[go: up one dir, main page]

JP2007118117A - Machining device and method for fly-eye lens forming die - Google Patents

Machining device and method for fly-eye lens forming die Download PDF

Info

Publication number
JP2007118117A
JP2007118117A JP2005312084A JP2005312084A JP2007118117A JP 2007118117 A JP2007118117 A JP 2007118117A JP 2005312084 A JP2005312084 A JP 2005312084A JP 2005312084 A JP2005312084 A JP 2005312084A JP 2007118117 A JP2007118117 A JP 2007118117A
Authority
JP
Japan
Prior art keywords
polishing
tool
eye lens
concave surface
fly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005312084A
Other languages
Japanese (ja)
Inventor
Hiroki Nakagawa
寛紀 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2005312084A priority Critical patent/JP2007118117A/en
Publication of JP2007118117A publication Critical patent/JP2007118117A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a machining device and method for a fly-eye lens forming die, capable of polishing not only a spherical surface shaped fly-eye lens but also a non-spherical surface shaped fly-eye lens and efficiently performing polishing with more polishing amount per fixed time. <P>SOLUTION: In this polishing machine 1, a polishing tool 19 of a projecting surface having almost the same curvature as that of a forming recessed surface mounted on a mounting stage 7 of a body to be machined is used. The body to be machined is moved at an X-direction stage 3 and a Y-direction stage 4 so that a rotation center of a head rotary shaft 15 may coincide with an optical axis of the forming recessed surface to be polished at first, the polishing tool 19 is brought into contact with the forming recessed surface, and polishing is performed by rotating a tool rotary shaft 18 around an optical axis c by the head rotary shaft 15, while rotating the polishing tool 19 by the tool rotary shaft 18. When polishing of the one forming recessed surface is finished, the optical axis of the next forming recessed surface is moved to coincide with a center shaft of the head rotary shaft 15 by X-axis and Y-axis, and the same polishing is performed. The polishing is successively performed for all forming recessed surfaces. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、球面又は非球面の成形凹面を複数配置して成るフライアイレンズを成形するフライアイレンズ成形型の光学機能面等を研磨加工するフライアイレンズ成形型の加工装置および加工方法に関する。   The present invention relates to a processing apparatus and a processing method for a fly-eye lens mold that polishes an optical functional surface of a fly-eye lens mold that molds a fly-eye lens having a plurality of spherical or aspheric molding concave surfaces.

従来、フライアイレンズ成形型の作製技術において、フライアイレンズ成形型の成形凹面形状に合う凸面研磨工具を用い、研磨を行おうとする成形凹面をXY移動ステージによ
り回転中心に配置し、フライアイ成形型を回転させ、研磨工具を球心揺動することにより成形凹面を研磨し、この工程を成形凹面の数だけ繰り返し行うことでフライアイレンズ成形型全面の研磨を行う研磨装置が提案されている。(例えば、特許文献1参照。)
特開平09−136253号公報([要約]、図1)
Conventionally, in fly eye lens mold manufacturing technology, a convex polishing tool that matches the molding concave shape of the fly eye lens mold is used, and the molding concave surface to be polished is placed at the center of rotation by an XY moving stage, and fly eye molding is performed. A polishing apparatus has been proposed that polishes the molding concave surface by rotating the mold and pivoting the polishing tool, and polishing the entire fly-eye lens molding die by repeating this process for the number of molding concave surfaces. . (For example, refer to Patent Document 1.)
JP 09-136253 A ([Summary], FIG. 1)

しかしながら、上記の特許文献1の技術は、先ず、基本的な動作がレンズ研磨等に用いられる球心揺動式研磨装置であるため、成形凹面の形状が球面以外であった場合は適応が不可能であるという問題を有している。   However, since the technique of the above-mentioned Patent Document 1 is a ball center oscillating polishing device whose basic operation is used for lens polishing or the like, it is not applicable when the shape of the molding concave surface is other than a spherical surface. It has the problem that it is possible.

また、フライアイレンズを構成する一つのレンズが、口径に対してレンズの半径が大きくて浅い凹面である形状の場合には、研磨工具が球心揺動すると研磨しようとしている成形凹面からずれてしまい研磨が出来ないため揺動角を小さくしなくてはならないことや、研磨工具が連れ回りであるため研磨工具の相対速度が小さくなることなどから、一定時間内で多くの研磨除去量を確保できず作業効率が悪いという問題も有している。   In addition, when one lens constituting the fly-eye lens has a shallow concave surface with a large lens radius relative to the aperture, it shifts from the molding concave surface to be polished when the polishing tool swings in the center. Since the polishing cannot be performed, the swing angle must be reduced, and the relative speed of the polishing tool is reduced because the polishing tool is rotated. There is also a problem that working efficiency is poor.

本発明の課題は、上記従来の実情に鑑み、球面形状だけでなく非球面形状のフライアイレンズ型の研磨も可能であり且つ一定時間当りの研磨量がより多く効率良く研磨が可能なフライアイレンズ成形型の加工装置および加工方法を提供することを目的とする。   In view of the above-described conventional situation, the object of the present invention is a fly-eye lens that can polish not only a spherical shape but also an aspherical fly-eye lens type, and can polish efficiently with a larger polishing amount per fixed time. An object is to provide a processing apparatus and a processing method for a lens mold.

