[go: up one dir, main page]

JP2007141323A - Optical pickup, optical recording and reproducing apparatus, and tracking error signal detecting method - Google Patents

Optical pickup, optical recording and reproducing apparatus, and tracking error signal detecting method Download PDF

Info

Publication number
JP2007141323A
JP2007141323A JP2005332092A JP2005332092A JP2007141323A JP 2007141323 A JP2007141323 A JP 2007141323A JP 2005332092 A JP2005332092 A JP 2005332092A JP 2005332092 A JP2005332092 A JP 2005332092A JP 2007141323 A JP2007141323 A JP 2007141323A
Authority
JP
Japan
Prior art keywords
light
optical recording
optical
light receiving
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005332092A
Other languages
Japanese (ja)
Other versions
JP4765570B2 (en
Inventor
Yoshiki Okamoto
好喜 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2005332092A priority Critical patent/JP4765570B2/en
Publication of JP2007141323A publication Critical patent/JP2007141323A/en
Application granted granted Critical
Publication of JP4765570B2 publication Critical patent/JP4765570B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Optical Recording Or Reproduction (AREA)
  • Optical Head (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical pickup in which offset of an objective lens is corrected without using a plurality of beams, and also to provide an optical recording and reproducing apparatus, and a tracking error detecting method. <P>SOLUTION: In the optical pickup, a diffraction element is provided in an optical path in which light is reflected by an optical recording medium and proceeded to a light receiving part, the light diffracted by this diffraction element has constitution having astigmatism of a five order, that is, W(ρ,θ) = Z(4ρ<SP>4</SP>-3ρ<SP>2</SP>)×sinθ(where, (ρ,θ) indicates radius and angle of polar coordinate making an optical axis as an original point, and Z indicates a coefficient expressing aberration quantity). Since intensity distribution of brightness and darkness is caused in a push-pull modulation region, a push-pull component is canceled, and only offset of the objective lens is detected. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、光ディスクや光カード等の光記録媒体に対して光学的に情報を記録再生する際に用いる光学ピックアップ、光記録再生装置及びトラッキングエラー検出方法に関する。   The present invention relates to an optical pickup, an optical recording / reproducing apparatus, and a tracking error detecting method used when optically recording / reproducing information on / from an optical recording medium such as an optical disk or an optical card.

近年、光記録媒体において、記録密度が異なる種々のタイプの光記録媒体が開発されており、例えばディスク状の光記録媒体では、レーザ光の使用波長が例えば780nm付近であるCD(Compact Disc)、使用波長が660nm付近であるDVD(Digital Versatile Disc)、使用波長が405nm付近であるBD(Blu-ray Disc)、同様に使用波長が405nm付近であるHD−DVD(High Definition DVD)等が挙げられる。   In recent years, various types of optical recording media having different recording densities have been developed as optical recording media. For example, in a disk-shaped optical recording medium, a CD (Compact Disc) in which the wavelength used for laser light is, for example, around 780 nm, Examples include DVD (Digital Versatile Disc) having a used wavelength of about 660 nm, BD (Blu-ray Disc) having a used wavelength of about 405 nm, and HD-DVD (High Definition DVD) having a used wavelength of about 405 nm. .

これらの光記録媒体においてはその構造がそれぞれ異なり、記録密度を上げるために、CD型光記録媒体では1.6μmであったトラックピッチがDVD型光記録媒体においては0.74μm、BD型光記録媒体では0.3〜0.35μm程度にトラックピッチが微小化されている。
このように幅が微細化された記録トラックに対し、光源から出射された光を目的とする記録トラック上に精度良く位置させることが必要である。
従来のトラッキング方法としては、プッシュプル法における対物レンズのオフセット、すなわち対物レンズの光軸ずれに対する補正を行う方法として、DPP(Differential Push-Pull)法が広く用いられている(例えば特許文献1参照。)
このDPP法は、光源から光記録媒体に向かう光を3分割し、真ん中のメインビームに対して両側のサブビームを、光記録媒体の盤面上における半径方向に、記録トラックのトラックピッチの2分の1だけずらした位置に精度良く照射し、これらの光を受光部において検出して、対物レンズのオフセットをキャンセルしようとするものである。
These optical recording media have different structures, and in order to increase the recording density, the track pitch, which was 1.6 μm in the CD type optical recording medium, is 0.74 μm in the DVD type optical recording medium, and BD type optical recording. In the medium, the track pitch is reduced to about 0.3 to 0.35 μm.
It is necessary to accurately position the light emitted from the light source on the target recording track with respect to the recording track with a reduced width.
As a conventional tracking method, a DPP (Differential Push-Pull) method is widely used as a method for correcting an offset of an objective lens in the push-pull method, that is, a correction for an optical axis shift of the objective lens (see, for example, Patent Document 1). .)
This DPP method divides light from a light source toward an optical recording medium into three parts, and sub-beams on both sides with respect to the central main beam in the radial direction on the disk surface of the optical recording medium, ½ the track pitch of the recording track. This is intended to cancel the offset of the objective lens by accurately irradiating the position shifted by 1 and detecting these lights at the light receiving section.

特公平4−34212号公報Japanese Patent Publication No. 4-34212

上述したように、従来のDPP法によるトラッキングエラー検出方法では、光源から光記録媒体に向かういわゆる光の往路において3分割した光を、光記録媒体の記録トラックに対し、精度良く目的とする位置に照射する必要がある。したがって、
(a)光を往路上で3分割するため、記録再生を行うような光記録媒体において、光源からの光の利用効率は、分割しない場合と比べて低下する。
(b)光記録媒体のトラックに対して、高精度にサブビームを配置しなければならない。
(c)光記録媒体のシーク軸上(半径方向)に高精度にメインビームを配置しなければならない。
(d)複数の層を有する光記録媒体において、記録再生を行っていない層からの不要光が増える。
などの問題がある。
しかしながら、光を往路上で分割せずに、精度良く対物レンズのオフセットを補正する方法は提案されていない。
As described above, in the conventional tracking error detection method based on the DPP method, the light divided into three in the so-called light outward path from the light source to the optical recording medium is accurately placed at the target position with respect to the recording track of the optical recording medium. Irradiation is necessary. Therefore,
(A) Since the light is divided into three on the forward path, in the optical recording medium that performs recording and reproduction, the light use efficiency from the light source is lower than in the case where the light is not divided.
(B) The sub beam must be arranged with high accuracy with respect to the track of the optical recording medium.
(C) The main beam must be arranged with high accuracy on the seek axis (radial direction) of the optical recording medium.
(D) In an optical recording medium having a plurality of layers, unnecessary light from a layer on which recording / reproduction is not performed increases.
There are problems such as.
However, no method has been proposed for accurately correcting the offset of the objective lens without dividing the light on the forward path.

以上の問題に鑑みて、本発明は、複数のビームを用いることなく、トラッキングエラー検出における対物レンズのオフセットを補正することが可能な光学ピックアップ、光記録再生装置及びトラッキングエラー検出方法を提供することを目的とする。   In view of the above problems, the present invention provides an optical pickup, an optical recording / reproducing apparatus, and a tracking error detection method capable of correcting an offset of an objective lens in tracking error detection without using a plurality of beams. With the goal.

