JP2007138303A - Diamond-coated carbon member and method for manufacturing the same - Google Patents
Diamond-coated carbon member and method for manufacturing the same Download PDFInfo
- Publication number
- JP2007138303A JP2007138303A JP2006347555A JP2006347555A JP2007138303A JP 2007138303 A JP2007138303 A JP 2007138303A JP 2006347555 A JP2006347555 A JP 2006347555A JP 2006347555 A JP2006347555 A JP 2006347555A JP 2007138303 A JP2007138303 A JP 2007138303A
- Authority
- JP
- Japan
- Prior art keywords
- base material
- diamond
- conversion layer
- carbonaceous substrate
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910003460 diamond Inorganic materials 0.000 title claims abstract description 191
- 239000010432 diamond Substances 0.000 title claims abstract description 191
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 43
- 229910052799 carbon Inorganic materials 0.000 title claims abstract description 33
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 9
- 238000000034 method Methods 0.000 title abstract description 88
- 238000006243 chemical reaction Methods 0.000 claims abstract description 99
- 239000011248 coating agent Substances 0.000 claims abstract description 67
- 238000000576 coating method Methods 0.000 claims abstract description 67
- 229910010271 silicon carbide Inorganic materials 0.000 claims abstract description 41
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims abstract description 30
- 239000011247 coating layer Substances 0.000 claims abstract description 18
- 239000000126 substance Substances 0.000 claims abstract description 12
- 239000000758 substrate Substances 0.000 claims description 90
- 229910017052 cobalt Inorganic materials 0.000 claims description 20
- 239000010941 cobalt Substances 0.000 claims description 20
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 20
- 239000000463 material Substances 0.000 abstract description 203
- 239000010410 layer Substances 0.000 abstract description 79
- 239000003575 carbonaceous material Substances 0.000 abstract description 11
- 238000005336 cracking Methods 0.000 abstract description 8
- 239000011148 porous material Substances 0.000 description 75
- 239000010408 film Substances 0.000 description 62
- 239000007789 gas Substances 0.000 description 60
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 47
- 238000012360 testing method Methods 0.000 description 45
- 230000003746 surface roughness Effects 0.000 description 35
- 238000002360 preparation method Methods 0.000 description 33
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 30
- 150000001875 compounds Chemical class 0.000 description 30
- 239000010703 silicon Substances 0.000 description 30
- 229910052710 silicon Inorganic materials 0.000 description 30
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 29
- 229910052753 mercury Inorganic materials 0.000 description 29
- 239000007770 graphite material Substances 0.000 description 26
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 25
- 230000000052 comparative effect Effects 0.000 description 22
- 239000002344 surface layer Substances 0.000 description 20
- 239000002245 particle Substances 0.000 description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 18
- 238000009210 therapy by ultrasound Methods 0.000 description 17
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 16
- 238000001095 inductively coupled plasma mass spectrometry Methods 0.000 description 16
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 15
- 235000012239 silicon dioxide Nutrition 0.000 description 14
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 14
- 239000012159 carrier gas Substances 0.000 description 12
- 238000005229 chemical vapour deposition Methods 0.000 description 12
- 239000010453 quartz Substances 0.000 description 12
- 238000005452 bending Methods 0.000 description 11
- 230000001186 cumulative effect Effects 0.000 description 11
- 238000013001 point bending Methods 0.000 description 11
- 229910052751 metal Inorganic materials 0.000 description 10
- 239000002184 metal Substances 0.000 description 10
- 238000010998 test method Methods 0.000 description 10
- 238000005520 cutting process Methods 0.000 description 9
- 229910002804 graphite Inorganic materials 0.000 description 8
- 239000010439 graphite Substances 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- 239000012298 atmosphere Substances 0.000 description 6
- 240000002989 Euphorbia neriifolia Species 0.000 description 5
- 238000001308 synthesis method Methods 0.000 description 5
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 230000006698 induction Effects 0.000 description 4
- 238000005240 physical vapour deposition Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 229910002091 carbon monoxide Inorganic materials 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 238000004050 hot filament vapor deposition Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 238000006748 scratching Methods 0.000 description 3
- 230000002393 scratching effect Effects 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical group CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 229910021397 glassy carbon Inorganic materials 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 238000002459 porosimetry Methods 0.000 description 2
- 239000001294 propane Substances 0.000 description 2
- 238000007788 roughening Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- -1 1800 K Substances 0.000 description 1
- VXEGSRKPIUDPQT-UHFFFAOYSA-N 4-[4-(4-methoxyphenyl)piperazin-1-yl]aniline Chemical compound C1=CC(OC)=CC=C1N1CCN(C=2C=CC(N)=CC=2)CC1 VXEGSRKPIUDPQT-UHFFFAOYSA-N 0.000 description 1
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000004338 Dichlorodifluoromethane Substances 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910001347 Stellite Inorganic materials 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000011195 cermet Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- AFYPFACVUDMOHA-UHFFFAOYSA-N chlorotrifluoromethane Chemical compound FC(F)(F)Cl AFYPFACVUDMOHA-UHFFFAOYSA-N 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- AHICWQREWHDHHF-UHFFFAOYSA-N chromium;cobalt;iron;manganese;methane;molybdenum;nickel;silicon;tungsten Chemical compound C.[Si].[Cr].[Mn].[Fe].[Co].[Ni].[Mo].[W] AHICWQREWHDHHF-UHFFFAOYSA-N 0.000 description 1
- 238000009841 combustion method Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- PXBRQCKWGAHEHS-UHFFFAOYSA-N dichlorodifluoromethane Chemical compound FC(F)(Cl)Cl PXBRQCKWGAHEHS-UHFFFAOYSA-N 0.000 description 1
- 235000019404 dichlorodifluoromethane Nutrition 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 235000019441 ethanol Nutrition 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 229910021385 hard carbon Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 102200082816 rs34868397 Human genes 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000005049 silicon tetrachloride Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- CYRMSUTZVYGINF-UHFFFAOYSA-N trichlorofluoromethane Chemical compound FC(Cl)(Cl)Cl CYRMSUTZVYGINF-UHFFFAOYSA-N 0.000 description 1
- 229940029284 trichlorofluoromethane Drugs 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000004506 ultrasonic cleaning Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Landscapes
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
本発明は、表面をダイヤモンドで被覆した炭素部材に関するものであり、更に詳しくいえば、工具類を始め、各種センサー等に使用される素子、各種半導体デバイスの構成材料、磁気記録媒体、各種電気・電子部材、各種光学機器の光素子及び光装置、核融合装置用材料、音響機器等の部品等に使用されるダイヤモンド被膜炭素部材及びその製造方法に関するものである。 The present invention relates to a carbon member whose surface is coated with diamond, and more specifically, elements used for various sensors such as tools, various semiconductor device constituent materials, magnetic recording media, various electric / The present invention relates to a diamond-coated carbon member used for electronic members, optical elements and optical devices of various optical devices, materials for nuclear fusion devices, components of acoustic devices, and the like, and a method for manufacturing the same.
ダイヤモンドは、現在知られている物質の中で最も硬く、熱伝導性に優れ、科学的に非常に安定である、弾性係数が大きい、電気絶縁性が良い等数多くの利点を有するため、電子、機械、宇宙航空産業等の広い産業分野に適用可能な新素材として注目されている。ダイヤモンドの合成方法としては、高温超高圧下で合成する高圧合成法の他に、セラミックや金属等の基材の表面に大面積のダイヤモンド薄膜を形成することのできる低圧合成法が広く知られている。 Diamond is the hardest of the currently known materials, has excellent thermal conductivity, is very scientifically stable, has a large modulus of elasticity, good electrical insulation, etc. It is attracting attention as a new material applicable to a wide range of industrial fields such as machinery and aerospace. As a diamond synthesis method, in addition to a high-pressure synthesis method for synthesis under high temperature and ultra-high pressure, a low-pressure synthesis method capable of forming a large-area diamond thin film on the surface of a substrate such as ceramic or metal is widely known. Yes.
さらに低圧合成法は、物理蒸着法{(Physical Vapor Deposition)以下、PVD法と略す}と化学蒸着法{(ChemicalVapor Deposition)以下、CVD法と略す}に大別することができるが、CVD法は、PVD法に比べて結晶性が高いダイヤモンドを大面積に亘って、しかも速い速度で形成できるという利点を有するため、近年では、CVD法による合成法が主力となっている。 Further, the low-pressure synthesis method can be broadly divided into a physical vapor deposition method {(Physical Vapor Deposition) or below, abbreviated as PVD method} and a chemical vapor deposition method {(Chemical Vapor Deposition) or below, abbreviated as CVD method}. In recent years, the synthesis method by the CVD method has become the main force because it has an advantage that diamond having higher crystallinity than a PVD method can be formed over a large area and at a high speed.
また、通常、ダイヤモンド被膜形成用の下地(以下、単に母材という)としては、ダイヤモンド、タングステン焼結体、炭化珪素焼結体、シリコン単結晶、モリブデン、ニオブ、タンタル、バナジウム、クロム、ハフニウム、ゲルマニウム、ニッケル、銅、金等の金属や、立方晶窒化ホウ素焼結体、窒化珪素焼結体、酸化アルミニウム、二酸化珪素、ステライト、サーメット等のセラミックが使用される。 Further, as a base for forming a diamond film (hereinafter simply referred to as a base material), diamond, tungsten sintered body, silicon carbide sintered body, silicon single crystal, molybdenum, niobium, tantalum, vanadium, chromium, hafnium, Metals such as germanium, nickel, copper, and gold, and ceramics such as cubic boron nitride sintered body, silicon nitride sintered body, aluminum oxide, silicon dioxide, stellite, and cermet are used.
そして、上記母材にダイヤモンド被膜を形成する際は、約500ケルビン(以下、Kと略す)〜1500Kに加熱し、メタン、エチレン、プロパン、アセチレン、一酸化炭素、二酸化炭素のような気体及びメチルアルコール、エチルアルコール、ベンゼン、アセトン等の液体を気化させた原料ガスを水素ガスで希釈し、炉内をアルゴンガス雰囲気または水素ガス雰囲気にし、原料ガスを励起させて、化学輸送法、熱CVD法、プラズマCVD法、燃焼法、光CVD法等の各種のCVD法のうち、適切な方法を実施することにより目的を達している。 When the diamond coating is formed on the base material, it is heated to about 500 Kelvin (hereinafter abbreviated as K) to 1500 K, and gas such as methane, ethylene, propane, acetylene, carbon monoxide, carbon dioxide and methyl A raw material gas that vaporizes a liquid such as alcohol, ethyl alcohol, benzene, acetone, etc. is diluted with hydrogen gas, the inside of the furnace is made an argon gas atmosphere or a hydrogen gas atmosphere, the raw material gas is excited, a chemical transport method, a thermal CVD method The object is achieved by implementing an appropriate method among various CVD methods such as a plasma CVD method, a combustion method, and a photo-CVD method.
しかしながら、前記母材にダイヤモンド被膜を形成するに当たっては、種々の配慮すべき事項があり、具体的には(1)耐熱性の良い母材を選択する必要があること、(2)母材がセラミックの場合は、非常に硬いため加工し難いこと、(3)母材とダイヤモンド被膜との密着性があまり良くないこと、等の技術的な欠点があるため、ダイヤモンド被膜製品の適用用途に応じてこれらの欠点を少なくするための配慮を必要とし、またそのような配慮の下に加工を行っても、経済性も併せて確保するという要請下では必ずしも満足できる製品が得られるとは限らなかった。 However, in forming a diamond coating on the base material, there are various considerations, specifically (1) it is necessary to select a base material with good heat resistance, and (2) the base material is In the case of ceramic, since it is very hard, it is difficult to process, and (3) the adhesion between the base material and the diamond coating is not very good. In order to reduce these defects, it is necessary to take care to reduce these defects, and even if processing is performed under such consideration, a satisfactory product may not always be obtained under the request of ensuring economic efficiency. It was.
そこで、ダイヤモンド被覆部材の改良のための検討が進められる中、炭素材料の有する、耐熱性が良く、加工を行い易く、経済的に安価である等の優れた性質が着目され、この炭素材料を母材とし、その表面に直接ダイヤモンド被膜を形成する試みも行われた。しかし、熱膨張係数が大きく違うためダイヤモンド被膜との密着性が良くなく、また、CVD法の実施時には、水素を多量に含む還元性雰囲気中に炭素材料を直接曝すことになるため、炭素材料と水素ガスとが反応して炭素材料が消耗してしまうという欠点があり、炭素材料自体の優位な特性を生かすことができなかった。 Therefore, while the study for improving the diamond-coated member is proceeding, attention has been paid to the excellent properties of the carbon material, such as good heat resistance, easy processing, and economical cost. Attempts have also been made to form a diamond coating directly on the surface of the base material. However, since the thermal expansion coefficient is greatly different, the adhesion with the diamond film is not good, and when the CVD method is performed, the carbon material is directly exposed to a reducing atmosphere containing a large amount of hydrogen. There is a drawback that the carbon material is consumed due to reaction with hydrogen gas, and the superior characteristics of the carbon material itself cannot be utilized.
さらに、このような欠点の解消を目的として、炭素材料成形体の表面にCVD法で炭化珪素被膜層を形成したものを母材とし、この母材上にダイヤモンド被膜を形成したダイヤモンド被覆炭素部材が提案された(下記特許文献1参照)。 Furthermore, for the purpose of eliminating such defects, a diamond-coated carbon member in which a silicon carbide coating layer is formed on the surface of a carbon material molded body by a CVD method as a base material and a diamond coating is formed on the base material is provided. It has been proposed (see Patent Document 1 below).