上記課題を解決するために、先ず、第1の発明のフライアイレンズ成形型の加工装置は、フライアイレンズの成形型を研磨加工するフライアイレンズ成形型の加工装置において、任意の角度に傾けられて配置され、先端に取り付けられた研磨工具を回転させる工具回転軸と、該工具回転軸を取り付けられ該工具回転軸を上記成形型の成形凹面の光軸周りに回転させるヘッド回転軸と、該ヘッド回転軸を取り付けられ該ヘッド回転軸の移動量を上記成形型の成形凹面の半径方向に変化させる偏芯スライド部と、上記ヘッド回転軸と上記成形型との相対位置を互いに直交する3軸方向に移動可能に制御するNC装置と、を備えることを特徴とする。   In order to solve the above problems, first, a fly eye lens mold processing apparatus according to a first aspect of the invention is a fly eye lens mold processing apparatus for polishing a fly eye lens mold, which is tilted at an arbitrary angle. A tool rotation axis that rotates the polishing tool that is disposed and is attached to the tip, and a head rotation axis that is attached to the tool rotation axis and rotates the tool rotation axis around the optical axis of the molding concave surface of the mold, The eccentric slide part to which the head rotation shaft is attached and which changes the movement amount of the head rotation shaft in the radial direction of the molding concave surface of the molding die, and the relative positions of the head rotation shaft and the molding die are orthogonal to each other 3 And an NC device that is controlled so as to be movable in the axial direction.

次に、第2の発明のフライアイレンズ成形型の研磨方法は、第1の発明のフライアイレンズ成形型の加工装置を用いたフライアイレンズ成形型の研磨方法において、上記研磨工具として上記成形型の成形凹面とほぼ同じ曲率をもつ弾性体を用い、上記研磨工具を上記成形凹面に接した状態で上記工具回転軸及び上記ヘッド回転軸を回転させて研磨を行う、ことを特徴とする。   Next, the method for polishing a fly-eye lens mold of the second invention is the method for polishing a fly-eye lens mold using the processing apparatus for the fly-eye lens mold of the first invention. Using an elastic body having substantially the same curvature as the molding concave surface of the mold, polishing is performed by rotating the tool rotating shaft and the head rotating shaft while the polishing tool is in contact with the molding concave surface.

更に、第3の発明のフライアイレンズ成形型の研磨方法は、第1の発明のフライアイレンズ成形型の加工装置を用いたフライアイレンズ成形型の研磨方法において、上記研磨工具を上記成形凹面に対し螺旋状の軌跡を描きながら研磨させるべく、上記成形凹面の断面形状に合わせて上記研磨工具が接するように上記成形凹面の深さ方向および上記偏芯スライド部の移動量を変化させると共に、上記研磨工具を上記工具回転軸で回転させると同時に該工具回転軸及び上記ヘッド回転軸を上記偏芯スライド部により回転させる、ことを特徴とする。   Further, a polishing method for a fly-eye lens mold according to a third aspect of the present invention is the method for polishing a fly-eye lens mold using the processing apparatus for the fly-eye lens mold according to the first aspect, wherein the polishing tool is used as the molding concave surface. In order to polish while drawing a spiral trajectory, the depth direction of the molding concave surface and the amount of movement of the eccentric slide portion are changed so that the polishing tool contacts the cross-sectional shape of the molding concave surface, The polishing tool is rotated by the tool rotation shaft, and at the same time, the tool rotation shaft and the head rotation shaft are rotated by the eccentric slide portion.

先ず、第1の発明によれば、研磨工具を回転させたまま成形凹面の光軸周りに公転させることが出来、また、XY軸を固定したまま偏芯スライド部とZ軸の移動により例えば球
形状の研磨工具を成形凹面の断面形状に沿って移動させることが出来るので、フライアイレンズ成形型の球面および非球面形状を持つ成形凹面を効率良く研磨する加工装置を提供することが可能となる。
First, according to the first invention, it is possible to revolve around the optical axis of the concave molding surface while rotating the polishing tool, and, for example, a ball by moving the eccentric slide portion and the Z axis while fixing the XY axis. Since the shape polishing tool can be moved along the cross-sectional shape of the molding concave surface, it is possible to provide a processing apparatus for efficiently polishing the molding concave surface having the spherical and aspherical shapes of the fly-eye lens mold. .

次に、第2の発明によれば、第1の発明の加工装置を用い、球面または非球面量の小さい成形凹面の効率の良い研磨が可能な加工方法を提供することが出来る。
更に、第3の発明によれば、第1の発明の加工装置を用い、非球面量の大きい成形凹面でも研磨が可能な加工方法を提供することが出来る。
Next, according to the second invention, it is possible to provide a machining method capable of efficiently polishing a molding concave surface having a small spherical surface or aspheric surface using the processing device of the first invention.
Furthermore, according to the third invention, it is possible to provide a machining method capable of polishing even a molded concave surface having a large aspheric amount by using the machining apparatus of the first invention.

以下、本発明の実施の形態を図面を参照しながら説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明の加工装置および加工方法により研磨仕上げされるフライアイレンズの成形型の成形面を正面から見た図である。図1に示すように、フライアイレンズの成形型においては、その成形凹面a(a1 、a2 、a3 、・・・、an )は、6角の外形を持ち、蜂の巣形状に配置されている。   FIG. 1 is a front view of a molding surface of a fly-eye lens mold that is polished by the processing apparatus and processing method of the present invention. As shown in FIG. 1, in the fly-eye lens mold, the molding concave surface a (a1, a2, a3,..., An) has a hexagonal outer shape and is arranged in a honeycomb shape.

図2は、上記フライアイレンズの成形型の一部の成形凹面を斜め上から見た斜視図である。図2に示すように、各成形凹面am (m=1、2、3、・・・、n)には光軸bがある。   FIG. 2 is a perspective view of a part of the molding concave surface of the fly-eye lens mold as seen obliquely from above. As shown in FIG. 2, each molding concave surface am (m = 1, 2, 3,..., N) has an optical axis b.

<構成>
図3は、フライアイレンズ成形型を研磨する研磨機の外観斜視図である。図3に示すように、本発明のフライアイレンズ成形型の加工装置としての研磨機1は、枠台2を備えている。
<Configuration>
FIG. 3 is an external perspective view of a polishing machine for polishing a fly-eye lens mold. As shown in FIG. 3, a polishing machine 1 as a processing apparatus for a fly-eye lens mold according to the present invention includes a frame base 2.

