[go: up one dir, main page]

JP2007121125A - Current detecting device and capacitance measuring device - Google Patents

Current detecting device and capacitance measuring device Download PDF

Info

Publication number
JP2007121125A
JP2007121125A JP2005314031A JP2005314031A JP2007121125A JP 2007121125 A JP2007121125 A JP 2007121125A JP 2005314031 A JP2005314031 A JP 2005314031A JP 2005314031 A JP2005314031 A JP 2005314031A JP 2007121125 A JP2007121125 A JP 2007121125A
Authority
JP
Japan
Prior art keywords
current
measurement
voltage
signal
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005314031A
Other languages
Japanese (ja)
Inventor
Keiichi Taguchi
圭一 田口
Tsutomu Yamaguchi
力 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hioki EE Corp
Original Assignee
Hioki EE Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hioki EE Corp filed Critical Hioki EE Corp
Priority to JP2005314031A priority Critical patent/JP2007121125A/en
Publication of JP2007121125A publication Critical patent/JP2007121125A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a current detector which accurately and easily detects the current value flowing in a measured object even when the frequency of a measuring signal supplied to the measured object is varied. <P>SOLUTION: The current detector comprises: an oscillator 21 for adjusting the frequency of an alternating current signal S1 for measurement; and an amplification circuit 22 for current-voltage converting the current I1 flowing in the measured object DUT in applying the alternating current signal S1 for measurement. In the amplification circuit 22, a feedback impedance for determining conversion gain of current-voltage conversion is constituted by capacitors 22b-22e. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、測定対象体を流れる電流を検出する電流検出装置および測定対象体の静電容量を測定する静電容量測定装置に関するものである。   The present invention relates to a current detection device that detects a current flowing through a measurement object and a capacitance measurement device that measures the capacitance of the measurement object.

この種の電流検出装置として、出願人は、LCRメータに適用される電流−電圧変換回路を実開平5−40888号公報に開示している。この電流−電圧変換回路は、所定周波数の測定用交流信号を発生する測定用交流信号発生手段と、複数の切換え可能な電流検出抵抗を有する演算増幅器とを備えて構成されている。この演算増幅器では、LCRメータの抵抗測定レンジに対応して選択される第1の電流検出抵抗と、インダクタンス測定レンジに対応して選択される第2の電流検出抵抗と、静電容量測定レンジに対応して選択される第3の電流検出抵抗とが設けられていて、各測定レンジのフルスケール時における演算増幅器の出力電圧がほぼ一定となるように構成されている。この場合、この演算増幅器の入力端子と測定用交流信号発生手段との間に測定試料を接続すると共に測定試料に所定周波数の測定用交流信号を供給することにより、測定試料に流れる電流に対応する出力電圧が演算増幅器の出力側に出力される。
実開平5−40888号公報(第4頁、第1図)
As this type of current detection device, the applicant discloses a current-voltage conversion circuit applied to an LCR meter in Japanese Utility Model Laid-Open No. 5-40888. This current-voltage conversion circuit includes a measurement AC signal generating means for generating a measurement AC signal having a predetermined frequency, and an operational amplifier having a plurality of switchable current detection resistors. In this operational amplifier, the first current detection resistor selected corresponding to the resistance measurement range of the LCR meter, the second current detection resistor selected corresponding to the inductance measurement range, and the capacitance measurement range A corresponding third current detection resistor is provided, and the output voltage of the operational amplifier at the full scale of each measurement range is configured to be substantially constant. In this case, a measurement sample is connected between the input terminal of the operational amplifier and the measurement AC signal generating means, and a measurement AC signal having a predetermined frequency is supplied to the measurement sample, thereby corresponding to the current flowing through the measurement sample. The output voltage is output to the output side of the operational amplifier.
Japanese Utility Model Laid-Open No. 5-40888 (page 4, FIG. 1)

ところが、上記の電流−電圧変換回路には、以下の解決すべき課題がある。すなわち、この電流−電圧変換回路では、演算増幅器に電流検出抵抗が接続されている。このため、例えば、測定用交流信号の周波数を変化させることによって測定試料の静電容量がどのように変化するか(静電容量の周波数依存性)を検査するために、測定用交流信号の周波数を変化させつつ測定試料に流れる電流を測定するときには、測定用交流信号の周波数によって測定試料のインピーダンスが変化するのに対して、その周波数の変化に拘わらず電流検出抵抗のインピーダンスが一定のため、演算増幅器の電流−電圧変換の変換利得が測定用交流信号の周波数に応じて変化することとなる。したがって、測定用交流信号の周波数を変化させたとしても変換利得を一定に維持して電流を正確に測定するためには、電流検出用の抵抗を切り換えなければならない結果、電流検出の作業が煩雑となるという改善すべき課題が存在する。   However, the current-voltage conversion circuit has the following problems to be solved. That is, in this current-voltage conversion circuit, a current detection resistor is connected to the operational amplifier. For this reason, for example, in order to inspect how the capacitance of the measurement sample changes by changing the frequency of the measurement AC signal (frequency dependence of the capacitance), the frequency of the measurement AC signal When measuring the current flowing through the measurement sample while changing the impedance, the impedance of the measurement sample changes depending on the frequency of the AC signal for measurement, whereas the impedance of the current detection resistor is constant regardless of the change in frequency. The conversion gain of the current-voltage conversion of the operational amplifier changes according to the frequency of the AC signal for measurement. Therefore, even if the frequency of the AC signal for measurement is changed, in order to accurately measure the current while maintaining the conversion gain constant, the current detection resistor must be switched, resulting in complicated current detection work. There is a problem to be improved.