上記課題を解決するため、本発明は、光源からの光が対物レンズを介して光記録媒体に導かれ、光記録媒体から反射された光が受光部に導かれる光学系と、受光部において検出された光出力をもとに対物レンズを駆動する対物レンズ駆動部を有して成る光学ピックアップ装置であって、光記録媒体から反射され受光部に向かう光路に少なくとも回折素子が設けられて成り、この回折素子によって回折した光が、5次の非点収差
W(ρ,θ)=Z×(4ρ−3ρ)×sinθ ・・・(1)
(但し、(ρ,θ)は、光軸を原点とする極座標の半径と角度を示し、Zは収差量を表す係数を示す)
を有する構成とする。
In order to solve the above problems, the present invention provides an optical system in which light from a light source is guided to an optical recording medium through an objective lens, and light reflected from the optical recording medium is guided to a light receiving unit, and is detected by the light receiving unit. An optical pickup device having an objective lens driving unit that drives an objective lens based on the optical output, and is configured such that at least a diffraction element is provided in the optical path reflected from the optical recording medium and directed to the light receiving unit, The light diffracted by the diffraction element is fifth-order astigmatism W (ρ, θ) = Z × (4ρ 4 −3ρ 2 ) × sin θ (1)
(However, (ρ, θ) indicates the radius and angle of polar coordinates with the optical axis as the origin, and Z indicates a coefficient indicating the amount of aberration)
It is set as the structure which has.

また、本発明による光記録再生装置は、光源からの光が少なくとも対物レンズを介して光記録媒体に入射され、光記録媒体から反射された光が受光部に導かれる光学系と、対物レンズを駆動する対物レンズ駆動部とより成る光ヘッドを有し、受光部において検出された光出力に基づいて記録及び/又は再生がなされる光記録再生装置であって、光記録媒体と受光部との間に回折素子を設け、この回折素子による回折光が、上記式(1)で定義される5次の非点収差を有する構成とする。   An optical recording / reproducing apparatus according to the present invention includes an optical system in which light from a light source is incident on an optical recording medium through at least an objective lens, and light reflected from the optical recording medium is guided to a light receiving unit, and an objective lens. An optical recording / reproducing apparatus having an optical head composed of an objective lens driving unit for driving, and performing recording and / or reproduction based on an optical output detected by a light receiving unit, comprising: an optical recording medium and a light receiving unit; A diffraction element is provided between them, and the diffracted light by this diffraction element has a fifth-order astigmatism defined by the above formula (1).

更に、本発明によるトラッキングエラー検出方法は、光源から少なくとも対物レンズを介して光記録媒体に入射した光を受光部により検出して、前記光記録媒体のトラック位置を検出するトラッキングエラー検出方法であって、光記録媒体と受光部との間に回折素子を設ける。そしてこの回折素子による回折光が、上記式(1)で定義される5次の非点収差を有する構成とし、そしてこの回折素子を通過しない光又は回折素子の0次光と、回折素子により回折される±1次回折光から、トラッキングエラー信号を検出する。   Furthermore, the tracking error detection method according to the present invention is a tracking error detection method in which light incident on an optical recording medium from a light source via at least an objective lens is detected by a light receiving unit to detect a track position of the optical recording medium. Thus, a diffraction element is provided between the optical recording medium and the light receiving unit. The diffracted light by the diffractive element has the fifth-order astigmatism defined by the above formula (1), and the light that does not pass through the diffractive element or the 0th-order light of the diffractive element and the diffracted element A tracking error signal is detected from the ± first-order diffracted light.

上述の本発明の光学ピックアップ、光記録再生装置及びトラッキングエラー検出方法によれば、光源からの光を分割することなく光記録媒体に照射し、その反射光が受光部に受光される戻り光路に回折素子を設け、この回折素子に、上記式(1)、すなわちフリンジゼルニケ多項式の5次の非点収差を有する構成とするものである。
このとき±1次回折光は、光記録媒体の案内溝によって生じる0次光と±1次回折光との重なる領域、いわゆるプッシュプル変調領域において光強度が一様でなくなり、トラックの延長方向に明暗の位相が反転する強度分布が生じる。これにより、強度変化が相殺されてしまうこととなる。
このような強度分布とした±1次回折光を、トラックの並ぶ方向に2分割した受光部により検出して、トラックの並ぶ方向の差信号を検出すれば、対物レンズのオフセットのみを検出することが可能となる。回折素子を通過しない光、もしくは回折素子の0次光から得られるトラッキングエラー信号から、この対物レンズのオフセットを差し引くことによって、対物レンズのオフセットが補正されたトラッキングエラー信号を得ることが可能となる。
したがって、本発明によれば、複数のビームを光記録媒体のトラックに対して精度良く目的とする位置に照射させる必要がなく、また光利用効率を損なうことなく、良好なトラッキングエラー信号の検出が可能な光学ピックアップ、光記録再生装置及びトラッキングエラー信号検出方法を提供することができる。
According to the optical pickup, the optical recording / reproducing apparatus, and the tracking error detection method of the present invention described above, the light from the light source is irradiated to the optical recording medium without being divided, and the reflected light is received on the return optical path received by the light receiving unit. A diffractive element is provided, and this diffractive element has the above formula (1), that is, a fifth-order astigmatism of the Fringe Zernike polynomial.
At this time, the light intensity of ± 1st order diffracted light is not uniform in a region where the 0th order light and ± 1st order diffracted light generated by the guide groove of the optical recording medium overlap, that is, a so-called push-pull modulation region. An intensity distribution in which the phase is inverted occurs. As a result, the intensity change is offset.
If the ± 1st-order diffracted light having such an intensity distribution is detected by the light receiving unit divided into two in the track arrangement direction, and the difference signal in the track arrangement direction is detected, only the offset of the objective lens can be detected. It becomes possible. By subtracting the offset of the objective lens from the tracking error signal obtained from the light that does not pass through the diffractive element or the 0th-order light of the diffractive element, a tracking error signal in which the offset of the objective lens is corrected can be obtained. .
Therefore, according to the present invention, it is not necessary to accurately irradiate a target position with a plurality of beams on a track of an optical recording medium, and a good tracking error signal can be detected without impairing light use efficiency. A possible optical pickup, optical recording / reproducing apparatus, and tracking error signal detection method can be provided.

本発明によれば、1本のビームを用いてトラッキングエラー信号のオフセット補正を行うことができることから、光利用効率の低下を回避し、良好にトラッキングエラー信号を検出することが可能な光学ピックアップ、光記録再生装置及びトラッキングエラー信号検出方法を提供し、また光学ピックアップ及び光記録再生装置の光学系の簡易化を図ることができる。   According to the present invention, since an offset correction of a tracking error signal can be performed using one beam, an optical pickup capable of avoiding a decrease in light utilization efficiency and detecting a tracking error signal satisfactorily, An optical recording / reproducing apparatus and a tracking error signal detection method can be provided, and the optical system of the optical pickup and the optical recording / reproducing apparatus can be simplified.

