[go: up one dir, main page]

JP2007134218A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2007134218A
JP2007134218A JP2005327444A JP2005327444A JP2007134218A JP 2007134218 A JP2007134218 A JP 2007134218A JP 2005327444 A JP2005327444 A JP 2005327444A JP 2005327444 A JP2005327444 A JP 2005327444A JP 2007134218 A JP2007134218 A JP 2007134218A
Authority
JP
Japan
Prior art keywords
active material
electrode active
positive electrode
negative electrode
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005327444A
Other languages
Japanese (ja)
Inventor
Yoshihiro Imai
義博 今井
Makoto Horiguchi
眞 堀口
Atsutsugu Tanaka
篤嗣 田中
Jitsuki Yasutomi
実希 安富
Toru Tabuchi
田渕  徹
Tokuo Inamasu
徳雄 稲益
Toshiyuki Onda
敏之 温田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
GS Yuasa Corp
Original Assignee
Kansai Electric Power Co Inc
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, GS Yuasa Corp filed Critical Kansai Electric Power Co Inc
Priority to JP2005327444A priority Critical patent/JP2007134218A/en
Publication of JP2007134218A publication Critical patent/JP2007134218A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery using proton-containing nickel acid lithium, with high discharge capacity, and showing excellent cycle performance. <P>SOLUTION: In the nonaqueous electrolyte secondary battery provided with a cathode containing a cathode active material, an anode containing an anode active material, and nonaqueous electrolyte, the cathode active material is proton-containing nickel acid lithium expressed in a chemical formula: H<SB>x</SB>Li<SB>y</SB>Ni<SB>1-a</SB>M<SB>a</SB>O<SB>2</SB>(where, 0<x≤1, 0<y≤1, 1≤x+y≤2, 0<a≤0.5, and M is at least a kind selected from C0, Ti, V, Cr, Mn, Fe, Al, Cu, and Zn), and the anode active material is a non-graphite carbon material, with an active material ratio of mass of the anode active material to that of the cathode active material larger than 0.38. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、プロトン含有ニッケル酸リチウム正極活物質および非黒鉛系炭素負極活物質を備えた非水電解質二次電池に関するものである。   The present invention relates to a non-aqueous electrolyte secondary battery including a proton-containing lithium nickelate positive electrode active material and a non-graphitic carbon negative electrode active material.

従来の技術Conventional technology

近年、携帯電話、PDAおよびデジタルカメラなどの電子機器の電源として、小形で軽量なリチウムイオン二次電池が広く用いられている。このような電子機器は著しく多機能化が進むとともに、現在、使用されているLiCoO/C系、LiNiO/C系およびLiMn/C系のリチウムイオン二次電池に代わる高エネルギー密度の電池が期待されている。 In recent years, small and lightweight lithium ion secondary batteries have been widely used as power sources for electronic devices such as mobile phones, PDAs, and digital cameras. Such electronic devices are remarkably multifunctional and have high energy density to replace LiCoO 2 / C, LiNiO 2 / C, and LiMn 2 O 4 / C based lithium ion secondary batteries currently used. Batteries are expected.

種々の化合物の中で、単位質量当たりの放電容量が大きいため、オキシ水酸化ニッケルを非水電解質二次電池の正極活物質に用いることが検討されている。しかしながら、オキシ水酸化ニッケルを用いた電池は、サイクル性能が良好でないという欠点を有している。このサイクル性能の向上が、実用化のための大きな課題となっており、その解決策が待たれている。   Among various compounds, since the discharge capacity per unit mass is large, the use of nickel oxyhydroxide as a positive electrode active material of a nonaqueous electrolyte secondary battery has been studied. However, batteries using nickel oxyhydroxide have the disadvantage that the cycle performance is not good. This improvement in cycle performance has become a major issue for practical use, and a solution is awaited.

また、オキシ水酸化ニッケルにはレドックス反応に寄与するリチウムが含まれていない。そのため、これと組み合わせるリチウムを含む負極活物質として、金属リチウムやリチウム合金を用いることが考えられるが、これらの負極活物質の可逆性がよくなかった。   Further, nickel oxyhydroxide does not contain lithium that contributes to the redox reaction. For this reason, it is conceivable to use metallic lithium or a lithium alloy as a negative electrode active material containing lithium combined with this, but the reversibility of these negative electrode active materials was not good.

また、負極活物質に現在、実用化されているカーボン材料を用いる場合、充放電可能な電池とするためには、あらかじめカーボン材料にリチウムを含有させておく必要があった。   In addition, when a carbon material that is currently in practical use is used for the negative electrode active material, it was necessary to previously contain lithium in the carbon material in order to obtain a chargeable / dischargeable battery.

非水電解質二次電池の正極活物質として、特許文献1では一般式AMO(ただし、0≦x≦2、0≦y≦2、1.5≦z≦3、M=Mn、Fe、Ni、Co、V、CrまたはSc、AおよびBはH、Li、Na、K、Cs、Ca、MgおよびRbならびにこれらの混合物よりなる元素)で表される活物質や、特許文献2では一般式H1−xMO(ただし、x=0〜0.99、Aは1a族のアルカリ金属、M=Co、Ni)で表される化合物が提案され、特許文献3ではLiNiOOHが開示されている。 As a positive electrode active material of a non-aqueous electrolyte secondary battery, Patent Document 1 discloses a general formula A x B y MO z (where 0 ≦ x ≦ 2, 0 ≦ y ≦ 2, 1.5 ≦ z ≦ 3, M = Mn Fe, Ni, Co, V, Cr or Sc, A and B are active materials represented by H, Li, Na, K, Cs, Ca, Mg and Rb, and mixtures thereof, and patent literature 2 proposes a compound represented by the general formula H x A 1-x MO 2 (where x = 0 to 0.99, A is an alkali metal of group 1a, M = Co, Ni). LiNiOOH is disclosed.

さらに、特許文献4には、10モル%のコバルトを含むオキシ水酸化ニッケルに水酸化リチウムの水溶液を通液し、水素イオンとリチウムイオンとのイオン交換反応をおこなう正極活物質の製造方法が開示され、特許文献5には化学式HLiNi1−a(0<x≦1、0<y≦1、1≦x+y≦2、0<a≦0.5、MはCo、Ti、V、Cr、Mn、Fe、Al、CuおよびZnから選ばれる少なくとも一種)で表されるプロトン含有ニッケル酸リチウム正極活物質と鱗片状黒鉛活物質を用いたセルのサイクル性能について報告されている。 Further, Patent Document 4 discloses a method for producing a positive electrode active material in which an aqueous solution of lithium hydroxide is passed through nickel oxyhydroxide containing 10 mol% of cobalt and an ion exchange reaction between hydrogen ions and lithium ions is performed. In Patent Document 5, the chemical formula H x Li y Ni 1-a M a O 2 (0 <x ≦ 1, 0 <y ≦ 1, 1 ≦ x + y ≦ 2, 0 <a ≦ 0.5, M is Co , Ti, V, Cr, Mn, Fe, Al, Cu, and Zn) and the cycle performance of a cell using a proton-containing lithium nickelate positive electrode active material and a scaly graphite active material represented by ing.