本発明は、かかる改善すべき課題に鑑みてなされたものであり、測定対象体に供給する測定用交流信号の周波数を変化させたときにも、測定対象体を流れる電流の値を正確かつ容易に検出し得る電流検出装置および測定対象体の静電容量を正確かつ容易に測定し得る静電容量測定装置を提供することを主目的とする。   The present invention has been made in view of such problems to be improved, and the value of the current flowing through the measurement object can be accurately and easily even when the frequency of the measurement AC signal supplied to the measurement object is changed. It is a main object of the present invention to provide a current detection device that can detect the capacitance and a capacitance measurement device that can accurately and easily measure the capacitance of a measurement object.

上記目的を達成すべく請求項1記載の電流検出装置は、測定用交流信号の周波数を可変可能な交流信号供給部と、前記測定用交流信号の印加時において測定対象体を流れる電流を電流−電圧変換する増幅回路とを備え、前記増幅回路は、前記電流−電圧変換の変換利得決定用の帰還インピーダンスがコンデンサで構成されている。   In order to achieve the above object, the current detection device according to claim 1 is an AC signal supply unit capable of changing a frequency of a measurement AC signal, and a current flowing through the measurement object when the measurement AC signal is applied. An amplifier circuit for voltage conversion, and the amplifier circuit includes a capacitor having a feedback impedance for determining a conversion gain of the current-voltage conversion.

また、請求項2記載の電流検出装置は、請求項1記載の電流検出装置において、前記増幅回路は、前記コンデンサを複数備え、当該複数のコンデンサは、その静電容量が互いに異なりかついずれか1つ以上が前記帰還インピーダンスとして切り換え接続可能に配設されている。   The current detection device according to claim 2 is the current detection device according to claim 1, wherein the amplifier circuit includes a plurality of capacitors, and the plurality of capacitors have different electrostatic capacities from each other. Two or more are provided as the feedback impedance so that they can be switched and connected.

また、請求項3記載の静電容量測定装置は、請求項1または2記載の電流検出装置と、前記測定対象体の両端間電圧を検出する電圧検出部とを備え、前記測定用交流信号の前記周波数、前記電流検出装置の前記増幅回路によって電流−電圧変換された電圧の波形、および前記電圧検出部によって検出される前記両端間電圧の波形に基づいて当該測定対象体の静電容量を測定する。   According to a third aspect of the present invention, there is provided a capacitance measuring apparatus comprising: the current detecting apparatus according to the first or second aspect; and a voltage detecting unit that detects a voltage between both ends of the measurement object, The capacitance of the measurement object is measured based on the frequency, the waveform of the voltage subjected to current-voltage conversion by the amplifier circuit of the current detection device, and the waveform of the voltage between both ends detected by the voltage detection unit. To do.

請求項1記載の電流検出装置によれば、測定対象体に供給する測定用交流信号の周波数を可変可能に構成された交流信号供給部と、電流−電圧変換の変換利得決定用の帰還インピーダンスがコンデンサで構成された増幅回路とを備えて構成したことにより、測定用交流信号の周波数を変化させたときに、測定対象体としての例えばコンデンサのインピーダンスと、増幅器の帰還インピーダンスを形成するコンデンサのいずれかのインピーダンスとを同等に変化させることができる。したがって、帰還インピーダンスを抵抗で形成する従来の電流−電圧変換回路とは異なり、測定用交流信号の周波数を変化させたとしても増幅回路の変換利得を一定に維持することができるため、検出した電流の電流値を示す出力信号の電圧値が例えば後段に接続されるA/Dコンバータの入力レンジをオーバーフローする事態を回避することができる。このため、電流検出用のコンデンサの切り換え操作が不要となる結果、測定対象体を流れる電流の周波数毎の電流値を確実かつ容易に検出することができる。   According to the current detection device of claim 1, the AC signal supply unit configured to be able to vary the frequency of the measurement AC signal supplied to the measurement object, and the feedback impedance for determining the conversion gain of the current-voltage conversion are provided. When the frequency of the measurement AC signal is changed, for example, the impedance of the capacitor as the measurement object and the capacitor that forms the feedback impedance of the amplifier are configured by including the amplifier circuit configured by the capacitor. The impedance can be changed equally. Therefore, unlike the conventional current-voltage conversion circuit in which the feedback impedance is formed by a resistor, the conversion gain of the amplifier circuit can be kept constant even if the frequency of the AC signal for measurement is changed. For example, it is possible to avoid a situation where the voltage value of the output signal indicating the current value overflows the input range of the A / D converter connected to the subsequent stage, for example. For this reason, the operation of switching the capacitor for current detection becomes unnecessary, and as a result, the current value for each frequency of the current flowing through the measurement object can be reliably and easily detected.

請求項2記載の電流検出装置によれば、静電容量が互いに異なりかついずれか1つ以上が増幅器の帰還インピーダンスとして切り換え接続可能に複数のコンデンサを配設したことにより、測定対象体としての例えばコンデンサの静電容量に応じて適切な静電容量のコンデンサに切り換えることができる。したがって、測定対象体の静電容量が広範囲に亘るときであっても、コンデンサを切り換えることにより、その静電容量に流れる電流の電流値を確実に検出することができる。   According to the current detection device according to claim 2, a plurality of capacitors are disposed so that capacitances thereof are different from each other and any one or more of them can be switched and connected as a feedback impedance of the amplifier. It is possible to switch to a capacitor having an appropriate capacitance according to the capacitance of the capacitor. Therefore, even when the capacitance of the measurement object is in a wide range, the current value of the current flowing through the capacitance can be reliably detected by switching the capacitor.