しかし、本発明者等が実際に上記のダイヤモンド被覆炭素部材を使用してみると、母材にクラックや剥離が発生し易く、適用用途例えば切削工具の刃先に応用した場合、寿命が短く、刃先の取替回数が増えてかえって製作コストが高くつくという問題点のあることが判明した。 However, when the present inventors actually use the above diamond-coated carbon member, cracks and peeling are likely to occur in the base material, and when applied to the cutting edge of an application, such as a cutting tool, the life is short and the cutting edge It has been found that there is a problem that the production cost is rather high as the number of replacements increases.
本発明は上記の事情に鑑みてなされたものであり、母材とダイヤモンド被膜との密着性を向上させて、両者の界面に生じやすいクラックや剥離の発生を無くし、炭素材料自体が有する性質の優位性を確保しつつ、ダイヤモンド被膜の優れた特性を最大限有効に発揮させることのできるダイヤモンド被覆炭素部材を提供することを目的とする。 The present invention has been made in view of the above circumstances, improves the adhesion between the base material and the diamond coating, eliminates the occurrence of cracks and peeling that are likely to occur at the interface between the two, and the properties of the carbon material itself. An object of the present invention is to provide a diamond-coated carbon member capable of maximally effectively exhibiting excellent characteristics of a diamond coating while ensuring superiority.
本発明のダイヤモンド被膜炭素部材の製造方法は、炭素質基体の表面を、化学気相反応(以下、「CVR(Chemical Vapor Reaction)法」という。)により炭化珪素に転化することで、該表面の状態を反映した境界面を前記基体との間に有した被覆層上に、ダイヤモンド被膜を形成するものである。別の観点として、本発明のダイヤモンド被膜炭素部材の製造方法は、炭素質基体の表面を、化学気相反応により炭化珪素に転化することで、被覆層を形成し、該被覆層の表面を粗化した後、前記表面上にダイヤモンド被膜を形成するものであってもよい。これらの製造方法により、従来問題とされていた母材とダイヤモンド被膜両者の界面のクラックや剥離を無くし、炭素材料自体が有する性質の優位性を確保しつつ、ダイヤモンド被膜の優れた特性を最大限有効に発揮させることのできるダイヤモンド被膜炭素部材を製造することが可能となる。 The method for producing a diamond-coated carbon member of the present invention converts the surface of a carbonaceous substrate into silicon carbide by a chemical vapor reaction (hereinafter referred to as “CVR (Chemical Vapor Reaction) method”). A diamond film is formed on a coating layer having a boundary surface reflecting the state between the substrate and the substrate. As another aspect, the method for producing a diamond-coated carbon member according to the present invention converts a surface of a carbonaceous substrate into silicon carbide by a chemical vapor reaction, thereby forming a coating layer and roughening the surface of the coating layer. After the formation, a diamond film may be formed on the surface. These manufacturing methods eliminate the cracks and delamination at the interface between the base material and the diamond coating, which were previously considered problems, and maximize the superior properties of the diamond coating while ensuring the superiority of the properties of the carbon material itself. It becomes possible to produce a diamond-coated carbon member that can be effectively exhibited.
本発明のダイヤモンド被覆炭素部材は、炭素質基体の表面を、化学気相反応により炭化珪素に転化することで、被覆層を形成し、該被覆層の表面を粗化した後、前記表面上にダイヤモンド被膜が形成されて成るものである。別の観点として、本発明のダイヤモンド被覆炭素部材は、炭素質基体の表面を、化学気相反応により炭化珪素に転化することで、該表面の状態を反映した境界面を前記基体との間に有した被覆層とし、該被覆層の表面を粗化した後、上記表面上にダイヤモンド被膜が形成されて成るものであってもよい。これらのダイヤモンド被覆炭素部材であれば、従来問題とされていた母材とダイヤモンド被膜両者の界面のクラックや剥離を無くし、炭素材料自体が有する性質の優位性を確保しつつ、ダイヤモンド被膜の優れた特性を最大限有効に発揮させることができる。 In the diamond-coated carbon member of the present invention, the surface of the carbonaceous substrate is converted into silicon carbide by chemical vapor reaction to form a coating layer, and after roughening the surface of the coating layer, A diamond film is formed. As another aspect, the diamond-coated carbon member of the present invention converts the surface of a carbonaceous substrate into silicon carbide by a chemical vapor reaction so that a boundary surface reflecting the surface state is formed between the substrate and the substrate. The coating layer may be formed, and after the surface of the coating layer is roughened, a diamond coating may be formed on the surface. These diamond-coated carbon members eliminate cracks and peeling at the interface between both the base material and the diamond coating, which has been considered a problem in the past, while ensuring the superiority of the properties possessed by the carbon material itself. The characteristics can be exhibited as effectively as possible.
また、本発明のダイヤモンド被覆炭素部材においては、前記炭素質基体に含まれるコバルトの含有量が10ppm以下であることが好ましい。これにより、ダイヤモンド被膜と母材となる炭素質基体との密着強度を低下させるとともに、ダイヤモンド被膜の成長速度を抑制することができる。 In the diamond-coated carbon member of the present invention, the cobalt content contained in the carbonaceous substrate is preferably 10 ppm or less. As a result, the adhesion strength between the diamond coating and the carbonaceous substrate as the base material can be reduced, and the growth rate of the diamond coating can be suppressed.
以下、本発明を詳しく説明する。本発明者等も従来から品質の良いダイヤモンド被覆炭素部材を開発すべく鋭意研究を行ってきており、従来のダイヤモンド被覆炭素部材の界面付近(炭素部材表層部)におけるSiC層が結晶構造的にみて緻密で層状に形成されている点に着目し、母材とダイヤモンド被膜の密着性の低さはこの形態の存在に起因するものと考えた。即ち、炭化珪素に転化された層(以下、単に転化層という)の下面と炭素質成形体(以下、炭素質基体という)の上面との境界面が層状でなくて波状となるような積層形態であれば、両者がいわば噛み合って結合された状態となるので、密着性を改善できるはずとの予測の下、本発明者等が先に開発した方法、即ち一酸化珪素(SiO)ガスを作用させて化学反応により黒鉛基材の上に炭化珪素成形体(SiC膜)を形成する方法を応用した結果、密着性の点で満足できるダイヤモンド被覆部材が得られることを確認することができ、本発明の完成を見たものである。 The present invention will be described in detail below. The inventors of the present invention have also been diligently researching to develop a high-quality diamond-coated carbon member, and the SiC layer in the vicinity of the interface (carbon member surface layer portion) of the conventional diamond-coated carbon member is considered as a crystal structure. Focusing on the fact that it is dense and layered, the low adhesion between the base material and the diamond coating was attributed to the presence of this form. That is, a laminated form in which a boundary surface between a lower surface of a layer converted to silicon carbide (hereinafter simply referred to as a converted layer) and an upper surface of a carbonaceous molded body (hereinafter referred to as a carbonaceous substrate) is not layered but corrugated. If so, since the two are engaged and joined, the method developed by the present inventors, that is, silicon monoxide (SiO) gas is applied under the expectation that the adhesion can be improved. As a result of applying a method of forming a silicon carbide molded body (SiC film) on a graphite substrate by chemical reaction, it can be confirmed that a diamond-coated member that is satisfactory in terms of adhesion can be obtained. The completion of the invention is seen.
さらに、実験を進め、転化層の膜厚と、その上に形成するダイヤモンド被膜の膜厚を最適化すれば、ダイヤモンド被膜と母材(以下、本発明でいう母材とは、転化層を有する炭素質基体をいうものにする)の表層部との密着性の改善が一層顕著となり、しかも炭素質基体と転化層の界面でクラックや剥離の発生も完全に回避できるとの知見を得て、本発明に到達したものである。 Further, if the experiment is advanced and the film thickness of the conversion layer and the film thickness of the diamond film formed thereon are optimized, the diamond film and the base material (hereinafter referred to as the base material in the present invention have the conversion layer). The improvement of the adhesion with the surface layer portion of the carbonaceous substrate) becomes even more remarkable, and the knowledge that cracks and peeling can be completely avoided at the interface between the carbonaceous substrate and the conversion layer is obtained. The present invention has been achieved.
本発明の構成のうち、まず炭素質基体について説明する。本発明で使用する炭素質基体としては、実質的に炭素のみからなり常法によって製造されたもので良く、例えば黒鉛化炭素材料、炭素繊維強化炭素複合材料(いわゆるC/C材料)、ガラス状炭素成形体、膨張黒鉛成形体が使用できる。 Among the configurations of the present invention, the carbonaceous substrate will be described first. The carbonaceous substrate used in the present invention may be substantially composed of carbon and manufactured by a conventional method. Examples thereof include graphitized carbon materials, carbon fiber reinforced carbon composite materials (so-called C / C materials), and glassy materials. Carbon molded bodies and expanded graphite molded bodies can be used.
上記炭素質基体に含まれる不純物は極力少なくすることが望ましく、日本工業規格(以下、単にJISという)R7221−1979に示される高純度黒鉛素材を使用することが更に望ましい。中でも炭素質基体を塩素ガス、フッ素ガス、及びこれら塩素ガス、フッ素ガスを含有する例えばモノクロロトリフルオルメタン、ジクロロジフルオルメタン、トリクロロモノフルオルメタン等のガスで2000K〜3000Kに昇温して高純度化し、灰分を50ppm以下とした炭素質基体を選択して使用することが特に望ましい。中でもダイヤモンド被膜と母材との密着強度を低下させ、しかもダイヤモンドの成長速度を抑制する原因となるコバルトは、10ppm以下とした炭素質基体を使用することが最も望ましい。 It is desirable to reduce impurities contained in the carbonaceous substrate as much as possible, and it is more desirable to use a high-purity graphite material shown in Japanese Industrial Standard (hereinafter simply referred to as JIS) R7221-1979. Above all, the carbonaceous substrate is heated to 2000K to 3000K with chlorine gas, fluorine gas, and gas containing these chlorine gas and fluorine gas, such as monochlorotrifluoromethane, dichlorodifluoromethane, trichloromonofluoromethane, etc. It is particularly desirable to select and use a carbonaceous substrate that is purified and has an ash content of 50 ppm or less. Among them, it is most desirable to use a carbonaceous substrate with a cobalt content of 10 ppm or less, which lowers the adhesion strength between the diamond coating and the base material and suppresses the growth rate of diamond.
なお、コバルトの含有率を測定する方法としては、例えば日本分析化学会発行の「分析化学」Vol.42(1993)別刷の486ページに示される。「誘導結合プラズマ質量分析法(ICP−MS法ともいう)」に示される方法が例示できる。 In addition, as a method of measuring the content rate of cobalt, for example, “Analytical Chemistry” Vol. 42 (1993) on page 486 of the reprint. The method shown in "Inductively coupled plasma mass spectrometry (also called ICP-MS method)" can be exemplified.
更に付言すると、破損の防止を考慮して強度が高い炭素質基体、例えば3点強度試験によって測定した曲げ強度は、40MPa以上の炭素質基体を選択することが望ましい。また、上記炭素質基体の中でも炭素質基体と炭化珪素の剥離・クラックを防止するため熱膨張係数が炭化珪素の熱膨張係数に近い炭素質基体、例えば炭素協会規格(以下、JCASという)にいう「石英膨張計による平均熱膨張係数の測定法」で測定した、室温から1273Kまでの平均熱膨張係数が4.0×(10−6/K)〜5.0×(10−6/K)である炭素質基体を選択することが更に望ましく、その中でも異方比が1.2以下の等方性黒鉛材料を使用することが特に望ましく、炭素質基体の表層部を炭化珪素に転化するため水銀圧入法による平均気孔半径0.5μm乃至1.8μmの等方性黒鉛材料を選択することが望ましい。なお、累積気孔容積及び平均気孔半径の測定には、例えば水銀圧入法を例示でき、最大圧力98MPaまで加圧したときの気孔量を累積気孔容積(×10−2Mg/m3 )とし、累積気孔容積の1/2に相当する値(μm)を平均気孔半径として決定することができる。また、ここでいう等方性黒鉛材料とは、任意に直角をなす方向の熱膨張係数の異方性が1.2以下の黒鉛材料をいうものとする。 In addition, it is desirable to select a carbonaceous substrate having a high strength in consideration of prevention of breakage, for example, a carbonaceous substrate having a bending strength measured by a three-point strength test of 40 MPa or more. Among the carbonaceous substrates, a carbonaceous substrate having a thermal expansion coefficient close to the thermal expansion coefficient of silicon carbide, for example, a carbon association standard (hereinafter referred to as JCAS) in order to prevent peeling and cracking of the carbonaceous substrate and silicon carbide. was measured in the "method of measuring the average thermal expansion coefficient of quartz dilatometer", average thermal expansion coefficients from room temperature to 1273K is 4.0 × (10 -6 /K)~5.0×(10 -6 / K) It is further desirable to select a carbonaceous substrate, and among them, it is particularly desirable to use an isotropic graphite material having an anisotropic ratio of 1.2 or less, in order to convert the surface layer portion of the carbonaceous substrate into silicon carbide. It is desirable to select an isotropic graphite material having an average pore radius of 0.5 μm to 1.8 μm by mercury porosimetry. The measurement of the cumulative pore volume and the average pore radius can be exemplified by, for example, a mercury intrusion method, and the amount of pores when pressurized to a maximum pressure of 98 MPa is defined as the cumulative pore volume (× 10 −2 Mg / m 3 ). A value (μm) corresponding to ½ of the pore volume can be determined as the average pore radius. The isotropic graphite material here refers to a graphite material having an anisotropy of a thermal expansion coefficient of 1.2 or less in an arbitrarily perpendicular direction.