枠台2には、上面の一方の端部(図では右方の端部)寄りに、下から上に、X方向ステ
ージ3、Y方向ステージ4、及びZ方向ステージ5が順次積み上げられるように設けられ、更に、Z方向ステージ5の上には、フライアイレンズの成形型6を取り付ける被加工体取り付けステージ7が設けられている。
On the frame 2, the X-direction stage 3, the Y-direction stage 4, and the Z-direction stage 5 are sequentially stacked from bottom to top near one end portion (right end portion in the drawing) of the upper surface. Further, a workpiece attachment stage 7 for attaching a fly eye lens mold 6 is provided on the Z direction stage 5.

X方向ステージ3は両方向矢印xで示すようにX方向に、Y方向ステージ4は両方向矢
印yで示すようにY方向に、そして、Z方向ステージ5は両方向矢印zで示すようにZ方向に、それぞれ互いに直交する方向へ、移動可能であるように構成されている。
The X direction stage 3 is in the X direction as shown by the double arrow x, the Y direction stage 4 is in the Y direction as shown by the double arrow y, and the Z direction stage 5 is in the Z direction as shown by the double arrow z. These are configured to be movable in directions orthogonal to each other.

また、枠台2には、上面の他方の端部(図では左方の端部)寄りに、支柱8が立設されている。支柱8は、上部から上記各ステージの方向へほぼ水平に張り出す梁腕9を備え、その梁腕9の先端には、回転中心cを有する研磨ヘッド11が取り付けられている。   Further, on the frame 2, a support column 8 is erected near the other end portion (the left end portion in the drawing) of the upper surface. The support column 8 is provided with a beam arm 9 projecting almost horizontally from the upper direction toward the above-described stages, and a polishing head 11 having a rotation center c is attached to the tip of the beam arm 9.

図4(a),(b) は、上記研磨ヘッド11の構成を説明する図である。図4(a),(b) に示すように(図3も参照)、研磨ヘッド11は、梁腕9の先端に支持されるヘッド回転軸駆動部12と、このヘッド回転軸駆動部12の回転中心軸cより偏芯移動可能にヘッド回転軸駆動部12に保持される偏芯スライド部13を備えている。   FIGS. 4A and 4B are diagrams for explaining the configuration of the polishing head 11. As shown in FIGS. 4A and 4B (see also FIG. 3), the polishing head 11 includes a head rotating shaft driving unit 12 supported at the tip of the beam arm 9 and the head rotating shaft driving unit 12. An eccentric slide portion 13 held by the head rotation shaft drive unit 12 is provided so as to be movable eccentrically from the rotation center axis c.

この偏芯スライド部13は、ヘッド回転軸駆動部12に保持される駆動連結部14と、この駆動連結部14の中心軸と同軸一体なヘッド回転軸15とから成る。
すなわち、ヘッド回転軸15は、非偏心時にはヘッド回転軸駆動部12の回転中心軸cと同軸に回転し、偏心時にはヘッド回転軸駆動部12の回転中心軸cの回りを公転しながら自転する回転軸として構成されている。
The eccentric slide portion 13 includes a drive connecting portion 14 held by the head rotating shaft driving portion 12 and a head rotating shaft 15 coaxially integrated with the central axis of the driving connecting portion 14.
That is, the head rotation shaft 15 rotates coaxially with the rotation center axis c of the head rotation shaft drive unit 12 when not eccentric, and rotates while revolving around the rotation center axis c of the head rotation shaft drive unit 12 when eccentric. It is configured as an axis.

このヘッド回転軸15の下端部には、横に張り出す支持部材16に支持されて工具回転軸駆動部17及び工具回転軸18が配設されている。工具回転軸18の先端には研磨工具19が取り付けられている。   A tool rotating shaft drive unit 17 and a tool rotating shaft 18 are disposed at a lower end portion of the head rotating shaft 15 so as to be supported by a support member 16 projecting sideways. A polishing tool 19 is attached to the tip of the tool rotating shaft 18.

上記工具回転軸18は、工具回転軸駆動部17の回転中心軸に同軸一体に取り付けられており、その中心軸は、図4(a) に示すように、ヘッド回転軸駆動部12の回転中心軸cに対して所定の傾斜角をもつように設定されている。   The tool rotation shaft 18 is coaxially and integrally attached to the rotation center axis of the tool rotation axis drive unit 17, and the center axis is the rotation center of the head rotation axis drive unit 12 as shown in FIG. It is set to have a predetermined inclination angle with respect to the axis c.

また、研磨工具19は、工具回転軸18の先端に取り付けられており、工具回転軸18は、NC装置100からの指令により研磨工具19を回転させるようになっている。
上記の研磨工具19は、研磨を行うフライアイレンズ成形型の成形凹面a(図1、図2参照)とほぼ同じ曲率をもつポリウレタンなどの弾性体で作られている。
The polishing tool 19 is attached to the tip of the tool rotation shaft 18, and the tool rotation shaft 18 rotates the polishing tool 19 according to a command from the NC device 100.
The polishing tool 19 is made of an elastic body such as polyurethane having substantially the same curvature as the molding concave surface a (see FIGS. 1 and 2) of the fly-eye lens mold for polishing.

上記ヘッド回転軸駆動部12は、NC装置100からの指令により、偏芯スライド部14をヘッド回転軸駆動部12の回転中心cを中心として回転させ、これにより偏芯スライド部14及びヘッド回転軸15を介して、工具回転軸18を、回転軸駆動部12の回転中心cを中心として回転させるようになっている。   The head rotation shaft drive unit 12 rotates the eccentric slide unit 14 around the rotation center c of the head rotation shaft drive unit 12 according to a command from the NC device 100, whereby the eccentric slide unit 14 and the head rotation shaft are rotated. 15, the tool rotation shaft 18 is rotated about the rotation center c of the rotation shaft drive unit 12.