請求項3記載の静電容量測定装置によれば、請求項1または2記載の電流検出装置と、測定対象体としての例えばコンデンサの両端間電圧の電圧値を検出する電圧検出部とを備え、測定用交流信号の周波数、電流検出装置の増幅回路によって電流−電圧変換された電圧の波形、および電圧検出部によって検出される両端間電圧の波形に基づいて測定対象体の静電容量を測定することにより、測定対象体を流れる電流の周波数毎の電流値を確実かつ容易に検出することができる結果、周波数毎の測定対象体の静電容量を正確かつ容易に測定することができる。   According to the capacitance measuring device according to claim 3, the current detecting device according to claim 1 or 2 and a voltage detection unit that detects a voltage value of a voltage across the capacitor, for example, as a measurement object, The capacitance of the measurement object is measured based on the frequency of the AC signal for measurement, the waveform of the voltage that has been converted from current to voltage by the amplifier circuit of the current detection device, and the waveform of the voltage across the terminal that is detected by the voltage detection unit. As a result, the current value for each frequency of the current flowing through the measurement object can be reliably and easily detected, and as a result, the capacitance of the measurement object for each frequency can be measured accurately and easily.

以下、本発明に係る電流検出装置および静電容量測定装置の最良の形態について、添付図面を参照して説明する。   Hereinafter, the best mode of a current detection device and a capacitance measurement device according to the present invention will be described with reference to the accompanying drawings.

最初に、静電容量測定装置1の構成について、図面を参照して説明する。   First, the configuration of the capacitance measuring device 1 will be described with reference to the drawings.

静電容量測定装置1は、図1に示すように、電流検出回路2、電圧検出部3、2つのA/Dコンバータ4,5、制御部6、記憶部7、操作部8および表示部9を備え、測定対象体DUTとしての例えばコンデンサの静電容量Cdを測定可能に構成されている。電流検出回路2は、本発明における電流検出装置を構成し、本発明における交流信号供給部としての発振器21、および増幅回路22を備え、発振器21および増幅回路22の間に測定対象体DUTを接続可能に構成されている。この場合、電流検出回路2は、接続された測定対象体DUTに流れる電流I1の電流値を検出する。発振器21は、定電圧源であって、測定対象体DUTに供給する測定用交流信号S1の周波数fを所定の範囲内(例えば、1kHz〜1MHz)で可変可能に構成されている。一方、増幅回路22は、演算増幅器22a、4つのコンデンサ22b〜22e、4つのアナログスイッチ22f〜22i、抵抗22jおよびバッファ22kを備えて構成されている。また、増幅回路22は、測定対象体DUTを流れる電流I1を電流−電圧(I/V)変換して、その電流値に電圧値が比例する出力信号S2を生成してA/Dコンバータ5に出力する。   As shown in FIG. 1, the capacitance measuring device 1 includes a current detection circuit 2, a voltage detection unit 3, two A / D converters 4, 5, a control unit 6, a storage unit 7, an operation unit 8, and a display unit 9. For example, a capacitance Cd of a capacitor as the measurement object DUT can be measured. The current detection circuit 2 constitutes a current detection device according to the present invention, and includes an oscillator 21 and an amplification circuit 22 as an AC signal supply unit according to the present invention, and a measurement object DUT is connected between the oscillator 21 and the amplification circuit 22. It is configured to be possible. In this case, the current detection circuit 2 detects the current value of the current I1 flowing through the connected measurement object DUT. The oscillator 21 is a constant voltage source and is configured to be able to vary the frequency f of the measurement AC signal S1 supplied to the measurement object DUT within a predetermined range (for example, 1 kHz to 1 MHz). On the other hand, the amplifier circuit 22 includes an operational amplifier 22a, four capacitors 22b to 22e, four analog switches 22f to 22i, a resistor 22j, and a buffer 22k. In addition, the amplifier circuit 22 performs current-voltage (I / V) conversion on the current I1 flowing through the measurement object DUT, generates an output signal S2 whose voltage value is proportional to the current value, and supplies the output signal S2 to the A / D converter 5. Output.

演算増幅器22aは、測定対象体DUTが反転入力端子(本発明における増幅回路の入力部側)に接続されている。コンデンサ22b〜22eは、いずれか1つが演算増幅器22aの帰還路において増幅回路22による電流−電圧変換の変換利得決定用の帰還インピーダンスとして切り換え接続可能に配設されている。具体的には、各コンデンサ22b〜22eは、それぞれに直列に接続されたアナログスイッチ22f〜22iのいずれかが制御部6によってオン状態に制御されることで、測定対象体DUTの静電容量Cdに応じて切り換えられる。この場合、コンデンサ22b〜22eのいずれかが、演算増幅器22aの反転入力端子と出力端子との間に接続されて演算増幅器22aの帰還インピーダンスを形成する。また、コンデンサ22b〜22eは、その静電容量が互いに異なり、例えば、コンデンサ22bは、静電容量Cdが10pF以上100pF未満程度の測定対象体DUTが接続されたときに、後段に接続されているA/Dコンバータ5の入力レンジに対して適当な電圧値の出力信号S2となるように、その静電容量Cが例えば100pFに設定されている。同様にして、コンデンサ22cは、100pF以上1nF未満程度の測定対象体DUT用としてその静電容量Cが例えば1nFに設定され、コンデンサ22dは、1nF以上10nF未満程度の測定対象体DUT用としてその静電容量Cが例えば10nFに設定され、コンデンサ22eは、10nF以上100nF未満程度の測定対象体DUT用としてその静電容量C例えば100nFに設定されている。   In the operational amplifier 22a, the measurement object DUT is connected to the inverting input terminal (the input portion side of the amplifier circuit in the present invention). Any one of the capacitors 22b to 22e is disposed so as to be switchable and connectable as a feedback impedance for determining a conversion gain of current-voltage conversion by the amplifier circuit 22 in the feedback path of the operational amplifier 22a. Specifically, each of the capacitors 22b to 22e is controlled to be turned on by the control unit 6 in any one of the analog switches 22f to 22i connected in series with each other, whereby the capacitance Cd of the measurement object DUT. It is switched according to. In this case, any of the capacitors 22b to 22e is connected between the inverting input terminal and the output terminal of the operational amplifier 22a to form the feedback impedance of the operational amplifier 22a. Further, the capacitors 22b to 22e have different capacitances. For example, the capacitor 22b is connected to the subsequent stage when a measurement object DUT having a capacitance Cd of 10 pF or more and less than 100 pF is connected. The capacitance C is set to 100 pF, for example, so that the output signal S2 has an appropriate voltage value with respect to the input range of the A / D converter 5. Similarly, the capacitance C of the capacitor 22c is set to, for example, 1 nF for a measurement object DUT of 100 pF or more and less than 1 nF, and the capacitor 22d is used for a measurement object DUT of 1 nF or more and less than 10 nF. The capacitance C is set to, for example, 10 nF, and the capacitor 22e is set to have a capacitance C, for example, 100 nF, for a measurement object DUT that is about 10 nF to less than 100 nF.