以下本発明を実施するための最良の形態の例を説明するが、本発明は以下の例に限定されるものではない。
図1においては、本発明によるトラッキングエラー検出方法を実現する光学ピックアップを含む光記録再生装置の一例の要部の概略構成図を示す。
この光記録再生装置100は、半導体レーザ等より成る光源2と、光源2から出射される光を光記録媒体10、例えば光ディスクに入射させる光学系とを有する。この光学系は、この場合偏光ビームスプリッタ4、コリメータレンズ5、4分の1波長板6と、対物レンズ7とより構成される。また、光記録媒体10から反射された光を受光部14、16に導く光学系を有し、この場合対物レンズ7、4分の1波長板6、コリメータレンズ5、偏光ビームスプリッタ4、ビームスプリッタ等の分離部8、回折素子9、マルチレンズ等のレンズ15とより構成する。
対物レンズ7には、2軸アクチュエータ等のアクチュエータ12を有する対物レンズ駆動部11が接続される。また、光記録媒体10は、スピンドルモータ等の回転駆動部16上に載置固定されて、記録再生時には所定の速度で回転される。
受光部14、16において検出された信号は演算回路17に出力される。図1において、本発明の光学ピックアップ1に破線を付して示す。
Examples of the best mode for carrying out the present invention will be described below, but the present invention is not limited to the following examples.
FIG. 1 shows a schematic configuration diagram of a main part of an example of an optical recording / reproducing apparatus including an optical pickup for realizing a tracking error detection method according to the present invention.
The optical recording / reproducing apparatus 100 includes a light source 2 made of a semiconductor laser or the like, and an optical system that makes light emitted from the light source 2 enter an optical recording medium 10, for example, an optical disc. In this case, the optical system includes a polarization beam splitter 4, a collimator lens 5, a quarter-wave plate 6, and an objective lens 7. The optical system further includes an optical system that guides the light reflected from the optical recording medium 10 to the light receiving units 14 and 16. In this case, the objective lens 7, the quarter-wave plate 6, the collimator lens 5, the polarization beam splitter 4, and the beam splitter are included. And the like, a diffractive element 9, and a lens 15 such as a multi lens.
The objective lens 7 is connected to an objective lens driving unit 11 having an actuator 12 such as a biaxial actuator. The optical recording medium 10 is mounted and fixed on a rotation drive unit 16 such as a spindle motor, and is rotated at a predetermined speed during recording and reproduction.
Signals detected by the light receiving units 14 and 16 are output to the arithmetic circuit 17. In FIG. 1, the optical pickup 1 of the present invention is shown with a broken line.

このような構成において、光源2から出射された例えばレーザ光は、偏光ビームスプリッタ4に入射され、その偏光面において反射されて、例えばコリメートレンズより成るレンズ5によって平行光とされ、4分の1波長板6を通過して対物レンズ7を介して光記録媒体10の記録トラック上に入射される。
光記録媒体10から反射された光は、対物レンズ7を介して4分の1波長板6及びレンズ5を通過する。4分の1波長板を2回通過した光は偏光ビームスプリッタ4において偏光方向が変換されて偏光面を通過し、この場合ビームスプリッタ等の分離部8によって光路を分離して、一方の光路の光は回折素子9を介して受光部14の受光面上に入射される。分離部8によって分離された他方の光路の光は、マルチレンズ等のレンズ15を介して受光部16の受光面上に入射される。
In such a configuration, for example, laser light emitted from the light source 2 is incident on the polarization beam splitter 4, reflected on the polarization plane thereof, and converted into parallel light by the lens 5 made of, for example, a collimating lens, and is ¼. The light passes through the wave plate 6 and is incident on the recording track of the optical recording medium 10 through the objective lens 7.
The light reflected from the optical recording medium 10 passes through the quarter-wave plate 6 and the lens 5 through the objective lens 7. The light that has passed through the quarter-wave plate twice is changed in polarization direction in the polarization beam splitter 4 and passes through the polarization plane. In this case, the light path is separated by the separation unit 8 such as a beam splitter, The light is incident on the light receiving surface of the light receiving unit 14 via the diffraction element 9. The light of the other optical path separated by the separation unit 8 is incident on the light receiving surface of the light receiving unit 16 through a lens 15 such as a multi lens.

ここで、回折素子9を通過した光を受光する受光部14は、光記録媒体10のトラックの並ぶ方向に対応する方向に2分割され、すなわちトラックの延長方向に対応する方向に沿う分割線をもって分割された少なくとも2つの受光素子より成り、これらの受光素子が、少なくとも回折素子9により回折される±1次回折光を受光する位置に配置される。また、レンズ15を通過した光を受光する受光部16は、光記録媒体10のトラックの並ぶ方向及びこれとほぼ直交するトラックの延長方向に対応する方向に4分割される。すなわち光記録媒体10が円盤状の光ディスクの場合は、トラックのラディアル(半径)方向とタンジェンシャル(接線)方向に対応する方向に4分割される。受光部16の分割線の交点は、光記録媒体から反射されて受光部8に入射する光の強度分布の強度中心がほぼ一致するように受光部16が配置される。
なお、後述するように、5次の非点収差を与えた回折素子3を通過した光は90°座標が回転するので、回折素子3を通過する前のトラックの並ぶ方向及びトラックの延長方向は、受光部においては90°回転した方向となる。
そして、受光部14及び16において検出された光出力は、演算回路17においてRF(高周波)信号、TE(トラッキングエラー)信号、FE(フォーカスエラー)信号がそれぞれ演算される。RF信号は例えば演算回路においてアナログ/デジタル変換、エラー訂正などの処理がなされて記録再生信号として出力され、TE信号は光ヘッド駆動部18及び/又は対物レンズ駆動部11に、またFE信号は対物レンズ駆動部11に出力されて、フォーカスサーボ、トラッキングサーボがなされる。
なお、FE信号検出は例えばマルチレンズより成るレンズ15に非点収差を与えることによって、非点収差法により検出することができる。また、その他の各種のフォーカスエラー検出法を適用することが可能である。
Here, the light receiving unit 14 that receives the light that has passed through the diffraction element 9 is divided into two in a direction corresponding to the direction in which the tracks of the optical recording medium 10 are arranged, that is, has a dividing line along the direction corresponding to the extension direction of the tracks. It consists of at least two divided light receiving elements, and these light receiving elements are arranged at positions that receive at least ± first-order diffracted light diffracted by the diffraction element 9. The light receiving unit 16 that receives the light that has passed through the lens 15 is divided into four in a direction corresponding to the direction in which the tracks of the optical recording medium 10 are arranged and the direction in which the tracks extend substantially perpendicular thereto. That is, when the optical recording medium 10 is a disk-shaped optical disc, the optical recording medium 10 is divided into four in the direction corresponding to the radial (radius) direction and the tangential (tangential) direction of the track. At the intersection of the dividing lines of the light receiving unit 16, the light receiving unit 16 is arranged so that the intensity centers of the light intensity distributions reflected from the optical recording medium and incident on the light receiving unit 8 substantially coincide.
As will be described later, since the 90-degree coordinates of the light that has passed through the diffraction element 3 given fifth-order astigmatism rotate, the track alignment direction and the track extension direction before passing through the diffraction element 3 are as follows. In the light receiving portion, the direction is rotated by 90 °.
The optical output detected by the light receiving units 14 and 16 is calculated by an arithmetic circuit 17 as an RF (high frequency) signal, a TE (tracking error) signal, and an FE (focus error) signal. For example, the RF signal is subjected to processing such as analog / digital conversion and error correction in an arithmetic circuit and is output as a recording / reproducing signal, the TE signal is output to the optical head driving unit 18 and / or the objective lens driving unit 11, and the FE signal is the objective signal. The servo is output to the lens driving unit 11 to perform focus servo and tracking servo.
The FE signal can be detected by the astigmatism method by giving astigmatism to the lens 15 made of, for example, a multilens. Further, various other focus error detection methods can be applied.

