[go: up one dir, main page]

JP2007127070A - Internal combustion engine with supercharger - Google Patents

Internal combustion engine with supercharger Download PDF

Info

Publication number
JP2007127070A
JP2007127070A JP2005320883A JP2005320883A JP2007127070A JP 2007127070 A JP2007127070 A JP 2007127070A JP 2005320883 A JP2005320883 A JP 2005320883A JP 2005320883 A JP2005320883 A JP 2005320883A JP 2007127070 A JP2007127070 A JP 2007127070A
Authority
JP
Japan
Prior art keywords
engine
exhaust
blower
intake
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005320883A
Other languages
Japanese (ja)
Inventor
Noboru Uchida
登 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2005320883A priority Critical patent/JP2007127070A/en
Publication of JP2007127070A publication Critical patent/JP2007127070A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Supercharger (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an internal combustion engine with a supercharger which does not increase the content of particulates in the exhaust at the time of a transient operation. <P>SOLUTION: The exhaust manifold 6 and the induction conduit 12 of the engine 1 of the internal combustion engine with the supercharger are connected to each other by an EGR pipeline 21. Then a blower 23 which can transfer intake air A is incorporated in parallel in the immediate vicinity of the upstream side to the confluence of the induction conduit 12 and the EGR pipeline 21. A bypass automatic valve 24, which is closed by the intake air A delivered from the blower 23, is provided to the position which is in parallel with the blower 23 of the induction conduit 12. That is to say, the blower 23 is operated at the time of the transient operation of the engine 1. Then the bypass automatic valve 24 is closed and the exhaust G refluxing from the EGR pipeline 21 to the induction conduit 12 channel is controlled by the pressure of the intake air A delivered by the blower 23. Then the amount of the intake air A to be delivered to the engine 1 is secured. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明はEGR装置を装備した過給機付内燃機関に関するものである。   The present invention relates to a supercharged internal combustion engine equipped with an EGR device.

従来、排気再循環(EGR:Exhaust Gas Recirculation)を適用した過給機付内燃機関では、エンジン排気経路から分流した排気をエンジン吸気経路へ送給して燃焼温度の低下を図り、NOxの発生を低減させている(例えば、特許文献1参照)。   Conventionally, in an internal combustion engine with a supercharger to which exhaust gas recirculation (EGR) is applied, exhaust gas diverted from the engine exhaust path is sent to the engine intake path to lower the combustion temperature, thereby generating NOx. (For example, refer to Patent Document 1).

この過給機付内燃機関は、図3及び図4に示すようにディーゼルエンジン1とターボチャージャ2を備え、当該ターボチャージャ2は、タービン3、コンプレッサ4、及びタービン翼車をコンプレッサ翼車に連結する伝達軸5などで構成されている。   The supercharged internal combustion engine includes a diesel engine 1 and a turbocharger 2 as shown in FIGS. 3 and 4, and the turbocharger 2 connects the turbine 3, the compressor 4, and the turbine impeller to the compressor impeller. The transmission shaft 5 is configured.

タービン3は、排気導入口がディーゼルエンジン1の排気マニホールド6に接続され、排気送出口が排気管7を介してマフラ8に連通し、排気導入口には、流路断面調整機構(図示せず)が設けられている。   The turbine 3 has an exhaust introduction port connected to the exhaust manifold 6 of the diesel engine 1, an exhaust delivery port communicates with the muffler 8 through the exhaust pipe 7, and a flow path cross-sectional adjustment mechanism (not shown) is connected to the exhaust introduction port. ) Is provided.

また、コンプレッサ4は、吸気導入口が吸気管9によりエアクリーナ10に接続され、吸気送出口がインタクーラ11を有する吸気管12を介してディーゼルエンジン1の吸気マニホールド13に連通している。   The compressor 4 has an intake inlet connected to an air cleaner 10 via an intake pipe 9 and an intake outlet connected to an intake manifold 13 of the diesel engine 1 via an intake pipe 12 having an intercooler 11.

これに加えて、排気マニホールド6に、EGRクーラ14とEGRバルブ15を直列に組み込んだEGR管路16の上流端を接続し、吸気管12のインタクーラ11よりも下流側個所に、EGR管路16の下流端を接続している。   In addition to this, an upstream end of an EGR pipe line 16 in which an EGR cooler 14 and an EGR valve 15 are incorporated in series is connected to the exhaust manifold 6, and the EGR pipe line 16 is connected to a location downstream of the intercooler 11 of the intake pipe 12. Is connected to the downstream end.