アナログスイッチ22f〜22iは、制御部6から出力される制御信号S3に従い、いずれかが選択的にオン状態に制御されて、演算増幅器22aの帰還インピーダンスを形成するコンデンサ22b〜22eを切り換える。抵抗22jは、直流成分を帰還して電流検出回路2を安定動作させるために演算増幅器22aの反転入力端子と出力端子との間に接続されており、コンデンサ22bに対してインピーダンスが十分に高い抵抗であって、各電気素子22b〜22e,22f〜22iと共に演算増幅器22aの帰還インピーダンスを形成する。バッファ22kは、演算増幅器22aを理想オペアンプとして用いるために演算増幅器22aの出力側に接続されており、演算増幅器22aから出力される信号を所定の増幅率で緩衝増幅する。   Any one of the analog switches 22f to 22i is selectively turned on according to the control signal S3 output from the control unit 6 to switch the capacitors 22b to 22e forming the feedback impedance of the operational amplifier 22a. The resistor 22j is connected between the inverting input terminal and the output terminal of the operational amplifier 22a in order to feed back the DC component and stably operate the current detection circuit 2, and has a sufficiently high impedance with respect to the capacitor 22b. The feedback impedance of the operational amplifier 22a is formed together with the electric elements 22b to 22e and 22f to 22i. The buffer 22k is connected to the output side of the operational amplifier 22a in order to use the operational amplifier 22a as an ideal operational amplifier, and buffers and amplifies the signal output from the operational amplifier 22a with a predetermined amplification factor.

電圧検出部3は、測定対象体DUTの両端間電圧の電圧値を検出して、その電圧値を示す出力信号S4をA/Dコンバータ4に出力する。A/Dコンバータ4は、電圧検出部3から出力される出力信号S4をアナログ−デジタル(A/D)変換することによって生成したデジタル信号S5を制御部6に出力する。一方、A/Dコンバータ5は、増幅回路22から出力される出力信号S2をA/D変換することによって生成したデジタル信号S6を制御部6に出力する。   The voltage detector 3 detects the voltage value of the voltage across the measurement object DUT and outputs an output signal S4 indicating the voltage value to the A / D converter 4. The A / D converter 4 outputs a digital signal S5 generated by analog-digital (A / D) conversion of the output signal S4 output from the voltage detection unit 3 to the control unit 6. On the other hand, the A / D converter 5 outputs a digital signal S6 generated by A / D converting the output signal S2 output from the amplifier circuit 22 to the control unit 6.

制御部6は、測定用交流信号S1の周波数f、デジタル信号S5で特定される電圧の波形(本発明における両端間電圧の波形)、およびデジタル信号S6で特定される電流の波形(本発明における電流−電圧変換された電圧の波形)に基づいて測定対象体DUTの静電容量Cdを算出する。また、制御部6は、周波数f毎の測定対象体DUTの静電容量Cdを算出して、その静電容量Cdを示す測定データDcを周波数f毎に記憶部7に対して記憶させる。記憶部7は、制御部6の制御に従い、デジタル信号S5,S6および周波数f毎の測定データDcを記憶する。操作部8は、使用者によって操作された操作内容に応じた指示信号S7を制御部6に出力する。表示部9は、制御部6の制御に従い、図2に示すように、周波数fの測定データDcを表示する。   The control unit 6 includes the frequency f of the measurement AC signal S1, the waveform of the voltage specified by the digital signal S5 (the waveform of the voltage between both ends in the present invention), and the waveform of the current specified by the digital signal S6 (in the present invention). The capacitance Cd of the measurement object DUT is calculated based on the current-voltage converted voltage waveform. Further, the control unit 6 calculates the capacitance Cd of the measurement object DUT for each frequency f, and causes the storage unit 7 to store the measurement data Dc indicating the capacitance Cd for each frequency f. The storage unit 7 stores the digital signals S5 and S6 and the measurement data Dc for each frequency f under the control of the control unit 6. The operation unit 8 outputs an instruction signal S7 corresponding to the operation content operated by the user to the control unit 6. The display unit 9 displays the measurement data Dc of the frequency f as shown in FIG. 2 under the control of the control unit 6.

