en) * 2016-05-10 2017-11-16 コニカミノルタ株式会社 Soil condition evaluation device, method and program
CN109238960A (en) * 2018-09-07 2019-01-18 兰州大学 Method for rapidly monitoring grassland actual bearing capacity index based on NDVI
RU2754968C1 (en) * 2021-02-15 2021-09-08 Федеральное государственное бюджетное научное учреждение "Федеральный исследовательский центр "Красноярский научный центр Сибирского отделения Российской академии наук" Method for revealing stage of vegetation cover restoration by analyzing temperature anomalies on satellite imagery of underlying surface in thermal ir range of spectrum
CN117690041A (en) * 2024-01-31 2024-03-12 南方海洋科学与工程广东省实验室(珠海) A dynamic water body extraction method and system based on geostationary satellite remote sensing data

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010068719A (en) * 2008-09-16 2010-04-02 Hitachi Software Eng Co Ltd System for monitoring green space, and delivery method for monitoring green space
WO2013088175A1 (en) * 2011-12-17 2013-06-20 Apem Limited Image processing method
US9488630B2 (en) 2013-11-08 2016-11-08 Dow Agrosciences Llc Integrated remote aerial sensing system
WO2016203689A1 (en) * 2015-06-19 2016-12-22 パナソニックIpマネジメント株式会社 Image capture device
JP2017131116A (en) * 2016-01-25 2017-08-03 株式会社トプコン Plant sensor apparatus
JPWO2017195534A1 (en) * 2016-05-10 2019-03-07 コニカミノルタ株式会社 Soil condition evaluation apparatus, method and program
WO2017195534A1 (en) * 2016-05-10 2017-11-16 コニカミノルタ株式会社 Soil condition evaluation device, method and program
KR20180127494A (en) * 2016-05-10 2018-11-28 코니카 미놀타 가부시키가이샤 Soil condition evaluation device, corresponding method and corresponding program
CN109154591A (en) * 2016-05-10 2019-01-04 柯尼卡美能达株式会社 Soil conditions evaluating apparatus, its method and its program
KR102163610B1 (en) 2016-05-10 2020-10-08 코니카 미놀타 가부시키가이샤 Soil condition evaluation device, corresponding method and corresponding program
KR101759130B1 (en) * 2016-07-14 2017-08-01 주식회사 공간정보 System For Crop Database Using Unmanned Aerial Vehicle
CN109238960A (en) * 2018-09-07 2019-01-18 兰州大学 Method for rapidly monitoring grassland actual bearing capacity index based on NDVI
CN109238960B (en) * 2018-09-07 2021-02-05 兰州大学 A rapid monitoring method of grassland actual bearing capacity index based on NDVI
RU2754968C1 (en) * 2021-02-15 2021-09-08 Федеральное государственное бюджетное научное учреждение "Федеральный исследовательский центр "Красноярский научный центр Сибирского отделения Российской академии наук" Method for revealing stage of vegetation cover restoration by analyzing temperature anomalies on satellite imagery of underlying surface in thermal ir range of spectrum
CN117690041A (en) * 2024-01-31 2024-03-12 南方海洋科学与工程广东省实验室(珠海) A dynamic water body extraction method and system based on geostationary satellite remote sensing data
CN117690041B (en) * 2024-01-31 2024-04-12 南方海洋科学与工程广东省实验室(珠海) Dynamic water body extraction method and system based on static satellite remote sensing data

Similar Documents

Publication Publication Date Title
JP5020444B2 (en) Crop growth measuring device, crop growth measuring method, crop growth measuring program, and computer-readable recording medium recording the crop growth measuring program
Israel A UAV-based roe deer fawn detection system
US11373399B2 (en) Method of crop analysis using drone with flying and driving capability
EP3444579B1 (en) Spectral camera control device, spectral camera control program, spectral camera control system, aircraft equipped with said system, and spectral image capturing method
CN111226261B (en) Information processing device, information processing method, program, and information processing system
US10440282B2 (en) Imaging apparatus and imaging method
JP6390054B2 (en) Monitoring system
KR20190115491A (en) Agricultural dron system capable of controlling pesticide application amount in real time using big data analysis based on sensor
JP2016208065A (en) Animal population survey system
CN111225855A (en) Unmanned plane
BR112017003678A2 (en) methods for agronomic and agricultural monitoring using unmanned aerial systems
JP2007143490A (en) A method for diagnosing vegetation by aerial balloon multiband sensing
JP2007171033A (en) Indirect measurement method and indirect measurement system for leaf area index
AU2021204034B2 (en) Information processing device, information processing method and program
KR20210143627A (en) Vegetation prediction system using drone and vegetation prediction device and vegetation prediction method
KR101759130B1 (en) System For Crop Database Using Unmanned Aerial Vehicle
CN111095339A (en) Crop cultivation supporting device
WO2018163771A1 (en) Water quality inspection system and water quality inspection method
US20230408889A1 (en) Imaging apparatus and lens apparatus
Xiang et al. Development of autonomous unmanned helicopter based agricultural remote sensing system
JP2019039913A (en) Monitoring system
JP2023177352A (en) Method, program, and information processing device
CN114119713B (en) A method for detecting forest baldness based on artificial intelligence and UAV remote sensing
Jensen et al. Assessing grain crop attributes using digital imagery acquired from a low-altitude remote controlled aircraft
CZ33673U1 (en) Multispectral shortwave infrared camera system for detecting plant water stress and an unmanned aerial vehicle containing it