そして本発明においては、上述の回折素子9が、上記式(1)、すなわち
W(ρ,θ)=Z×(4ρ−3ρ)×sinθ ・・・(1)
(但し、(ρ,θ)は光軸を原点とする極座標の半径と角度を示し、Zは収差量を表す係数を示す)
で定義される5次の非点収差、すなわちゼルニケフリンジ多項式における第13項の収差を与える。ここで、(ρ,θ)は光軸を中心とする極座標の半径と角度を表す。
In the present invention, the diffractive element 9 described above has the above formula (1), that is, W (ρ, θ) = Z × (4ρ 4 −3ρ 2 ) × sin θ (1)
(Where (ρ, θ) represents the radius and angle of polar coordinates with the optical axis as the origin, and Z represents a coefficient representing the amount of aberration)
The fifth-order astigmatism defined by the above equation, that is, the aberration of the thirteenth term in the Zernike fringe polynomial is given. Here, (ρ, θ) represents the radius and angle of polar coordinates centered on the optical axis.

このような収差を与えると、上述したように、光記録媒体10の案内溝によってできる0次光と±1次回折光とが重なる部分、すなわちプッシュプル変調領域の強度変化が一様ではなくなる。図2A及びBを参照してこれについて説明する。
図2Aにおいては、通常の光学ピックアップにより検出される受光部での光強度分布の一例を示す。光記録媒体のトラックの並ぶ方向を矢印x、これとはほぼ直交するトラックの延長方向を矢印yとして示す。通常は、図2Aに示すように、受光されるスポット内の、トラックの並ぶ方向、すなわち円盤状光記録媒体の場合はラディアル方向にプッシュプル領域P1、P2が検出され、このプッシュプル領域P1及びP2の明暗を差し引くことにより、すなわち受光部16の4分割した受光領域からの信号を右回りにそれぞれA1、B1、C1及びD1とすると、光強度を検出した信号のラディアル方向の差信号(A1+B1)−(C1+D1)を演算することによってプッシュプル信号成分が得られる。
When such an aberration is given, as described above, the intensity change in the portion where the 0th-order light and ± 1st-order diffracted light generated by the guide groove of the optical recording medium 10 overlap, that is, the push-pull modulation region, is not uniform. This will be described with reference to FIGS. 2A and 2B.
FIG. 2A shows an example of the light intensity distribution at the light receiving unit detected by a normal optical pickup. The direction in which the tracks of the optical recording medium are arranged is indicated by an arrow x, and the extending direction of the track substantially orthogonal to this is indicated by an arrow y. Normally, as shown in FIG. 2A, push-pull areas P1 and P2 are detected in the direction in which the tracks are arranged in the received light spot, that is, in the radial direction in the case of a disc-shaped optical recording medium. By subtracting the brightness of P2, that is, when the signals from the four light receiving areas of the light receiving section 16 are respectively A1, B1, C1, and D1, the difference signal (A1 + B1) in the radial direction of the signal from which the light intensity is detected. )-(C1 + D1) is calculated to obtain a push-pull signal component.

一方、回折素子9によって、上述の式(1)で定義される5次の非点収差を与える場合は、図2Bに示すように、プッシュプル領域P1´及びP2´は90°回転して検出される。なお、この例においては、上記式(1)で定義する収差を表す極座標において、トラックの並ぶ方向をθ=0°とした場合である。
したがって、この±1次回折光を検出すると、矢印yで示すトラックの延長方向に沿って、プッシュプル変調領域P1´及びP2´内にそれぞれ明領域P1a及びP2a、暗領域P1b及びP2bが生じる。なお、矢印xで示す方向が対物レンズのシフトする方向である。つまりこの領域P1´及びP2´内ではこれらの明暗で位相が反転するため、そのプッシュプル変調成分による強度変化が相殺されてしまう。この光を、トラックの並ぶ方向(矢印xで示す方向)に2分割した受光部14によって検出し、トラックの並ぶ方向の差信号として検出すれば、対物レンズのオフセットのみを検出することが可能となる。
On the other hand, when the fifth-order astigmatism defined by the above equation (1) is given by the diffraction element 9, as shown in FIG. 2B, the push-pull regions P1 ′ and P2 ′ are rotated by 90 ° and detected. Is done. In this example, the track alignment direction is θ = 0 ° in the polar coordinates representing the aberration defined by the above formula (1).
Therefore, when this ± first-order diffracted light is detected, bright regions P1a and P2a and dark regions P1b and P2b are generated in the push-pull modulation regions P1 ′ and P2 ′, respectively, along the track extending direction indicated by the arrow y. The direction indicated by the arrow x is the direction in which the objective lens shifts. That is, in these areas P1 ′ and P2 ′, the phase is inverted between these bright and dark, and the intensity change due to the push-pull modulation component is canceled out. If this light is detected by the light receiving unit 14 divided into two in the track arrangement direction (direction indicated by the arrow x) and detected as a difference signal in the track arrangement direction, only the offset of the objective lens can be detected. Become.

図3〜図5においては、0次光と、±1次回折光とのデトラックに対する信号量の変化を解析した結果を示す。図3においては、0次光、すなわち通常の出力信号を示し、図4においては、5次の非点収差がある場合の出力信号を示す。なおこの場合、±1次回折光を、図2Bに示すように、トラックの並ぶ方向及びこれとはほぼ直交するトラックの延長方向に4分割した受光素子によって受光した信号を右回りにA2、B2、C2及びD2として示す。
図3に示すように、通常の場合(0次光)は、図2Aにおけるトラックの並ぶ方向及びトラックの延長方向に4分割した受光素子からの信号A1〜D1は、それぞれ実線a1〜a4で示すように、信号A1及びB1が略等しく、信号C1及びD1が略等しい。
一方図4に示すように、5次の非点収差を与える場合は、信号A2及び信号C2が略等しく、信号B2及びD2がほぼ等しい。
したがって、図5に示すように、通常の場合のプッシュプル信号、すなわち図2Aにおける信号(A1+B1)−(C1+D1)は、実線c1で示すようにデトラックに対し周期的に変化するが、5次の非点収差を与えると、信号(A2+D2)−(B2+C2)は、実線c2で示すように略0となる。つまり、プッシュプル変調成分が含まれないことがわかる。
3 to 5 show the results of analyzing the change in the signal amount with respect to the detrack between the 0th order light and the ± 1st order diffracted light. 3 shows zero-order light, that is, a normal output signal, and FIG. 4 shows an output signal in the case where there is fifth-order astigmatism. In this case, as shown in FIG. 2B, ± 1st-order diffracted light is obtained by receiving signals received by the light-receiving elements divided into four in the direction in which the tracks are arranged and the direction in which the tracks are substantially orthogonal, as shown in FIG. Shown as C2 and D2.
As shown in FIG. 3, in the normal case (0th order light), signals A1 to D1 from the light receiving elements divided into four in the track arrangement direction and the track extension direction in FIG. 2A are indicated by solid lines a1 to a4, respectively. Thus, the signals A1 and B1 are substantially equal, and the signals C1 and D1 are substantially equal.
On the other hand, as shown in FIG. 4, when the fifth-order astigmatism is given, the signal A2 and the signal C2 are substantially equal, and the signals B2 and D2 are substantially equal.
Therefore, as shown in FIG. 5, the push-pull signal in the normal case, that is, the signal (A1 + B1) − (C1 + D1) in FIG. 2A changes periodically with respect to the detrack as shown by the solid line c1, but the fifth order When the astigmatism is given, the signal (A2 + D2) − (B2 + C2) becomes substantially 0 as shown by the solid line c2. That is, it can be seen that the push-pull modulation component is not included.