上記のインタクーラ11には、空冷方式のフィン形熱交換器が用いられ、EGRクーラ14には、液冷方式の管形熱交換器が用いられている。   The intercooler 11 is an air-cooled fin-type heat exchanger, and the EGR cooler 14 is a liquid-cooled tubular heat exchanger.

更に、吸気管12のEGR管路16接続個所の下流側に開閉弁17を組み込み、吸気管12のEGR管路16接続個所とインタクーラ11出口との間に送気管路18の上流端を接続し、吸気管12の開閉弁17設置個所と吸気マニホールド13との間に前記送気管路18の下流端を接続し、当該送気管路18にモータ20を駆動源としたブロワ19を組み込んでいる。   Further, an on-off valve 17 is incorporated downstream of the connection portion of the intake pipe 12 with respect to the EGR conduit 16, and the upstream end of the air supply conduit 18 is connected between the connection portion of the intake pipe 12 with the EGR conduit 16 and the outlet of the intercooler 11. The downstream end of the air supply line 18 is connected between the position where the on-off valve 17 of the intake pipe 12 is installed and the intake manifold 13, and a blower 19 using a motor 20 as a drive source is incorporated in the air supply line 18.

ディーゼルエンジン1の定常運転時には、図4に示すようにブロワ19を停止状態にし且つ開閉弁17を開いておく。   During steady operation of the diesel engine 1, the blower 19 is stopped and the on-off valve 17 is opened as shown in FIG.

ディーゼルエンジン1の排気Gの大部分は、排気マニホールド6からタービン3へ流入してコンプレッサ4を駆動し、排気管7やマフラ8などを経て大気中に放出される。   Most of the exhaust G from the diesel engine 1 flows into the turbine 3 from the exhaust manifold 6 to drive the compressor 4 and is discharged into the atmosphere through the exhaust pipe 7 and the muffler 8.

エアクリーナ10、吸気管9を経てコンプレッサ4に流入し且つ圧縮された吸気Aは、インタクーラ11を通った後、流路抵抗が大きい送気管路18を経ずに吸気マニホールド13へ送給される。   The compressed air A that flows into the compressor 4 through the air cleaner 10 and the intake pipe 9 and is compressed passes through the intercooler 11 and then is supplied to the intake manifold 13 without passing through the air supply pipe 18 having a large flow resistance.

また同時に、排気Gの一部が排気マニホールド6からEGR管路16へ流入し、EGRクーラ14で冷却され且つEGRバルブ15により流量調整が行なわれた排気Gが吸気Aとともに吸気マニホールド13へ送給される。   At the same time, a part of the exhaust G flows from the exhaust manifold 6 into the EGR pipe 16, and the exhaust G cooled by the EGR cooler 14 and adjusted in flow rate by the EGR valve 15 is sent to the intake manifold 13 together with the intake air A. Is done.

これによって、燃焼温度の低下が図られ、NOxの発生が低減することになる。   As a result, the combustion temperature is lowered and the generation of NOx is reduced.

ターボチャージャ2は、排気Gのエネルギで回転するタービン3によりコンプレッサ4を駆動しているので、運転者がアクセルぺタルを踏み込んでエンジン回転数を高くする際(過渡運転時)に、コンプレッサ4の吸気Aの吐出量の増加が遅れる。   Since the turbocharger 2 drives the compressor 4 by the turbine 3 that is rotated by the energy of the exhaust G, when the driver depresses the accelerator petal and increases the engine speed (transient operation), the compressor 4 The increase in the discharge amount of the intake air A is delayed.

このような過渡運転時には、タービン3が排気Gから得る運動エネルギが減るために、コンプレッサ4から吸気マニホールド13に送給される吸気Aが不足気味になり、結果的にディーゼルエンジン1から送出される排気Gに含まれるパティキュレートが増える。   During such a transient operation, the kinetic energy that the turbine 3 obtains from the exhaust G decreases, so that the intake air A that is supplied from the compressor 4 to the intake manifold 13 becomes insufficient, and is consequently sent from the diesel engine 1. The particulates contained in the exhaust G increase.

そこで、ディーゼルエンジン1の過渡運転時には、図3に示すように開閉弁17を閉じ且つブロワ19を作動させる。   Therefore, during the transient operation of the diesel engine 1, the on-off valve 17 is closed and the blower 19 is operated as shown in FIG.