上記の構成により、本発明のフライアイレンズ成形型の加工装置では、互いに直交する3軸のうちのX軸およびY軸で研磨を行いたい成形凹面の光軸中心に、ヘッド回転軸の回
転中心が一致するようにヘッド回転軸と成形凹面の相対位置を移動させ、研磨工具を工具回転軸で回転させつつ、ヘッド回転軸を回転させることができる。これにより、研磨工具を回転させたまま、その研磨工具を成形凹面の光軸周りに公転させることが出来る。
With the above configuration, in the fly eye lens molding die processing apparatus of the present invention, the rotation center of the head rotation axis is centered on the optical axis of the molding concave surface to be polished by the X axis and the Y axis among the three axes orthogonal to each other. The head rotation axis can be rotated while the relative position of the head rotation axis and the molding concave surface is moved so that they coincide with each other, and the polishing tool is rotated by the tool rotation axis. Thereby, the polishing tool can be revolved around the optical axis of the molding concave surface while the polishing tool is rotated.

また、偏芯スライド部の偏芯量を変えることで上記工具回転軸の公転する半径を変えることが出来る。これにより、例えば球形状の研磨工具を用い、この球形状の研磨工具を、XY軸を固定したまま偏芯スライド部とZ軸の移動により成形凹面の断面形状に沿って移
動させることが出来る。
Further, the radius of revolution of the tool rotation shaft can be changed by changing the amount of eccentricity of the eccentric slide portion. Thereby, for example, a spherical polishing tool is used, and this spherical polishing tool can be moved along the cross-sectional shape of the molding concave surface by moving the eccentric slide portion and the Z axis while fixing the XY axes.

そして、X軸およびY軸でヘッド回転軸の回転中心と一致する成形凹面を順次移動させ
ることで、上記の研摩動作を成形凹面のすべてにおいて行うことが出来る。これにより、球面および非球面形状を持つ成形凹面を効率良く研磨することが可能な加工装置を提供することが出来る。
Then, by sequentially moving the molding concave surface that coincides with the rotation center of the head rotation axis on the X axis and the Y axis, the above polishing operation can be performed on all the molding concave surfaces. Thereby, the processing apparatus which can grind | polish the shaping | molding concave surface which has a spherical surface and an aspherical shape efficiently can be provided.

<動作>
次に上記構成の研磨機1におけるフライアイレンズ成形型を研磨加工する動作について具体的に説明する。尚、ここでは成形凹面aの曲率は、R(半径)30mmの球面とし、6角に内接する円の大きさを3mmとする。
<Operation>
Next, the operation | movement which grind | polishes the fly eye lens shaping | molding die in the polisher 1 of the said structure is demonstrated concretely. Here, the curvature of the molding concave surface a is a spherical surface having an R (radius) of 30 mm, and the size of a circle inscribed in the six corners is 3 mm.

また、ここで使用する研磨工具19は、ほぼR30mmである球形の一部をカットした形状で、上述したように材質は弾性のあるポリウレタンからなるものとする。この研磨工具19を工具回転軸18に取り付ける。   Further, the polishing tool 19 used here has a shape obtained by cutting a part of a sphere of approximately R30 mm, and the material is made of elastic polyurethane as described above. The polishing tool 19 is attached to the tool rotating shaft 18.

図5は、研磨工具19を工具回転軸18に取り付ける場合の研磨工具19の球芯dとヘッド回転駆動装置12の回転中心cの位置関係とその動作状態を示す図である。
図5に示すように、先ず、研磨工具19の球芯dがヘッド回転駆動装置12の回転中心cを通るように、回転中心cに対する偏芯スライド部14の偏芯量を0にしておく。
FIG. 5 is a diagram showing the positional relationship between the spherical core d of the polishing tool 19 and the rotation center c of the head rotation driving device 12 and the operation state when the polishing tool 19 is attached to the tool rotation shaft 18.
As shown in FIG. 5, first, the eccentric amount of the eccentric slide portion 14 with respect to the rotation center c is set to 0 so that the spherical core d of the polishing tool 19 passes through the rotation center c of the head rotation driving device 12.

次に、研磨を行おうとする成形凹面am (最初はm=1、図1参照)の光軸bm (図2参照)と研磨ヘッド11のヘッド回転駆動装置12の回転中心cを一致させるために、X
方向ステージ3およびY方向ステージ4で、フライアイレンズの成形型6を移動させる。
Next, in order to make the optical axis bm (see FIG. 2) of the molding concave surface am (first m = 1, see FIG. 1) to be polished coincide with the rotation center c of the head rotation driving device 12 of the polishing head 11. , X
The fly-eye lens mold 6 is moved by the direction stage 3 and the Y-direction stage 4.

このように光軸bm (m=1)と回転中心cとの位置決めを行ってから、次に、Z方向ステージ7により、プライアイレンズ成形型6を上昇させて研磨工具19に接触させる。
NC装置100からの指令により、工具回転軸18が図5の矢印fで示すように回転して研磨工具19を回転させる。その一方で、ヘッド回転軸15が図5の矢印gで示すように回転して工具回転軸18を回転中心c回りに回転させる。
After positioning the optical axis bm (m = 1) and the rotation center c in this way, the ply eye lens mold 6 is then raised and brought into contact with the polishing tool 19 by the Z direction stage 7.
In response to a command from the NC apparatus 100, the tool rotation shaft 18 rotates as indicated by an arrow f in FIG. On the other hand, the head rotation shaft 15 rotates as indicated by an arrow g in FIG. 5 to rotate the tool rotation shaft 18 around the rotation center c.

これにより研磨工具19は、工具回転軸18によって自転し、ヘッド回転軸15によって光軸b1 周りに公転する。図5の研磨工具19の実線と破線で示す位置は、上記の公転中において互いに正対する位置を示している。   As a result, the polishing tool 19 rotates by the tool rotation shaft 18 and revolves around the optical axis b1 by the head rotation shaft 15. The positions indicated by the solid line and the broken line of the polishing tool 19 in FIG. 5 indicate positions that face each other during the revolution.