次に、静電容量測定装置1を用いた測定対象体DUTの静電容量Cdの測定方法について、図面を参照して説明する。   Next, a method for measuring the capacitance Cd of the measurement object DUT using the capacitance measuring device 1 will be described with reference to the drawings.

最初に、発振器21および増幅回路22の間に測定対象体DUTを接続する。次いで、例えば測定対象体DUTの静電容量Cdが100pF以上1nF未満の範囲内であると予め分かっているときには、操作部8を操作して指示信号S7を制御部6に対して出力させることにより、増幅回路22に対して制御信号S3を出力させる。この際に、増幅回路22では、アナログスイッチ22gがオン状態に制御されて、1nFのコンデンサ22cおよび抵抗22jの並列回路で演算増幅器22aの帰還インピーダンスが形成される。この場合、測定対象体DUTおよび増幅回路22で構成される増幅回路の増幅率(電流−電圧変換の変換利得)は、測定対象体DUTのインピーダンスとコンデンサ22cのインピーダンス(正確には、リアクタンス)との比で規定される。   First, the measurement object DUT is connected between the oscillator 21 and the amplifier circuit 22. Next, for example, when it is known in advance that the capacitance Cd of the measurement object DUT is in a range of 100 pF or more and less than 1 nF, the operation unit 8 is operated to output the instruction signal S7 to the control unit 6. Then, the control signal S3 is output to the amplifier circuit 22. At this time, in the amplifier circuit 22, the analog switch 22g is controlled to be in an ON state, and the feedback impedance of the operational amplifier 22a is formed by a parallel circuit of the 1nF capacitor 22c and the resistor 22j. In this case, the amplification factor (conversion gain of current-voltage conversion) of the amplifier circuit constituted by the measurement object DUT and the amplifier circuit 22 is the impedance of the measurement object DUT and the impedance (more precisely, reactance) of the capacitor 22c. It is defined by the ratio of

次いで、制御部6は、制御信号S8を出力して、発振器21に対して、測定用交流信号S1の周波数fを例えば1kHz〜1MHzの範囲で変化させる。この際に、制御部6は、測定用交流信号S1の周波数fを連続的に変化させつつ、各周波数fにおける測定対象体DUTの静電容量Cdの算出処理を繰り返し実行する。具体的に、所定の周波数(一例として10kHz)fの測定用交流信号S1を測定対象体DUTに供給したときの静電容量Cdの算出処理について説明する。この処理では、まず、発振器21が、その周波数fの測定用交流信号S1を測定対象体DUTに供給する。この際に、増幅回路22が、測定対象体DUTを流れる電流I1をI/V変換して、その電流値を示す出力信号S2をA/Dコンバータ5に出力する。次いで、A/Dコンバータ5は、出力信号S2をA/D変換して生成したデジタル信号S6を制御部6に出力する。続いて、制御部6は、少なくとも測定用交流信号S1の1周期分のデジタル信号S6を記憶部7に記憶させる。一方、電圧検出部3は、測定対象体DUTの両端間電圧の電圧値を示す出力信号S4をA/Dコンバータ4に出力する。この際に、A/Dコンバータ4は、出力信号S4をA/D変換して生成したデジタル信号S5を制御部6に出力する。続いて、制御部6は、少なくとも測定用交流信号S1の1周期分のデジタル信号S5を記憶部7に記憶させる。   Next, the control unit 6 outputs a control signal S8, and causes the oscillator 21 to change the frequency f of the measurement AC signal S1 within a range of, for example, 1 kHz to 1 MHz. At this time, the control unit 6 repeatedly executes the calculation process of the capacitance Cd of the measurement object DUT at each frequency f while continuously changing the frequency f of the AC signal for measurement S1. Specifically, the calculation process of the capacitance Cd when the measurement AC signal S1 having a predetermined frequency (10 kHz as an example) f is supplied to the measurement object DUT will be described. In this process, first, the oscillator 21 supplies the measurement AC signal S1 having the frequency f to the measurement object DUT. At this time, the amplifier circuit 22 performs I / V conversion on the current I1 flowing through the measurement object DUT, and outputs an output signal S2 indicating the current value to the A / D converter 5. Next, the A / D converter 5 outputs a digital signal S6 generated by A / D converting the output signal S2 to the control unit 6. Subsequently, the control unit 6 causes the storage unit 7 to store at least the digital signal S6 for one cycle of the measurement AC signal S1. On the other hand, the voltage detection unit 3 outputs an output signal S4 indicating the voltage value of the voltage across the measurement object DUT to the A / D converter 4. At this time, the A / D converter 4 outputs a digital signal S5 generated by A / D converting the output signal S4 to the control unit 6. Subsequently, the control unit 6 causes the storage unit 7 to store at least one cycle of the digital signal S5 of the measurement AC signal S1.