つまり、タービン3が排気Gから得る運動エネルギに依存せずにコンプレッサ4が送出する吸気Aを、ブロワ19により吸気マニホールド13へ送り込むことで、過渡運転時にディーゼルエンジン1に供給すべき吸気Aの量を確保する。
特開2005−220862号公報
That is, the amount of intake air A to be supplied to the diesel engine 1 during transient operation by sending the intake air A sent by the compressor 4 to the intake manifold 13 by the blower 19 without depending on the kinetic energy obtained from the exhaust G by the turbine 3. Secure.
JP 2005-220862 A

ところが、ディーゼルエンジン1の過渡運転時に、アクセルの踏み込み量の変化などに対応するように、アクチュエータによって開閉弁17及びEGRバルブ15を瞬間的に閉ざすことは困難であり、特にディーゼルエンジン1を低負荷で高EGR率で運転している状態から加速する場合はやはり吸気Aの量が不足し、パティキュレートの含有量が増えて排気Gの性状悪化が発現する。   However, during the transient operation of the diesel engine 1, it is difficult to instantaneously close the on-off valve 17 and the EGR valve 15 with an actuator so as to cope with changes in the amount of depression of the accelerator. When accelerating from a state where the engine is operated at a high EGR rate, the amount of intake air A is still insufficient, the particulate content increases, and the exhaust gas G deteriorates.

本発明は上述した実情に鑑みてなしたもので、過渡運転時に排気中のパティキュレートの含有量が増えない過給機付内燃機関を提供することを目的としている。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a supercharged internal combustion engine in which the content of particulates in exhaust gas does not increase during transient operation.

上記目的を達成するために、本発明は、エンジンの排気で回転するタービンによってコンプレッサを駆動し且つ該コンプレッサが圧縮した吸気をインタクーラを介してエンジンへ送給するように構成した過給機付内燃機関において、エンジン排気経路のタービン上流側からエンジン吸気経路のコンプレッサ下流側へ至るEGR管路を設け、エンジン吸気経路のEGR管路合流個所より上流側直近に、吸気を圧送可能な送風手段を並列に組み込み、当該送風手段から送出される吸気によって閉じる自動弁を、エンジン吸気経路の送風手段と並行な部位に設けている。   In order to achieve the above object, the present invention provides an internal combustion engine with a supercharger configured to drive a compressor by a turbine rotated by exhaust of the engine and to supply intake air compressed by the compressor to the engine via an intercooler. In the engine, an EGR pipe line extending from the turbine upstream side of the engine exhaust path to the compressor downstream side of the engine intake path is provided, and an air blowing means capable of pressure-feeding the intake air is provided in parallel near the EGR pipe merging point of the engine intake path. And an automatic valve that is closed by the intake air sent from the blower means is provided in a portion parallel to the blower means of the engine intake path.

つまり、エンジンの過渡運転時に送風手段を作動させ、当該送風手段が送出する吸気の圧力によって、自動弁を閉ざすとともにEGR管路からエンジン吸気経路へ還流する排気を抑える。   In other words, the air blowing means is operated during the transient operation of the engine, and the automatic valve is closed and the exhaust gas recirculated from the EGR pipe to the engine air intake path is suppressed by the pressure of the intake air sent by the air blowing means.

本発明の過給機付内燃機関によれば、送風手段が送出する吸気の圧力によって、自動弁を閉ざすとともにEGR管路からエンジン吸気経路へ還流する排気を抑え、過渡運転時にエンジンに送給すべき吸気の量を確保することができるので、排気中のパティキュレートの含有量が増えず、排気の性状悪化が発現しない、という優れた効果を奏し得る。   According to the internal combustion engine with a supercharger of the present invention, the pressure of the intake air sent out by the air blowing means closes the automatic valve and suppresses the exhaust gas recirculated from the EGR pipe line to the engine intake path, and supplies it to the engine during transient operation. Since the amount of intake air that should be secured can be secured, it is possible to achieve an excellent effect that the particulate content in the exhaust gas does not increase and the exhaust gas properties do not deteriorate.

以下、本発明の実施の形態を図面に基づき説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1及び図2は本発明の過給機付内燃機関の実施の形態の一例を示すものであり、図中、図3及び図4と同一の符号を付した部分は同一物を表わしている。   1 and 2 show an example of an embodiment of an internal combustion engine with a supercharger according to the present invention. In the figure, the same reference numerals as those in FIGS. 3 and 4 denote the same parts. .