非水電解質二次電池の負極活物質については、特許文献6に、非黒鉛系炭素材料と正極活物質としてのマンガン酸リチウムとを組み合わせる技術が開示され、特許文献7に、難黒鉛化性炭素材料と正極活物質としてのリチウムニッケル複合酸化物とを組み合わせる技術が開示されている。   Regarding the negative electrode active material of the non-aqueous electrolyte secondary battery, Patent Document 6 discloses a technique of combining a non-graphite carbon material and lithium manganate as a positive electrode active material, and Patent Document 7 discloses non-graphitizable carbon. A technique for combining a material and a lithium nickel composite oxide as a positive electrode active material is disclosed.

また、非水電解質二次電池において、負極活物質の重量に対する正極活物質の重量の比については、特許文献8に、正極活物質にリチウム遷移金属酸化物、負極活物質に炭素材料を用いた場合に1.8〜2.4とする技術、および特許文献9に、正極活物質にリチウム複合酸化物、負極活物質に炭素材料を用いた場合に1.3〜2.2とする技術が開示されている。   In the nonaqueous electrolyte secondary battery, the ratio of the weight of the positive electrode active material to the weight of the negative electrode active material is disclosed in Patent Document 8 in which a lithium transition metal oxide is used for the positive electrode active material and a carbon material is used for the negative electrode active material. In the case of 1.8 to 2.4 in the case, and Patent Document 9 discloses a technique of 1.3 to 2.2 when the lithium composite oxide is used for the positive electrode active material and the carbon material is used for the negative electrode active material. It is disclosed.

さらに、非水電解質二次電池において、正極合剤塗布重量については、特許文献10に、正極活物質にLiCoO(合剤中の含有量89wt%)、負極活物質に難黒鉛化性炭素材料を用いた場合に、片面当たり0.6〜1.1g/100cm(正極活物質5.34〜9.79mg/cm)とする技術、および特許文献11に、正極活物質にスピネルマンガン化合物、負極活物質に難黒鉛化性炭素材料を用いた場合に、正極活物質を両面当たり5.34〜14.33g/cm(片面当たり2.67〜7.12mg/cm)とする技術が開示されている。
特開平06−349494号公報 特許第3263082号公報 特開2000−323174号公報 特開2000−123836号公報 特願2005−132069号 特開2001−176499号公報 特開2000−200624号公報 特開2003−242966号公報 特開2004−342500号公報 特開2002−151157号公報 特開2005−243448号公報
Furthermore, in the non-aqueous electrolyte secondary battery, the coating weight of the positive electrode mixture is disclosed in Patent Document 10 as LiCoO 2 (content 89 wt% in the mixture) as the positive electrode active material and non-graphitizable carbon material as the negative electrode active material. In the technology of 0.6 to 1.1 g / 100 cm 2 (positive electrode active material 5.34 to 9.79 mg / cm 2 ) per side, and Patent Document 11, the spinel manganese compound is used as the positive electrode active material. When the non-graphitizable carbon material is used for the negative electrode active material, the positive electrode active material is set to 5.34 to 14.33 g / cm 2 per side (2.67 to 7.12 mg / cm 2 per side). Is disclosed.
Japanese Patent Laid-Open No. 06-349494 Japanese Patent No. 3263882 JP 2000-323174 A JP 2000-123836 A Japanese Patent Application No. 2005-132069 JP 2001-176499 A Japanese Patent Laid-Open No. 2000-200264 JP 2003-242966 A JP 2004-342500 A JP 2002-151157 A JP 2005-243448 A


特許文献1、2および3に記載の非水電解質二次電池のサイクル性能については記載がなく、これらの化合物を正極活物質に用いた場合にサイクル性能が改善されるかどうかは不明であった。

There is no description about the cycle performance of the nonaqueous electrolyte secondary batteries described in Patent Documents 1, 2, and 3, and it has been unclear whether the cycle performance is improved when these compounds are used as the positive electrode active material. .

また、特許文献4では、正極活物質のサイクル性能が検討されているが、金属リチウム以外の負極活物質と組み合わせた場合の効果については不明であった。さらに、特許文献5では、正極活物質と組み合わせる負極活物質の炭素材料の種類は詳細に検討しておらず、また正負極活物質の比率がサイクル性能に与える影響については不明であった。   Moreover, in patent document 4, although the cycle performance of a positive electrode active material is examined, the effect at the time of combining with negative electrode active materials other than metallic lithium was unknown. Further, in Patent Document 5, the type of the carbon material of the negative electrode active material combined with the positive electrode active material has not been examined in detail, and the influence of the ratio of the positive and negative electrode active materials on the cycle performance has not been known.

さらに、特許文献6では負極活物質として非黒鉛系炭素材料などを、特許文献7では、負極活物質として難黒鉛化炭素材料を用いているが、これらと正極活物質としてのプロトン含有ニッケル酸リチウムとを組み合わせることは検討されていない。   Furthermore, Patent Document 6 uses a non-graphitic carbon material as a negative electrode active material, and Patent Document 7 uses a non-graphitizable carbon material as a negative electrode active material. It is not considered to combine with.

また、特許文献8や特許文献9では、負極活物質の重量に対する正極活物質の重量の比が検討されているが、正極活物質にプロトン含有ニッケル酸リチウムを用い、負極活物質に非黒鉛系炭素材料を用いた場合については検討されていない。   Further, in Patent Document 8 and Patent Document 9, the ratio of the weight of the positive electrode active material to the weight of the negative electrode active material is examined, but proton-containing lithium nickelate is used as the positive electrode active material and non-graphite type is used as the negative electrode active material. The use of carbon materials has not been studied.

さらに、特許文献10や特許文献11では、正極活物質の塗布重量についての記載があるが、いずれも正極活物質にプロトン含有ニッケル酸リチウムを用いたものではなかった。   Furthermore, Patent Document 10 and Patent Document 11 describe the coating weight of the positive electrode active material, but none of them uses proton-containing lithium nickelate as the positive electrode active material.

本発明の目的は、正極活物質にプロトン含有ニッケル酸リチウムを用いた、放電容量が大きく、優れたサイクル性能を示す非水電解質二次電池を提供することにある。   An object of the present invention is to provide a non-aqueous electrolyte secondary battery using a proton-containing lithium nickelate as a positive electrode active material and having a large discharge capacity and excellent cycle performance.