以上のようにして、成形凹面a1 を研磨し、研磨が終われば、以下同様にして次の成形凹面a2 を研磨する。
この動作を繰り返し行い、フライアイレンズ成形型に彫られた成形凹面a2 、a4 を研磨し、次ぎの列に移ってa5 (図1参照)という具合にan まで研磨を行い全ての成形凹面aを研磨する。
The molding concave surface a1 is polished as described above. When the polishing is finished, the next molding concave surface a2 is polished in the same manner.
By repeating this operation, the molding concave surfaces a2 and a4 carved in the fly-eye lens mold are polished, and the next row is moved to a5 (see FIG. 1) and polished to an so that all molding concave surfaces a are polished. Grind.

このように、本例のフライアイレンズ成形型の研磨方法では、先ず成形凹面とほぼ同じ曲率を持つ凸面研磨工具を用い、次に研磨を行いたい成形凹面の光軸中心にヘッド回転軸の回転中心が一致するようXおよびY軸で移動させ、そして、研磨工具を成形凹面に接触
させ、工具回転軸により研磨工具を回転させつつ、工具回転軸を光軸周りにヘッド回転軸で回転させて研磨を行う。
As described above, in the fly eye lens molding die polishing method of this example, first, a convex polishing tool having substantially the same curvature as the molding concave surface is used, and then the rotation of the head rotation shaft about the optical axis of the molding concave surface to be polished. Move the X and Y axes so that the centers coincide, and bring the polishing tool into contact with the molding concave surface, rotate the polishing tool by the tool rotation axis, and rotate the tool rotation axis around the optical axis by the head rotation axis. Polish.

この研摩を一つの成形凹面について終了すると、X軸とY軸により次の成形凹面の光軸
をヘッド回転軸の中心軸に一致するよう移動させ、以下同様に上記の研摩動作を行う。これを成形型に彫られた成形凹面全部について順次行い成形凹面全部を研磨する。
When this polishing is completed for one molding concave surface, the optical axis of the next molding concave surface is moved to coincide with the central axis of the head rotation axis by the X axis and the Y axis, and the above polishing operation is performed in the same manner. This is sequentially performed on all the molding concave surfaces carved in the molding die, and the entire molding concave surface is polished.

これにより、球面または非球面量の小さい成形凹面に対して、効率の良い研磨が可能な加工方法を提供することが出来る。
更に、本例のフライアイレンズ成形型の研磨方法では、工具回転軸によって研磨工具を回転させるので、従来の連れまわり方式の研磨工具による揺動式球面研磨よりも、成形凹面と研磨工具との相対速度をあげることが出来るため、効率よく研磨を行うことが出来る。
Thereby, it is possible to provide a processing method capable of efficiently polishing a spherical concave surface or a molded concave surface having a small aspheric amount.
Further, in the fly eye lens molding die polishing method of this example, the polishing tool is rotated by the tool rotation shaft, so that the molding concave surface and the polishing tool can be compared with the oscillating spherical polishing by the conventional follow-up type polishing tool. Since the relative speed can be increased, polishing can be performed efficiently.

また、研磨工具に弾性体を使用するので、被研磨物の凹面が球面形状のみならず非球面であっても、その非球面の程度が研磨工具の弾性変形の許容範囲内であれば、倣い研磨が可能となり、被研磨物の凹面形状の如何に拘わりなく研磨工具が成形凹面形状に良く適合して研磨を行うことが出来る。   In addition, since the polishing tool uses an elastic body, even if the concave surface of the object to be polished is not only a spherical shape but also an aspherical surface, if the degree of the aspherical surface is within the allowable range of elastic deformation of the polishing tool, copying is performed. Polishing is possible, and the polishing tool can be adapted to the molding concave shape well and can perform polishing regardless of the concave shape of the object to be polished.

また、ヘッド回転軸により研磨工具を公転させるので、均一で形状精度の良い研磨を実現させることが可能となる。   In addition, since the polishing tool is revolved by the head rotation shaft, it is possible to realize uniform and accurate polishing.

<構成>
実施例2における研摩機の構成は、図3及び図4に示した実施例1における研摩機の構成と同一である。
<Configuration>
The configuration of the polishing machine in the second embodiment is the same as the configuration of the polishing machine in the first embodiment shown in FIGS.

本例においては、研磨を行おうとする成形凹面の形状が非球面であって、その非球面の程度が実施例1のように球面形状の成形凹面に合わせて形状が設定された研磨工具の弾性変形だけでは研磨が不十分になる虞のある非球面量をもつ場合の研磨について説明する。   In this example, the shape of the molding concave surface to be polished is an aspheric surface, and the degree of the aspheric surface is the elasticity of the polishing tool whose shape is set in accordance with the spherical molding concave surface as in the first embodiment. A description will be given of polishing in the case of having an aspherical amount that may cause insufficient polishing only by deformation.

尚、本例においては実施例1の場合と異なり、研磨工具には、非球面の成形凹面の近似半径よりも小さい半径の球状の研磨工具を使用する。
<動作>
図6(a),(b),(c) は、本例において、研磨ヘッドに研磨工具を取り付ける場合の研磨工具の球芯と研磨ヘッドの回転中心との位置関係とその動作状態を示す図である。
In this example, unlike the case of Example 1, a spherical polishing tool having a radius smaller than the approximate radius of the aspherical molding concave surface is used as the polishing tool.
<Operation>
FIGS. 6A, 6B and 6C are diagrams showing the positional relationship between the spherical core of the polishing tool and the center of rotation of the polishing head and the operation state when the polishing tool is attached to the polishing head in this example. It is.