この過給機付内燃機関では、排気マニホールド6に、EGRクーラ14とEGRバルブ15を直列に組み込んだEGR管路21の上流端を接続し、当該EGR管路21の下流端を、吸気管12のインタクーラ11よりも下流側で且つ吸気マニホールド13に近い個所に接続している。   In this supercharger-equipped internal combustion engine, the exhaust manifold 6 is connected to the upstream end of an EGR pipe 21 in which an EGR cooler 14 and an EGR valve 15 are incorporated in series, and the downstream end of the EGR pipe 21 is connected to the intake pipe 12. The intercooler 11 is connected to a location downstream of the intercooler 11 and close to the intake manifold 13.

吸気管12のEGR管路21接続個所より上流側直近に、モータ22を駆動源として吸気Aを圧送可能なブロワ23を並列に組み込んであり、モータ22は、アクセルぺタルの踏み込み量の変化などに基づき、ECU(Electonic Control Unit)がディーゼルエンジン1の過渡的な運転状態を認識した際に作動する。   A blower 23 capable of pumping intake air A by using the motor 22 as a drive source is incorporated in parallel in the vicinity of the EGR pipe 21 connection portion of the intake pipe 12 in parallel. The motor 22 changes the amount of depression of the accelerator petal, etc. Based on the above, the ECU (Electonic Control Unit) operates when it recognizes the transient operating state of the diesel engine 1.

更に、吸気管12のブロワ23と並行な部位に、当該ブロワ23から送出される吸気Aの圧力で閉じるバイパス自動弁(フラッパ)24を設けている。   Furthermore, a bypass automatic valve (flapper) 24 that closes with the pressure of the intake air A sent from the blower 23 is provided at a portion parallel to the blower 23 of the intake pipe 12.

このバイパス自動弁24は、ブロワ23が停止状態であると、コンプレッサ4から送出される吸気Aの圧力によって開く。   The bypass automatic valve 24 is opened by the pressure of the intake air A sent from the compressor 4 when the blower 23 is stopped.

ディーゼルエンジン1の定常運転時には、図2に示すようにブロワ23が停止しているため、排気Gの大部分は、排気マニホールド6からタービン3へ流入してコンプレッサ4を駆動し、排気管7やマフラ8などを経て大気中に放出される。   During the steady operation of the diesel engine 1, the blower 23 is stopped as shown in FIG. 2, so that most of the exhaust G flows from the exhaust manifold 6 into the turbine 3 to drive the compressor 4, and the exhaust pipe 7 and It is released into the atmosphere through the muffler 8 and the like.

エアクリーナ10、吸気管9を経てコンプレッサ4に流入し且つ圧縮された吸気Aは、インタクーラ11を通った後、吸気管12を経て吸気マニホールド13へ送給される。   The intake air A that flows into the compressor 4 through the air cleaner 10 and the intake pipe 9 and is compressed passes through the intercooler 11, and then is supplied to the intake manifold 13 through the intake pipe 12.

このとき、バイパス自動弁24は、吸気管12を通る吸気Aの圧力によって開く。   At this time, the bypass automatic valve 24 is opened by the pressure of the intake air A passing through the intake pipe 12.

また同時に、排気Gの一部が排気マニホールド6からEGR管路21へ流入し、EGRクーラ14で冷却され且つEGRバルブ15により流量調整が行なわれた排気Gが吸気Aとともに吸気マニホールド13へ送給される。   At the same time, a part of the exhaust G flows from the exhaust manifold 6 to the EGR pipe 21, and the exhaust G cooled by the EGR cooler 14 and adjusted in flow rate by the EGR valve 15 is sent to the intake manifold 13 together with the intake A. Is done.

これによって、燃焼温度の低下が図られ、NOxの発生が低減することになる。   As a result, the combustion temperature is lowered and the generation of NOx is reduced.

ディーゼルエンジン1の過渡運転時には、図1に示すようにブロワ23が作動し、当該ブロワ23の吸気出口側は吸気入口側よりも圧力が高くなるため、バイパス自動弁24が閉じる。   During the transient operation of the diesel engine 1, the blower 23 is operated as shown in FIG. 1, and the pressure at the intake outlet side of the blower 23 is higher than that at the intake inlet side, so the bypass automatic valve 24 is closed.