請求項1の発明は、正極活物質を含む正極と、負極活物質を含む負極と、非水電解質とを備えた非水電解質二次電池において、前記正極活物質が化学式HLiNi1−a(0<x≦1、0<y≦1、1≦x+y≦2、0<a≦0.5、MはCo、Ti、V、Cr、Mn、Fe、Al、CuおよびZnから選ばれる少なくとも一種)で表されるプロトン含有ニッケル酸リチウムであり、前記負極活物質が非黒鉛系炭素材料であり、前記正極活物質の質量に対する前記負極活物質の質量の活物質割合が0.38よりも大きいことを特徴とする。 The invention of claim 1 is a nonaqueous electrolyte secondary battery comprising a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, and a nonaqueous electrolyte, wherein the positive electrode active material has the chemical formula H x Li y Ni 1. -A M a O 2 (0 <x ≦ 1, 0 <y ≦ 1, 1 ≦ x + y ≦ 2, 0 <a ≦ 0.5, M is Co, Ti, V, Cr, Mn, Fe, Al, Cu And at least one selected from Zn), the negative electrode active material is a non-graphitic carbon material, and the active material ratio of the mass of the negative electrode active material to the mass of the positive electrode active material Is greater than 0.38.

請求項2の発明は、請求項1に記載の非水電解質二次電池において、正極活物質の集電体片面への塗布質量が5.3〜7.3mg/cmの範囲であることを特徴とする。 According to a second aspect of the present invention, in the nonaqueous electrolyte secondary battery according to the first aspect, the coating mass of the positive electrode active material on one side of the current collector is in the range of 5.3 to 7.3 mg / cm 2. Features.

本発明は、正極活物質にプロトン含有ニッケル酸リチウムを用いることにより、単位質量当たりの放電容量の大きい非水電解質二次電池を得ることができる。また、この正極活物質と負極活物質としての非黒鉛系炭素材料とを組み合わせることにより、優れたサイクル性能をもつ非水電解質二次電池を得ることができる。   In the present invention, by using proton-containing lithium nickelate as the positive electrode active material, a non-aqueous electrolyte secondary battery having a large discharge capacity per unit mass can be obtained. Moreover, a nonaqueous electrolyte secondary battery having excellent cycle performance can be obtained by combining this positive electrode active material and a non-graphite carbon material as a negative electrode active material.

さらに、正極活物質の質量に対する前記負極活物質の質量の活物質割合を0.38よりも大きくすることで、負極に充分なリチウムリザーブ容量をもたせることができ、サイクル性能の優れた放電容量の大きい非水電解質二次電池を得ることができる。   Furthermore, by making the active material ratio of the mass of the negative electrode active material to the mass of the positive electrode active material larger than 0.38, the negative electrode can have a sufficient lithium reserve capacity, and the discharge capacity with excellent cycle performance can be obtained. A large non-aqueous electrolyte secondary battery can be obtained.

また、正極活物質の集電体片面への塗布質量を5.3〜7.3mg/cmの範囲とすることにより、重量当たりの放電容量の大きい、しかも優れたサイクル性能をもつ非水電解質二次電池を得ることができる。 In addition, the non-aqueous electrolyte having a large discharge capacity per weight and excellent cycle performance can be obtained by setting the mass of the positive electrode active material applied to one side of the current collector in the range of 5.3 to 7.3 mg / cm 2. A secondary battery can be obtained.

本発明に用いる正極活物質は、化学式HLiNi1−a(0<x≦1、0<y≦1、1≦x+y≦2、0<a≦0.5、MはCo、Ti、V、Cr、Mn、Fe、Al、CuおよびZnから選ばれる少なくとも一種)で表されるプロトン含有ニッケル酸リチウムであり、その作製方法は、オキシ水酸化ニッケルをリチウムイオンを含む電解質中でアノード通電する電気化学的方法によるもの、または、他の公知の方法によるものでもよい。本発明の作製方法としては、水酸化ニッケルとリチウムイオンを含む溶液とを接触させる方法はより好ましい。
その理由は、xが1よりも大きいと、安定な結晶構造を保つことができなくなり、yが1よりも大きいと、放電挙動が2段階以上となり、サイクル性能が劣化すると考えられるからである。また、x+yが1よりも小さいと、実質的な放電容量を得ることができず、2よりも大きい場合は、安定な結晶構造を保つことができないと考えられるからである。また、aは0.5よりも大きいと、ニッケルと固溶体を形成することができないために、水酸化物などの不純物が生じると考えられるからである。さらに、MをCo、Ti、V、Cr、Mn、Fe、Al、CuおよびZnから選ばれる少なくとも一種とするのは、ニッケルがこれらの元素と固溶体を形成して、安定な結晶構造を保つためである。
The positive electrode active material used in the present invention has the chemical formula H x Li y Ni 1-a M a O 2 (0 <x ≦ 1, 0 <y ≦ 1, 1 ≦ x + y ≦ 2, 0 <a ≦ 0.5, M Is a proton-containing lithium nickelate represented by at least one selected from Co, Ti, V, Cr, Mn, Fe, Al, Cu and Zn), and the method for producing the nickel oxyhydroxide contains lithium ions An electrochemical method in which an anode is energized in an electrolyte or another known method may be used. As a production method of the present invention, a method of bringing nickel hydroxide into contact with a solution containing lithium ions is more preferable.
The reason is that when x is larger than 1, a stable crystal structure cannot be maintained, and when y is larger than 1, the discharge behavior is considered to be two or more stages, and the cycle performance is considered to deteriorate. Further, if x + y is smaller than 1, a substantial discharge capacity cannot be obtained, and if it is larger than 2, it is considered that a stable crystal structure cannot be maintained. Further, if a is larger than 0.5, a solid solution cannot be formed with nickel, and it is considered that impurities such as hydroxide are generated. Furthermore, M is at least one selected from Co, Ti, V, Cr, Mn, Fe, Al, Cu and Zn, because nickel forms a solid solution with these elements and maintains a stable crystal structure. It is.

本発明においては、正極活物質としてプロトン含有ニッケル酸リチウムを用い、負極活物質として非黒鉛系炭素材料を用いる。そして、正極活物質の質量に対する負極活物質の質量の活物質割合を0.38よりも大きくするものである。これは、非黒鉛系炭素材料には明確なステージが存在しないため、黒鉛材料に比較してリチウムが吸蔵されるサイトを数多くもつと考えられるため、非黒鉛系炭素材料は、黒鉛炭素に比較して理論容量の大きい負極となる。さらに、後述のように、サイクル性能が優れた電池とするには、プロトン含有ニッケル酸リチウム正極では、負極に充分なリチウムリザーブ容量を持つことが必要であるためである。   In the present invention, proton-containing lithium nickelate is used as the positive electrode active material, and a non-graphitic carbon material is used as the negative electrode active material. And the active material ratio of the mass of the negative electrode active material with respect to the mass of a positive electrode active material is made larger than 0.38. This is because non-graphitic carbon materials do not have a clear stage, and are considered to have more sites where lithium is occluded than graphite materials. Therefore, the negative electrode has a large theoretical capacity. Furthermore, as described later, in order to obtain a battery having excellent cycle performance, the proton-containing lithium nickelate positive electrode needs to have a sufficient lithium reserve capacity in the negative electrode.