この後、制御部6は、測定用交流信号S1の周波数f、デジタル信号S5で特定される電圧の波形(つまり測定対象体DUTの両端間電圧の電圧波形)、およびデジタル信号S6で特定される電流の波形(つまり測定対象体DUTに流れる電流I1の電流波形)に基づき、その周波数fにおける測定対象体DUTの静電容量Cdを算出する。具体的には、制御部6は、記憶部7に記憶させた測定用交流信号S1の1周期分のデジタル信号S5で特定される電圧波形と、記憶部7に記憶させた測定用交流信号S1の1周期分のデジタル信号S6で特定される電流波形との間の位相差を算出し、次いで、1周期分の電圧波形から算出した電圧の実効値と、1周期分の電流波形から算出した電流の実効値とに基づいて測定対象体DUTのインピーダンスを算出する。次に、制御部6は、算出した位相差、算出したインピーダンス、および測定用交流信号S1の周波数fに基づいて測定対象体DUTの静電容量Cdを算出する。続いて、制御部6は、測定用交流信号S1の周波数fを連続的に増加させつつ、周波数f毎の測定対象体DUTの静電容量Cdを算出すると共に、周波数f毎の静電容量Cを示す測定データDcを記憶部7に記憶させる。なお、測定用交流信号S1の周波数fを増加させたときには、測定対象体DUTのインピーダンスは周波数fの変化に伴って減少するものの、コンデンサ22cのインピーダンスも同等に減少する。したがって、測定用交流信号S1の周波数fを変化させたとしても、測定対象体DUTおよび増幅回路22で構成される増幅回路の電流−電圧変換の変換利得の変化が十分に抑えられて、その変換利得がほぼ一定となる。このため、静電容量Cdの算出処理中において出力信号S2の電圧値がA/Dコンバータ5の入力レンジをオーバーフローする事態が回避される。続いて、上記した範囲の周波数fについての静電容量Cdの算出が終了した後に、制御部6は、図2に示すように、測定対象体DUTの静電容量Cdの周波数依存性を検査するために用いられる周波数f毎の静電容量Cdの値を表示部9に表示させる。   Thereafter, the control unit 6 is specified by the frequency f of the AC signal for measurement S1, the waveform of the voltage specified by the digital signal S5 (that is, the voltage waveform of the voltage across the measurement object DUT), and the digital signal S6. Based on the current waveform (that is, the current waveform of the current I1 flowing through the measurement object DUT), the capacitance Cd of the measurement object DUT at the frequency f is calculated. Specifically, the control unit 6 includes the voltage waveform specified by the digital signal S5 for one cycle of the measurement AC signal S1 stored in the storage unit 7 and the measurement AC signal S1 stored in the storage unit 7. The phase difference between the current waveform identified by the digital signal S6 for one cycle and the effective value of the voltage calculated from the voltage waveform for one cycle and the current waveform for one cycle were calculated. The impedance of the measurement object DUT is calculated based on the effective value of the current. Next, the control unit 6 calculates the capacitance Cd of the measurement object DUT based on the calculated phase difference, the calculated impedance, and the frequency f of the measurement AC signal S1. Subsequently, the control unit 6 calculates the capacitance Cd of the measurement object DUT for each frequency f while continuously increasing the frequency f of the AC signal for measurement S1, and the capacitance C for each frequency f. Is stored in the storage unit 7. Note that when the frequency f of the measurement AC signal S1 is increased, the impedance of the measurement object DUT decreases with a change in the frequency f, but the impedance of the capacitor 22c also decreases equally. Therefore, even if the frequency f of the measurement AC signal S1 is changed, the change in the conversion gain of the current-voltage conversion of the amplifier circuit constituted by the measurement object DUT and the amplifier circuit 22 is sufficiently suppressed, and the conversion is performed. The gain is almost constant. For this reason, the situation where the voltage value of the output signal S2 overflows the input range of the A / D converter 5 during the process of calculating the capacitance Cd is avoided. Subsequently, after the calculation of the capacitance Cd for the frequency f in the above-described range is completed, the control unit 6 inspects the frequency dependence of the capacitance Cd of the measurement object DUT as shown in FIG. Therefore, the value of the capacitance Cd for each frequency f used for the purpose is displayed on the display unit 9.

このように、この電流検出回路2によれば、測定対象体DUTとしての例えばコンデンサに供給する測定用交流信号S1の周波数fを可変可能に構成された発振器21と、電流−電圧変換の変換利得決定用の帰還インピーダンスがコンデンサ22b〜22eで構成された増幅回路22とを備えて構成したことにより、測定用交流信号S1の周波数fを変化させたときに、測定対象体DUTのインピーダンスと、演算増幅器22aの帰還インピーダンスを形成するコンデンサ22b〜22eのいずれかのインピーダンスとを同等に変化させることができる。したがって、帰還インピーダンスを抵抗で形成する従来の電流−電圧変換回路とは異なり、測定用交流信号S1の周波数fを変化させたとしても増幅回路22の変換利得を一定に維持することができるため、周波数fの変化に伴って出力信号S2の電圧値がA/Dコンバータ5の入力レンジをオーバーフローする事態を回避することができる。このため、この電流検出回路2によれば、電流検出用のコンデンサ22b〜22eの切り換え操作が不要となる結果、測定対象体DUTを流れる電流I1の周波数f毎の電流値を確実かつ容易に検出することができる。したがって、この静電容量測定装置1によれば、電流検出回路2と、測定対象体DUTの両端間電圧の電圧値を検出する電圧検出部3とを備え、測定用交流信号S1の周波数f、デジタル信号S5で特定される電圧の波形、およびデジタル信号S6で特定される電流の波形に基づいて測定対象体DUTの静電容量Cdを算出することにより、測定対象体DUTを流れる電流I1の周波数f毎の電流値を確実かつ容易に検出することができる結果、周波数f毎の測定対象体DUTの静電容量Cdを正確かつ容易に測定することができる。   Thus, according to the current detection circuit 2, the oscillator 21 configured to be able to vary the frequency f of the measurement AC signal S1 supplied to, for example, the capacitor as the measurement object DUT, and the conversion gain of the current-voltage conversion Since the determination feedback impedance includes the amplification circuit 22 including the capacitors 22b to 22e, when the frequency f of the measurement AC signal S1 is changed, the impedance of the measurement object DUT is calculated. The impedance of any of the capacitors 22b to 22e forming the feedback impedance of the amplifier 22a can be changed equally. Therefore, unlike the conventional current-voltage conversion circuit in which the feedback impedance is formed by a resistor, the conversion gain of the amplifier circuit 22 can be kept constant even if the frequency f of the measurement AC signal S1 is changed. A situation in which the voltage value of the output signal S2 overflows the input range of the A / D converter 5 as the frequency f changes can be avoided. For this reason, according to the current detection circuit 2, the switching operation of the current detection capacitors 22b to 22e becomes unnecessary, and as a result, the current value for each frequency f of the current I1 flowing through the measurement object DUT is reliably and easily detected. can do. Therefore, according to the capacitance measuring apparatus 1, the current detection circuit 2 and the voltage detection unit 3 that detects the voltage value of the voltage across the measurement object DUT are provided, and the frequency f of the AC signal S1 for measurement, The frequency of the current I1 flowing through the measurement object DUT is calculated by calculating the capacitance Cd of the measurement object DUT based on the voltage waveform specified by the digital signal S5 and the current waveform specified by the digital signal S6. As a result of reliably and easily detecting the current value for each f, the capacitance Cd of the measurement object DUT for each frequency f can be accurately and easily measured.