これにより、タービン3が排気Gから得る運動エネルギに依存せずにコンプレッサ4を経た吸気Aが吸気マニホールド13へ送り込まれ、過渡運転時にディーゼルエンジン1に供給すべき吸気Aの量を確保できる。   As a result, the intake air A that has passed through the compressor 4 is sent to the intake manifold 13 without depending on the kinetic energy that the turbine 3 obtains from the exhaust G, and the amount of intake air A that should be supplied to the diesel engine 1 during the transient operation can be secured.

従って、排気Gに含まれるパティキュレートの含有量が増えず、排気の性状悪化が発現しない。   Therefore, the content of the particulates contained in the exhaust G does not increase, and the exhaust properties do not deteriorate.

なお、本発明の過給機付内燃機関は上述した実施の形態のみに限定されるものではなく、本発明の要旨を逸脱しない範囲において変更を加え得ることは勿論である。   Note that the supercharged internal combustion engine of the present invention is not limited to the above-described embodiment, and it is needless to say that changes can be made without departing from the scope of the present invention.

本発明の過給機付内燃機関は、車両用のディーゼルエンジンをはじめとして各種の内燃機関に適用できる。   The supercharged internal combustion engine of the present invention can be applied to various internal combustion engines including a diesel engine for vehicles.

本発明の過給機付内燃機関の実施の形態の一例の過渡運転時を示す概念図である。It is a conceptual diagram which shows the time of the transient operation of an example of embodiment of the internal combustion engine with a supercharger of this invention. 本発明の過給機付内燃機関の実施の形態の一例の定常運転時を示す概念図である。It is a conceptual diagram which shows the time of steady operation of an example of embodiment of the internal combustion engine with a supercharger of this invention. 従来の過給機付内燃機関の一例の過渡運転時を示す概念図である。It is a conceptual diagram which shows the time of transient operation of an example of the conventional internal combustion engine with a supercharger. 従来の過給機付内燃機関の一例の定常運転時を示す概念図である。It is a conceptual diagram which shows the time of steady operation of an example of the conventional internal combustion engine with a supercharger.

符号の説明Explanation of symbols

1 ディーゼルエンジン
3 タービン
4 コンプレッサ
6 排気マニホールド(エンジン排気経路)
12 吸気管(エンジン吸気経路)
21 EGR管路
22 モータ
23 ブロワ(送風手段)
24 バイパス自動弁
A 吸気
G 排気
1 Diesel engine 3 Turbine 4 Compressor 6 Exhaust manifold (engine exhaust path)
12 Intake pipe (engine intake path)
21 EGR line 22 Motor 23 Blower (Blower)
24 Bypass automatic valve A Intake G Exhaust

Claims (2)

エンジンの排気で回転するタービンによってコンプレッサを駆動し且つ該コンプレッサが圧縮した吸気をインタクーラを介してエンジンへ送給するように構成した過給機付内燃機関において、エンジン排気経路のタービン上流側からエンジン吸気経路のコンプレッサ下流側へ至るEGR管路を設け、エンジン吸気経路のEGR管路合流個所より上流側直近に、吸気を圧送可能な送風手段を並列に組み込み、当該送風手段から送出される吸気によって閉じる自動弁を、エンジン吸気経路の送風手段と並行な部位に設けたことを特徴とする過給機付内燃機関。   In an internal combustion engine with a supercharger configured to drive a compressor by a turbine rotated by exhaust of an engine and to supply intake air compressed by the compressor to an engine via an intercooler, the engine from the turbine upstream side of the engine exhaust path An EGR pipe that leads to the downstream side of the compressor in the intake path is provided, and a blower that can pump intake air is installed in parallel in the vicinity of the upstream side of the EGR pipe merging point in the engine intake path, and the intake air sent from the blower An internal combustion engine with a supercharger, wherein an automatic valve for closing is provided in a portion parallel to the air blowing means of the engine intake path. 送風手段にモータを駆動源とするブロワを用いた請求項1に記載の過給機付内燃機関。   The internal combustion engine with a supercharger according to claim 1, wherein a blower using a motor as a drive source is used as the blowing means.
JP2005320883A 2005-11-04 2005-11-04 Internal combustion engine with supercharger Pending JP2007127070A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005320883A JP2007127070A (en) 2005-11-04 2005-11-04 Internal combustion engine with supercharger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005320883A JP2007127070A (en) 2005-11-04 2005-11-04 Internal combustion engine with supercharger