さらに、本発明に用いる正極活物質の片面塗布質量が5.3〜7.3mg/cmであることが好ましい。5.3mg/cmより少ないと、電池の質量エネルギー密度が著しく小さくなり、実用的ではない。また、7.3mg/cmより多いと、正極内のリチウムイオンの拡散が遅くなり、サイクル数の増加にともなって、徐々に分極が大きくなるために充分なサイクル性能が得られないためである。 Furthermore, it is preferable that the single-sided coating mass of the positive electrode active material used for this invention is 5.3-7.3 mg / cm < 2 >. When it is less than 5.3 mg / cm 2 , the mass energy density of the battery is remarkably reduced, which is not practical. On the other hand, when the amount is more than 7.3 mg / cm 2, the diffusion of lithium ions in the positive electrode is delayed, and the polarization gradually increases with the increase in the number of cycles, so that sufficient cycle performance cannot be obtained. .

本発明に用いる負極活物質は、非黒鉛系炭素材料であり、例えば、石油ピッチ、ポリアセン、ポリパラフェニレン、ポリフルフリルアルコールおよびポリシロキサンなどを焼成する方法で得ることができる。さらに、非黒鉛系炭素材料の中でも、難黒鉛化炭素が好ましい。この理由は、黒鉛材料が炭素網間にあるステージにリチウムを吸蔵するのに対して、難黒鉛化炭素には明確なステージが存在しないため、黒鉛材料に比較してリチウムが吸蔵されるサイトを数多くもつと考えられるため、難黒鉛化炭素は、黒鉛炭素に比較して理論容量の大きい負極を構成できる。   The negative electrode active material used in the present invention is a non-graphite carbon material and can be obtained by a method of firing petroleum pitch, polyacene, polyparaphenylene, polyfurfuryl alcohol, polysiloxane, and the like. Furthermore, among non-graphitic carbon materials, non-graphitizable carbon is preferable. The reason for this is that the graphite material occludes lithium in the stage between the carbon nets, whereas the non-graphitizable carbon does not have a clear stage, so the site where lithium is occluded compared to the graphite material. Since it is considered to have many, non-graphitizable carbon can constitute a negative electrode having a larger theoretical capacity than graphite carbon.

難黒鉛化炭素とは、常圧下あるいは減圧下で3300K付近の超高温まで加熱しても黒鉛に変換し得ない非黒鉛系炭素材料のことをいう(カーボン用語辞典、炭素材料学会、カーボン用語辞典編集委員会編)。特に、難黒鉛化炭素の中でも、X線回折法により得られるC軸方向の面間隔d002値が、0.36nm以上0.40nm以下である難黒鉛化炭素を用いることが好ましい。この理由は、面間隔d002値が、0.36nm未満となると、充電の受入性が顕著に低下し、面間隔d002値が、0.40nmを越えると、炭素材料の真密度が小さくなりすぎて電池のエネルギー密度が小さくなるので、好ましくない。   Non-graphitizable carbon is a non-graphitic carbon material that cannot be converted to graphite even when heated to an ultra-high temperature of around 3300K under normal pressure or reduced pressure (Carbon Glossary, Carbon Materials Association, Carbon Glossary) Editorial Committee). In particular, among non-graphitizable carbons, it is preferable to use non-graphitizable carbons having a surface spacing d002 value in the C-axis direction obtained by an X-ray diffraction method of 0.36 nm or more and 0.40 nm or less. The reason for this is that when the interplanar spacing d002 value is less than 0.36 nm, the charge acceptability is significantly reduced, and when the interplanar spacing d002 value exceeds 0.40 nm, the true density of the carbon material becomes too small. Since the energy density of a battery becomes small, it is not preferable.

正極および負極を作製するときに使用する結着剤として、エチレン−プロピレン−ジエン三元共重合体、アクリロニトリル−ブタジエンゴム、フッ素ゴム、ポリ酢酸ビニル、ポリメチルメタクリレート、ポリエチレン、ニトロセルロース、ポリフッ化ビニリデン、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、ポリフッ化ビニリデン−クロロトリフルオロエチレン共重合体、スチレン−ブタジエンゴム(SBR)あるいはカルボキシメチルセルロース(CMC)などから選択される少なくとも1種を用いることができる。   Binders used when producing positive and negative electrodes include ethylene-propylene-diene terpolymer, acrylonitrile-butadiene rubber, fluororubber, polyvinyl acetate, polymethyl methacrylate, polyethylene, nitrocellulose, and polyvinylidene fluoride. , Polyethylene, polypropylene, polytetrafluoroethylene, tetrafluoroethylene-hexafluoropropylene copolymer, polyvinylidene fluoride-chlorotrifluoroethylene copolymer, styrene-butadiene rubber (SBR) or carboxymethylcellulose (CMC). Can be used.

結着剤を混合するときに用いる溶媒として、非水溶媒または水溶液のいずれも使用できる。非水溶媒として、N−メチル−2−ピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N−N−ジメチルアミノプロピルアミン、エチレンオキシド、テトラヒドロフランなどを使用できる。一方、水溶液には、分散剤、増粘剤などを加えて用いることができる。   As the solvent used when mixing the binder, either a non-aqueous solvent or an aqueous solution can be used. As the non-aqueous solvent, N-methyl-2-pyrrolidone, dimethylformamide, dimethylacetamide, methyl ethyl ketone, cyclohexanone, methyl acetate, methyl acrylate, diethyltriamine, NN-dimethylaminopropylamine, ethylene oxide, tetrahydrofuran and the like can be used. On the other hand, a dispersing agent, a thickener, etc. can be added and used for aqueous solution.

電極の集電体として、鉄、銅、ステンレス、ニッケルおよびアルミを用いることができる。 また、その形状として、シート、発泡体、メッシュ、多孔体およびエキスパンド格子などを用いることができる。 さらに、集電体には任意の形状で穴を開けて用いることができる。   Iron, copper, stainless steel, nickel, and aluminum can be used as the current collector of the electrode. Moreover, a sheet | seat, a foam, a mesh, a porous body, an expanded lattice, etc. can be used as the shape. Further, the current collector can be used with a hole formed in an arbitrary shape.

電解液に使用する有機溶媒として、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、トリフルオロプロピレンカーボネート、γ−ブチロラクトン、スルホラン、1,2−ジメトキシエタン、1,2−ジエトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、3−メチル−1,3−ジオキソラン、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、ジプロピルカーボネート、メチルプロピルカーボネートなどを、単独または混合して使用することができる。また、電解液中にビニレンカーボネート、ブチレンカーボネートなどのカーボネート系、ビフェニル、シクロヘキシルベンゼンなどのベンゼン系、プロパンスルトンなどの硫黄系の化合物を単独または混合して使用できる。   As an organic solvent used in the electrolytic solution, ethylene carbonate, propylene carbonate, butylene carbonate, trifluoropropylene carbonate, γ-butyrolactone, sulfolane, 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran , 3-methyl-1,3-dioxolane, methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, dipropyl carbonate, methylpropyl carbonate, etc., alone or in combination Can be used. Also, carbonate compounds such as vinylene carbonate and butylene carbonate, benzene compounds such as biphenyl and cyclohexylbenzene, and sulfur compounds such as propane sultone can be used alone or in the electrolyte.