また、この静電容量測定装置1によれば、静電容量Cが互いに異なりかついずれか1つが演算増幅器22aの帰還インピーダンスとして切り換え接続可能にコンデンサ22b〜22eを配設したことにより、測定対象体DUTとしての例えばコンデンサの静電容量Cdに応じて適切な静電容量Cのコンデンサ22b〜22eに切り換えることができる。したがって、測定対象体DUTの静電容量Cdが広範囲に亘るときであっても、コンデンサ22b〜22eを切り換えることにより、その静電容量Cdを確実に測定することができる。   Further, according to the capacitance measuring apparatus 1, the capacitors 22b to 22e are arranged so that the capacitances C are different from each other and any one of them can be switched and connected as the feedback impedance of the operational amplifier 22a. The DUT can be switched to capacitors 22b to 22e having appropriate capacitance C according to, for example, the capacitance Cd of the capacitor. Therefore, even when the capacitance Cd of the measurement object DUT covers a wide range, the capacitance Cd can be reliably measured by switching the capacitors 22b to 22e.

なお、本発明は、上記の構成に限定されない。例えば、上記の構成では、4つのコンデンサ22b〜22eのいずれかで演算増幅器22aの帰還インピーダンスを形成する構成について説明したが、これに限定されない。例えば、1つのコンデンサで演算増幅器22aの帰還インピーダンスを形成してもよい。また、4つ以外の複数(2つ、3つまたは5つ以上)のコンデンサを切り換え可能に接続すると共に、それらのコンデンサのいずれかで演算増幅器22aの帰還インピーダンスを形成させてもよい。さらに、複数のコンデンサを切り換え可能に接続する構成において、2つ以上のコンデンサを切り換えて並列接続してもよいのは勿論である。   In addition, this invention is not limited to said structure. For example, in the above configuration, the configuration in which the feedback impedance of the operational amplifier 22a is formed by any one of the four capacitors 22b to 22e has been described, but the configuration is not limited thereto. For example, the feedback impedance of the operational amplifier 22a may be formed with a single capacitor. Further, a plurality of (two, three, five or more) capacitors other than four may be switchably connected, and the feedback impedance of the operational amplifier 22a may be formed by any of these capacitors. Furthermore, in a configuration in which a plurality of capacitors are connected in a switchable manner, it is needless to say that two or more capacitors may be switched and connected in parallel.

静電容量測定装置1の構成図である。1 is a configuration diagram of a capacitance measuring device 1. FIG. 測定対象体DUTの静電容量の周波数特性を示す表示画面図である。It is a display screen figure which shows the frequency characteristic of the electrostatic capacitance of the measurement object DUT.

符号の説明Explanation of symbols

1 静電容量測定装置
2 電流検出回路
3 電圧検出部
4,5 A/Dコンバータ
6 制御部
7 記憶部
8 操作部
9 表示部
21 発振器
22 増幅回路
22a 演算増幅器
22b〜22e コンデンサ
22f〜22i アナログスイッチ
C,Cd 静電容量
DUT 測定対象体
I1 電流
f 周波数
S1 測定用交流信号
DESCRIPTION OF SYMBOLS 1 Capacitance measuring apparatus 2 Current detection circuit 3 Voltage detection part 4,5 A / D converter 6 Control part 7 Memory | storage part 8 Operation part 9 Display part 21 Oscillator 22 Amplification circuit 22a Operational amplifier 22b-22e Capacitor 22f-22i Analog switch C, Cd Capacitance DUT Measurement object I1 Current f Frequency S1 AC signal for measurement

Claims (3)