本例においても、先ず、研磨を行う成形凹面eの光軸bと研磨ヘッド11のヘッド回転駆動装置12の回転中心cを一致させるように、X方向ステージ3およびY方向ステージ
4で、被加工体取り付けステージ7上のワーク(非球面断面形状の成形凹面eを持ったフライアイレンズ)を移動させる。
Also in this example, first, the X-direction stage 3 and the Y-direction stage 4 are processed so that the optical axis b of the molding concave surface e to be polished matches the rotation center c of the head rotation driving device 12 of the polishing head 11. The work on the body mounting stage 7 (a fly-eye lens having a molding concave surface e having an aspherical cross-sectional shape) is moved.

次に、X方向ステージ3およびY方向ステージ4は固定したまま、偏芯スライド部13
とZステージ5により、図6(a) の矢印hで示すように、成形凹面eの外周iに研磨工具21が接するように移動させる。
Next, while the X direction stage 3 and the Y direction stage 4 are fixed, the eccentric slide portion 13 is fixed.
And the Z stage 5 are moved so that the polishing tool 21 is in contact with the outer periphery i of the molding concave surface e as indicated by an arrow h in FIG.

NCからの指令により、工具回転軸18は研磨工具21を回転させる。そして、ヘッド回転駆動装置12が偏芯スライド部13を回転させる。
すると、回転した研磨工具21が成形凹面eの外周iに接したままヘッド回転駆動装置12の回転中心cの回りを旋回する公転運動をする。
The tool rotating shaft 18 rotates the polishing tool 21 according to a command from the NC. Then, the head rotation driving device 12 rotates the eccentric slide portion 13.
Then, the rotating polishing tool 21 revolves around the rotation center c of the head rotation driving device 12 while being in contact with the outer periphery i of the molding concave surface e.

一方で、図6(a),(b),(c) に示すように、フライアイレンズ成形凹面eの非球面断面形状に沿って研磨工具21を、成形凹面eの外周iから成形凹面中心jに向って移動するように予め作られたNCプログラムによって、偏芯スライド部13及びZ方向ステージ7を動かす。   On the other hand, as shown in FIGS. 6A, 6B and 6C, the polishing tool 21 is moved from the outer periphery i of the molding concave surface e to the center of the molding concave surface along the aspherical cross-sectional shape of the fly-eye lens molding concave surface e. The eccentric slide part 13 and the Z direction stage 7 are moved by an NC program prepared in advance so as to move toward j.

図7は、上記の動作による成形凹面eと研磨工具21との接点hの研摩移動の軌跡を示す図である。
上述した図6(a),(b),(c) で説明したように各部を回転及び移動駆動することにより、図7に示すように、研磨工具21は、工具回転軸18による回転を行っている状態で、成形凹面e上に螺旋状の軌跡kを描きながら研磨を行う。
FIG. 7 is a diagram showing a locus of polishing movement of the contact h between the forming concave surface e and the polishing tool 21 by the above operation.
As shown in FIGS. 6 (a), 6 (b), and 6 (c) described above, by rotating and moving each part, the polishing tool 21 is rotated by the tool rotating shaft 18 as shown in FIG. In this state, polishing is performed while drawing a spiral locus k on the molding concave surface e.

以上のようにして、一つの成形凹面を研磨が完了すると、他の成形凹面も同様にして研磨を繰り返して行い、すべての成形凹面を研磨する。
このように、本例のフライアイレンズ成形型の研磨方法では、先ず成形凹面より小さなRの凸面研磨工具を用い、次に研磨を行いたい成形凹面の光軸中心にヘッド回転軸の回転中心が一致するようX軸およびY軸で成形凹面を移動させ、続いて研磨工具を成形凹面に
接触させ、工具回転軸により研磨工具を回転させつつ、成形凹面の形状に沿うよう偏芯スライド部の偏芯量と成形凹面の高さを移動させつつ、ヘッド回転軸で工具回転軸を光軸周りに回転させて研磨を行う。
When the polishing of one molding concave surface is completed as described above, the other molding concave surfaces are similarly polished and all the molding concave surfaces are polished.
Thus, in the polishing method of the fly-eye lens mold of this example, first, a convex polishing tool having an R which is smaller than the molding concave surface is used, and then the rotation center of the head rotation axis is centered on the optical axis of the molding concave surface to be polished. Move the molding concave surface along the X-axis and Y-axis so that they coincide with each other, then bring the polishing tool into contact with the molding concave surface, and rotate the polishing tool with the tool rotation shaft, while offsetting the eccentric slide part along the shape of the molding concave surface. Polishing is performed by rotating the tool rotation axis around the optical axis with the head rotation axis while moving the core amount and the height of the molding concave surface.

この研摩を一つの成形凹面について終了すると、X軸とY軸により次の成形凹面の光軸
をヘッド回転軸の中心軸に一致するよう移動させ、以下同様に上記の研摩動作を行う。これを成形型に彫られた成形凹面全部について順次行い成形凹面全部を研磨する。
When this polishing is completed for one molding concave surface, the optical axis of the next molding concave surface is moved to coincide with the central axis of the head rotation axis by the X axis and the Y axis, and the above polishing operation is performed in the same manner. This is sequentially performed on all the molding concave surfaces carved in the molding die, and the entire molding concave surface is polished.

このように、非球面の程度が大きくて凸面の研磨工具を弾性体にしただけでは研磨できない場合においても、偏芯スライド部の偏芯量と被研磨物の高さを成形凹面形状に合わせて移動することができるので、非球面の程度が大きい成形凹面でも容易に研磨が可能な加工方法を提供することが可能となる。   In this way, even when the aspherical surface is large and polishing cannot be performed only by using a convex polishing tool as an elastic body, the eccentric amount of the eccentric slide portion and the height of the object to be polished are matched with the molding concave shape. Since it can move, it is possible to provide a processing method capable of easily polishing even a molding concave surface having a large degree of aspherical surface.