さらに、電解液と固体電解質とを組み合わせて使用することができる。固体電解質として、結晶質または非晶質の無機固体電解質を用いることができる。前者には、LiI、LiN、Li1+xTi2−x(PO(M=Al、Sc、Y、La)、Li0.5−3x0.5+xTiO(R=La、Pr、Nd、Sm)、またはLi4−xGe1−xに代表されるチオLISICONを用いることができ、後者にはLiI−LiO−B系、LiO−SiO系、LiI−LiS−B系、LiI−LiS−SiS系、LiS−SiS−LiPO系などを用いることができる。 Furthermore, it can use combining electrolyte solution and a solid electrolyte. As the solid electrolyte, a crystalline or amorphous inorganic solid electrolyte can be used. The former includes LiI, Li 3 N, Li 1 + x M x Ti 2-x (PO 4 ) 3 (M = Al, Sc, Y, La), Li 0.5-3x R 0.5 + x TiO 3 (R = La, Pr, Nd, Sm), or thio LISICON represented by Li 4-x Ge 1-x P x S 4 can be used, the latter being LiI-Li 2 O—B 2 O 5 system, Li A 2 O—SiO 2 system, a LiI—Li 2 S—B 2 S 3 system, a LiI—Li 2 S—SiS 2 system, a Li 2 S—SiS 2 —Li 2 PO 4 system, or the like can be used.

有機溶媒に溶解する塩としては、LiPF、LiClO、LiBF、LiAsF、LiPF(CF、LiPF(CF、LiPF(CF、LiPF(CF、LiPF(CF)、LiPF(C、LiCFSO、LiN(SOCF、LiN(SOCFCF、LiN(COCF、LiN(COCFCF、LiCBOなどを単独あるいは混合して使用することができる。これらのなかにおいて、サイクル性能が良好になることから、リチウム塩としてはLiPFが好ましい。さらに、これらのリチウム塩の濃度は、0.5〜2.0mol/dmの範囲が好ましい。 Examples of the salt dissolved in the organic solvent include LiPF 6 , LiClO 4 , LiBF 4 , LiAsF 6 , LiPF (CF 3 ) 5 , LiPF 2 (CF 3 ) 4 , LiPF 3 (CF 3 ) 3 , LiPF 4 (CF 3 ). 2 , LiPF 5 (CF 3 ), LiPF 3 (C 2 F 5 ) 3 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 CF 2 CF 3 ) 2 , LiN (COCF 3 ) 2 , LiN (COCF 2 CF 3 ) 2 , LiC 4 BO 8 or the like can be used alone or in combination. Among these, LiPF 6 is preferable as the lithium salt because the cycle performance is good. Furthermore, the concentration of these lithium salts is preferably in the range of 0.5 to 2.0 mol / dm 3 .

非水電解質二次電池のセパレータとして、ナイロン、セルロースアセテート、ニトロセルロース、ポリスルホン、ポリアクリロニトリル、ポリフッ化ビニリデンおよびポリオレフィンなどの微多孔膜を使用できる。   A microporous membrane such as nylon, cellulose acetate, nitrocellulose, polysulfone, polyacrylonitrile, polyvinylidene fluoride, and polyolefin can be used as a separator for a nonaqueous electrolyte secondary battery.

非水電解質二次電池の形状は特に限定されるものではなく、角形、楕円形、コイン形、ボタン形、シート形などを用いることができる。   The shape of the nonaqueous electrolyte secondary battery is not particularly limited, and a rectangular shape, an elliptical shape, a coin shape, a button shape, a sheet shape, and the like can be used.

つぎに、本発明を実施例に基づいて詳細に説明する。しかしながら、本発明は、以下の実施例によって限定されるものではない。   Below, this invention is demonstrated in detail based on an Example. However, the present invention is not limited to the following examples.

[実施例1〜7および比較例1、2]
[実施例1]
ニッケルの24mol%をコバルトで置換した平均粒子径10μmの水酸化ニッケル(Ni0.76Co0.24(OH))5.0gを80℃の7.0mol/dmの水酸化リチウム水溶液123mlに分散した後に、12%の次亜塩素酸ソーダ43mlを加え、80℃に保ち、3時間攪拌したものをろ過した後に14.0mol/dmの水酸化リチウム水溶液21mlを加えて、0.5時間攪拌後、ろ過して、65℃で乾燥して、プロトン含有ニッケル酸リチウム(Ni0.76Co0.24OOH0.2Li0.8)粉末を得た。
[Examples 1 to 7 and Comparative Examples 1 and 2]
[Example 1]
Nickel hydroxide (Ni 0.76 Co 0.24 (OH) 2 ) (5.0 g) in which 24 mol% of nickel was replaced with cobalt (123 ml) was added at 7.0 ° C. to 7.0 mol / dm 3 lithium hydroxide aqueous solution at 80 ° C. Then, 43 ml of 12% sodium hypochlorite was added, and the mixture was kept at 80 ° C. and stirred for 3 hours. After filtration, 21 ml of a 14.0 mol / dm 3 lithium hydroxide aqueous solution was added, and 0.5 ml was added. After stirring for a period of time, it was filtered and dried at 65 ° C. to obtain proton-containing lithium nickelate (Ni 0.76 Co 0.24 OOH 0.2 Li 0.8 ) powder.

正極活物質としてこの粉末89質量%と、導電助剤としてアセチレンブラック4質量%と、バインダーとしてポリフッ化ビニリデン(PVDF)7質量%とをN−メチル−2−ピロリドン(NMP)中で混合してペーストを作製した。このペーストを厚さ20μmのアルミニウム箔上に塗布して、150℃で減圧乾燥した後、ローラーで加圧して多孔度が35%となるようにプレスして、スリッターにて30mmW×40mmLの大きさにして、正極活物質の集電体片面への塗布質量が6.29mg/cmの正極A1を製作した。 89% by mass of this powder as a positive electrode active material, 4% by mass of acetylene black as a conductive auxiliary agent, and 7% by mass of polyvinylidene fluoride (PVDF) as a binder were mixed in N-methyl-2-pyrrolidone (NMP). A paste was prepared. This paste is applied onto an aluminum foil having a thickness of 20 μm, dried at 150 ° C. under reduced pressure, pressed with a roller and pressed to a porosity of 35%, and a slitter of 30 mmW × 40 mmL in size. Thus, a positive electrode A1 having a mass of 6.29 mg / cm 2 applied to one surface of the current collector of the positive electrode active material was manufactured.