測定用交流信号の周波数を可変可能な交流信号供給部と、前記測定用交流信号の印加時において測定対象体を流れる電流を電流−電圧変換する増幅回路とを備え、
前記増幅回路は、前記電流−電圧変換の変換利得決定用の帰還インピーダンスがコンデンサで構成されている電流検出装置。
An AC signal supply unit capable of changing the frequency of the AC signal for measurement, and an amplifier circuit for current-voltage conversion of the current flowing through the measurement object when the AC signal for measurement is applied,
The amplifying circuit is a current detecting device in which a feedback impedance for determining a conversion gain of the current-voltage conversion is configured by a capacitor.
前記増幅回路は、前記コンデンサを複数備え、当該複数のコンデンサは、その静電容量が互いに異なりかついずれか1つ以上が前記帰還インピーダンスとして切り換え接続可能に配設されている請求項1記載の電流検出装置。   2. The current according to claim 1, wherein the amplifier circuit includes a plurality of the capacitors, and the plurality of capacitors have different electrostatic capacitances, and any one or more of the capacitors are arranged to be switched and connected as the feedback impedance. Detection device. 請求項1または2記載の電流検出装置と、前記測定対象体の両端間電圧を検出する電圧検出部とを備え、
前記測定用交流信号の前記周波数、前記電流検出装置の前記増幅回路によって電流−電圧変換された電圧の波形、および前記電圧検出部によって検出される前記両端間電圧の波形に基づいて当該測定対象体の静電容量を測定する静電容量測定装置。
The current detection device according to claim 1 or 2, and a voltage detection unit that detects a voltage between both ends of the measurement object,
The measurement object based on the frequency of the AC signal for measurement, the waveform of the voltage converted from current to voltage by the amplifier circuit of the current detection device, and the waveform of the voltage across the terminal detected by the voltage detection unit. Capacitance measurement device that measures the capacitance of
JP2005314031A 2005-10-28 2005-10-28 Current detecting device and capacitance measuring device Pending JP2007121125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005314031A JP2007121125A (en) 2005-10-28 2005-10-28 Current detecting device and capacitance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005314031A JP2007121125A (en) 2005-10-28 2005-10-28 Current detecting device and capacitance measuring device

Publications (1)

Publication Number Publication Date
JP2007121125A true JP2007121125A (en) 2007-05-17

Family

ID=38145129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005314031A Pending JP2007121125A (en) 2005-10-28 2005-10-28 Current detecting device and capacitance measuring device

Country Status (1)

Country Link
JP (1) JP2007121125A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011515692A (en) * 2008-03-26 2011-05-19 イーエルエスアイ テクノロジース オーワイ Adapter components for measurement systems
JP2012013591A (en) * 2010-07-02 2012-01-19 Hioki Ee Corp Apparatus and method for measuring electrostatic capacity
JP2021032854A (en) * 2019-08-29 2021-03-01 富士電機株式会社 Discharge detector and discharge detection method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6114578A (en) * 1984-06-30 1986-01-22 Suzuki Shigeo Capacity meter
JPH0540888U (en) * 1991-10-31 1993-06-01 日置電機株式会社 Current-voltage conversion circuit
JP2003028741A (en) * 2001-07-11 2003-01-29 Toyota Central Res & Dev Lab Inc Capacitive sensor device
JP2003156524A (en) * 2001-09-06 2003-05-30 Sumitomo Metal Ind Ltd Potential fixing device and potential fixing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6114578A (en) * 1984-06-30 1986-01-22 Suzuki Shigeo Capacity meter
JPH0540888U (en) * 1991-10-31 1993-06-01 日置電機株式会社 Current-voltage conversion circuit
JP2003028741A (en) * 2001-07-11 2003-01-29 Toyota Central Res & Dev Lab Inc Capacitive sensor device
JP2003156524A (en) * 2001-09-06 2003-05-30 Sumitomo Metal Ind Ltd Potential fixing device and potential fixing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011515692A (en) * 2008-03-26 2011-05-19 イーエルエスアイ テクノロジース オーワイ Adapter components for measurement systems
KR101541944B1 (en) * 2008-03-26 2015-08-04 이엘에스아이 테크놀러지스 오이 Adaptor component for a measuring system
EP2274629B1 (en) 2008-03-26 2019-12-25 MariCare Oy Measuring apparatus comprising adaptor component
JP2012013591A (en) * 2010-07-02 2012-01-19 Hioki Ee Corp Apparatus and method for measuring electrostatic capacity
JP2021032854A (en) * 2019-08-29 2021-03-01 富士電機株式会社 Discharge detector and discharge detection method
JP7276009B2 (en) 2019-08-29 2023-05-18 富士電機株式会社 DISCHARGE DETECTION DEVICE AND DISCHARGE DETECTION METHOD

Similar Documents

Publication Publication Date Title
CN101231310B (en) Voltage measurement instrument and method having improved automatic mode operation
JP5774386B2 (en) Impedance measuring device
JP2003028900A (en) Non-contact voltage measurement method and apparatus
JP6570981B2 (en) Measuring apparatus and measuring method
JP2005315729A (en) Direct-current testing device
JP2007121125A (en) Current detecting device and capacitance measuring device
JP6202452B1 (en) Non-contact type substrate inspection apparatus and inspection method thereof
JP4054652B2 (en) Storage battery internal impedance measurement method and storage battery internal impedance measurement device
JP2013029466A (en) Electric measurement device including integration type current/voltage conversion circuit
JP5836053B2 (en) measuring device
JP2011185625A (en) Inspection device
JP7009025B2 (en) Voltage measuring device, voltage measuring method
JP4851363B2 (en) Impedance measuring device
JP2011226782A (en) Inspection device and inspection method
JP2007248446A (en) Vector detector and biological complex impedance measuring apparatus equipped with the same
JP2007240286A (en) Measuring method and measuring instrument
JPH06222032A (en) Capacitive alcohol concentration measuring equipment
JP7080757B2 (en) Impedance measuring device and impedance measuring method
JP5855382B2 (en) Capacitor insulation resistance measuring apparatus and capacitor insulation resistance measuring method
JP2004093416A (en) Voltage / current measuring device
JP2017203726A (en) Impedance measuring apparatus and impedance measuring method
JP2008076337A (en) Input impedance measuring apparatus and method
JP2007132777A (en) Impedance measuring device
JP2589817Y2 (en) LCR tester
JP2016057077A (en) Measurement device and signal category determination method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081020

A977 Report on retrieval

Effective date: 20100409

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100803