また、この場合も、工具回転軸によって研磨工具を強制回転させるので、研磨工具と被研磨物との相対速度を大きくすることが出来、これにより、成形凹面と研磨工具との相対速度をあげながら効率よく研磨を行うことが出来る。   Also in this case, since the polishing tool is forcibly rotated by the tool rotating shaft, the relative speed between the polishing tool and the object to be polished can be increased, thereby increasing the relative speed between the molding concave surface and the polishing tool. Polishing can be performed efficiently.

本発明の加工装置および加工方法により研磨仕上げされるフライアイレンズ成形型の成形面を正面から見た図である。It is the figure which looked at the molding surface of the fly eye lens shaping | molding die polished by the processing apparatus and processing method of this invention from the front. 図1に示すフライアイレンズ成形型の一部の成形凹面を斜め上から見た斜視図である。FIG. 2 is a perspective view of a part of the concave molding surface of the fly-eye lens mold shown in FIG. 1 as viewed obliquely from above. 本発明のフライアイレンズ成形型の加工装置としての研磨機の斜視図である。It is a perspective view of the polisher as a processing apparatus of the fly eye lens shaping | molding die of this invention. (a),(b) は研磨機の研磨ヘッドの構成を説明する図である。(a), (b) is a figure explaining the structure of the grinding | polishing head of a grinding machine. 実施例1における研磨ヘッドに研磨工具を取り付ける場合の研磨工具の球芯と研磨ヘッドの回転中心との位置関係とその動作状態を示す図である。It is a figure which shows the positional relationship between the spherical core of a grinding | polishing tool and the rotation center of a grinding | polishing head, and its operation state when attaching a grinding | polishing tool to the grinding | polishing head in Example 1. FIG. (a),(b),(c) は実施例2における研磨ヘッドに研磨工具を取り付ける場合の研磨工具の球芯と研磨ヘッドの回転中心との位置関係とその動作状態を示す図である。(a), (b), (c) is a figure which shows the positional relationship of the spherical core of a polishing tool and the rotation center of a polishing head, and its operation state when attaching a polishing tool to the polishing head in Example 2. FIG. 実施例2の研摩動作における成形凹面と研磨工具との接点の研摩移動の軌跡を示す図である。It is a figure which shows the locus | trajectory of the grinding | polishing movement of the contact of the shaping | molding concave surface and polishing tool in the grinding | polishing operation | movement of Example 2. FIG.

符号の説明Explanation of symbols

a(a1 、a2 、a3 、・・・、an ) 成形凹面
1 研磨機
2 枠台
3 X方向ステージ
4 Y方向ステージ
5 Z方向ステージ
6 フライアイレンズ成形型
7 被加工体取り付けステージ
8 支柱
9 梁腕
11 研磨ヘッド
12 ヘッド回転軸駆動部
13 偏芯スライド部
14 駆動連結部
15 ヘッド回転軸
16 支持部材
17 工具回転軸駆動部
18 工具回転軸
19、21 研磨工具
100 NC装置
a (a 1, a 2, a 3,..., an) Molding concave surface 1 Polishing machine 2 Frame base 3 X direction stage 4 Y direction stage 5 Z direction stage 6 Fly eye lens molding die 7 Workpiece attachment stage 8 Column 9 Beam Arm 11 Polishing head 12 Head rotation shaft drive unit 13 Eccentric slide unit 14 Drive connection unit 15 Head rotation shaft 16 Support member 17 Tool rotation shaft drive unit 18 Tool rotation shaft 19, 21 Polishing tool 100 NC device

Claims (3)

フライアイレンズの成形型を研磨加工するフライアイレンズ成形型の加工装置において、
任意の角度に傾けられて配置され、先端に取り付けられた研磨工具を回転させる工具回転軸と、
該工具回転軸を取り付けられ前記工具回転軸を前記成形型の成形凹面の光軸周りに回転させるヘッド回転軸と、
該ヘッド回転軸を取り付けられ該ヘッド回転軸の移動量を前記成形型の成形凹面の半径方向に変化させる偏芯スライド部と、
前記ヘッド回転軸と前記成形型との相対位置を互いに直交する3軸方向に移動可能に制御するNC装置と、
を備えたことを特徴とするフライアイレンズ成形型の加工装置。
In a fly eye lens mold processing apparatus for polishing a fly eye lens mold,
A tool rotation axis for rotating a polishing tool arranged at an arbitrary angle and attached to the tip;
A head rotation axis that is attached to the tool rotation axis and rotates the tool rotation axis around the optical axis of the molding concave surface of the mold;
An eccentric slide part to which the head rotation shaft is attached and which changes the amount of movement of the head rotation shaft in the radial direction of the molding concave surface of the mold;
An NC device for controlling the relative position of the head rotation axis and the mold so as to be movable in three axial directions orthogonal to each other;
An apparatus for processing a fly-eye lens mold, comprising:
請求項1記載のフライアイレンズ成形型の加工装置を用いたフライアイレンズ成形型の研磨方法において、
前記研磨工具として前記成形型の成形凹面とほぼ同じ曲率をもつ弾性体を用い、
前記研磨工具を前記成形凹面に接した状態で前記工具回転軸及び前記ヘッド回転軸を回転させて研磨を行う、
ことを特徴とするフライアイレンズ成形型の研磨方法。
In the method for polishing a fly eye lens mold using the fly eye lens mold processing apparatus according to claim 1,
Using an elastic body having substantially the same curvature as the molding concave surface of the mold as the polishing tool,
Polishing by rotating the tool rotation shaft and the head rotation shaft in a state where the polishing tool is in contact with the molding concave surface,
A method for polishing a fly-eye lens mold.
請求項1記載のフライアイレンズ成形型の加工装置を用いたフライアイレンズ成形型の研磨方法において、
前記研磨工具を前記成形凹面に対し螺旋状の軌跡を描きながら研磨させるべく、
前記成形凹面の断面形状に合わせて前記研磨工具が接するように前記成形凹面の深さ方向および前記偏芯スライド部の移動量を変化させると共に、
前記研磨工具を前記工具回転軸で回転させると同時に該工具回転軸及び前記ヘッド回転軸を前記偏芯スライド部により回転させる、
ことを特徴とするフライアイレンズ成形型の研磨方法。
In the method for polishing a fly eye lens mold using the fly eye lens mold processing apparatus according to claim 1,
To polish the polishing tool while drawing a spiral trajectory with respect to the molding concave surface,
While changing the depth direction of the molding concave surface and the amount of movement of the eccentric slide portion so that the polishing tool contacts the cross-sectional shape of the molding concave surface,
Rotating the polishing tool around the tool rotation axis and simultaneously rotating the tool rotation axis and the head rotation axis by the eccentric slide portion;
A method for polishing a fly-eye lens mold.
JP2005312084A 2005-10-27 2005-10-27 Machining device and method for fly-eye lens forming die Pending JP2007118117A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005312084A JP2007118117A (en) 2005-10-27 2005-10-27 Machining device and method for fly-eye lens forming die