つぎに、負極活物質として面間隔d002値が0.3780nmの難黒鉛化炭素94質量%とバインダーとしてPVDF6質量%とをNMP中で混合してペーストを作製した。このペーストを14μmの銅箔に塗布して、150℃で減圧乾燥したのち、多孔度が38%となるようにプレスして、スリッターにて30mmW×40mmLの大きさにして、負極活物質の集電体片面への塗布質量が3.29mg/cmの負極A2を得た。 Next, 94% by mass of non-graphitizable carbon having an interplanar spacing d002 value of 0.3780 nm as a negative electrode active material and 6% by mass of PVDF as a binder were mixed in NMP to prepare a paste. This paste is applied to a 14 μm copper foil, dried under reduced pressure at 150 ° C., pressed to a porosity of 38%, and adjusted to a size of 30 mmW × 40 mmL with a slitter to collect the negative electrode active material. A negative electrode A2 having a coating mass of 3.29 mg / cm 2 on one surface of the electric conductor was obtained.

正極および負極の活物質の塗布面積を同等にした正極A1および負極A2を、厚さ20μm、多孔度40%の微多孔膜であるポリエチレンセパレータを間に挟んで重ねて、高さ70mm、幅34mm、厚さ1mmの容器中に挿入して、内部に非水電解液を注入することによって、定格容量が8.0mAhの本発明の非水電解質二次電池の電池Aを得た。   A positive electrode A1 and a negative electrode A2 having the same application area of the active material of the positive electrode and the negative electrode are stacked with a polyethylene separator which is a microporous film having a thickness of 20 μm and a porosity of 40% interposed therebetween, and is 70 mm high and 34 mm wide. The battery A of the non-aqueous electrolyte secondary battery of the present invention having a rated capacity of 8.0 mAh was obtained by inserting it into a 1 mm-thick container and injecting a non-aqueous electrolyte therein.

この電池の非水電解液には、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)との体積比1:1の混合溶媒に1mol/dmのLiPFを溶解したものを用いた。 As the non-aqueous electrolyte of this battery, a solution obtained by dissolving 1 mol / dm 3 of LiPF 6 in a mixed solvent of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) in a volume ratio of 1: 1 was used.

[実施例2]
正極活物質の集電体片面への塗布質量が7.30mg/cmの正極B1を、負極活物質の集電体片面への塗布質量が2.78mg/cmの負極B2を作製したこと以外は実施例1と同様にして、本発明の非水電解質二次電池の電池Bを得た。
[Example 2]
The positive electrode B1 of the coating amount 7.30 mg / cm 2 to the collector side of the positive electrode active material, the coating amount of the current collector one surface of the negative electrode active material to prepare a negative electrode B2 of 2.78mg / cm 2 A battery B of the nonaqueous electrolyte secondary battery of the present invention was obtained in the same manner as Example 1 except for the above.

[実施例3]
正極活物質の集電体片面への塗布質量が6.91mg/cmの正極C1を、負極活物質の集電体片面への塗布質量が3.22mg/cmの負極C2を作製したこと以外は実施例1と同様にして、本発明の非水電解質二次電池の電池Cを得た。
[Example 3]
The coating amount of the current collector side of the positive electrode active material is 6.91mg / cm 2 of the positive electrode C1, the coating amount of the current collector one surface of the negative electrode active material to prepare a negative electrode C2 of 3.22mg / cm 2 A battery C of the nonaqueous electrolyte secondary battery of the present invention was obtained in the same manner as Example 1 except for the above.

[実施例4]
正極活物質の集電体片面への塗布質量が6.49mg/cmの正極D1を、負極活物質の集電体片面への塗布質量が3.32mg/cmの負極D2を作製したこと以外は実施例1と同様にして、本発明の非水電解質二次電池の電池Dを得た。
[Example 4]
The coating amount 6.49mg / cm 2 of the positive electrode D1 to the collector side of the positive electrode active material, the coating amount of the current collector one surface of the negative electrode active material to prepare a negative electrode D2 of 3.32mg / cm 2 A battery D of the nonaqueous electrolyte secondary battery of the present invention was obtained in the same manner as Example 1 except for the above.

[実施例5]
正極活物質の集電体片面への塗布質量が5.30mg/cmの正極E1を、負極活物質の集電体片面への塗布質量が4.23mg/cmの負極E2を作製したこと以外は実施例1と同様にして、本発明の非水電解質二次電池の電池Eを得た。
[Example 5]
The positive electrode E1 of coating amount 5.30mg / cm 2 to the collector side of the positive electrode active material, the coating amount of the current collector one surface of the negative electrode active material to prepare a negative electrode E2 of 4.23mg / cm 2 A battery E of the nonaqueous electrolyte secondary battery of the present invention was obtained in the same manner as Example 1 except for the above.

[実施例6]
正極活物質の集電体片面への塗布質量が5.22mg/cmの正極F1を、負極活物質の集電体片面への塗布質量が4.42mg/cmの負極F2を作製したこと以外は実施例1と同様にして、本発明の非水電解質二次電池の電池Fを得た。
[Example 6]
The coating amount of the current collector side of the positive electrode active material a positive electrode F1 of 5.22mg / cm 2, the coating weight of the current collector one surface of the negative electrode active material to prepare a negative electrode F2 of 4.42mg / cm 2 A battery F of the nonaqueous electrolyte secondary battery of the present invention was obtained in the same manner as Example 1 except for the above.

[実施例7]
正極活物質の集電体片面への塗布質量が7.41mg/cmの正極G1を、負極活物質の集電体片面への塗布質量が3.51mg/cmの負極G2を作製したこと以外は実施例1と同様にして、本発明の非水電解質二次電池の電池Gを得た。
[Example 7]
The coating amount of the current collector side of the positive electrode active material a positive electrode G1 of 7.41mg / cm 2, the coating weight of the current collector one surface of the negative electrode active material to prepare a negative electrode G2 of 3.51mg / cm 2 Except for the above, a battery G of the nonaqueous electrolyte secondary battery of the present invention was obtained in the same manner as Example 1.

[比較例1]
正極活物質の集電体片面への塗布質量が5.29mg/cmの正極H1を、負極活物質の集電体片面への塗布質量が2.00mg/cmの負極H2を作製したこと以外は実施例1と同様にして、非水電解質二次電池の電池Hを作製した。
[Comparative Example 1]
The positive electrode H1 of coating amount 5.29 mg / cm 2 to the collector side of the positive electrode active material, the coating amount of the current collector one surface of the negative electrode active material to prepare a negative electrode H2 of 2.00 mg / cm 2 A battery H of a nonaqueous electrolyte secondary battery was produced in the same manner as Example 1 except for the above.

[比較例2]
正極活物質の集電体片面への塗布質量が7.35mg/cmの正極I1を、負極活物質の集電体片面への塗布質量が2.75mg/cmの負極I2を作製したこと以外は実施例1と同様にして、非水電解質二次電池の電池Iを作製した。
[Comparative Example 2]
The positive electrode I1 of coating amount 7.35 mg / cm 2 to the collector side of the positive electrode active material, the coating amount of the current collector one surface of the negative electrode active material to prepare a negative electrode I2 of 2.75 mg / cm 2 A battery I of a nonaqueous electrolyte secondary battery was produced in the same manner as Example 1 except for the above.