次に、炭化珪素の転化層について説明する。炭素質基体の表層部を炭化珪素に転化する方法としては、基本的には本発明者等が先に開示した特開平1−264969号公報に記載のCVR法に従えばよいが、具体的には所定の形状に加工した炭素質基体を、電気炉内に置き、不活性ガス雰囲気とした後、例えば金属珪素とSiO2 とを反応させてSiOガスを発生させ、約2000Kで前記炭素質基体とSiOガスを反応させて炭素質基体の表層部に転化層を形成すればよい。なお、転化層は炭素質基体の表層部の中で一部分のみ或いは表層部全面を転化することも可能である。 Next, the silicon carbide conversion layer will be described. As a method for converting the surface layer portion of the carbonaceous substrate into silicon carbide, basically, the CVR method described in JP-A-1-264969 previously disclosed by the present inventors may be used. The carbonaceous substrate processed into a predetermined shape is placed in an electric furnace to make an inert gas atmosphere, and then, for example, metal silicon and SiO 2 are reacted to generate SiO gas, and the carbonaceous substrate at about 2000K. And a SiO gas may be reacted to form a conversion layer on the surface layer of the carbonaceous substrate. Note that it is possible to convert only a part of the surface layer portion of the carbonaceous substrate or the entire surface layer portion of the conversion layer.
転化層の厚みは、炭素質基体の表面から深さ方向に亘って1μm以上とすることが望ましい。その理由は、転化層の深さが1μmよりも薄いと、ダイヤモンド被膜を形成するときに水素ガスによって炭素質基体がエッチングされるのを充分に防止することができない。また、転化層の厚みに上限はないけれども1000μmよりも厚くすると、転化層に存在する気孔に封じ込まれた気体、例えば水蒸気、一酸化珪素、一酸化炭素、酸素、及び炭素粉等がダイヤモンド被膜を形成するときの熱拡散によって転化層の気孔から放出し、ダイヤモンド被膜が成長する速度に影響を与えるだけでなく、一酸化炭素、炭素粉は熱励起によって無定形硬質炭素膜となって析出し、ダイヤモンド被膜の純度にも影響を及ぼす可能性がある。従って、より確実顕著な効果を得るためには、転化層の厚みを10μm〜500μmとすることが安全で望ましい。 The thickness of the conversion layer is desirably 1 μm or more from the surface of the carbonaceous substrate in the depth direction. The reason is that if the depth of the conversion layer is thinner than 1 μm, the carbonaceous substrate cannot be sufficiently prevented from being etched by hydrogen gas when the diamond film is formed. In addition, although there is no upper limit to the thickness of the conversion layer, if it is thicker than 1000 μm, the gas enclosed in the pores existing in the conversion layer, such as water vapor, silicon monoxide, carbon monoxide, oxygen, and carbon powder, may become a diamond coating. In addition to affecting the rate at which the diamond film grows due to thermal diffusion during the formation of carbon, carbon monoxide and carbon powder precipitate as an amorphous hard carbon film by thermal excitation. It may also affect the purity of the diamond coating. Therefore, in order to obtain a more reliable and remarkable effect, it is safe and desirable that the thickness of the conversion layer be 10 μm to 500 μm.
また、転化層を形成して平均気孔半径を0.5μm以下とし、且つ累積気孔容積は5(×10−2Mg/m3 )以下にすることによって上記効果、即ちダイヤモンド被膜の結晶速度の促進及びダイヤモンド被膜の純度を一層向上させることができることも本発明者らは見いだしている。 Further, by forming a conversion layer so that the average pore radius is 0.5 μm or less and the cumulative pore volume is 5 (× 10 −2 Mg / m 3 ) or less, the above effect, that is, the acceleration of the crystal speed of the diamond film is promoted. The inventors have also found that the purity of the diamond coating can be further improved.
さらに、転化層に存在する気孔に、熱膨張係数がダイヤモンドと転化層の中間であって、しかも気密性が高く、硬度が高いガラス状炭素や、ダイヤモンド被膜と密着性の優れた珪素を含浸(併用しても良い)することによって転化層の気孔を封孔し、しかも母材の強度を向上させる上で有効であることも本発明者らは見いだしている。 Furthermore, the pores existing in the conversion layer are impregnated with glassy carbon having a thermal expansion coefficient intermediate between diamond and the conversion layer and having high airtightness and high hardness, and silicon having excellent adhesion to the diamond coating ( The present inventors have also found that it is effective in sealing the pores of the conversion layer and improving the strength of the base material.
上記操作によって作成された母材は、粒子径が0.1μm〜1μmのダイヤモンド粉末(ダイヤモンドコンパウンドともいう)の入った液体中に入れて超音波洗浄を行い、またはダイヤモンドサンドペーパーを使用して表面の粗さをJISB0601−1982に示される最大表面粗さ(Rmax )が0.5μm〜1.0μmとなるように表面に引っかき傷(以下、スクラッチという)を形成することによってダイヤモンド被膜の成長速度及び母材との密着性を一層向上させることも可能である。なお、この場合のスクラッチ作業は、従来のダイヤモンド被膜炭素部材におけるCVD−SiC層表面をスクラッチする場合に比べて簡単となる。即ち、従来のCVD−SiC層は非常に緻密でその表面も平坦であるため、より強力なスクラッチ作業を必要とするのに対し、本発明のCVR−SiC層は比較的多孔質(ポーラス)で、その表面もかなり起伏に富んでいるため、軽めのスクラッチでよく、作業コストの低減化に有利といえる。 The base material prepared by the above operation is put into a liquid containing diamond powder (also referred to as diamond compound) having a particle size of 0.1 μm to 1 μm, and is subjected to ultrasonic cleaning, or using a diamond sandpaper. The growth rate of the diamond film is formed by forming scratches (hereinafter referred to as scratches) on the surface so that the maximum surface roughness (R max ) shown in JIS B0601-1982 is 0.5 μm to 1.0 μm. It is also possible to further improve the adhesion to the base material. The scratching operation in this case is simpler than the case of scratching the surface of the CVD-SiC layer in the conventional diamond-coated carbon member. That is, the conventional CVD-SiC layer is very dense and the surface thereof is flat, and thus requires a stronger scratching operation, whereas the CVR-SiC layer of the present invention is relatively porous (porous). Since the surface is also quite undulating, a light scratch is sufficient, which can be said to be advantageous in reducing the work cost.
上記母材の表面に形成するダイヤモンド被膜について説明する。母材表面に形成するダイヤモンド被膜の厚みは、1μm以上〜100μm以下とすることが望ましい。その理由は、ダイヤモンド被膜の膜厚が1μmよりも薄いと、母材表面に形成されたダイヤモンド被膜がすぐに磨耗してしまい、100μmよりも厚くすると、ダイヤモンドの熱膨張係数が転化層のそれに比べてはるかに小さいため、母材に引っ張り応力が発生し、母材とダイヤモンド被膜との間で剥離及びクラックが生じ易くなるだけでなく、ダイヤモンド被膜を形成するための時間も長くなる。従って、母材表面に形成させるべきダイヤモンド被膜の厚みとしては、は、10μm〜50μmとすることが安全で望ましい。 The diamond film formed on the surface of the base material will be described. The thickness of the diamond coating formed on the surface of the base material is desirably 1 μm to 100 μm. The reason is that if the thickness of the diamond coating is less than 1 μm, the diamond coating formed on the surface of the base material will be worn away quickly. If the thickness of the diamond coating is thicker than 100 μm, the thermal expansion coefficient of diamond will be higher than that of the conversion layer. Therefore, tensile stress is generated in the base material, and not only peeling and cracking are likely to occur between the base material and the diamond coating, but also the time for forming the diamond coating is increased. Therefore, the thickness of the diamond coating to be formed on the surface of the base material is preferably 10 μm to 50 μm, which is safe and desirable.
ダイヤモンド被膜を形成するときの条件について説明すると以下のようになる。ダイヤモンド被膜の形成手段は、マイクロ波プラズマCVD法、熱フィラメント法、高周波プラズマCVD法、電子衝撃CVD法、光CVD法、直流CVD法等を例示することができ、その中から任意に選択することが可能である。 The conditions for forming the diamond coating will be described as follows. Examples of the diamond film forming means include a microwave plasma CVD method, a hot filament method, a high frequency plasma CVD method, an electron impact CVD method, a photo CVD method, a direct current CVD method, and the like. Is possible.
マイクロ波プラズマCVD法でダイヤモンド被膜を形成する例を一例として例示すると以下のようになる。先ず、スクラッチを形成した母材を装置に入れる。装置内は約1トール〜100トールのアルゴンガス雰囲気の減圧状態にし、誘導加熱によって母材を加熱する。母材を加熱する温度は母材の剥離・クラック等を生じさせないようにするため極力低い温度とすることが望ましく、1000K以下とすることが望ましい。 An example of forming a diamond film by the microwave plasma CVD method is as follows. First, the base material on which the scratch is formed is put into the apparatus. The inside of the apparatus is in a reduced pressure state of an argon gas atmosphere of about 1 Torr to 100 Torr, and the base material is heated by induction heating. The temperature for heating the base material is preferably as low as possible so as not to cause peeling or cracking of the base material, and is preferably set to 1000K or less.
続いて2.45ギガヘルツのマイクロ波を導波管から発進する。ダイヤモンドの供給源である原料ガスとしてはメタンガスを担体ガスとしては水素ガスを使用し、メタンガス1に対し、水素ガスを50〜200の体積比率で供給する。この場合最初は、メタンガスの濃度を薄くし、徐々にメタンガスの濃度を濃くすることも可能である。ダイヤモンド被膜の析出速度が時間当たり1μmよりも小さいと所定の膜厚を得るために時間が長くなり、加熱時間が長くなるので母材への影響、即ち剥離及びクラックの原因になる。また、析出速度が10μmよりも速くなると、純度の高い多結晶ダイヤモンド被膜以外に、無定形硬化炭素膜が析出するためダイヤモンドの純度が低下するだけでなく、母材との密着性を向上させる上で望ましくない。 Subsequently, a 2.45 GHz microwave is launched from the waveguide. As a source gas that is a supply source of diamond, methane gas is used as a carrier gas, and hydrogen gas is used as a carrier gas. Hydrogen gas is supplied to methane gas 1 at a volume ratio of 50 to 200. In this case, it is possible to reduce the concentration of methane gas at first and gradually increase the concentration of methane gas. When the deposition rate of the diamond coating is less than 1 μm per hour, it takes a long time to obtain a predetermined film thickness, and the heating time becomes long, which causes an influence on the base material, that is, causes peeling and cracking. Moreover, when the deposition rate is faster than 10 μm, in addition to the polycrystalline diamond film having a high purity, an amorphous hardened carbon film is deposited, so that not only the purity of the diamond is lowered, but also the adhesion to the base material is improved. Is not desirable.
このようにして本発明のダイヤモンド被膜炭素製品を製造することが可能であるが、用途に応じてダイヤモンドの特性を更に活かすことが可能である。最も良く使用される切削工具、例えばバイト、ドレッサー、カッター、ドリル、ガラス切り等に使用する場合には、高い硬度が必要なだけでなく、被加工物に高い加工精度を付与することも必要である。なお、前記切削工具として使用する時に問題となるのは、磨耗によって刃先の鋭利さがなくなってしまうことである。従って、前記切削工具に使用する場合に形成する場合には刃先の鋭利さを活かしつつ、しかも磨耗に充分に耐えるだけの充分な膜厚を確保することが必要であり、ダイヤモンド膜厚は10μm〜30μm程度とすることが望ましい。 Thus, although the diamond-coated carbon product of the present invention can be produced, the characteristics of diamond can be further utilized depending on the application. When used for the most frequently used cutting tools such as tools, dressers, cutters, drills, glass cutters, etc., not only high hardness is required, but also high processing accuracy must be imparted to the workpiece. is there. In addition, a problem when used as the cutting tool is that the sharpness of the cutting edge is lost due to wear. Therefore, in the case of forming for use in the cutting tool, it is necessary to ensure a sufficient film thickness to sufficiently withstand wear while making use of the sharpness of the cutting edge, and the diamond film thickness is 10 μm to It is desirable to be about 30 μm.
また、高い熱伝導率を要求されるような用途に使用する場合には、ダイヤモンドの高い熱伝導率に加えて、母材の高い熱伝導率にすることが望ましい。そのような場合には熱伝導率の低い転化層の膜厚は極力薄くし例えば1μm程度にし、炭素質基体は、熱伝導率が100W/(m・k)以上の高い炭素質基体を選択し、母材全体として熱伝導率を高くすることが望ましい。 Moreover, when using for the use for which high heat conductivity is requested | required, it is desirable to make it high heat conductivity of a base material in addition to the high heat conductivity of a diamond. In such a case, the conversion layer having a low thermal conductivity is made as thin as possible, for example, about 1 μm, and a carbonaceous substrate having a high thermal conductivity of 100 W / (m · k) or more is selected as the carbonaceous substrate. It is desirable to increase the thermal conductivity of the entire base material.
上記したように、本発明では、特定の物性の炭素質基体を選択し、係る炭素質基体の表層部にCVR(Chemical Vaper Riaction)法により炭化珪素に転化された被覆層を1μm〜1000μmの厚みで形成しているので、転化層と炭素質基体の界面で剥離やクラックが生じることがない。また必要に応じて、転化層の平均気孔半径と累積気孔容積を調節し、しかも場合によってはガラス状炭素や珪素を転化層の気孔に含浸することによって母材の気密性も向上させることができるので、ダイヤモンド被膜を形成したときに無定形硬質炭化膜等の形成が殆ど無く、純度の高いダイヤモンド被膜を得ることができ、ダイヤモンド被膜と母材との密着性も良く剥離・クラックの発生もない。 As described above, in the present invention, a carbonaceous substrate having specific physical properties is selected, and a coating layer converted to silicon carbide by the CVR (Chemical Vapor Reaction) method is formed on the surface layer of the carbonaceous substrate with a thickness of 1 μm to 1000 μm. Therefore, no peeling or cracking occurs at the interface between the conversion layer and the carbonaceous substrate. If necessary, the average pore radius and cumulative pore volume of the conversion layer can be adjusted, and in some cases, the pores of the conversion layer can be impregnated with glassy carbon or silicon to improve the hermeticity of the base material. Therefore, when the diamond coating is formed, there is almost no formation of an amorphous hard carbide film, etc., and a high-purity diamond coating can be obtained, the adhesion between the diamond coating and the base material is good, and there is no occurrence of peeling or cracking .