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005312084A JP2007118117A (en) 2005-10-27 2005-10-27 Machining device and method for fly-eye lens forming die

Publications (1)

Publication Number Publication Date
JP2007118117A true JP2007118117A (en) 2007-05-17

Family

ID=38142507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005312084A Pending JP2007118117A (en) 2005-10-27 2005-10-27 Machining device and method for fly-eye lens forming die

Country Status (1)

Country Link
JP (1) JP2007118117A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009220226A (en) * 2008-03-17 2009-10-01 Nisico Kohki Corp Ltd Spherical surface polishing device
CN103722464A (en) * 2013-11-06 2014-04-16 中国科学院上海光学精密机械研究所 Calibration disc unloading and load-transferring device of large ring polishing machine
JP2014104563A (en) * 2012-11-29 2014-06-09 Toshiba Mach Co Ltd Method for machining lenticular-curved-surface array
US10245699B2 (en) 2015-06-16 2019-04-02 Mitsubishi Hitachi Power Systems, Ltd. Valve seat machining device, and valve seat machining method using said valve seat machining device
KR102326725B1 (en) * 2020-06-25 2021-11-16 주식회사 단단광학 Belt type optical system polishing device that combines eccentricity control and braking function
CN115870815A (en) * 2022-12-28 2023-03-31 中山超精科技有限公司 Lens polishing detection method and device
CN118404442A (en) * 2024-05-29 2024-07-30 南京嘉博光学仪器有限公司 Polishing machine for plane optical lens

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009220226A (en) * 2008-03-17 2009-10-01 Nisico Kohki Corp Ltd Spherical surface polishing device
JP4633815B2 (en) * 2008-03-17 2011-02-16 ニシコ光機株式会社 Spherical polishing machine
KR101584177B1 (en) 2008-03-17 2016-01-13 니시코 코키 가부시키가이샤 Spherical grinding device
JP2014104563A (en) * 2012-11-29 2014-06-09 Toshiba Mach Co Ltd Method for machining lenticular-curved-surface array
CN103722464A (en) * 2013-11-06 2014-04-16 中国科学院上海光学精密机械研究所 Calibration disc unloading and load-transferring device of large ring polishing machine
CN103722464B (en) * 2013-11-06 2016-02-10 中国科学院上海光学精密机械研究所 The calibration disc off-load shifting apparatus of large-scale glass polishing machine
US10245699B2 (en) 2015-06-16 2019-04-02 Mitsubishi Hitachi Power Systems, Ltd. Valve seat machining device, and valve seat machining method using said valve seat machining device
KR102326725B1 (en) * 2020-06-25 2021-11-16 주식회사 단단광학 Belt type optical system polishing device that combines eccentricity control and braking function
CN115870815A (en) * 2022-12-28 2023-03-31 中山超精科技有限公司 Lens polishing detection method and device
CN115870815B (en) * 2022-12-28 2023-06-16 中山超精科技有限公司 Lens polishing detection method and device
CN118404442A (en) * 2024-05-29 2024-07-30 南京嘉博光学仪器有限公司 Polishing machine for plane optical lens

Similar Documents

Publication Publication Date Title
US6122999A (en) Lathe apparatus and method
JP5087481B2 (en) Multi-axis control mold automatic cell polishing apparatus and cell automatic polishing method
TWI359711B (en) Raster cutting technology for ophthalmic lenses
JP2007118117A (en) Machining device and method for fly-eye lens forming die
US4907373A (en) Toric finer-polisher
US20050221721A1 (en) Method and apparatus for grinding and polishing free-form ophthalmic surfaces
JP2000052217A (en) Tool and processing method
JP2008238285A (en) Processing device and processing method
JP2009018381A (en) Surface processing machine
JP2006320970A (en) Machining device
JP2001334460A (en) Polishing method
WO2006132126A1 (en) Method of producing optical element, and optical element
WO2021192144A1 (en) Method for manufacturing fresnel lens mold, machining apparatus, and cutting tool
JP2002178248A (en) Polishing device
JP2009018366A (en) Method of grinding convex surface
JP6006144B2 (en) Lens processing apparatus, lens processing method, and lens processing tool
JP2002103192A (en) Aspheric curved surface machining method
JP7359425B2 (en) Aspherical convex lens processing system
EP0872307A1 (en) Lathe apparatus and method
JP2009095973A (en) Grinding wheel molding device and method
JPH10328995A (en) Curved surface grinding method
JP2004009158A (en) Manufacturing method for die for golf ball
JP2004202667A (en) Method of generating shape of grindstone for grinding
JP4027171B2 (en) Polishing method
JP2004160565A (en) Polishing method and shape variable polishing tool device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080825

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090611

A131 Notification of reasons for refusal

Effective date: 20090616

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20100105

Free format text: JAPANESE INTERMEDIATE CODE: A02