図6は、上記式(1)で定義される5次の非点収差の極座標において、トラックの並ぶ方向を0度とし、この方向から±25度の範囲でθ=0°と定義する方向を変化させて、プッシュプル信号の変化を解析した結果を示す。図6中、実線d1は通常の場合、実線d2〜d12は、θ=0°とする方向を、トラックの並ぶ方向から−25度から+25度まで5度毎に変化した各場合のプッシュプル信号を示す。
図6の結果から、上記式(1)で定義される5次の非点収差の極座標として、θ=0°とする方向は、トラックの並ぶ方向から−25度以上+25度以下の範囲に設定された場合に、プッシュプル変調成分が略0、もしくは微小に抑えることが可能であることがわかる。したがって、上記式(1)における極座標のθ=0°とする方向としては、トラックの並ぶ方向から、±25度の範囲とすることができるといえる。
FIG. 6 shows a direction in which the track alignment direction is defined as 0 degree in the polar coordinates of the fifth-order astigmatism defined by the above formula (1), and θ = 0 ° is defined within a range of ± 25 degrees from this direction. The result of changing and analyzing the change of the push-pull signal is shown. In FIG. 6, the solid line d1 is a normal case, and the solid lines d2 to d12 are push-pull signals in each case where the direction of θ = 0 ° is changed every 5 degrees from −25 degrees to +25 degrees from the track arrangement direction. Indicates.
From the result of FIG. 6, as the polar coordinates of the fifth-order astigmatism defined by the above formula (1), the direction of θ = 0 ° is set in the range of −25 degrees to +25 degrees from the track alignment direction. In this case, it can be seen that the push-pull modulation component can be suppressed to substantially zero or very small. Therefore, it can be said that the direction in which the polar coordinate θ = 0 ° in the above formula (1) can be within a range of ± 25 degrees from the direction in which the tracks are arranged.

図7は、通常のプッシュプル信号と本発明の光学ピックアップによって得られるプッシュプル信号を解析した図を示す。実線e1は、通常のプッシュプル信号、すなわち図2Aにおける信号(A1+B1)−(C1+D1)を示し、実線e2は、5次の非点収差を与えることによってプッシュプル変調成分を含まないようにして得られる対物レンズのシフトを表す信号、すなわち図2Bにおける信号(A2+D2)−(B2+C2)を示し、実線e3は、プッシュプル信号から対物レンズのシフトを差し引いたトラッキングエラー信号を示す。このように、本発明によれば、対物レンズのシフトを補正したトラッキングエラー信号を検出することができることがわかる。   FIG. 7 shows an analysis of a normal push-pull signal and a push-pull signal obtained by the optical pickup of the present invention. A solid line e1 indicates a normal push-pull signal, that is, a signal (A1 + B1) − (C1 + D1) in FIG. 2A, and a solid line e2 is obtained by providing fifth-order astigmatism so as not to include a push-pull modulation component. 2B, a signal (A2 + D2) − (B2 + C2) in FIG. 2B is shown, and a solid line e3 shows a tracking error signal obtained by subtracting the objective lens shift from the push-pull signal. Thus, according to the present invention, it can be seen that a tracking error signal in which the shift of the objective lens is corrected can be detected.

図8は、図1に示す光学ピックアップにおける各受光部14及び16からの検出信号を演算する演算回路17の一実施形態例の概略構成図を示す。
この例においては、図1に示すように、分離部8によって光路を分離し、5次の非点収差を与えた回折素子9により回折された±1次回折光を受光部14、すなわちトラックの並ぶ方向に対応する方向に2分割された2つの受光素子14a及び14bで受光して、分離部8により分離された他の光路の光、すなわち回折素子9を通過しない光には、マルチレンズ等のレンズ15により非点収差を加えて、トラックの並ぶ方向及びトラックの延長方向に4分割された受光領域を有する受光部16によって受光する例を示す。
なお、上述したように、5次の非点収差を加えることにより、光強度分布は90°回転する。図8において、トラックの並ぶ方向に対応する方向を矢印x、トラックの延長方向に対応する方向を矢印yでそれぞれ示す。
FIG. 8 is a schematic configuration diagram of an embodiment of an arithmetic circuit 17 that calculates detection signals from the light receiving units 14 and 16 in the optical pickup shown in FIG.
In this example, as shown in FIG. 1, the light path is separated by the separating unit 8 and ± 1st-order diffracted light diffracted by the diffraction element 9 given fifth-order astigmatism is received by the light receiving unit 14, that is, the tracks are arranged. The light received by the two light receiving elements 14a and 14b divided into two in the direction corresponding to the direction and separated by the separating unit 8, that is, light that does not pass through the diffraction element 9, is a multi lens or the like. An example is shown in which astigmatism is added by a lens 15 and light is received by a light receiving unit 16 having a light receiving region divided into four in the direction in which the tracks are arranged and the direction in which the tracks extend.
As described above, the light intensity distribution is rotated by 90 ° by adding fifth-order astigmatism. In FIG. 8, the direction corresponding to the direction in which the tracks are arranged is indicated by an arrow x, and the direction corresponding to the extension direction of the track is indicated by an arrow y.

図8において、受光部16の4分割された受光素子において検出された信号を右回りにA〜Dとすると、これら信号A〜Dは、図示しない電流−電圧変換増幅器によりそれぞれ電圧変換された検出信号とされ、加算器21及び22においてそれぞれ、トラックの並ぶ方向及びトラックの延長方向に分割された受光領域の和信号(A+D)、(B+C)が演算され、更に、減算器23において、これらの差信号(A+D)−(B+C)すなわちPPmが演算される。   In FIG. 8, assuming that signals detected by the light receiving elements divided into four in the light receiving unit 16 are A to D clockwise, these signals A to D are detected by voltage conversion by current-voltage conversion amplifiers (not shown). In the adders 21 and 22, the sum signals (A + D) and (B + C) of the light receiving areas divided in the track arranging direction and the track extending direction are calculated in the adders 21 and 22, respectively. The difference signal (A + D)-(B + C), that is, PPm is calculated.