Publications (1)

Publication Number Publication Date
JP2007127070A true JP2007127070A (en) 2007-05-24

Family

ID=38149909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005320883A Pending JP2007127070A (en) 2005-11-04 2005-11-04 Internal combustion engine with supercharger

Country Status (1)

Country Link
JP (1) JP2007127070A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012136957A (en) * 2010-12-24 2012-07-19 Isuzu Motors Ltd Internal combustion engine and egr method therefor
KR101262506B1 (en) * 2011-05-11 2013-05-08 현대자동차주식회사 Engine System Based on Turbo Charger and Fuel Ratio Improving Method thereof
KR101534701B1 (en) * 2013-12-06 2015-07-24 현대자동차 주식회사 Engine system having aluminum turbine housing
DE102015103353A1 (en) * 2015-03-06 2016-09-08 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Charging device for an internal combustion engine
CN107762591A (en) * 2016-08-18 2018-03-06 大众汽车有限公司 For making the device and method of particulate filter regeneration
CN114704409A (en) * 2022-04-15 2022-07-05 潍柴动力股份有限公司 A kind of air system and air system control method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62152032U (en) * 1986-03-19 1987-09-26
JPH0550034U (en) * 1991-12-13 1993-07-02 三菱自動車工業株式会社 Supercharger for internal combustion engine
JP2005220891A (en) * 2004-02-09 2005-08-18 Toyota Motor Corp Supercharging system for internal combustion engines

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62152032U (en) * 1986-03-19 1987-09-26
JPH0550034U (en) * 1991-12-13 1993-07-02 三菱自動車工業株式会社 Supercharger for internal combustion engine
JP2005220891A (en) * 2004-02-09 2005-08-18 Toyota Motor Corp Supercharging system for internal combustion engines

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012136957A (en) * 2010-12-24 2012-07-19 Isuzu Motors Ltd Internal combustion engine and egr method therefor
KR101262506B1 (en) * 2011-05-11 2013-05-08 현대자동차주식회사 Engine System Based on Turbo Charger and Fuel Ratio Improving Method thereof
US8931274B2 (en) 2011-05-11 2015-01-13 Hyundai Motor Company Engine system based on turbo charger and fuel ratio improving method thereof
KR101534701B1 (en) * 2013-12-06 2015-07-24 현대자동차 주식회사 Engine system having aluminum turbine housing
DE102015103353A1 (en) * 2015-03-06 2016-09-08 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Charging device for an internal combustion engine
US10196967B2 (en) 2015-03-06 2019-02-05 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Supercharging device for an internal combustion engine
CN107762591A (en) * 2016-08-18 2018-03-06 大众汽车有限公司 For making the device and method of particulate filter regeneration
CN114704409A (en) * 2022-04-15 2022-07-05 潍柴动力股份有限公司 A kind of air system and air system control method

Similar Documents

Publication Publication Date Title
US7281378B2 (en) Surge control system for a compressor
US6701710B1 (en) Turbocharged engine with turbocharger compressor recirculation valve
US8448626B2 (en) Exhaust system for engine braking
EP2295769A1 (en) Exhaust system for engine braking
WO2007066833A1 (en) Exhaust gas purification system for internal combustion engine
JP2013108479A (en) Diesel engine
JP2011033033A (en) System using supplemental compressor for egr
US8938962B2 (en) Exhaust system
CN101268267B (en) Method for internal combustion engine with exhaust recirculation
CN103807005A (en) Air compressing device of engine
US7908859B2 (en) Exhaust gas recirculation mixer for a turbo-charged internal combustion engine
JP4511845B2 (en) Internal combustion engine with a supercharger
JP2008309125A (en) Exhaust gas recirculation system for internal combustion engine
JP2007127070A (en) Internal combustion engine with supercharger
JP2012197716A (en) Exhaust loss recovery device
JP2005188359A (en) Internal combustion engine with supercharger
JP2007077900A (en) Two-stage supercharging system
JP2009299540A (en) Exhaust gas recirculation device in multi-cylinder internal combustion engine
JP2007071179A (en) Two stage supercharging system
JP2004245117A (en) Internal combustion engine with supercharger
JP2007077899A (en) Two-stage supercharging system
JP5670170B2 (en) Supercharged multi-cylinder engine
JP2005090349A (en) Internal combustion engine with supercharger
JP2010138710A (en) Two-stage supercharging system
JP2013113252A (en) Internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101221