以下に、参考例も示しながら、本発明を実施例に基づき具体的に説明する。 Hereinafter, the present invention will be specifically described based on examples while showing reference examples.
<参考例1>
(炭素質基体の調製)
水銀圧入法による平均気孔半径が1.1μm、3点曲げ試験法による曲げ強度が60MPa、石英熱膨張計による室温から1273Kまでの平均熱膨張係数が4.7(×10−6/K)の等方性黒鉛材料を作成した。この等方性黒鉛材料を50mm角で厚みが10mmも寸法に加工した後、高純度化し、試験片とした。試験片に含まれる灰分は10ppmであった。
(母材の調製)
一方、内径が100mmで肉厚が10mm、高さが100mmの黒鉛ルツボに、金属珪素0.3kg充填し、高周波誘導加熱によって1800Kで金属珪素を溶融した。溶融珪素に試験片を入れて試験片の表層部全面にβ−炭化珪素で200μmの転化層を形成し、これを母材とした。母材中の転化層の気孔について累積気孔容積と平均気孔半径を水銀圧入法で測定したところ、各々4.0(×10−2Mg/m3 )及び0.4μmであった。この母材に、真空中2000Kで2時間、珪素を転化層の気孔95%含浸した。ICP−MS法で珪素を含浸した上記母材の転化層に含まれるコバルトの含有率を測定したところ、1.8ppmであった。市販0.5リットルのビーカーに平均粒子径が0.1μmのダイヤモンドコンパウンドを入れ、これに純水を加えてダイヤモンドコンパウンドを分散し、この中に上記超音波処理を行った母材を入れて取り出した後、母材の表面粗さをJIS B0601−1982に示される方法で測定した結果、最大表面粗さ(Rmax )は0.5μmであった。
(母材上へのダイヤモンド被膜の形成)
母材を装置に入れ、原料ガスとしてメタンガスを使用し、担体ガスとして水素ガスを使用し、水素ガス中のメタンガス濃度を0.5体積%としたガスを装置内に流し、装置内圧力を50トール、基板(母材)温度を1200Kとし、2.45ギガヘルツのマイクロ波を導波管を通じて反応管の中央に導入してダイヤモンド被膜を1時間当たり1μm堆積させ、20時間継続反応をさせてマイクロ波プラズマCVD法でダイヤモンド被膜を20μm形成した。
<Reference Example 1>
(Preparation of carbonaceous substrate)
Average pore radius by mercury intrusion method is 1.1 μm, bending strength by 3-point bending test method is 60 MPa, average thermal expansion coefficient from room temperature to 1273 K by quartz thermal dilatometer is 4.7 (× 10 −6 / K) An isotropic graphite material was prepared. This isotropic graphite material was processed into a size of 50 mm square and a thickness of 10 mm, and then purified to obtain a test piece. The ash content contained in the test piece was 10 ppm.
(Preparation of base material)
On the other hand, a graphite crucible having an inner diameter of 100 mm, a thickness of 10 mm, and a height of 100 mm was filled with 0.3 kg of metal silicon, and the metal silicon was melted at 1800 K by high frequency induction heating. A test piece was put in molten silicon, and a 200 μm conversion layer was formed of β-silicon carbide on the entire surface layer portion of the test piece, which was used as a base material. When the accumulated pore volume and average pore radius of the pores of the conversion layer in the base material were measured by the mercury intrusion method, they were 4.0 (× 10 −2 Mg / m 3 ) and 0.4 μm, respectively. This base material was impregnated with 95% of the pores of the conversion layer in silicon at 2000K for 2 hours. It was 1.8 ppm when the content rate of the cobalt contained in the conversion layer of the said base material impregnated with silicon by ICP-MS method was measured. Put a diamond compound with an average particle size of 0.1 μm in a commercially available 0.5 liter beaker, add pure water to this to disperse the diamond compound, and put the base material subjected to the above ultrasonic treatment into it. After that, the surface roughness of the base material was measured by the method shown in JIS B0601-1982, and as a result, the maximum surface roughness (R max ) was 0.5 μm.
(Diamond coating on the base material)
A base material is put into the apparatus, methane gas is used as a source gas, hydrogen gas is used as a carrier gas, a gas with a methane gas concentration of 0.5% by volume in hydrogen gas is flowed into the apparatus, and the pressure in the apparatus is 50 Thor, the substrate (base material) temperature is 1200K, and 2.45 GHz microwave is introduced into the center of the reaction tube through the waveguide to deposit a diamond film of 1 μm per hour, and the reaction is continued for 20 hours. A diamond film having a thickness of 20 μm was formed by a wave plasma CVD method.
<実施例1>
(炭素質基体の調製)
水銀圧入法による平均気孔半径が1.8μm、3点曲げ試験法による曲げ強度が40MPa、石英熱膨張計による室温から1273Kまでの平均熱膨張係数が4.7(×10−6/K)の等方性黒鉛材料を作成した。この等方性黒鉛材料を、50mm角で厚みが10mmの寸法に加工し、試験片とした。試験片に含まれる灰分は12ppmであった。
(母材の調製)
一方、電気炉内に仕切りを設け、仕切りの一部に黒鉛ルツボを置き、この黒鉛ルツボ内に金属珪素0.1kgと二酸化珪素0.1kgを入れた。また別室には試験片を置き、電気炉内全体はアルゴンガスを1分間当たり1リットルの割合で流して不活性ガス雰囲気とした後、2300Kに加熱して一酸化珪素ガスを発生させた後、炭素質基体と一酸化珪素ガスを反応させて炭素質基体の表層部全面に転化層を500μm形成したものを母材とした。母材中の転化層の気孔について累積気孔容積と平均気孔半径を水銀圧入法で測定したところ、各々2.0(×10−2Mg/m3 )及び0.2μmであった。ICP−MS法で珪素を含浸した上記母材の転化層に含まれるコバルトの含有率を測定したところ、0.5ppmであった。市販0.5リットルのビーカーに平均粒子径が0.1μmのダイヤモンドコンパウンドを入れ、これに純水を加えてダイヤモンドコンパウンドを分散し、この中に上記母材を入れて超音波振動を10分間与えてスクラッチを形成した。上記超音波処理を行った母材を取り出した後、母材の表面粗さをJIS B0601−1982に示される方法で測定した結果、最大表面粗さ(Rmax )は0.7μmであった。
(母材上へのダイヤモンド被膜の形成)
母材を装置に入れ、原料ガスとしてメタンガスを使用し、担体ガスとして水素ガスを使用し、水素ガス中のメタンガス濃度を0.5体積%としたガスを装置内に流し、装置内圧力を50トール、基板温度を1200Kとし、2.45ギガヘルツのマイクロ波を導波管を通じて反応管の中央に導入してダイヤモンド被膜を1時間当たり1μm体積させ、20時間継続して反応を行ってマイクロ波プラズマCVD法で20μmダイヤモンド被膜を形成した。
<Example 1>
(Preparation of carbonaceous substrate)
Average pore radius by mercury intrusion method is 1.8 μm, bending strength by 3 point bending test method is 40 MPa, average thermal expansion coefficient from room temperature to 1273 K by quartz thermal dilatometer is 4.7 (× 10 −6 / K) An isotropic graphite material was prepared. This isotropic graphite material was processed into a dimension of 50 mm square and 10 mm thickness to obtain a test piece. The ash content in the test piece was 12 ppm.
(Preparation of base material)
On the other hand, a partition was provided in the electric furnace, a graphite crucible was placed in a part of the partition, and 0.1 kg of metal silicon and 0.1 kg of silicon dioxide were placed in the graphite crucible. In addition, a test piece was placed in a separate chamber, and the entire interior of the electric furnace was made to be an inert gas atmosphere by flowing argon gas at a rate of 1 liter per minute, and then heated to 2300 K to generate silicon monoxide gas. A base material was formed by reacting a carbonaceous substrate and silicon monoxide gas to form a conversion layer of 500 μm over the entire surface of the carbonaceous substrate. When the cumulative pore volume and average pore radius of the pores of the conversion layer in the base material were measured by the mercury intrusion method, they were 2.0 (× 10 −2 Mg / m 3 ) and 0.2 μm, respectively. It was 0.5 ppm when the content rate of the cobalt contained in the conversion layer of the said base material impregnated with silicon by ICP-MS method was measured. Put a diamond compound with an average particle size of 0.1 μm in a commercially available 0.5 liter beaker, add pure water to this to disperse the diamond compound, put the above base material in this, and give ultrasonic vibration for 10 minutes. Scratches were formed. After the base material subjected to the ultrasonic treatment was taken out, the surface roughness of the base material was measured by the method shown in JIS B0601-1982. As a result, the maximum surface roughness (R max ) was 0.7 μm.
(Diamond coating on the base material)
A base material is put into the apparatus, methane gas is used as a source gas, hydrogen gas is used as a carrier gas, a gas with a methane gas concentration of 0.5% by volume in hydrogen gas is flowed into the apparatus, and the pressure in the apparatus is 50 Toll, substrate temperature is 1200K, 2.45 GHz microwave is introduced into the center of the reaction tube through the waveguide to make the diamond coating 1 μm volume per hour, and the reaction is continued for 20 hours to microwave plasma A 20 μm diamond film was formed by CVD.
<参考例2>
(炭素質基板の調製)
水銀圧入法による平均気孔半径が0.5μm、3点曲げ強度が90MPa、石英熱膨張計による室温から1273Kまでの平均熱膨張係数が4.9(×10−6/K)の等方性黒鉛材料を作成した。この等方性黒鉛材料を、50mm角で厚みが10mmの寸法に加工し、試験片とした。試験片に含まれる灰分は12ppmであった。
(母材の調製)
参考例1と同様の操作を行って炭素質基体の表層部全面に転化層を250μm形成したものを母材とした。母材中の転化層の気孔について累積気孔面積と平均気孔半径を水銀圧入法で測定したところ、各々1.8(×10−2Mg/m3 )及び0.1μmであった。ICP−MS法で珪素を含浸した上記母材の転化層に含まれるコバルトの含有率を測定したところ、0.9ppmであった。市販0.5リットルのビーカーに平均粒子径0.1μmのダイヤモンドコンパウンドを入れ、これに純水を加えてダイヤモンドコンパウンドを分散し、この中に上記母材を入れて超音波振動を10分間与えてスクラッチを形成した。上記超音波処理を行った母材を取り出した後、母材の表面粗さをJIS B0601−1982に示される方法で測定した結果、最大表面粗さ(Rmax )は0.9μmであった。
(母材上へのダイヤモンド被膜の形成)
母材を装置に入れ、原料ガスとしてメタンガスを使用し、担体ガスとして水素ガスを使用し、水素ガス中のメタンガス濃度0.5体積%としたガスを装置内に流し、装置内圧力を50トール、基板温度を1200Kとし、ダイヤモンド被膜を1時間当たり1μm堆積させ、20時間継続して反応を行って熱フィラメントCVD法で20μmダイヤモンド被膜を形成した。
<Reference Example 2>
(Preparation of carbonaceous substrate)
Isotropic graphite with an average pore radius of 0.5 μm by mercury intrusion method, a three-point bending strength of 90 MPa, and an average thermal expansion coefficient from room temperature to 1273 K by a quartz thermal dilatometer of 4.9 (× 10 −6 / K) Made the material. This isotropic graphite material was processed into a dimension of 50 mm square and 10 mm thickness to obtain a test piece. The ash content in the test piece was 12 ppm.
(Preparation of base material)
The same operation as in Reference Example 1 was performed, and a base material was formed by forming a conversion layer of 250 μm on the entire surface layer portion of the carbonaceous substrate. When the cumulative pore area and average pore radius of the pores of the conversion layer in the base material were measured by the mercury intrusion method, they were 1.8 (× 10 −2 Mg / m 3 ) and 0.1 μm, respectively. It was 0.9 ppm when the content rate of the cobalt contained in the conversion layer of the said base material impregnated with silicon by ICP-MS method was measured. Put a diamond compound with an average particle diameter of 0.1 μm in a commercially available 0.5 liter beaker, add pure water to this to disperse the diamond compound, put the above-mentioned base material in this, and apply ultrasonic vibration for 10 minutes. A scratch was formed. After the base material subjected to the ultrasonic treatment was taken out, the surface roughness of the base material was measured by the method shown in JIS B0601-1982, and as a result, the maximum surface roughness (R max ) was 0.9 μm.
(Diamond coating on the base material)
The base material is put into the device, methane gas is used as the raw material gas, hydrogen gas is used as the carrier gas, a gas with a methane gas concentration of 0.5% by volume in the hydrogen gas is flowed into the device, and the pressure in the device is 50 Torr. The substrate temperature was set to 1200 K, a diamond film was deposited at 1 μm per hour, and the reaction was continued for 20 hours to form a 20 μm diamond film by a hot filament CVD method.
<参考例3>
(炭素質基体の調製)
水銀圧入法による平均気孔半径が1.1μm、3点曲げ試験法による曲げ強度が60MPa、石英熱膨張計による室温から1273Kまでの平均熱膨張係数が5.0(×10−6/K)の等方性黒鉛材料を作成した。この等方性黒鉛材料を、50mm角で厚みが10mmの寸法に加工し、試験片とした。試験片に含まれる灰分は14ppmであった。
(母材の調製)
参考例1と同様の操作を行って炭素質基体の表層部全面に転化層を250μm形成したものを母材とした。母材中の転化層の気孔について累積気孔容積と平均気孔半径を水銀圧入法で測定したところ、各々3.4(×10−2Mg/m3 )及び0.6μmであった。ICP−MS法で珪素を含浸した上記母材の転化層に含まれるコバルトの含有率を測定したところ、3.8ppmであった。市販0.5リットルのビーカーに平均粒子径が0.1μmのダイヤモンドコンパウンドを分散し、この中に上記母材を入れて超音波振動を10分間与えてスクラッチを形成した。上記超音波処理を行った母材を取り出した後、母材の表面粗さをJISB0601−1982に示される方法で測定した結果、最大表面粗さ(Rmax )は1.0μmであった。
(母材上へのダイヤモンド被膜の形成)
母材を装置に入れ、原料ガスとしてメタンガスを使用し、担体ガスとして水素ガスを使用し、水素ガス中のメタンガス濃度を0.5体積%としたガスを装置内に流し、装置内圧力を50トール、基板温度を1200Kとし、ダイヤモンド被膜を1時間当たり2μm堆積させ、10時間継続して反応を行って熱フィラメントCVD法で20μmダイヤモンド被膜を形成した。
<Reference Example 3>
(Preparation of carbonaceous substrate)
Average pore radius by mercury intrusion method is 1.1 μm, bending strength by 3-point bending test method is 60 MPa, average thermal expansion coefficient from room temperature to 1273 K by quartz thermal dilatometer is 5.0 (× 10 −6 / K) An isotropic graphite material was prepared. This isotropic graphite material was processed into a dimension of 50 mm square and 10 mm thickness to obtain a test piece. The ash content in the test piece was 14 ppm.
(Preparation of base material)
The same operation as in Reference Example 1 was performed, and a base material was formed by forming a conversion layer of 250 μm on the entire surface layer portion of the carbonaceous substrate. When the cumulative pore volume and average pore radius of the pores of the conversion layer in the base material were measured by the mercury intrusion method, they were 3.4 (× 10 −2 Mg / m 3 ) and 0.6 μm, respectively. It was 3.8 ppm when the content rate of the cobalt contained in the conversion layer of the said base material impregnated with silicon by ICP-MS method was measured. A diamond compound having an average particle size of 0.1 μm was dispersed in a commercially available 0.5-liter beaker, and the above base material was placed therein, and ultrasonic vibration was applied for 10 minutes to form a scratch. After the base material subjected to the ultrasonic treatment was taken out, the surface roughness of the base material was measured by the method shown in JISB0601-1982, and as a result, the maximum surface roughness (R max ) was 1.0 μm.
(Diamond coating on the base material)
A base material is put into the apparatus, methane gas is used as a source gas, hydrogen gas is used as a carrier gas, a gas with a methane gas concentration of 0.5% by volume in hydrogen gas is flowed into the apparatus, and the pressure in the apparatus is 50 The substrate temperature was 1200 K and a diamond film was deposited at 2 μm per hour, and the reaction was continued for 10 hours to form a 20 μm diamond film by hot filament CVD.
<参考例4>
(炭素質基体の調製)
水銀圧入法による平均気孔半径が1.1μm、3点曲げ試験法による曲げ強度が60MPa、石英熱膨張計による室温から1273Kまでの平均熱膨張係数が4.0(×10−6/K)の等方性黒鉛材料を作成した。この等方性黒鉛材料を、50mm角で厚みが10mmの寸法に加工し、試験片とした。試験片に含まれる灰分は2.1ppmであった。
(母材の調製)
参考例1と同様の操作を行って炭素質基体の表層部全面に転化層を250μm形成したものを母材とした。母材中の転化層の気孔について累積気孔容積と平均気孔半径を水銀圧入法で測定したところ、各々2.8(×10−2Mg/m3 )及び0.4μmであった。ICP−MS法で珪素を含浸した上記母材の転化層に含まれるコバルトの含有率を測定したところ、0.1ppmであった。市販0.5リットルのビーカーに平均粒子径が0.1μmのダイヤモンドを分散し、この中に上記母材を入れて超音波振動を10分間与えてスクラッチを形成した。上記超音波処理を行った母材を取り出した後、母材の表面粗さをJIS B0601−1982に示される測定した結果、最大表面粗さ(Rmax )は0.9μmであった。
(母材上へのダイヤモンド被膜の形成)
母材を装置に入れ、原料ガスとしてメタンガスを使用し、担体ガスとして水素ガスを使用し、水素ガス中のメタンガス濃度を0.5体積%としたガスを装置内に流し、装置内圧力を50トール、基板温度を1200Kとし、ダイヤモンド被膜を1時間当たり2μm堆積させ、10時間継続して反応を行って熱フィラメントCVD法で20μmダイヤモンド被膜を形成した。
<Reference Example 4>
(Preparation of carbonaceous substrate)
The average pore radius by the mercury intrusion method is 1.1 μm, the bending strength by the three-point bending test method is 60 MPa, and the average thermal expansion coefficient from room temperature to 1273 K by a quartz thermal dilatometer is 4.0 (× 10 −6 / K). An isotropic graphite material was prepared. This isotropic graphite material was processed into a dimension of 50 mm square and 10 mm thickness to obtain a test piece. The ash contained in the test piece was 2.1 ppm.
(Preparation of base material)
The same operation as in Reference Example 1 was performed, and a base material was formed by forming a conversion layer of 250 μm on the entire surface layer portion of the carbonaceous substrate. When the cumulative pore volume and average pore radius of the pores of the conversion layer in the base material were measured by the mercury intrusion method, they were 2.8 (× 10 −2 Mg / m 3 ) and 0.4 μm, respectively. It was 0.1 ppm when the content rate of the cobalt contained in the conversion layer of the said base material impregnated with silicon by ICP-MS method was measured. In a commercially available 0.5 liter beaker, diamond having an average particle diameter of 0.1 μm was dispersed, and the above base material was placed therein, and ultrasonic vibration was applied for 10 minutes to form a scratch. After the base material subjected to the ultrasonic treatment was taken out, the surface roughness of the base material was measured as shown in JIS B0601-1982, and as a result, the maximum surface roughness (R max ) was 0.9 μm.
(Diamond coating on the base material)
A base material is put into the apparatus, methane gas is used as a source gas, hydrogen gas is used as a carrier gas, a gas with a methane gas concentration of 0.5% by volume in hydrogen gas is flowed into the apparatus, and the pressure in the apparatus is 50 The substrate temperature was 1200 K and a diamond film was deposited at 2 μm per hour, and the reaction was continued for 10 hours to form a 20 μm diamond film by hot filament CVD.
<参考例5>
(炭素質基体の調製)
参考例1で作成した試験片を使用した。
(母材例1の調製)
参考例1と同様の操作を行って炭素質基体の表層部全面に転化層を950μm形成したものを母材とした。母材中の転化層の気孔について累積気孔容積と平均気孔半径を水銀圧入法で測定したところ、各々2.8(×10−2Mg/m3 )及び0.4μmであった。ICP−MS法で珪素を含浸した上記母材の転化層に含まれるコバルトの含有率を測定したところ、0.1ppmであった。市販0.5リットルのビーカーに平均粒子径が0.1μmのダイヤモンドコンパウンドを入れ、これに純水を加えてダイヤモンドコンパウンドを分散し、この中に母材を入れて超音波振動を10分間与えてスクラッチを形成した。上記超音波処理を行った母材を取り出した後、母材の表面粗さをJIS B0601−1982に示される方法で測定した結果、最大表面粗さ(Rmax )は0.5μmであった。
(母材上へのダイヤモンド被膜の形成)
参考例1と同様な方法で20μmダイヤモンド被膜を形成した。
<Reference Example 5>
(Preparation of carbonaceous substrate)
The test piece prepared in Reference Example 1 was used.
(Preparation of base material example 1)
A base material was prepared by performing the same operation as in Reference Example 1 and forming a conversion layer of 950 μm on the entire surface of the carbonaceous substrate. When the cumulative pore volume and average pore radius of the pores of the conversion layer in the base material were measured by the mercury intrusion method, they were 2.8 (× 10 −2 Mg / m 3 ) and 0.4 μm, respectively. It was 0.1 ppm when the content rate of the cobalt contained in the conversion layer of the said base material impregnated with silicon by ICP-MS method was measured. Put a diamond compound with an average particle size of 0.1 μm in a commercially available 0.5 liter beaker, add pure water to this to disperse the diamond compound, put the base material in this, and apply ultrasonic vibration for 10 minutes. A scratch was formed. After the base material subjected to the ultrasonic treatment was taken out, the surface roughness of the base material was measured by the method shown in JIS B0601-1982, and as a result, the maximum surface roughness (R max ) was 0.5 μm.
(Diamond coating on the base material)
A 20 μm diamond film was formed in the same manner as in Reference Example 1.
<参考例6>
(炭素質基体の調製)
参考例1で作成した試験片を使用した。
(母材の調製)
参考例1と同様の操作を行って炭素質基体の表層部全面に転化層を1.1μm形成したものを母材とした。母材中の転化層の気孔について累積気孔容積と平均気孔半径を水銀圧入法で測定したところ、各々3.3(×10−2Mg/m3 )及び0.8μmであった。ICP−MS法で珪素を含浸した上記母材の転化層に含まれるコバルトの含有率を測定したところ、2.2ppmであった。市販0.5リットルのビーカーに平均粒子径が0.1μmのダイヤモンドを分散し、この中に上記母材を入れて超音波振動を10分間与えてスクラッチを形成した。上記超音波処理を行った母材を取り出した後、母材の表面粗さをJIS B0601−1982に示される方法で測定した結果、最大表面粗さ(Rmax )は0.5μmであった。
(母材上へのダイヤモンド被膜の形成)
参考例1と同様な方法で20μmダイヤモンド被膜を形成した。
<Reference Example 6>
(Preparation of carbonaceous substrate)
The test piece prepared in Reference Example 1 was used.
(Preparation of base material)
The same operation as in Reference Example 1 was performed, and a base material was obtained by forming a conversion layer of 1.1 μm on the entire surface layer portion of the carbonaceous substrate. When the cumulative pore volume and average pore radius of the pores of the conversion layer in the base material were measured by the mercury intrusion method, they were 3.3 (× 10 −2 Mg / m 3 ) and 0.8 μm, respectively. It was 2.2 ppm when the content rate of the cobalt contained in the conversion layer of the said base material impregnated with silicon by ICP-MS method was measured. In a commercially available 0.5 liter beaker, diamond having an average particle diameter of 0.1 μm was dispersed, and the above base material was placed therein, and ultrasonic vibration was applied for 10 minutes to form a scratch. After the base material subjected to the ultrasonic treatment was taken out, the surface roughness of the base material was measured by the method shown in JIS B0601-1982, and as a result, the maximum surface roughness (R max ) was 0.5 μm.
(Diamond coating on the base material)
A 20 μm diamond film was formed in the same manner as in Reference Example 1.
<参考例7>
(炭素質基体の調製)
水銀圧入法による平均気孔半径が1.2μm、3点曲げ試験法による曲げ強度が60MPa、石英熱膨張計による室温から1273Kまでの平均熱膨張係数が4.7(×10−6/K)の等方性黒鉛材料を作成した。この等方性黒鉛材料を、50mm角で厚みが10mmの寸法に加工し、試験片とした。試験片に含まれる灰分は50ppmであった。
(母材の調製)
参考例1と同様の操作を行って炭素質基体の表層部全面に転化層を200μm形成したものを母材とした。母材中の転化層の気孔について累積気孔容積と平均気孔半径を水銀圧入法で測定したところ、各々4.9(×10−2Mg/m3 )及び0.8μmであった。ICP−MS法で珪素を含浸した上記母材の転化層に含まれるコバルトの含有率を測定したところ、9.8ppmであった。市販0.5リットルのビーカーに平均粒子けい0.1μmのダイヤモンドコンパウンドを入れ、これに純水を加えてダイヤモンドコンパンドを分散し、この中に上記母材を入れて超音波振動を10分間与えてスクラッチを形成した。上記超音波処理を行った母材を取り出した後、母材の表面粗さをJIS B0601−1982に示される方法で測定した結果、最大表面粗さ(Rmax )は0.5μmであった。
(母材上へのダイヤモンド被膜の形成)
実施例1と同様な方法で20μmダイヤモンド被膜を形成した。
<Reference Example 7>
(Preparation of carbonaceous substrate)
Average pore radius by mercury intrusion method is 1.2 μm, bending strength by 3-point bending test method is 60 MPa, average thermal expansion coefficient from room temperature to 1273 K by quartz thermal dilatometer is 4.7 (× 10 −6 / K) An isotropic graphite material was prepared. This isotropic graphite material was processed into a dimension of 50 mm square and 10 mm thickness to obtain a test piece. The ash content contained in the test piece was 50 ppm.
(Preparation of base material)
The same operation as in Reference Example 1 was performed, and a base material was formed by forming a conversion layer of 200 μm on the entire surface layer portion of the carbonaceous substrate. When the cumulative pore volume and average pore radius of the pores of the conversion layer in the base material were measured by the mercury intrusion method, they were 4.9 (× 10 −2 Mg / m 3 ) and 0.8 μm, respectively. It was 9.8 ppm when the content rate of the cobalt contained in the conversion layer of the said base material impregnated with silicon by ICP-MS method was measured. Place a diamond compound with an average particle size of 0.1 μm in a commercially available 0.5 liter beaker, add pure water to this to disperse the diamond compound, put the above base material in this, and apply ultrasonic vibration for 10 minutes. A scratch was formed. After the base material subjected to the ultrasonic treatment was taken out, the surface roughness of the base material was measured by the method shown in JIS B0601-1982, and as a result, the maximum surface roughness (R max ) was 0.5 μm.
(Diamond coating on the base material)
A 20 μm diamond film was formed in the same manner as in Example 1.
<参考例8>
(母材の調製)
参考例1で作成した母材を使用し、市販0.5リットルのビーカーに平均粒子径が0.1μmのダイヤモンドコンパウンドを入れ、これに純水を加えてダイヤモンドコンパウンドを分散し、この中に母材を入れて超音波振動を10分間与えてスクラッチを形成した。上記超音波処理を行った母材を取り出した後、母材の表面粗さをJIS B0601−1982に示される方法で測定した結果、最大表面粗さ(Rmax )は0.8μmであった。
(母材上へのダイヤモンド被膜の形成)
母材を装置に入れ、原料ガスとしてメタンガスを使用し、担体ガスとして水素ガスを使用し、水素ガス中のメタンガス濃度を0.5体積%としたガスを装置内に流し、装置内圧力を50トール、基板(母材)温度を1200Kとし、2.45ギガヘルツのマイクロ波を導波管を通して反応管の中央に導入してダイヤモンド被膜を1時間当たり1μm堆積させ、1.5時間継続反応をさせてマイクロ波プラズマCVD法でダイヤモンド被膜を1.5μm形成した。
<Reference Example 8>
(Preparation of base material)
Using the base material prepared in Reference Example 1, put a diamond compound with an average particle size of 0.1 μm in a commercially available 0.5 liter beaker, add pure water to this and disperse the diamond compound, and in this The material was placed and subjected to ultrasonic vibration for 10 minutes to form a scratch. After taking out the base material subjected to the ultrasonic treatment, the surface roughness of the base material was measured by the method shown in JIS B0601-1982, and as a result, the maximum surface roughness (R max ) was 0.8 μm.
(Diamond coating on the base material)
A base material is put into the apparatus, methane gas is used as a source gas, hydrogen gas is used as a carrier gas, a gas with a methane gas concentration of 0.5% by volume in hydrogen gas is flowed into the apparatus, and the pressure in the apparatus is 50 Thor, the substrate (base material) temperature is 1200K, and 2.45 GHz microwave is introduced into the center of the reaction tube through the waveguide to deposit the diamond film at 1 μm per hour, and the reaction is continued for 1.5 hours. Then, a diamond film of 1.5 μm was formed by a microwave plasma CVD method.
<参考例9>
(母材の調製)
実施例1と同じ母材を使用し、市販0.5リットルのビーカーに平均粒子径が0.1μmのダイヤモンドコンパウンドを入れ、これに純水を加えてダイヤモンドコンパウンドを分散し、この中に上記母材を入れて超音波振動を10分間与えてスクラッチを形成した。上記超音波処理を行った母材を取り出した後、母材の表面粗さをJIS B0601−1982に示される方法で測定した結果、最大表面粗さ(Rmax )は0.8μmであった。
(母材上へのダイヤモンド被膜の形成)
母材を装置に入れ、原料ガスとしてメタンガスを使用し、担体ガスとして水素ガスを使用し、水素ガス中のメタンガス濃度を0.5体積%としたガスを装置内に流し、装置内圧力を50トール、基板(母材)温度1200Kとし、2.45ギガヘルツのマイクロ波を導波管を通して反応管の中央に導入してダイヤモンド被膜を1時間当たり1μm堆積させ、100時間継続反応をさせてマイクロ波プラズマCVD法でダイヤモンド被膜を100μm形成した。
<Reference Example 9>
(Preparation of base material)
Using the same base material as in Example 1, put a diamond compound having an average particle size of 0.1 μm in a commercially available 0.5 liter beaker, add pure water to the bead, and disperse the diamond compound therein. The material was placed and subjected to ultrasonic vibration for 10 minutes to form a scratch. After taking out the base material subjected to the ultrasonic treatment, the surface roughness of the base material was measured by the method shown in JIS B0601-1982, and as a result, the maximum surface roughness (R max ) was 0.8 μm.
(Diamond coating on the base material)
A base material is put into the apparatus, methane gas is used as a source gas, hydrogen gas is used as a carrier gas, a gas with a methane gas concentration of 0.5% by volume in hydrogen gas is flowed into the apparatus, and the pressure in the apparatus is 50 Thor, substrate (base material) temperature of 1200 K, microwave of 2.45 GHz is introduced into the center of the reaction tube through the waveguide, diamond film is deposited at 1 μm per hour, and the reaction is continued for 100 hours. A diamond film of 100 μm was formed by plasma CVD.
<比較例1>
(母材の調製)
参考例1で作成した試験片をCVD装置に入れ、原料ガスとして四塩化珪素、担体ガスとしてプロパンガスを用い、1800K、ガスを1分間当たり0.3リットルで試験片の表面に緻密質炭化珪素層を200μm形成した。母材中の転化層の気孔について累積気孔面積と平均気孔半径を水銀圧入法で測定したところ、各々2.0(×10−2Mg/m3 )及び0.1μmであった。
(母材上へのダイヤモンド被膜の形成)
参考例1と同様な方法で、ダイヤモンド被膜を1時間当たり1μm堆積させ、20時間継続反応をさせてマイクロ波プラズマCVD法でダイヤモンド被膜を20μmを形成した。
<Comparative Example 1>
(Preparation of base material)
The test piece prepared in Reference Example 1 is put in a CVD apparatus, silicon tetrachloride is used as a source gas, propane gas is used as a carrier gas, 1800 K, gas is 0.3 liters per minute, and dense silicon carbide is formed on the surface of the test piece. A layer of 200 μm was formed. When the accumulated pore area and average pore radius of the pores of the conversion layer in the base material were measured by the mercury intrusion method, they were 2.0 (× 10 −2 Mg / m 3 ) and 0.1 μm, respectively.
(Diamond coating on the base material)
In the same manner as in Reference Example 1, a diamond film was deposited at 1 μm per hour, and a continuous reaction was performed for 20 hours to form a diamond film of 20 μm by the microwave plasma CVD method.
<比較例2>
(炭素質基体の調製)
水銀圧入法による平均気孔半径が2.0μm、3点曲げ試験法による曲げ強度が30MPa、石英熱膨張計による室温から1273Kまでの平均熱膨張係数が4.7(×10−6/K)の等方性黒鉛材料を作成した。この等方性黒鉛材料を、50mm角で厚みが10mmの寸法に加工した後、高純度化し、試験片とした。試験片に含まれる灰分は10ppmであった。
(母材の調製)
参考例1と同じ方法で、試験片の表層部全面にβ−炭化珪素で200μmの転化層を形成し、これを母材とした。母材中の転化層の気孔について累積気孔容積と平均気孔半径を水銀圧入法で測定したところ、各々4.0(×10−2Mg/m3 )及び0.4μmであった。ICP−MS法で珪素を含浸した上記母材の転化層に含まれるコバルトの含有率を測定したところ、1.8ppmであった。市販0.5リットルのビーカーに平均粒子径0.1μmのダイヤモンドコンパウンドを入れ、これの純水を加えてダイヤモンドコンパウンドを分散し、この中に上記母材を入れて超音波振動を10分間与えてスクラッチを形成した。上記超音波処理を行った母材を取り出した後、母材の表面粗さをJIS B0601−1982に示される方法で測定した結果、最大表面粗さ(Rmax )は0.5μmであった。
(母材上のダイヤモンド被膜の形成)
母材を装置に入れ、原料ガスとしてメタンガスを使用し、担体ガスとして水素ガスを使用し、水素ガス中のメタンガス濃度を0.5体積%としたガスを装置内に流し、装置内圧力を50トール、基板(母材)温度を1200Kとし、2.45ギガヘルツのマイクロ波を導波管を通して反応管の中央に導入してダイヤモンド被膜を1時間当たり1μm堆積させ、20時間継続反応をさせてマイクロ波プラズマCVD法でダイヤモンド被膜を20μm形成した。
<Comparative example 2>
(Preparation of carbonaceous substrate)
The average pore radius by the mercury intrusion method is 2.0 μm, the bending strength by the three-point bending test method is 30 MPa, and the average thermal expansion coefficient from room temperature to 1273 K by the quartz thermal dilatometer is 4.7 (× 10 −6 / K). An isotropic graphite material was prepared. This isotropic graphite material was processed to a size of 50 mm square and 10 mm thick, and then purified to obtain a test piece. The ash content contained in the test piece was 10 ppm.
(Preparation of base material)
In the same manner as in Reference Example 1, a 200 μm conversion layer was formed of β-silicon carbide on the entire surface of the test piece, and this was used as a base material. When the accumulated pore volume and average pore radius of the pores of the conversion layer in the base material were measured by the mercury intrusion method, they were 4.0 (× 10 −2 Mg / m 3 ) and 0.4 μm, respectively. It was 1.8 ppm when the content rate of the cobalt contained in the conversion layer of the said base material impregnated with silicon by ICP-MS method was measured. Place a diamond compound with an average particle diameter of 0.1 μm in a commercially available 0.5 liter beaker, add pure water of this to disperse the diamond compound, put the above-mentioned base material in this, and apply ultrasonic vibration for 10 minutes. A scratch was formed. After the base material subjected to the ultrasonic treatment was taken out, the surface roughness of the base material was measured by the method shown in JIS B0601-1982, and as a result, the maximum surface roughness (R max ) was 0.5 μm.
(Diamond coating on the base material)
A base material is put into the apparatus, methane gas is used as a source gas, hydrogen gas is used as a carrier gas, a gas with a methane gas concentration of 0.5% by volume in hydrogen gas is flowed into the apparatus, and the pressure in the apparatus is 50 Thor, the substrate (base material) temperature is 1200K, and 2.45 GHz microwave is introduced into the center of the reaction tube through the waveguide to deposit a diamond film at 1 μm per hour, and the reaction is continued for 20 hours to make the micro A diamond film having a thickness of 20 μm was formed by a wave plasma CVD method.
<比較例3>
(炭素質基体の調製)
水銀圧入法による平均気孔半径が0.15μm、3点曲げ試験法による曲げ強度が80MPa、石英熱膨張計による室温から1273Kまでの平均熱膨張係数が4.7(×10−6/K)の等方性黒鉛材料を作成した。この等方性黒鉛材料を50mm角で厚みが10mmの寸法に加工した後、高純度化し、試験片とした。試験片に含まれる灰分は10ppmであった。
(母材の調製)
参考例1と同じ方法で、試験片の表層部全面にβ−炭化珪素で0.8μmの転化層を形成し、これを母材とした。母材中の転化層の気孔について累積気孔容積と平均気孔半径を水銀圧入法で測定したところ、各々1.0(×10−2Mg/m3 )及び0.1μmであった。IP−MS法で珪素を含浸した上記母材の転化層に含まれるコバルトの含有率を測定したところ、1.8ppmであった。市販0.5リットルのビーカーに平均粒子径が0.1μmのダイヤモンドコンパウンドを入れ、これに純水を加えてダイヤモンドコンパウンドを分散し、この中に上記母材を入れて超音波振動を10分間与えてスクラッチを形成した。上記超音波処理を行った母材を取り出した後、母材の表面粗さをJIS B0601−1982に示される方法で測定した結果、最大表面粗さ(Rmax )は0.5μmであった。
(母材へのダイヤモンド被膜の形成)
母材を装置に入れ、原料ガスとしてメタンガスを使用し、担体ガスとして水素ガスを使用し、水素ガス中のメタンガス濃度を0.5体積%としたガスを装置内に流し、装置内圧力を50トール、基板(母材)温度を1200Kとし、2.45ギガヘルツのマイクロ波を導波管を通して反応管の中央に導入してダイヤモンド被膜を1時間当たり1μm堆積させ、20時間継続反応をさせてマイクロ波プラズマCVD法でダイヤモンド被膜を20μm形成した。
<Comparative Example 3>
(Preparation of carbonaceous substrate)
Average pore radius by mercury intrusion method is 0.15 μm, bending strength by 3-point bending test method is 80 MPa, average thermal expansion coefficient from room temperature to 1273 K by quartz thermal dilatometer is 4.7 (× 10 −6 / K) An isotropic graphite material was prepared. This isotropic graphite material was processed to a size of 50 mm square and 10 mm thick, and then purified to obtain a test piece. The ash content contained in the test piece was 10 ppm.
(Preparation of base material)
In the same manner as in Reference Example 1, a 0.8 μm conversion layer was formed of β-silicon carbide on the entire surface layer portion of the test piece, and this was used as a base material. When the accumulated pore volume and average pore radius of the pores of the conversion layer in the base material were measured by the mercury intrusion method, they were 1.0 (× 10 −2 Mg / m 3 ) and 0.1 μm, respectively. It was 1.8 ppm when the content rate of the cobalt contained in the conversion layer of the said base material impregnated with silicon by the IP-MS method was measured. Put a diamond compound with an average particle size of 0.1 μm in a commercially available 0.5 liter beaker, add pure water to this to disperse the diamond compound, put the above base material in this, and give ultrasonic vibration for 10 minutes. Scratches were formed. After the base material subjected to the ultrasonic treatment was taken out, the surface roughness of the base material was measured by the method shown in JIS B0601-1982, and as a result, the maximum surface roughness (R max ) was 0.5 μm.
(Diamond coating on base material)
A base material is put into the apparatus, methane gas is used as a source gas, hydrogen gas is used as a carrier gas, a gas with a methane gas concentration of 0.5% by volume in hydrogen gas is flowed into the apparatus, and the pressure in the apparatus is 50 Thor, the substrate (base material) temperature is 1200K, and 2.45 GHz microwave is introduced into the center of the reaction tube through the waveguide to deposit a diamond film at 1 μm per hour, and the reaction is continued for 20 hours to make the micro A diamond film having a thickness of 20 μm was formed by a wave plasma CVD method.
<比較例4>
(炭素質基体の調製)
水銀圧入法による平均気孔半径が1.1μm、3点曲げ試験法による曲げ強度が60MPa、石英熱膨張計による室温から1273Kまでの平均熱膨張係数が5.2(×10−6/K)の等方性黒鉛材料を作成した。この等方性黒鉛材料を50mm角で厚みが10mmの寸法に加工した後、高純度化し、試験片とした。試験片に含まれる灰分は10ppmであった。
(母材の調製)
参考例1と同様な方法で、試験片の表層部全面にβ−炭化珪素で200μmの転化層を形成し、これを母材とした。母材中の転化層の気孔について累積気孔容積と平均気孔半径を水銀圧入法で測定したところ、各々4.0(×10−2Mg/m3 )及び0.4μmであった。ICP−MS法で珪素を含浸した上記母材の転化層に含まれるコバルトの含有率んを測定したところ、1.8ppmであった。市販0.5リットルのビーカーに平均粒子径が0.1μmのダイヤモンドコンパウンドを入れ、これに純水を加えてダイヤモンドコンパウンドを分散し、この中に上記母材を入れて超音波振動を10分間与えてスクラッチを形成した。上記超音波処理を行った母材を取り出した後、母材の表面粗さをJIS B0601−1982に示される方法で測定した結果、最大表面粗さ(Rmax )は0.5μmであった。
(母材上へのダイヤモンド被膜の形成)
参考例1と同様な方法でダイヤモンド被膜を20μm形成した。
<Comparative example 4>
(Preparation of carbonaceous substrate)
Average pore radius by mercury intrusion method is 1.1 μm, bending strength by 3-point bending test method is 60 MPa, average thermal expansion coefficient from room temperature to 1273 K by quartz thermal dilatometer is 5.2 (× 10 −6 / K) An isotropic graphite material was prepared. This isotropic graphite material was processed to a size of 50 mm square and 10 mm thick, and then purified to obtain a test piece. The ash content contained in the test piece was 10 ppm.
(Preparation of base material)
In the same manner as in Reference Example 1, a 200 μm conversion layer was formed of β-silicon carbide over the entire surface layer portion of the test piece, and this was used as a base material. When the accumulated pore volume and average pore radius of the pores of the conversion layer in the base material were measured by the mercury intrusion method, they were 4.0 (× 10 −2 Mg / m 3 ) and 0.4 μm, respectively. The cobalt content in the conversion layer of the base material impregnated with silicon was measured by the ICP-MS method and found to be 1.8 ppm. Put a diamond compound with an average particle size of 0.1 μm in a commercially available 0.5 liter beaker, add pure water to this to disperse the diamond compound, put the above base material in this, and give ultrasonic vibration for 10 minutes. Scratches were formed. After the base material subjected to the ultrasonic treatment was taken out, the surface roughness of the base material was measured by the method shown in JIS B0601-1982, and as a result, the maximum surface roughness (R max ) was 0.5 μm.
(Diamond coating on the base material)
A diamond film having a thickness of 20 μm was formed in the same manner as in Reference Example 1.
<比較例5>
(炭素質基体の調製)
水銀圧入法による平均気孔半径が1.1μm、3点曲げ試験法による曲げ強度が60MPa、石英熱膨張計による室温から1273Kまでの平均熱膨張係数が3.7(×10−6/K)の等方性黒鉛材料を作成した。この等方性黒鉛材料を50mm角で厚みが10mmの寸法に加工した後、高純度化し、試験片とした。試験片に含まれる灰分は10ppmである。
(母材の調製)
参考例1と同様な方法で、試験片の表層部全面にβ−炭化珪素で200μmの転化層を形成し、これ母材とした。母材中の転化層の気孔について累積気孔容積と平均気孔半径を水銀圧入法で測定したところ、各々4.0(×10−2Mg/m3 )及び0.4μmであった。ICP−MS法で珪素を含浸した上記母材の転化層に含まれているコバルトの含有率を測定したところ、1.8ppm。市販0.5リットルのビーカーに平均粒子径が0.1μmのダイヤモンドコンパウンドを入れ、これに純水を加えてダイヤモンドコンパウンドを分散し、この中に上記母材を入れて超音波振動を10分間与えてスクラッチを形成した。上記超音波処理を行った母材を取り出した後、母材の表面粗さをJIS B0601−1982に示される方法で測定した結果、最大表面粗さ(Rmax )は0.5μmであった。
(母材上へのダイヤモンド被膜の形成)
参考例1と同様な方法で、ダイヤモンド被膜を1時間当たり1μm堆積させ、20時間継続反応をさせてマイクロ波プラズマCVD法でダイヤモンド被膜を20μm形成した。
<Comparative Example 5>
(Preparation of carbonaceous substrate)
Average pore radius by mercury intrusion method is 1.1 μm, bending strength by 3-point bending test method is 60 MPa, average thermal expansion coefficient from room temperature to 1273 K by quartz thermal dilatometer is 3.7 (× 10 −6 / K) An isotropic graphite material was prepared. This isotropic graphite material was processed to a size of 50 mm square and 10 mm thick, and then purified to obtain a test piece. The ash content in the test piece is 10 ppm.
(Preparation of base material)
In the same manner as in Reference Example 1, a 200 μm conversion layer was formed of β-silicon carbide over the entire surface layer portion of the test piece, and this was used as a base material. When the accumulated pore volume and average pore radius of the pores of the conversion layer in the base material were measured by the mercury intrusion method, they were 4.0 (× 10 −2 Mg / m 3 ) and 0.4 μm, respectively. It was 1.8 ppm when the content rate of cobalt contained in the conversion layer of the base material impregnated with silicon by the ICP-MS method was measured. Put a diamond compound with an average particle size of 0.1 μm in a commercially available 0.5 liter beaker, add pure water to this to disperse the diamond compound, put the above base material in this, and give ultrasonic vibration for 10 minutes. Scratches were formed. After the base material subjected to the ultrasonic treatment was taken out, the surface roughness of the base material was measured by the method shown in JIS B0601-1982, and as a result, the maximum surface roughness (R max ) was 0.5 μm.
(Diamond coating on the base material)
In the same manner as in Reference Example 1, a diamond film was deposited at 1 μm per hour, and allowed to react for 20 hours to form a diamond film of 20 μm by microwave plasma CVD.
<比較例6>
(炭素質基体の調製)
水銀圧入法による平均気孔半径が1.1μm、3点曲げ試験法による曲げきょうど60MPa、石英熱膨張計による室温から1273Kまでの平均熱膨張係数が4.7(×10−6/K)の等方性黒鉛材料を作成した。この等方性黒鉛材料を50mm角で厚みが10mmの寸法に加工した後、高純度化し、試験片とした。試験片に含まれる灰分は100ppmであった。
(母材の調製)
参考例1と同様な方法で、試験片の表層部全面にβ−炭化珪素で200μmの転化層を形成し、これを母材とした。母材中の転化層の気孔について累積気孔容積と平均気孔半径を水銀圧入法で測定したところ、各々4.0(×10−2Mg/m3 )及び0.4μmであった。ICP−MS法で珪素を含浸した上記母材の転化層に含まれるコバルトの含有率を測定したところ、11.8ppmであった。市販0.5リットルのビーカーに平均粒子径が0.1μmのダイヤモンドコンパウンドを入れ、これに純水を加えてダイヤモンドコンパウンドを分散し、この中に上記母材を入れて超音波振動を10分間与えてスクラッチを形成した。上記超音波処理を行った母材を取り出した後、母材の表面粗さをJIS B0601−1982に示される方法で測定した結果、最大表面粗さ(Rmax )は0.5μmであった。
(母材上へのダイヤモンド被膜の形成)
参考例1と同様な方法で、ダイヤモンド被膜を1時間当たり1μm堆積させ、20時間継続反応をさせてマイクロ波プラズマCVD法でダイヤモンド被膜を20μm形成した。
<Comparative Example 6>
(Preparation of carbonaceous substrate)
The average pore radius by mercury porosimetry is 1.1 μm, the bending furnace is 60 MPa by the three-point bending test method, and the average thermal expansion coefficient from room temperature to 1273 K by the quartz thermal dilatometer is 4.7 (× 10 −6 / K). An isotropic graphite material was prepared. This isotropic graphite material was processed to a size of 50 mm square and 10 mm thick, and then purified to obtain a test piece. The ash content in the test piece was 100 ppm.
(Preparation of base material)
In the same manner as in Reference Example 1, a 200 μm conversion layer was formed of β-silicon carbide over the entire surface layer portion of the test piece, and this was used as a base material. When the accumulated pore volume and average pore radius of the pores of the conversion layer in the base material were measured by the mercury intrusion method, they were 4.0 (× 10 −2 Mg / m 3 ) and 0.4 μm, respectively. It was 11.8 ppm when the content rate of the cobalt contained in the conversion layer of the said base material impregnated with silicon by ICP-MS method was measured. Put a diamond compound with an average particle size of 0.1 μm in a commercially available 0.5 liter beaker, add pure water to this to disperse the diamond compound, put the above base material in this, and give ultrasonic vibration for 10 minutes. Scratches were formed. After the base material subjected to the ultrasonic treatment was taken out, the surface roughness of the base material was measured by the method shown in JIS B0601-1982, and as a result, the maximum surface roughness (R max ) was 0.5 μm.
(Diamond coating on the base material)
In the same manner as in Reference Example 1, a diamond film was deposited at 1 μm per hour, and allowed to react for 20 hours to form a diamond film of 20 μm by microwave plasma CVD.
<比較例7>
(炭素質基体の調製)
参考例1で作成した試験片を使用した。
(母材の調製)
一方、内径が100mmで肉厚が10mm、高さが100mmの黒鉛ルツボに、金属珪素0.3kg充填し、高周波誘導加熱によって1800Kで金属珪素を溶融した。溶融珪素に試験片を入れて試験片の表層部全面にβ−炭化珪素で1100μmの転化層を形成し、これを母材とした。母材中の転化層の気孔について累積気孔容積と平均気孔半径を水銀圧入法で測定したところ、各々10.0(×10−2Mg/m3 )及び0.7μmであった。ICP−MS法で珪素を含浸した上記母材の転化層に含まれるコバルトの含有率を測定したところ、1.8ppmであった。市販0.5リットルのビーカーに平均粒子径が0.1μmのダイヤモンドコンパウンドを入れ、これに純水を加えてダイヤモンドコンパウンドを分散し、この中に上記超音波処理を行った母材を取り出した後、母材の表面粗さをJIS B0601−1982に示される方法で測定した結果、最大表面粗さ(Rmax )は0.5μmであった。
(母材上へのダイヤモンド被膜の形成)
参考例1と同様な方法で、ダイヤモンド被膜を1時間当たり1μm堆積させ、20時間継続反応させてマイクロ波プラズマCVD法でダイヤモンド被膜を20μm形成した。
<Comparative Example 7>
(Preparation of carbonaceous substrate)
The test piece prepared in Reference Example 1 was used.
(Preparation of base material)
On the other hand, a graphite crucible having an inner diameter of 100 mm, a thickness of 10 mm, and a height of 100 mm was filled with 0.3 kg of metal silicon, and the metal silicon was melted at 1800 K by high frequency induction heating. A test piece was put in molten silicon, and a 1100 μm conversion layer was formed of β-silicon carbide on the entire surface portion of the test piece, which was used as a base material. When the accumulated pore volume and average pore radius of the pores of the conversion layer in the base material were measured by the mercury intrusion method, they were 10.0 (× 10 −2 Mg / m 3 ) and 0.7 μm, respectively. It was 1.8 ppm when the content rate of the cobalt contained in the conversion layer of the said base material impregnated with silicon by ICP-MS method was measured. After putting a diamond compound having an average particle diameter of 0.1 μm into a commercially available 0.5 liter beaker, adding pure water to this to disperse the diamond compound, and taking out the base material subjected to the above ultrasonic treatment therein As a result of measuring the surface roughness of the base material by the method described in JIS B0601-1982, the maximum surface roughness (R max ) was 0.5 μm.
(Diamond coating on the base material)
In the same manner as in Reference Example 1, a diamond film was deposited at 1 μm per hour, and reacted for 20 hours to form a diamond film of 20 μm by microwave plasma CVD.
<比較例8>
(炭素質基体の調製)
参考例1で作成した試験片を使用した。
(母材の調製)
一方、内径が100mmで肉厚が10mm、高さが100mmの黒鉛ルツボに、金属珪素0.3kg充填し、高周波誘導加熱によって1800Kで金属珪素を溶融した。溶融珪素に試験片を入れて試験片の表層部全面にβ−炭化珪素で200μmの転化層を形成し、これを母材とした。母材中の転化層の気孔について累積気孔容積と平均気孔半径を水銀圧入法で測定したところ、各々4.0(×10−2Mg/m3 )及び0.4μmであった。ICP−MS法で珪素を含浸した上記母材の転化層に含まれるコバルトの含有率を測定したところ、1.8ppmであった。市販0.5リットルのビーカーに平均粒子径が0.1μmのダイヤモンドコンパウンドを入れ、これに純水を加えてダイヤモンドコンパウンドを分散し、この中に上記母材を入れて超音波振動を5分間与えてスクラッチを形成した。上記超音波処理を行った母材を取り出した後、母材の表面粗さをJIS B0601−1982に示される方法で測定した結果、最大表面粗さ(Rmax )は1.3μmであった。
(母材上へのダイヤモンド被膜の形成)
参考例1と同様な方法で、ダイヤモンド被膜を1時間当たり1μm堆積させ、20時間継続反応させてマイクロ波プラズマCVD法でダイヤモンド被膜を20μm形成した。
<Comparative Example 8>
(Preparation of carbonaceous substrate)
The test piece prepared in Reference Example 1 was used.
(Preparation of base material)
On the other hand, a graphite crucible having an inner diameter of 100 mm, a thickness of 10 mm, and a height of 100 mm was filled with 0.3 kg of metal silicon, and the metal silicon was melted at 1800 K by high frequency induction heating. A test piece was put in molten silicon, and a 200 μm conversion layer was formed of β-silicon carbide on the entire surface layer portion of the test piece, which was used as a base material. When the accumulated pore volume and average pore radius of the pores of the conversion layer in the base material were measured by the mercury intrusion method, they were 4.0 (× 10 −2 Mg / m 3 ) and 0.4 μm, respectively. It was 1.8 ppm when the content rate of the cobalt contained in the conversion layer of the said base material impregnated with silicon by ICP-MS method was measured. Put a diamond compound with an average particle size of 0.1 μm in a commercially available 0.5 liter beaker, add pure water to this to disperse the diamond compound, put the above base material in it and give ultrasonic vibration for 5 minutes. Scratches were formed. After taking out the base material subjected to the ultrasonic treatment, the surface roughness of the base material was measured by the method shown in JIS B0601-1982, and as a result, the maximum surface roughness (R max ) was 1.3 μm.
(Diamond coating on the base material)
In the same manner as in Reference Example 1, a diamond film was deposited at 1 μm per hour, and reacted for 20 hours to form a diamond film of 20 μm by microwave plasma CVD.
<比較例9>
(母材)
参考例1で作成した転化層が200μmの母材を使用した。
(母材上へのダイヤモンド被膜の形成)
参考例1と同様な方法で、ダイヤモンド被膜を1時間当たり0.8μm堆積させ、1時間継続反応をさせてマイクロ波プラズマCVD法でダイヤモンド被膜を0.8μm形成した。
<Comparative Example 9>
(Base material)
A base material having a conversion layer of 200 μm prepared in Reference Example 1 was used.
(Diamond coating on the base material)
In the same manner as in Reference Example 1, a diamond film was deposited by 0.8 μm per hour, allowed to react for 1 hour, and then formed by a microwave plasma CVD method to form a diamond film of 0.8 μm.
<比較例10>
(母材)
参考例1で作成した転化層が200μmの母材を使用した。
(母材上へのダイヤモンド被膜の形成)
参考例1と同様な方法で、ダイヤモンド被膜を1時間当たり1μm堆積させ、110時間継続反応をさせてマイクロ波プラズマ被膜を110μm形成した。
<Comparative Example 10>
(Base material)
A base material having a conversion layer of 200 μm prepared in Reference Example 1 was used.
(Diamond coating on the base material)
In the same manner as in Reference Example 1, a diamond film was deposited at 1 μm per hour and allowed to react for 110 hours to form a microwave plasma film at 110 μm.
上記、実施例1、参考例1乃至参考例9、及び、比較例1乃至比較例10を表1にまとめた。 The above Example 1, Reference Examples 1 to 9 and Comparative Examples 1 to 10 are summarized in Table 1.
[実験例1]
実施例1、参考例1乃至参考例9で得られた試料について、引き出し法(図に示す)炭素質基体と炭化珪素及びダイヤモンド被膜の密着性の試験を行い、剥離・クラックの有無を確認した。
[Experimental Example 1]
The samples obtained in Example 1 and Reference Examples 1 to 9 were tested for adhesion between the carbonaceous substrate, silicon carbide, and diamond coating (shown in the figure) to confirm the presence or absence of peeling / cracks. .
(引き出し法)
直径7.96mm、長さ95.0mmのS45Cのステンレス製の棒11を充分の洗浄した後、接触剤(ポリ酢酸ビニル)12を塗布し、上記実施例1、参考例1乃至参考例9、及び、比較例1乃至比較例10で得られた試料の表面に接着した。この時の接着条件は、443Kで1時間保持し、その後自然放冷して室温まで冷却した。この引き倒し棒11とロードセル14をワイヤーで接触し、図1に示すように水平方向に引っ張った。1つの試料について2回ずつ測定を行った。その時の試料の様子を目視観察した。結果を表2に示す。
(Drawer method)
After thoroughly washing the S45C
[実験例2]
また、上記実施例1、参考例1乃至参考例9、及び、比較例1乃至比較例10で得られた試料について、1273Kに急加熱した後、水中に投じて熱衝撃試験を繰り返して行い、何回で剥離・クラックが発生するかを調べた。その結果も表2に示す。
[Experiment 2]
Moreover, about the sample obtained in the said Example 1, Reference example 1 thru | or Reference example 9, and Comparative example 1 thru | or Comparative example 10, after heating rapidly to 1273K, it is thrown into water and a thermal shock test is repeated, The number of peeling / cracking was investigated. The results are also shown in Table 2.
<参考例10>
実施例1で作成した炭素質基体を1辺が18.7mmの正三角形で、厚みが4.7mmのチップ形状に加工した。チップの角は面取りを行った。このチップの表層部を実施例1の方法でチップの全面に200μm炭化珪素に転化し、更に実施例1の方法でダイヤモンド被膜を20μm形成した。
<Reference Example 10>
The carbonaceous substrate prepared in Example 1 was processed into a chip shape having a regular triangle of 18.7 mm on one side and a thickness of 4.7 mm. The corner of the chip was chamfered. The surface layer portion of this chip was converted to 200 μm silicon carbide on the entire surface of the chip by the method of Example 1, and a diamond film of 20 μm was further formed by the method of Example 1.
<比較例11>
参考例10で作成したチップ材にCVD法で緻密質炭化珪素被膜を100μm形成し(条件は比較例10と同様)、その後参考例1と同様な方法でダイヤモンド被膜を20μm形成した。
<Comparative Example 11>
A dense silicon carbide film having a thickness of 100 μm was formed by CVD on the chip material prepared in Reference Example 10 (the conditions were the same as in Comparative Example 10), and then a diamond film having a thickness of 20 μm was formed by the same method as in Reference Example 1.
[実験例3]
参考例10及び比較例11で作成したチップを用いて切削試験を行った。被切削材にはアルミニウムを用いた。その結果、参考例10で作成したチップは1時間試験した後も炭素質基体と炭化珪素の間で剥離は発生しなかったが、比較例11で作成したチップは、使用開始後10分間で炭素質基体と緻密質炭化珪素の界面で剥離が生じ使用できなくなった。
[Experiment 3]
A cutting test was performed using the chips prepared in Reference Example 10 and Comparative Example 11. Aluminum was used as the work material. As a result, the chip produced in Reference Example 10 did not delaminate between the carbonaceous substrate and the silicon carbide even after 1 hour test, but the chip produced in Comparative Example 11 was carbonized in 10 minutes after the start of use. Peeling occurred at the interface between the porous substrate and dense silicon carbide, making it unusable.
<参考例11>
参考例1で作成した炭素質基体を外径240mm、内径200mm、深さ40mmのすき焼き鍋に加工した後、参考例1と同様にし、鍋の外底面を200μm炭化珪素に転化し、その上にダイヤモンド被膜を20μm形成した。
<Reference Example 11>
After processing the carbonaceous substrate prepared in Reference Example 1 into a sukiyaki pan having an outer diameter of 240 mm, an inner diameter of 200 mm, and a depth of 40 mm, the outer bottom surface of the pan was converted into 200 μm silicon carbide in the same manner as in Reference Example 1, A 20 μm diamond coating was formed.
<比較例12>
参考例1で作成した炭素質基体を外径240mm、内径200mm、深さ40mmのすき焼き鍋に加工した。
<Comparative Example 12>
The carbonaceous substrate prepared in Reference Example 1 was processed into a sukiyaki pan having an outer diameter of 240 mm, an inner diameter of 200 mm, and a depth of 40 mm.
[実験例4]
参考例11及び比較例12で作成したすき焼き鍋に水を一杯満たし、ガスコンロで加熱し、鍋の中の水量が半分になるまでの時間を測定した。その結果、参考例11で作成した鍋は30分間であったのに対し、比較例12で作成したすき焼き鍋は50分間必要であった。
[Experimental Example 4]
The sukiyaki pot created in Reference Example 11 and Comparative Example 12 was filled with water, heated with a gas stove, and the time until the amount of water in the pot was halved was measured. As a result, the pot prepared in Reference Example 11 was 30 minutes, whereas the sukiyaki pot prepared in Comparative Example 12 required 50 minutes.
以上説明したように、本発明により、従来、炭素質基体とCVD法により形成された炭化珪素層との間で発生していたようなクラックや剥離を防止することが可能なダイヤモンド被覆炭素部材を提供できた。また、炭素質基体に含まれるコバルトの含有量が10ppm以下となっており、ダイヤモンド被膜と母材となる炭素質基体との密着強度を低下させるとともに、ダイヤモンド被膜の成長速度を抑制することができる。この結果、母材とダイヤモンド被膜との密着性を向上させ、炭素材料自体が有する性質の優位性を確保しつつダイヤモンド被膜の優れた特性を最大限有効に発揮させることのできるダイヤモンド被覆炭素部材を提供できることとなった。 As described above, according to the present invention, a diamond-coated carbon member capable of preventing cracks and peeling that has conventionally occurred between a carbonaceous substrate and a silicon carbide layer formed by a CVD method is provided. I was able to provide it. Further, the content of cobalt contained in the carbonaceous substrate is 10 ppm or less, and it is possible to reduce the adhesion strength between the diamond coating and the carbonaceous substrate serving as a base material and to suppress the growth rate of the diamond coating. . As a result, a diamond-coated carbon member capable of improving the adhesion between the base material and the diamond coating and maximally effectively exhibiting the excellent characteristics of the diamond coating while ensuring the superiority of the properties of the carbon material itself. It was possible to provide.
11 引き出し棒
12 接着材
13 試料
14 ロードセル
21 炭素質基体
22 CVR法により炭化珪素に転化した転化層
23 ダイヤモンド被膜
11
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006347555A JP2007138303A (en) | 2006-12-25 | 2006-12-25 | Diamond-coated carbon member and method for manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006347555A JP2007138303A (en) | 2006-12-25 | 2006-12-25 | Diamond-coated carbon member and method for manufacturing the same |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22441196A Division JPH1053871A (en) | 1996-08-06 | 1996-08-06 | Diamond-coated carbon member |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007138303A true JP2007138303A (en) | 2007-06-07 |
Family
ID=38201521
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006347555A Pending JP2007138303A (en) | 2006-12-25 | 2006-12-25 | Diamond-coated carbon member and method for manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007138303A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107545936A (en) * | 2017-08-22 | 2018-01-05 | 廊坊西波尔钻石技术有限公司 | Diamond film and graphite composite material |
CN111254409A (en) * | 2018-12-03 | 2020-06-09 | 核工业西南物理研究院 | Preparation method of diamond film first wall facing to plasma |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07187863A (en) * | 1993-11-12 | 1995-07-25 | Carbone Lorraine | Treatment applied to the surface of the carbonaceous material so that a diamond vapor deposition layer to be provided later adheres, and the resulting diamond-coated product |
JPH07305170A (en) * | 1994-05-09 | 1995-11-21 | Hitachi Tool Eng Ltd | Hard film coated cemented carbide member |
JPH1053871A (en) * | 1996-08-06 | 1998-02-24 | Toyo Tanso Kk | Diamond-coated carbon member |
-
2006
- 2006-12-25 JP JP2006347555A patent/JP2007138303A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07187863A (en) * | 1993-11-12 | 1995-07-25 | Carbone Lorraine | Treatment applied to the surface of the carbonaceous material so that a diamond vapor deposition layer to be provided later adheres, and the resulting diamond-coated product |
JPH07305170A (en) * | 1994-05-09 | 1995-11-21 | Hitachi Tool Eng Ltd | Hard film coated cemented carbide member |
JPH1053871A (en) * | 1996-08-06 | 1998-02-24 | Toyo Tanso Kk | Diamond-coated carbon member |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107545936A (en) * | 2017-08-22 | 2018-01-05 | 廊坊西波尔钻石技术有限公司 | Diamond film and graphite composite material |
CN111254409A (en) * | 2018-12-03 | 2020-06-09 | 核工业西南物理研究院 | Preparation method of diamond film first wall facing to plasma |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102198330B1 (en) | Substrate including a diamond layer and a composite layer of diamond and silicon carbide, and, optionally, silicon | |
KR940009659B1 (en) | Polycrystalline diamond tool and method of producting polycrystalline diamond tool | |
JP7050337B2 (en) | High Adhesion Boron Dope Inclined Diamond Layer in WC-Co Cutting Tools | |
CN109397549B (en) | Diamond-coated silicon nitride ceramic monolithic tool and its preparation method and application of the tool in graphite | |
JPWO2018151294A1 (en) | Silicon carbide member and member for semiconductor manufacturing equipment | |
CN116926668A (en) | Method for producing a plurality of single crystal CVD synthetic diamonds | |
JP7117281B2 (en) | A substrate comprising a silicon layer and a diamond layer with an optically finished (or dense) silicon-diamond interface | |
CN101318839B (en) | Preparation method of silicon carbide ceramic and diamond composite drawing die | |
JP2007138303A (en) | Diamond-coated carbon member and method for manufacturing the same | |
WO2021117498A1 (en) | Tantalum carbonate-coated graphite member and method for producing same | |
JPH1053871A (en) | Diamond-coated carbon member | |
JP2009274905A (en) | Crucible for melting silicon | |
JPH04157157A (en) | Manufacturing method of artificial diamond coating material | |
JP2001257163A (en) | Silicon carbide member, plasma resistant member, and semiconductor manufacturing device | |
JP2000239066A (en) | Corrosion resistant member, method of manufacturing the same, and member for plasma processing apparatus using the same | |
Mallik et al. | Synthesis and characterisation of freestanding diamond coatings | |
JPS61261480A (en) | Diamond coated member | |
JP2675218B2 (en) | Polycrystalline diamond tool and its manufacturing method | |
JP2011062775A (en) | Hard carbon film-coated cutting tool | |
JPH07153370A (en) | Discharge tube | |
JP3212057B2 (en) | Diamond coated substrate and method for producing the same | |
JP3235206B2 (en) | Diamond cutting tool and manufacturing method thereof | |
JP2002137967A (en) | Silicon carbide member | |
JP5876259B2 (en) | Method for manufacturing member covered with aluminum nitride film | |
JP2014133919A (en) | Member coated with thermal decomposition carbon |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Effective date: 20080128 Free format text: JAPANESE INTERMEDIATE CODE: A7424 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091215 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100215 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20100518 |