一方、受光部14a及び14bにおいては、トラックの並ぶ方向に分割された受光領域において検出された信号E及びF、G及びHがそれぞれ図示しない電流−電圧変換増幅器によりそれぞれ電圧変換された検出信号とされ、減算器24及び25においてそれぞれ(E−F)すなわちPPs1と、(G−H)すなわちPPs2が演算される。そして更に、係数乗算器26及び27により、それぞれ信号PPs1及びPPs2に係数k1及びk2が乗算され、加算器28において加算される。そして、減算器29において、PPmから対物レンズのシフトを補正する信号(k1×PPs1+k2×PPs2)が減算されて、対物レンズのシフトが補正されたトラッキングエラー信号TESとして出力される。   On the other hand, in the light receiving portions 14a and 14b, the signals E and F, G, and H detected in the light receiving regions divided in the direction in which the tracks are arranged are respectively detected by voltage conversion by current-voltage conversion amplifiers (not shown). In the subtracters 24 and 25, (E−F), that is, PPs1, and (G−H), that is, PPs2, are calculated. Further, the coefficient multipliers 26 and 27 multiply the signals PPs1 and PPs2 by the coefficients k1 and k2, respectively, and add them in the adder 28. Then, the subtractor 29 subtracts the signal (k1 × PPs1 + k2 × PPs2) for correcting the shift of the objective lens from PPm, and outputs it as a tracking error signal TES in which the shift of the objective lens is corrected.

すなわちこの場合、トラッキングエラー信号TESは、
TES=PPm−(k1×PPs1+k2×PPs2)
PPm=(A+D)−(B+C)
PPs1=E−F
PPs2=G−H
より得られる。
なお、k1及びk2は、入射光の強度分布や回折素子の回折光量比などを補正する補正係数である。k1=k2であってもよい。
このように、±1次回折光の和をとることによって、光ビームと受光部との相対的位置ずれに対して許容量が増加する。したがって、受光部の配置位置の調整精度を緩和することができるという利点を有する。
That is, in this case, the tracking error signal TES is
TES = PPm− (k1 × PPs1 + k2 × PPs2)
PPm = (A + D)-(B + C)
PPs1 = EF
PPs2 = GH
More obtained.
K1 and k2 are correction coefficients for correcting the intensity distribution of incident light, the diffracted light quantity ratio of the diffraction element, and the like. k1 = k2 may be sufficient.
In this way, by taking the sum of the ± first-order diffracted lights, the allowable amount increases with respect to the relative positional deviation between the light beam and the light receiving unit. Therefore, there is an advantage that the adjustment accuracy of the arrangement position of the light receiving unit can be relaxed.

また、フォーカスエラー信号FESは、3次の非点収差を与えた光を受光する受光部16からの信号A〜Dを利用して、
FES=(A+B)−(C+D)
より得られる。
Further, the focus error signal FES uses signals A to D from the light receiving unit 16 that receives light given third-order astigmatism,
FES = (A + B)-(C + D)
More obtained.

なお、フォーカスエラー信号検出方法として、他の検出方法を利用する場合は、分離部8を設けることなく、回折素子9を通過した0次光を利用してもよい。その場合、上述の受光部16に換えて、受光部14に0次光を検出する受光素子を配置して、プッシュプル信号PPmを検出することによって、上述の例と同様に、対物レンズのシフトを補正したトラッキングエラー信号を検出することが可能である。   If another detection method is used as the focus error signal detection method, the 0th-order light that has passed through the diffraction element 9 may be used without providing the separation unit 8. In that case, instead of the light receiving unit 16 described above, a light receiving element for detecting 0th-order light is arranged in the light receiving unit 14 and the push-pull signal PPm is detected, thereby shifting the objective lens as in the above example. Can be detected.

以上説明したように、本発明の光学ピックアップ、光記録再生装置及びトラッキングエラー検出方法によれば、サブビームを使用することなく、1本のビームのみによって、対物レンズのオフセットを補正することができ、すなわち対物レンズが光軸からシフトしてもオフセットが発生しないトラッキングエラー信号を比較的簡易な光学系の構成を持って、容易に得ることができる。また、このように1本のビームのみにてトラッキングエラー検出用の光学系を構成することができることから、次の効果が得られる。
1.光利用効率が向上する。
2.光学系の光軸合わせ、ビームの位置合わせ、ビームの移動方向の位置合わせ精度などを緩和して、組み立て工程の簡易化、生産性の向上、更に歩留まりの低下を図ることができる。
3.複数のビームを用いないことから、複数の記録層を有する光記録媒体に対し記録再生を行う場合の不要光の発生を抑制、低減することができる。
4.異なるトラックピッチを有する光記録媒体に対する互換性が得られる。
As described above, according to the optical pickup, the optical recording / reproducing apparatus, and the tracking error detection method of the present invention, the offset of the objective lens can be corrected by using only one beam without using a sub beam, That is, a tracking error signal that does not generate an offset even when the objective lens is shifted from the optical axis can be easily obtained with a relatively simple optical system configuration. In addition, since the tracking error detection optical system can be configured with only one beam as described above, the following effects can be obtained.
1. Light utilization efficiency is improved.
2. The optical axis alignment of the optical system, the alignment of the beam, the alignment accuracy in the beam moving direction, etc. can be relaxed to simplify the assembly process, improve the productivity, and further reduce the yield.
3. Since a plurality of beams are not used, it is possible to suppress and reduce the generation of unnecessary light when recording / reproducing is performed on an optical recording medium having a plurality of recording layers.
4). Compatibility with optical recording media having different track pitches is obtained.

なお、本発明の光学ピックアップ及び光記録再生装置は、上述の実施形態例において説明した構成に限定されることなく、本発明構成を逸脱しない範囲において種々の変形、変更が可能である。
例えば、本発明の光記録再生装置において、フォーカスエラー検出方法は、上述の非点収差法に限定されることなく、その他の方法を用いることが可能である。
また、本発明の光学ピックアップ、光記録再生装置及びトラッキングエラー信号検出方法は、DVD−ROM等の特定のプッシュプル検出方法を採用する光記録媒体を除いて、色素型、相変化型、光磁気記録型などの各種の案内溝、凹凸ピットを有する光記録媒体に対する記録再生を行う場合に適用可能である。なお、対物レンズのオフセットを検出するのみの場合は、全ての光記録媒体に適用可能である。
The optical pickup and the optical recording / reproducing apparatus of the present invention are not limited to the configurations described in the above-described embodiments, and various modifications and changes can be made without departing from the configurations of the present invention.
For example, in the optical recording / reproducing apparatus of the present invention, the focus error detection method is not limited to the above-mentioned astigmatism method, and other methods can be used.
The optical pickup, optical recording / reproducing apparatus, and tracking error signal detection method of the present invention are a dye type, phase change type, magneto-optical, except for an optical recording medium that employs a specific push-pull detection method such as a DVD-ROM. The present invention can be applied to recording / reproducing with respect to an optical recording medium having various guide grooves such as a recording mold and uneven pits. Note that when only the offset of the objective lens is detected, it can be applied to all optical recording media.