実施例1〜7および比較例1、2で得られた非水電解質二次電池について、つぎの条件でサイクル試験をおこなった。温度は25℃とし、充電は、0.2CmAの定電流で4.2Vまで、さらに4.2Vの定電圧で、合計8時間とし、その後、0.2CmAの定電流で1.5Vまでとし、充放電を300サイクルおこなった。   The nonaqueous electrolyte secondary batteries obtained in Examples 1 to 7 and Comparative Examples 1 and 2 were subjected to a cycle test under the following conditions. The temperature was 25 ° C., and charging was performed at a constant current of 0.2 CmA up to 4.2 V, and further at a constant voltage of 4.2 V for a total of 8 hours, and then at a constant current of 0.2 CmA up to 1.5 V. Charging / discharging was performed 300 cycles.

そして、1サイクル目の放電容量に対する300サイクル目の放電容量の割合を「放電容量維持率(%)」とした(式1により算出される)。また、正極活物質の質量に対する負極活物質の質量の活物質割合を「活物質割合」とした(式2により算出される)。   The ratio of the discharge capacity at the 300th cycle to the discharge capacity at the first cycle was defined as “discharge capacity retention ratio (%)” (calculated by Formula 1). The active material ratio of the mass of the negative electrode active material relative to the mass of the positive electrode active material was defined as “active material ratio” (calculated by Formula 2).

放電容量維持率(%)=100×300サイクル目の放電容量(mAh)/1サイクル目の放電容量(mAh)・・・・・(式1)
活物質割合=負極活物質の質量(mg/cm)/正極活物質の質量(mg/cm)・・・・・・(式2)
実施例1〜7および比較例1、2で得られた非水電解質二次電池の内容とサイクル試験結果を表1にまとめた。
Discharge capacity maintenance rate (%) = 100 × 300th cycle discharge capacity (mAh) / 1st cycle discharge capacity (mAh) (Equation 1)
Active material ratio = mass of negative electrode active material (mg / cm 2 ) / mass of positive electrode active material (mg / cm 2 ) (Formula 2)
Table 1 summarizes the contents and cycle test results of the nonaqueous electrolyte secondary batteries obtained in Examples 1 to 7 and Comparative Examples 1 and 2.

Figure 2007134218
Figure 2007134218

さらに、充放電曲線の例として、実施例4の電池Dの1サイクル目の充放電曲線および2サイクル目の放電曲線を図1に示す。   Furthermore, as an example of a charge / discharge curve, the charge / discharge curve of the first cycle and the discharge curve of the second cycle of the battery D of Example 4 are shown in FIG.

表1より、本発明で得られた電池は、優れたサイクル性能を有していることがわかった。また、図1に示したように本発明の電池では、1サイクル目よりも2サイクル目の放電容量が大きくなった。この理由は明らかではないが、この現象は、プロトン含有ニッケル酸リチウムに特有のものである。したがって、負極に、充分なリチウムリザーブ容量を持つことが必要であることから、活物質割合は、0.38よりも大きい必要があることが考えられる。   From Table 1, it was found that the battery obtained in the present invention has excellent cycle performance. Further, as shown in FIG. 1, in the battery of the present invention, the discharge capacity at the second cycle was larger than that at the first cycle. The reason is not clear, but this phenomenon is unique to proton-containing lithium nickelate. Therefore, since it is necessary for the negative electrode to have a sufficient lithium reserve capacity, it is considered that the active material ratio needs to be larger than 0.38.

さらに、正極活物質が5.3mg/cmよりも少なすぎると、充分な電池の容量を得ることができず、正極活物質が7.3mg/cmよりも多すぎると、電極内のリチウムイオンの拡散が遅くなり、サイクル数の増加にともなって、徐々に分極が大きくなるためにサイクル性能がやや劣化することがわかった。 Furthermore, if the positive electrode active material is too small than 5.3 mg / cm 2 , sufficient battery capacity cannot be obtained, and if the positive electrode active material is more than 7.3 mg / cm 2 , the lithium in the electrode It was found that the cycle performance deteriorates slightly because the diffusion of ions slows and the polarization gradually increases as the number of cycles increases.

実施例1のプロトン含有ニッケル酸リチウム(Ni0.76Co0.24OOH0.2Li0.8)を化学式(HNiNi0.76Co0.24)のxを0.1、0.3、0.5、0.7あるいは1に、yを0.1、0.3、0.5、0.7あるいは1に変化させた場合でも、実施例1の場合と同様の効果が得られた。 The proton-containing lithium nickelate (Ni 0.76 Co 0.24 OOH 0.2 Li 0.8 ) of Example 1 was changed from x in the chemical formula (H x Ni y Ni 0.76 Co 0.24 O 2 ) to 0. Even when y is changed to 0.1, 0.3, 0.5, 0.7, or 1 to 1, 0.3, 0.5, 0.7, or 1, the same as in the first embodiment The effect of was obtained.

また、ニッケルに置換したコバルトの量を0.1、1、15、30あるいは50mol%に変えた場合でも、同様の効果が得られた。さらに、ニッケルに置換するコバルトをチタン、バナジウム、クロム、マンガン、鉄、アルミニウム、銅、亜鉛で置換した場合でも、実施例1のコバルトで置換した場合と同様の効果が得られた。   The same effect was obtained even when the amount of cobalt substituted for nickel was changed to 0.1, 1, 15, 30 or 50 mol%. Furthermore, even when the cobalt substituted for nickel was replaced with titanium, vanadium, chromium, manganese, iron, aluminum, copper, or zinc, the same effect as that obtained when the cobalt was replaced with cobalt in Example 1 was obtained.

本発明で得られた実施例4の非水電解質二次電池の特性を示す図。The figure which shows the characteristic of the nonaqueous electrolyte secondary battery of Example 4 obtained by this invention.

Claims (2)

正極活物質を含む正極と、負極活物質を含む負極と、非水電解質とを備えた非水電解質二次電池において、前記正極活物質が化学式HLiNi1−a(0<x≦1、0<y≦1、1≦x+y≦2、0<a≦0.5、MはCo、Ti、V、Cr、Mn、Fe、Al、CuおよびZnから選ばれる少なくとも一種)で表されるプロトン含有ニッケル酸リチウムであり、前記負極活物質が非黒鉛系炭素材料であり、前記正極活物質の質量に対する前記負極活物質の質量の活物質割合が0.38よりも大きいことを特徴とする非水電解質二次電池。 A positive electrode including a positive active material, a negative electrode including a negative active material, a nonaqueous electrolyte secondary battery and a nonaqueous electrolyte, the positive electrode active material is the chemical formula H x Li y Ni 1-a M a O 2 ( 0 <x ≦ 1, 0 <y ≦ 1, 1 ≦ x + y ≦ 2, 0 <a ≦ 0.5, M is at least one selected from Co, Ti, V, Cr, Mn, Fe, Al, Cu and Zn Wherein the negative electrode active material is a non-graphite carbon material, and the ratio of the active material mass to the positive electrode active material mass is greater than 0.38. A non-aqueous electrolyte secondary battery. 正極活物質の集電体片面への塗布質量が5.3〜7.3mg/cmの範囲であることを特徴とする請求項1に記載の非水電解質二次電池。 2. The nonaqueous electrolyte secondary battery according to claim 1, wherein the mass of the positive electrode active material applied to one side of the current collector is in the range of 5.3 to 7.3 mg / cm 2 .
JP2005327444A 2005-11-11 2005-11-11 Nonaqueous electrolyte secondary battery Pending JP2007134218A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005327444A JP2007134218A (en) 2005-11-11 2005-11-11 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005327444A JP2007134218A (en) 2005-11-11 2005-11-11 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2007134218A true JP2007134218A (en) 2007-05-31

Family

ID=38155705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005327444A Pending JP2007134218A (en) 2005-11-11 2005-11-11 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2007134218A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008010157A (en) * 2006-06-27 2008-01-17 Gs Yuasa Corporation:Kk Positive electrode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous secondary battery equipped therewith
JP2009032410A (en) * 2007-07-24 2009-02-12 Hitachi Vehicle Energy Ltd Lithium secondary cell
WO2019103031A1 (en) * 2017-11-22 2019-05-31 株式会社Gsユアサ Lithium ion secondary battery

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996027910A1 (en) * 1995-03-06 1996-09-12 Fuji Photo Film Co., Ltd. Nonaqueous secondary cell
JPH10188988A (en) * 1996-11-08 1998-07-21 Japan Storage Battery Co Ltd Lithium battery
JP2002151157A (en) * 2000-11-13 2002-05-24 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2002179426A (en) * 1992-01-30 2002-06-26 Moli Energy 1990 Ltd Hydride of nickel dioxide cathode active material and secondary battery
JP2002242966A (en) * 2001-02-16 2002-08-28 Tokico Ltd Electric brake device
JP2003242966A (en) * 2003-01-14 2003-08-29 Hitachi Maxell Ltd Wound lithium-ion secondary battery
JP2004342500A (en) * 2003-05-16 2004-12-02 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery and battery charge / discharge system
JP2005259617A (en) * 2004-03-15 2005-09-22 Shin Kobe Electric Mach Co Ltd Lithium ion secondary battery
JP2005317277A (en) * 2004-04-27 2005-11-10 Japan Storage Battery Co Ltd Nonaqueous electrolyte battery

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002179426A (en) * 1992-01-30 2002-06-26 Moli Energy 1990 Ltd Hydride of nickel dioxide cathode active material and secondary battery
WO1996027910A1 (en) * 1995-03-06 1996-09-12 Fuji Photo Film Co., Ltd. Nonaqueous secondary cell
JPH10188988A (en) * 1996-11-08 1998-07-21 Japan Storage Battery Co Ltd Lithium battery
JP2002151157A (en) * 2000-11-13 2002-05-24 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2002242966A (en) * 2001-02-16 2002-08-28 Tokico Ltd Electric brake device
JP2003242966A (en) * 2003-01-14 2003-08-29 Hitachi Maxell Ltd Wound lithium-ion secondary battery
JP2004342500A (en) * 2003-05-16 2004-12-02 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery and battery charge / discharge system
JP2005259617A (en) * 2004-03-15 2005-09-22 Shin Kobe Electric Mach Co Ltd Lithium ion secondary battery
JP2005317277A (en) * 2004-04-27 2005-11-10 Japan Storage Battery Co Ltd Nonaqueous electrolyte battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008010157A (en) * 2006-06-27 2008-01-17 Gs Yuasa Corporation:Kk Positive electrode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous secondary battery equipped therewith
JP2009032410A (en) * 2007-07-24 2009-02-12 Hitachi Vehicle Energy Ltd Lithium secondary cell
WO2019103031A1 (en) * 2017-11-22 2019-05-31 株式会社Gsユアサ Lithium ion secondary battery
CN111448701A (en) * 2017-11-22 2020-07-24 株式会社杰士汤浅国际 Lithium-ion secondary battery
JPWO2019103031A1 (en) * 2017-11-22 2020-11-19 株式会社Gsユアサ Lithium ion secondary battery
EP3712998A4 (en) * 2017-11-22 2021-08-04 GS Yuasa International Ltd. LITHIUM-ION SECONDARY BATTERY
JP7240640B2 (en) 2017-11-22 2023-03-16 株式会社Gsユアサ lithium ion secondary battery
US11621417B2 (en) 2017-11-22 2023-04-04 Gs Yuasa International Ltd. Lithium ion secondary battery

Similar Documents

Publication Publication Date Title
JP7157252B2 (en) Positive electrode additive for lithium secondary battery, manufacturing method thereof, positive electrode for lithium secondary battery containing same, and lithium secondary battery containing same
KR102675258B1 (en) Lithium secondary battery with improved high temperature storage property
JP4680637B2 (en) Lithium secondary battery
CN111052488B (en) Lithium secondary battery with improved high-temperature storage characteristics
JP5614307B2 (en) Nonaqueous electrolyte secondary battery
CN107408687B (en) Positive electrode active material and battery
CN107431201B (en) Positive electrode active material and battery
US20140093761A1 (en) Lithium secondary battery
WO2012014998A1 (en) Lithium secondary battery
US20190181443A1 (en) Positive electrode active material and battery using positive electrode active material
KR102053313B1 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising the same
US20060088766A1 (en) Negative active material for non-aqueous electrolyte battery, method of preparing same and non-aqueous electrolyte battery
JP2010153258A (en) Nonaqueous electrolyte battery
US10811671B2 (en) Positive-electrode active material and battery
WO2018100792A1 (en) Positive electrode active material and battery using positive electrode active material
JP2012009458A (en) Lithium secondary battery
US20170244104A1 (en) Cathode active material and battery
US20080286654A1 (en) Non-aqueous electrolyte secondary battery
CN107104231A (en) Positive active material and battery
US20080226977A1 (en) Electrolyte for lithium ion rechargeable battery and lithium ion rechargeable battery including the same
JP2009277395A (en) Nonaqueous secondary battery, and nonaqueous secondary battery system
CN107408688A (en) Positive electrode active material and battery
JP5670671B2 (en) Method for producing positive electrode for battery and method for producing lithium ion secondary battery
JP2005281128A (en) Method for producing lithium-containing iron oxyhydroxide and nonaqueous electrolyte electrochemical cell using electrode containing lithium-containing iron oxyhydroxide obtained by the same
JP2008021538A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081105

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A681

Effective date: 20110922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130326