本発明による光学ピックアップを有する光記録再生装置の一実施形態例の概略構成図である。1 is a schematic configuration diagram of an embodiment of an optical recording / reproducing apparatus having an optical pickup according to the present invention. Aは通常の光学ピックアップにおける受光部の光スポットの強度分布を示す図である。Bは本発明による光学ピックアップの一実施形態例における受光部の光スポットの強度分布を示す図である。A is a diagram showing an intensity distribution of a light spot of a light receiving portion in a normal optical pickup. FIG. 7B is a diagram illustrating an intensity distribution of a light spot of a light receiving unit in an embodiment of an optical pickup according to the present invention. 通常の光学ピックアップにおけるデトラックに対する出力信号を解析した結果を示す図である。It is a figure which shows the result of having analyzed the output signal with respect to the detrack in a normal optical pick-up. 5次の非点収差がある場合のデトラックに対する出力信号を解析した結果を示す図である。It is a figure which shows the result of having analyzed the output signal with respect to a detrack in case there exists a 5th-order astigmatism. 通常のプッシュプル信号と5次の非点収差がある場合のプッシュプル信号を解析した結果を示す図である。It is a figure which shows the result of having analyzed the push-pull signal when there is a normal push-pull signal and fifth-order astigmatism. プッシュプル信号における5次の非点収差の角度依存性を解析した結果を示す図である。It is a figure which shows the result of having analyzed the angle dependence of the 5th-order astigmatism in a push pull signal. 通常の光学ピックアップと本発明の光学ピックアップの一実施形態例におけるプッシュプル信号を解析した結果を示す図である。It is a figure which shows the result of having analyzed the push pull signal in one embodiment of the normal optical pickup and the optical pickup of the present invention. 本発明による光学ピックアップ及び光記録再生装置の演算回路の一実施形態例の概略構成図である。1 is a schematic configuration diagram of an embodiment of an arithmetic circuit of an optical pickup and an optical recording / reproducing apparatus according to the present invention.

符号の説明Explanation of symbols

1.光学ピックアップ、2.光源、4.偏光ビームスプリッタ、5.レンズ、6.波長板、7.対物レンズ、8.分離部、9.回折素子、10.光記録媒体、11.対物レンズ駆動部、12.アクチュエータ、14.受光部、15.レンズ、16.受光部、17.演算回路、18.光ヘッド駆動部、19.回転駆動部、21.加算器、22.加算器、23〜25.減算器、26.係数乗算器、27.係数乗算器、28.加算器、29.減算器、100.光記録再生装置   1. Optical pickup, 2. Light source, 4. 4. polarization beam splitter; Lens, 6; Wave plate, 7. Objective lens, 8. 8. Separation unit Diffraction element, 10. 10. optical recording medium, Objective lens drive unit, 12. Actuator, 14. light receiving section, 15. Lens, 16. light receiving unit, 17. Arithmetic circuit, 18. 18. optical head driving unit; Rotational drive unit, 21. Adder, 22. Adder, 23-25. Subtractor, 26. Coefficient multiplier, 27. Coefficient multiplier, 28. Adder, 29. Subtractor, 100. Optical recording / reproducing device

Claims (7)

光源からの光が対物レンズを介して光記録媒体に導かれ、前記光記録媒体から反射された光が受光部に導かれる光学系と、前記受光部において検出された光出力をもとに前記対物レンズを駆動する対物レンズ駆動部を有して成る光学ピックアップ装置であって、
前記光記録媒体から反射され前記受光部に向かう光路に少なくとも回折素子が設けられて成り、
前記回折素子は、その回折光が、5次の非点収差
W(ρ,θ)=Z×(4ρ−3ρ)×sinθ
(但し、(ρ,θ)は、光軸を原点とする極座標の半径と角度を示し、Zは収差量を表す係数を示す)
を有する構成とされる
ことを特徴とする光学ピックアップ。
Based on an optical system in which light from a light source is guided to an optical recording medium through an objective lens, and light reflected from the optical recording medium is guided to a light receiving unit, and the light output detected in the light receiving unit An optical pickup device having an objective lens driving unit for driving an objective lens,
At least a diffractive element is provided in the optical path reflected from the optical recording medium and directed to the light receiving unit,
The diffracted light of the diffraction element has fifth-order astigmatism W (ρ, θ) = Z × (4ρ 4 −3ρ 2 ) × sin θ
(However, (ρ, θ) indicates the radius and angle of polar coordinates with the optical axis as the origin, and Z indicates a coefficient indicating the amount of aberration)
An optical pickup characterized by comprising
前記回折素子が有する収差を定義する極座標において、θ=0°とする方向を、前記光記録媒体のトラックの並ぶ方向から±25度の範囲とする
ことを特徴とする請求項1記載の光学ピックアップ。
2. The optical pickup according to claim 1, wherein in a polar coordinate defining the aberration of the diffractive element, a direction of θ = 0 ° is in a range of ± 25 degrees from a direction in which tracks of the optical recording medium are arranged. .
前記回折素子により回折される±1次回折光を受光する第1及び第2の受光部は、前記光記録媒体のトラックの並ぶ方向に2分割され、
前記回折素子を通過しない光又は前記回折素子による0次光を受光する第3の受光部は、前記トラックの並ぶ方向及びトラックの延長方向に4分割されて成る
ことを特徴とする請求項1記載の光学ピックアップ。
The first and second light receiving portions that receive ± first-order diffracted light diffracted by the diffraction element are divided into two in the direction in which the tracks of the optical recording medium are arranged,
The third light-receiving unit that receives light that does not pass through the diffraction element or zero-order light from the diffraction element is divided into four in the direction in which the tracks are arranged and the direction in which the tracks extend. Optical pickup.
前記光記録媒体から前記受光部に向かう光が分離部によって分離され、
前記分離部によって分離された一方の光路に前記回折素子が設けられ、
前記回折素子により回折された±1次回折光は、前記第1及び第2の受光部において受光され、
前記分離部によって分離された他方の光は、前記第3の受光部において受光される
ことを特徴とする請求項3記載の光学ピックアップ。
The light traveling from the optical recording medium to the light receiving unit is separated by a separating unit,
The diffraction element is provided in one optical path separated by the separation unit,
The ± first-order diffracted light diffracted by the diffraction element is received by the first and second light receiving units,
The optical pickup according to claim 3, wherein the other light separated by the separation unit is received by the third light receiving unit.
光源からの光が少なくとも対物レンズを介して光記録媒体に入射され、前記光記録媒体から反射された光が受光部に導かれる光学系と、前記対物レンズを駆動する対物レンズ駆動部とより成る光ヘッドを有し、前記受光部において検出された光出力に基づいて記録及び/又は再生がなされる光記録再生装置であって、
前記光記録媒体と前記受光部との間に回折素子が設けられ、
前記回折素子は、その回折光が、5次の非点収差
W(ρ,θ)=Z×(4ρ−3ρ)×sinθ
(但し、(ρ,θ)は、光軸を原点とする極座標の半径と角度を示し、Zは収差量を表す係数を示す)
を有する構成とされる
ことを特徴とする光記録再生装置。
It comprises an optical system in which light from a light source is incident on an optical recording medium via at least an objective lens, and light reflected from the optical recording medium is guided to a light receiving unit, and an objective lens driving unit that drives the objective lens An optical recording / reproducing apparatus that has an optical head and performs recording and / or reproduction based on an optical output detected by the light receiving unit,
A diffraction element is provided between the optical recording medium and the light receiving unit,
The diffracted light of the diffraction element has fifth-order astigmatism W (ρ, θ) = Z × (4ρ 4 −3ρ 2 ) × sin θ
(However, (ρ, θ) indicates the radius and angle of polar coordinates with the optical axis as the origin, and Z indicates a coefficient indicating the amount of aberration)
An optical recording / reproducing apparatus characterized by comprising:
光源から少なくとも対物レンズを介して光記録媒体に入射した光を受光部により検出して、前記光記録媒体のトラック位置を検出するトラッキングエラー検出方法であって、
前記光記録媒体と前記受光部との間に回折素子を設け、
前記回折素子は、その回折光が、5次の非点収差
W(ρ,θ)=Z×(4ρ−3ρ)×sinθ
(但し、(ρ,θ)は、光軸を原点とする極座標の半径と角度を示し、Zは収差量を表す係数を示す)
を有する構成とされ、
前記回折素子を通過しない光又は前記回折素子の0次光と、前記回折素子により回折される±1次回折光から、トラッキングエラー信号を検出する
ことを特徴とするトラッキングエラー信号検出方法。
A tracking error detection method for detecting light incident on an optical recording medium from a light source through at least an objective lens by a light receiving unit to detect a track position of the optical recording medium,
A diffraction element is provided between the optical recording medium and the light receiving unit,
The diffracted light of the diffraction element has fifth-order astigmatism W (ρ, θ) = Z × (4ρ 4 −3ρ 2 ) × sin θ
(However, (ρ, θ) indicates the radius and angle of polar coordinates with the optical axis as the origin, and Z indicates a coefficient indicating the amount of aberration)
And is configured to have
A tracking error signal detection method comprising: detecting a tracking error signal from light that does not pass through the diffraction element or zero-order light of the diffraction element and ± first-order diffracted light diffracted by the diffraction element.
前記回折素子からの±1次回折光を、前記光記録媒体のトラックの並ぶ方向に2分割した第1及び第2の受光部により受光し、
前記回折素子を通過しない光又は前記回折素子の0次光を、前記光記録媒体のトラックの並ぶ方向及びトラックの延長方向に4分割した第3の受光部により受光し、
前記第1及び第2の受光部により受光される信号をそれぞれE及びF、G及びHとし、前記第3の受光部により受光される信号を、4分割された受光領域の右回りにA〜Dとすると、前記トラッキングエラー検出信号TESは、
TES=PPm−(k1×PPs1+k2×PPs2)
PPm=(A+D)−(B+C)
PPs1=E−F
PPs2=G−H
(k1及びk2は任意定数)
とする
ことを特徴とする請求項6記載のトラッキングエラー信号検出方法。
The ± first-order diffracted light from the diffractive element is received by the first and second light receiving parts divided into two in the direction in which the tracks of the optical recording medium are arranged,
Light that does not pass through the diffraction element or zero-order light of the diffraction element is received by a third light receiving unit that is divided into four in the direction in which the tracks of the optical recording medium are arranged and the direction in which the tracks extend,
The signals received by the first and second light receiving units are E and F, G, and H, respectively, and the signals received by the third light receiving unit are A to clockwise around the four divided light receiving regions. When D, the tracking error detection signal TES is
TES = PPm− (k1 × PPs1 + k2 × PPs2)
PPm = (A + D)-(B + C)
PPs1 = EF
PPs2 = GH
(K1 and k2 are arbitrary constants)
The tracking error signal detection method according to claim 6, wherein:
JP2005332092A 2005-11-16 2005-11-16 Optical pickup, optical recording / reproducing apparatus, and tracking error signal detection method Expired - Fee Related JP4765570B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005332092A JP4765570B2 (en) 2005-11-16 2005-11-16 Optical pickup, optical recording / reproducing apparatus, and tracking error signal detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005332092A JP4765570B2 (en) 2005-11-16 2005-11-16 Optical pickup, optical recording / reproducing apparatus, and tracking error signal detection method

Publications (2)

Publication Number Publication Date
JP2007141323A true JP2007141323A (en) 2007-06-07
JP4765570B2 JP4765570B2 (en) 2011-09-07

Family

ID=38204013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005332092A Expired - Fee Related JP4765570B2 (en) 2005-11-16 2005-11-16 Optical pickup, optical recording / reproducing apparatus, and tracking error signal detection method

Country Status (1)

Country Link
JP (1) JP4765570B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07129980A (en) * 1993-11-08 1995-05-19 Olympus Optical Co Ltd Optical pickup
JP2003123279A (en) * 2001-10-04 2003-04-25 Sharp Corp Method for detecting tracking error of optical pickup and optical pickup device
JP2005276358A (en) * 2004-03-25 2005-10-06 Sharp Corp Optical pickup device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07129980A (en) * 1993-11-08 1995-05-19 Olympus Optical Co Ltd Optical pickup
JP2003123279A (en) * 2001-10-04 2003-04-25 Sharp Corp Method for detecting tracking error of optical pickup and optical pickup device
JP2005276358A (en) * 2004-03-25 2005-10-06 Sharp Corp Optical pickup device

Also Published As

Publication number Publication date
JP4765570B2 (en) 2011-09-07

Similar Documents

Publication Publication Date Title
US7227819B2 (en) Optical pick-up head, optical information apparatus, and optical information reproducing method
CN101165790B (en) Optical pickup device and optical disc device having same
JP5002445B2 (en) Optical pickup device and optical disk device
CN101527147A (en) Optical pickup and optical information reproducing device
KR100441366B1 (en) Focal point dislocation detecting method and optical pickup apparatus
JP2007052905A (en) Optical pickup device that detects and compensates for spherical aberration due to change in recording layer thickness
JP2007265595A (en) Optical pickup device and optical disk drive
JP4729418B2 (en) Diffraction grating, optical pickup device, optical disk device
JP4945464B2 (en) Diffraction grating, optical pickup device and optical disk device
JP2005135539A (en) Optical head and optical information recording and reproducing device using the same
JP4765570B2 (en) Optical pickup, optical recording / reproducing apparatus, and tracking error signal detection method
US7684305B2 (en) Optical pickup, optical recording and reproducing apparatus and tracking error signal detecting method
CN102005217B (en) Optical pickup device and optical disk device using the same
JP2005063568A (en) Optical head, ld module, optical recording/reproducing device, and diffraction element used for the device
JP4591324B2 (en) Optical pickup, optical recording / reproducing apparatus, and focus error signal detection method
JP5427121B2 (en) Optical pickup
JP2007164966A (en) Optical pickup, optical recording/reproducing device, and tracking error signal detection method
JP4479645B2 (en) Tracking error detection method, tracking error detection device, and optical recording / reproducing device
WO2010131406A1 (en) Optical head device, hologram element, optical integrated element, optical information processing device and signal detection method
JP4719660B2 (en) Optical pickup device and optical disk device
JP2008146700A (en) Optical pickup, optical recording and reproducing device and tracking error signal detection method
JP2011138573A (en) Optical pickup device and optical disk device
JP2008146735A (en) Optical pickup, optical recording and reproducing device and tracking error signal detection method
JP2007299495A (en) Optical pickup device, and information processor
JP2012133852A (en) Optical pickup

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101006

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110530

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees