[go: up one dir, main page]

JP2007110788A - 電動式ステアリング装置 - Google Patents

電動式ステアリング装置 Download PDF

Info

Publication number
JP2007110788A
JP2007110788A JP2005297000A JP2005297000A JP2007110788A JP 2007110788 A JP2007110788 A JP 2007110788A JP 2005297000 A JP2005297000 A JP 2005297000A JP 2005297000 A JP2005297000 A JP 2005297000A JP 2007110788 A JP2007110788 A JP 2007110788A
Authority
JP
Japan
Prior art keywords
duty ratio
motor
process proceeds
motor drive
steering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005297000A
Other languages
English (en)
Inventor
Takayuki Fukuhara
孝幸 福原
Manabu Kawaguchi
学 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2005297000A priority Critical patent/JP2007110788A/ja
Publication of JP2007110788A publication Critical patent/JP2007110788A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Steering Controls (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

【課題】 電動モータのデューティ比制御開始時に放射ノイズを抑制すると共に駆動開始音を抑制する。
【解決手段】 後端側にステアリングホイールが装着されるステアリング機構と、該ステアリング機構の傾動位置及び伸縮位置の少なくとも一方を位置調整する電動モータ71,81を有する姿勢調整機構と、前記電動モータを駆動制御するモータ駆動回路90A,90Bと、該モータ駆動回路に対して前記姿勢調整機構の位置調整を指令するパルス幅変調信号でなる速度指令値を出力する制御部100とを備えた電動式ステアリング装置であって、前記制御部100は、前記姿勢調整機構の作動を開始する速度指令値を出力する際に、デューティ比を当該姿勢調整機構が低デューティ比のノイズ影響領域を超える最小デューティ比まで増加させた後最大デューティ比まで単位時間当たりのデューティ比変化量を一定値以下に制限して漸増させるように構成されている。
【選択図】 図2

Description

本発明は、ステアリング機構の傾動位置及び伸縮位置の少なくとも一方を位置調整するようにした電動式ステアリング装置に関する。
この種の電動式ステアリング装置としては、例えば入れ子とチルト部からなるステアリングコラムとねじを回転させるブラシレスモータと、ブラシレスも多を制御する制御ユニットとネジとかみ合ってチルト及び入れ子を可能にするクラッチとを有する調整自在に位置決めされた機構のためのメモリを装備したパワーシステムが知られている(例えば、特許文献1参照)。
特開平5−229375号公報(第1頁、図3)
しかしながら、上記特許文献1に記載の従来例にあっては、ブラシレスモータを適用してチルト及びテレスコピック機構を駆動するようにしており、通常駆動源としてブラシレスモータを適用した場合には、デューティ比を制御するパルス幅変調(PWM)信号を使用してブラシレスモータを駆動するようにしている。このようにパルス幅変調信号でブラシレスモータを制御する場合に、デューティ比を目標値まで一気に増加すると、駆動開始電流のピークが発生し、放射ノイズが大きくなると共に、ブラシレスモータで急激なトルクを発生するため、大きな駆動開始音を発生するという未解決の課題がある。
そこで、本発明は、上記従来例の未解決の課題に着目してなされたものであり、電動モータのデューティ比制御開始時に放射ノイズを抑制すると共に駆動開始音を抑制することができる電動式ステアリング装置を提供することを目的としている。
上記目的を達成するために、請求項1に係る電動式ステアリング装置は、後端側にステアリングホイールが装着されるステアリング機構と、該ステアリング機構の傾動位置及び伸縮位置の少なくとも一方を位置調整する電動モータを有する姿勢調整機構と、前記電動モータを駆動制御するモータ駆動回路と、該モータ駆動回路に対して前記姿勢調整機構の位置調整を指令するパルス幅変調信号でなる速度指令値を出力する制御部とを備えた電動式ステアリング装置であって、前記制御部は、前記姿勢調整機構の作動を開始する速度指令値を出力する際に、デューティ比を当該姿勢調整機構が低デューティ比のノイズ影響領域を超える最小デューティ比まで増加させた後最大デューティ比まで単位時間当たりのデューティ比変化量を一定値以下に制限して漸増させるように構成されていることを特徴としている。
また、請求項2に係る電動式ステアリング装置は、請求項1に係る発明において、前記制御部は、電源電圧を検出する電源電圧検出手段と、該電源電圧検出手段で検出した電源電圧が増加するに従って最大デューティ比を減少させる最大デューティ比設定手段とを備えていることを特徴としている。
さらに、請求項3に係る電動式ステアリング装置は、請求項2に係る発明において、 前記最大デューティ比設定手段は、設定される最大デューティ比が100%近傍の設定値を超えたときに100%に設定するように構成されていることを特徴としている。
本発明によれば、姿勢調整機構の作動を開始する速度指令値を出力する際に、デューティ比を当該姿勢調整機構が低デューティ比のノイズ影響領域を超える最小デューティ比まで増加させた後最大デューティ比まで単位時間当たりのデューティ比変化量を一定値以下に制限して漸増させるので、電動モータに一気に高いデューティ比の速度指令が与えられることを抑制して、デューティ比を緩やかに増加させることができ、駆動開始電流のピークを抑制して放射ノイズを低減すると共に、急激なトルクの発生を抑制して駆動開始音を低減することができるという効果が得られる。また、最大デューティ比を電源電圧の増加に応じて減少させることにより、電源電圧の変動にかかわらず電動モータを定速駆動することができる。
以下、本発明の実施の形態を図面に基づいて説明する。
図1は、本発明の一実施形態を示す電動式ステアリング装置の概略構成図である。この電動式ステアリング装置1は、いわゆる首振りチルト方式を採用しており、ステアリングホイール2から延びてステアリングギア(図示せず)に連結されたステアリングシャフト3をその軸の周りに回転可能に保持する三つのステアリングコラム、すなわち、アッパコラム4,ミドルコラム5,ロアコラム6を備えている。そして、各コラム4,5,6の相対位置を適宜調節することによって、ステアリングシャフト3、ひいてはステアリングホイール2が所望の位置に保持される。
アッパコラム4は、内部空間にステアリングシャフト3のユニバーサルジョイント(図示せず)を収容している。アッパコラム4は、ミドルコラム5の後端に形成されたフォーク部51にチルトヒンジピン51aを介してチルト可能に取り付けられている。すなわち、アッパコラム4を、チルトヒンジピン51aを支点として適宜揺動させることにより、ステアリングホイール2のチルト位置を調節することができる。
ミドルコラム5は、ロアコラム6に内嵌・保持され、アッパコラム4を支持するフォーク部51と伴に軸線方向に摺動可能になっている。すなわち、車体側に固定されたロアコラム6に対してミドルコラム5を適宜進退させることにより、アッパコラム4がステアリングシャフト3と共にその軸方向に移動し、ステアリングホイール2のテレスコピック位置を調節することができる。
アッパコラム4のチルト位置は、電動チルト機構7によって調節される。この電動チルト機構7は、ギアボックス70が付設された例えば3相のブラシレスモータ71と、このブラシレスモータ71に駆動される伸縮ロッド装置72とを備えている。
伸縮ロッド装置72から延びるアクチュエータロッド72aは、ブラシレスモータ71の回転に応じて伸縮する。
伸縮ロッド装置72の前端部は、ミドルコラム5に固定されたブラケット52にピン53で枢着されており、ヒンジを構成している。アクチュエータロッド72aの後端部は、アッパコラム4に固定されたブラケット42にピン43で枢着されており、ヒンジを構成している。したがって、伸縮ロッド装置72からアクチュエータロッド72aを徐々に繰り出せば、アッパコラム4がミドルコラム5に対して反時計方向に滑らかに回転することになり、ステアリングホイール2を上向きに徐々に傾けることができる。一方、伸縮ロッド装置72中にアクチュエータロッド72aを徐々に収納すれば、アッパコラム4がミドルコラム5に対して時計方向に滑らかに回転することになり、ステアリングホイール2を下向きに徐々に傾けることができる。
アッパコラム4のテレスコピック位置は、電動チルトアクチュエータ7とほぼ同一構造の電動テレスコピック機構8によって調節される。すなわち、この電動テレスコピック機構8は、ギアボックス80が付設された例えば3相のブラシレスモータ81と、このブラシレスモータ81に駆動される伸縮ロッド装置82とを備えている。
伸縮ロッド装置82の前端部は、ロアコラム6に固定されたブラケット62にピン63で枢着されており、ヒンジを構成している。アクチュエータロッド82aの後端部は、ミドルコラム5のフォーク部51に固定されたブラケット55にピン56で枢着されており、ヒンジを構成している。したがって、伸縮ロッド装置82からアクチュエータロッド82aを繰り出せば、ミドルコラム5がロアコラム6から繰り出されることになり、ステアリングホイール2を後退させることができる。一方、伸縮ロッド装置82内にアクチュエータロッド82aを収納すれば、ミドルコラム5がロアコラム6に繰り込まれることになり、ステアリングホイール2を前進させることができる。
なお、ミドルコラム5に固定されたブラケット52は、ロアコラム6に形成された溝6aに案内され、ミドルコラム5と共にロアコラム6に対して軸線方向に沿って摺動できるようになっている。
ここで、ブラシレスモータ71及び81は、モータ駆動回路90A及び90Bを内蔵している。これらモータ駆動回路90A及び90Bは、図3に示すように、後述する制御装置100から入力されるスタート及びストップを表す信号ST/SPと、回転方向を指示する回転方向信号CW/CCWと、速度指令を表すパルス幅変調信号PWMと、ブラシレスモータ71及び81の例えばホール素子で構成される位置検出素子91u〜91wの出力を2値信号に変換するシュミットトリガ回路92u〜92wから入力される回転位置信号とが入力され、これらに基づいてブラシレスモータ71及び81を駆動する三相駆動信号を形成する三相分配回路93と、この三相分配回路93から出力される三相駆動信号と、後述するインバータ回路96の過電流を検出する過電流検出回路94からの過電流検出値信号SIとが入力されてインバータ回路96を構成する電界効果トランジスタQua〜Qwbのゲートを駆動するFETゲート駆動回路95と、一対の電界効果トランジスタ(FET)Qua,Qub、Qva,Qvb及びQwa,Qwbを直列に接続してブラシレスモータ71及び81の各相コイルLu、Lv及びLwに対応する3組のFET回路を並列に接続したインバータ回路96とを備えている。ここで、FETゲート駆動回路95は、過電流検出回路94から正常モータ電流状態を表す例えば論理値“0”の過電流検出信号SIが入力されているときには、三相分配回路93から入力される三相駆動信号に応じた回転方向及び回転速度ブラシレスモータ71及び81を駆動するようにインバータ回路96の各電界効果トランジスタQua〜Qwbのゲートにパルス幅変調信号PWMを供給するが、過電流検出回路94から過電流状態を表す例えば論理値“1”の過電流検出信号SIが入力されたときに、例えばインバータ回路96の下アームを構成する電界効果トランジスタQub、Qvb及びQwbのゲートに供給するPWM信号のデューティ比を0%に制御してブラシレスモータ71又は81の励磁コイルLu〜Lwへの通電を停止させる。
そして、モータ駆動回路90A及び90Bが制御装置100によって駆動制御される。この制御装置100は、図2に示すように、車両に搭載されたバッテリ101からのバッテリ電圧Vbがヒューズ102を介して入力されるレギュレータ103と、車両に搭載した走行状態検出手段としての車速センサ104の車速検出値を通信回線を介して他の制御系から取得する通信インタフェース105と、レギュレータ103から出力される電源電圧Vcによって作動される演算処理装置(CPU)106と、この演算処理装置106に接続された不揮発性メモリ107と、前記ヒューズ102とモータ駆動回路90A及び90Bのバッテリ電圧入力端との間に制御装置100内で介挿されたスイッチング部としてのリレー回路108とを備えている。
演算処理装置105には、バッテリ電圧VBが直接入力されると共には、レギュレータ103の電源電圧が入力され、さらにバッテリ101にヒューズ110を介して接続されたイグニッションスイッチ111から出力されるイグニッション信号IGと、バッテリ101にヒューズ112を介して接続されたキースイッチ113から出力されるキースイッチ信号KSと、乗降ドアの開閉状態を示すドアスイッチ114のドア信号DSと、チルト機構7の傾斜角を指示するマニュアルチルトスイッチ部115及びテレスコピック機構8の伸縮位置を指示するテレスコスイッチ部116のスイッチ信号ST1及びST2と、モータ駆動回路90A及び90Bから出力される120度の位相差を有する位置検出信号FG1及びFG2とが入力されている。
そして、演算処理装置106は、レギュレータ103から制御電源Vcが入力されたときに、モータ制御処理を実行する。
このモータ制御処理は、レギュレータ103から制御電圧Vcが供給開始されたときに実行開始され、先ず、ステップS1で、リレー回路108のリレーコイルLLRと接地との間に接続したスイッチング素子120をオン状態に制御する高レベルのリレー制御信号SLをスイッチング素子120に出力してからステップS2に移行する。
このステップS2では、モータ駆動回路90A及び90Bが異常であるか否かを判定し、モータ駆動回路90A及び90Bが異常であるときにはステップS3に移行して、低レベルのリレー制御信号SLをスイッチング素子120に出力して、スイッチング素子120をオフ状態に制御してから処理を終了し、モータ駆動回路90A及び90Bが正常であるときにはステップS4に移行する。
このステップS4では、チルト機構7のモータ駆動回路90Aを作動させてチルト機構7を上側のメカニカルストッパ(図示せず)に当接する上死点方向に駆動してメカニカルストッパに当接したことを検出したときに、この位置から所定量下側に戻した電動チルト制御範囲の上死点となる制御原点に移動させる制御原点設定処理を行ってからステップS5に移行する。
このステップS5では、テレスコピック機構8のモータ駆動回路90Bを作動させてテレスコピック機構8を縮み側のメカニカルストッパ(図示せず)に当接する下死点方向に駆動してメカニカルストッパに当接したことを検出したときに、この位置から所定量伸び側に戻した電動テレスコピック制御範囲の下死点となる制御原点に移動させる制御原点設定処理を行ってからステップS6に移行する。
このステップS6では、イグニッション信号IGを読込み、次いでステップS7に移行して、エンジン始動時でイグニッション信号IGがオン状態であるか否かを判定し、エンジン始動時ではなくイグニッションスイッチ111がオフ状態であるときには、ステップS8に移行して、低レベルのリレー制御信号SLをスイッチング素子120に出力してから前記ステップS6に戻り、エンジン始動時であってイグニッションスイッチ111がオン状態であるときにはステップS9に移行して、高レベルのリレー制御信号SLをスイッチング素子120に出力してからステップS10に移行する。
このステップS10では、エンジン始動回数Nを“1”だけインクリメントしてからステップS11に移行し、エンジン始動回数Nが予め設定した設定値Nsに達したから否かを判定し、N≧Nsであるときには、エンジン始動開始数Nが設定値Nsに達して制御原点補正が必要であるものと判断してステップS12に移行し、エンジン始動回数Nを“0”にリセットしてから前記ステップS4に戻り、N<Nsであるときには制御原点補正はまだ必要ないものと判断してステップS13に移行する。
このステップS13では、記憶装置107のチルト位置記憶領域にチルト位置が記憶されているか否かを判定し、チルト位置が記憶されていないときにはステップS14に移行して、チルト機構7をマニュアル動作範囲の上死点位置まで下降させてからステップS16に移行する。
一方、ステップS13の判定結果が、チルト位置が記憶されているときにはステップS15に移行して、記憶されたチルト位置までチルト機構7を下降させてからステップS16に移行する。
このステップS16では、テレスコ位置が記憶装置107のテレスコ位置記憶領域に記憶されているか否かを判定し、テレスコ位置が記憶されているときにはステップS17に移行して、記憶されたテレスコ位置までテレスコピック機構8を伸張させてからステップS18に移行し、テレスコ位置が記憶されていないときには直接ステップS18に移行する。
ステップS18では、マニュアルチルトスイッチ部115からチルト位置を指定するスイッチ信号ST1が入力されたか否かを判定し、スイッチ信号ST1が入力されたときには、ステップS19に移行して、入力されたスイッチ信号ST1に応じたチルト位置にチルト機構7を制御してからステップS20に移行し、スイッチ信号ST1が入力されていないときには、直接ステップS20に移行する。
このステップS20では、マニュアルテレスコスイッチ部116からテレスコ位置を指定するスイッチ信号ST2が入力されたか否かを判定し、スイッチ信号ST2が入力されているときにはステップS21に移行して、入力されたスイッチ信号ST2に応じたテレスコ位置にテレスコピック機構8を制御してからステップS22に移行し、スイッチ信号ST2が入力されていないときには直接ステップS22に移行する。
このステップS22では、前回のスイッチ信号ST1又はST2が入力されてから所定時間T1が経過したか否かを判定し、所定時間T1が経過したときには後述するステップS27に移行し、所定時間T1が経過していないときには、ステップS23に移行して、車速センサ104で検出した車速検出値Vsを読込み、次いでステップS24に移行して、車速検出値Vsが車両が走行状態であると判断可能な閾値Vst以上であるか否かを判定し、Vs≧Vstであるときには後述するステップS27に移行し、Vs<Vstであるときには車両が停止状態にあるものと判断してステップS25に移行する。
このステップS25では、異常判定フラグFAが異常を表す“1”に設定されているか否かを判定し、FA=“1”であるとき即ち異常状態が発生しているときにはステップS26に移行して、リレー回路108をオフ状態とする低レベルのリレー制御信号SLをリレーコイルLLと接地との間に介挿されたスイッチング素子120に出力して、このスイッチング素子120をオフ状態に制御してからモータ制御処理を終了する。
一方、ステップS25の判定結果が、FA=“0”であるとき即ち異常状態が発生していない正常状態であるときには前記ステップS18に戻る。
ステップS27では、前記ステップS26と同様にリレー回路108をオフ状態とする低レベルのリレー制御信号SLをリレーコイルLLRと接地との間に介挿されたスイッチング素子120に出力して、このスイッチング素子120をオフ状態に制御してからステップS28に移行する。
このステップS28では、キースイッチ113から出力されるキースイッチ信号KSを読込み、次いでステップS29に移行して、キースイッチ信号KSがオフ状態即ち運転者が後者する可能性がある状態であるか否かを判定し、キースイッチ信号KSがオン状態を継続しているときには運転者が後者の可能性が略ないものと判断してキースイッチ信号KSがオフ状態となるまで待機し、キースイッチ信号KSがオフ状態となるとステップS30に移行する。
このステップS30では、後述する異常検出処理で異常判定フラグFAが“1”にセットされているか否かを判定し、これが“1”にセットされているときにはそのままモータ制御処理を終了し、異常判定フラグFAが“0”にリセットされているときにはステップS31に移行する。
このステップS31では、前述したステップS1と同様に、リレー回路108のリレーコイルLLRと接地との間に接続したスイッチング素子120をオン状態に制御する高レベルのリレー制御信号SLをスイッチング素子120に出力してからステップS32に移行する。
このステップS32では、現在のチルト位置は記憶装置107のチルト位置記憶領域に記憶されているチルト位置と一致するか否かを判定し、両者が一致しないときには、ステップS33に移行して、現在のチルト位置をチルト位置記憶領域に更新記憶してからステップS34に移行し、両者が一致するときには直接ステップS34に移行する。
このステップS34では、現在のテレスコ位置は記憶装置107のテレスコ位置記憶領域に記憶されているテレスコ位置と一致するか否かを判定し、両者が一致しない場合には、ステップS35に移行して、現在のテレスコ子位置を記憶装置107のテレスコ位置記憶領域に更新記憶してからステップS36に移行し、両者が一致する場合には、そのままステップS36に移行する。
このステップS36では、チルト機構7を自動制御する場合の上側退避位置に移動制御させてからステップS37に移行し、テレスコピック機構8を縮み側退避位置に移動制御してから前記ステップS6に戻る。
また、演算処理装置106では、図5に示す異常検出処理を所定時間(例えば10msec)毎のタイマ割込処理として実行する。この異常検出処理は、先ず、ステップS41で、モータ駆動回路90Aから出力されるモータ位置検出信号FG1,FG2を読込み、次いでステップS42に移行して、モータ駆動回路90Aに対する速度指令値PWMが“0”であるか否かを判定し、速度指令値PWMが“0”であるときにはステップS43に移行して、モータ駆動回路90Aから出力されるモータ位置検出信号FG1及びFG2の少なくとも一方に状態変化が生じたか否かを判定し、状態変化を生じたときには速度指令値PWMが“0”であり、モータ駆動回路90Aが駆動されていないにもかかわらずブラシレスモータ71が回転駆動しており、モータ駆動回路90Aに天絡等の異常が発生したものと判断してステップS44に移行して、異常判定フラグFAを“1”にセットし、状態変化を生じないときにはモータ駆動回路90Aが正常であるものと判断して後述するステップS49に移行する。
一方、ステップS42の判定結果が、速度指令値PWMが“0”以外であるときにはステップS45に移行して、所定時間内にモータ位置検出信号FG1及びFG2が状態変化しているか否かを判定し、これらが状態変化していないときには、ブラシレスモータ71が回転していない異常状態であるものと判断して前記ステップS44に移行し、モータ位置検出信号FG1及びFG2が状態変化しているときには一応ブラシレスモータ71が正常であるものと判断してステップS46に移行する。
このステップS46では、モータ駆動回路90Aに対する回転方向指令CW/CCWを読込み、次いでステップS47に移行して、モータ駆動回路90Aから入力されるモータ位置検出信号FG1及びFG2を読込み、両信号FG1及びFG2の立ち上がりの順位から回転方向を検出する。
次いで、ステップS48に移行して、回転方向指令CW/CCWとステップS47で検出した回転方向検出値とが一致するか否かを判定し、両者が不一致であるときにはモータ駆動回路90Aが異常であると判断して前記ステップS44に移行し、両者が一致する場合にはモータ駆動回路90Aが正常であるものと判断してステップS49に移行する。
このステップS49では、モータ駆動回路90Bから出力されるモータ位置検出信号FG1,FG2を読込み、次いでステップS50に移行して、モータ駆動回路90Bに対する速度指令値PWMが“0”であるか否かを判定し、速度指令値PWMが“0”であるときにはステップS51に移行して、モータ駆動回路90Bから出力されるモータ位置検出信号FG1及びFG2の少なくとも一方に状態変化が生じたか否かを判定し、状態変化を生じたときには速度指令値PWMが“0”であり、モータ駆動回路90Bが駆動されていないにもかかわらずブラシレスモータ81が回転駆動しており、モータ駆動回路90Bに天絡等の異常が発生したものと判断してステップS52に移行して、異常判定フラグFAを“1”にセットし、状態変化を生じないときにはモータ駆動回路90Bが正常であるものと判断してステップS57に移行し、異常判定フラグFAを“0”にリセットしてからタイマ割込処理を終了して所定のメインプログラムに復帰する。
一方、ステップS50の判定結果が、速度指令値PWMが“0”以外であるときにはステップS53に移行して、所定時間内にモータ位置検出信号FG1及びFG2が状態変化しているか否かを判定し、これらが状態変化していないときには、ブラシレスモータ81が回転していない異常状態であるものと判断して前記ステップS52に移行し、モータ位置検出信号FG1及びFG2が状態変化しているときには一応ブラシレスモータ81が正常であるものと判断してステップS54に移行する。
このステップS54では、モータ駆動回路90Bに対する回転方向指令CW/CCWを読込み、次いでステップS55に移行して、モータ駆動回路90Bから入力されるモータ位置検出信号FG1及びFG2を読込み、両信号FG1及びFG2の立ち上がりの順位から回転方向を検出する。
次いで、ステップS56に移行して、回転方向指令CW/CCWとステップS55で検出した回転方向検出値とが一致するか否かを判定し、両者が不一致であるときにはモータ駆動回路90Bが異常であると判断して前記ステップS52に移行し、両者が一致する場合にはモータ駆動回路90Bが正常であるものと判断して前記ステップS57に移行する。
さらに、演算処理装置106はチルト機構7及びテレスコピック機構8のブラシレスモータ71及び81を駆動開始する際に、図6に示すスロースタート処理を実行する。
このスロースタート処理は、先ず、ステップS61で、バッテリ電圧VBを読込み、次いでステップS62に移行して、読込んだバッテリ電圧VBをもとに図7に示す最大デューティ比算出用マップを参照して最大デューティ比DMAXを算出してからステップS63に移行する。
ここで、最大デューティ比算出用マップは、図7に示すように、基本的にはバッテリ電圧VBが低電圧であるときに最大デューティ比DMAXが100%に設定され、その後バッテリ電圧が増加するに応じてブラシレスモータ71,81の駆動速度が一定となるように徐々に最大デューティ比DMAXを低下させる漸減直線LDによって設定され、バッテリ電圧VBが低い領域で最大デューティ比DMAXが100%近傍の高デューティ比側のノイズ影響領域内に設定される場合には、これを避けて100%に設定される。
また、チルト機構7を傾動させる最小速度を発生する最小デューティ比DMINは例えば0%近傍の網点を付した低デューティ比のノイズ影響領域を超える値に設定されている。
ステップS63では、デューティ比Dを0%から最小デューティ比DMINまで一気に増加して速度指令PWMとしてモータ駆動回路90A,90Bに出力し、次いで、ステップS64に移行して、速度指令PWMを出力してから所定時間が経過したか否かを判定し、所定時間が経過していないときには経過するまで待機し、所定時間が経過したときには、ステップS65に移行する。
このステップS65では、現在のデューティ比Dに単位時間当たりの変化量を制限した設定値ΔDを加算することにより新たなデューティ比Dを算出し、次いで、ステップS66に移行して、算出したデューティ比Dが最大デューティ比DMAXを超えているか否かを判定し、D≦DMAXであるときにはステップS67に移行して、デューティ比Dの速度指令PWMをモータ駆動回路90A,90Bに出力してから前記ステップS64に戻り、デューティ比Dが最大デューティ比DMAXを超えている場合には、ステップS68に移行して、デューティ比Dを最大デューティ比DMAXに設定してステップS69に移行する。
このステップS69では、デューティ比Dの速度指令PWMをモータ駆動回路90A,90Bに出力してからステップS70に移行し、速度指令PWMの出力が停止されたか否かを判定し、速度指令PWMの出力が停止されていないときには前記ステップS68に戻り、速度指令PWMの出力が停止されているときにはスロースタート処理を終了する。
この図4〜図6の処理において、図4の処理におけるS1,S4〜S22,S25〜S35の処理が制御部に対応し、ステップS2,S3,S23,S24の処理が異常制御部に対応し、図5の処理が異常検出部に対応し、図6の処理におけるステップS61の処理が電源電圧検出手段に対応し、ステップS62の処理が最大デューティ比設定手段に対応している。
次に、上記実施形態の動作を説明する。
今、生産工場で車両にチルト機構7及びテレスコピック機構8が組み付けられると共に、バッテリ101が搭載されて、このバッテリ101から制御装置100にバッテリ電圧VBが投入されると、レギュレータ103から制御電圧Vcが演算処理装置106に供給されることにより、この演算処理装置106で図4のモータ制御処理及び図5の異常検出処理が実行開始される。
このとき、モータ駆動回路90A及び90Bに異常が発生しておらず、図5の異常検出処理で異常判定フラグFAが“0”にリセットされているものとする。
このため、図4のモータ制御処理では、ステップS1で、高レベルのリレー制御信号SLをスイッチング素子120に出力することにより、リレーコイルLLRに通電してリレー接点tLRをオン状態とすることにより、ブラシレスモータ71及び81のモータ駆動回路90A及び90Bにバッテリ電圧VBを供給開始する。
そして、異常判定フラグFAが“0”にリセットされているので、ステップS2からステップS4に移行して、チルト機構7の制御原点を設定する制御原点設定処理を行い、次いでステップS5に移行してテレスコピック機構8の制御原点を設定する制御原点設定処理を行う。
このため、チルト機構7では、ステアリングシャフト3が上方側の上死点位置となってステアリングホイール2が上方に退避した状態となり、さらにテレスコピック機構8では、ミドルコラム5がロアコラム6に対して収縮した状態となって、ステアリングホイール2が運転者の乗降を容易にするように上前方に退避した状態となる。
このとき、イグニッションスイッチ111がオフ状態であるものとすると、ステップS6からステップS7を経てステップS8に移行し、低レベルのリレー制御信号SLをスイッチング素子120に出力することにより、スイッチング素子120をオフ状態とし、これによってリレー回路108をオフ状態としてブラシレスモータ71及び81のモータ駆動回路90A及び90Bへのバッテリ電圧VBの供給を停止し、ステップS6〜S8を繰り返すループ処理状態となる。
その後、工場出荷状態となるか又はユーザが車両を使用する状態となって、運転者が乗車してイグニッションスイッチ111をオン状態としてエンジンを始動すると、図4の処理で、ステップS7からステップS9に移行して、高レベルのリレー制御信号SLがスイッチング素子120に出力されることにより、リレー回路108がオン状態に制御されてブラシレスモータ71及び81のモータ駆動回路90A及び90Bにバッテリ電圧VBが供給されて作動可能な状態となる。
このとき、エンジン始動回数Nがインクリメントされ、このエンジン始動回数Nが設定値Nsに達していないときにはステップS11からステップS13に移行して、先ずチルト機構7のチルト位置が記憶装置107のチルト位置記憶領域に記憶されているか否かを判定する。車両がユーザに納車されたばかりであるときには、記憶装置107のチルト位置記憶領域及びテレスコ位置記憶領域にはチルト位置及びテレスコ位置が記憶されていない状態となるので、ステップS13からステップS14に移行して、チルト機構7のブラシレスモータ71を駆動する逆転方向指令CCW及び所定パルス数のチルト位置指令PWMを出力してブラシレスモータ71を回転駆動させて、チルト機構7のステアリングシャフト3をマニュアル動作範囲の最上位点まで下降させる。これによって、ステアリングホイール2が運転者の操作可能範囲内に下降する。
このとき、速度指令PWMを出力する際に、図6に示すスロースタート処理が実行され、そのときのバッテリ電圧VBに基づいて最大デューティ比DMAXが算出され(ステップS62)、次いで、図8に示すように、デューティ比Dをノイズの影響を受けるノイズ影響領域を避けるために、一気に最小デューティ比DMINまで増加させ(ステップS63)、この最小でューティ比DMINに設定されたデューティ比Dの速度指令PWMをモータ駆動回路90Aに出力する。この状態で所定時間(数msec〜数十msec程度)待機してからデューティ比Dに所定値ΔDを加算することを繰り返してデューティ比Dを徐々に増加させ、デューティ比Dが最大デューティ比DMAXを超えると最大デューティ比DMAXに維持される。
このように、速度指令PWMの出力を開始する際に、ノイズの影響を受けるデューティ比領域を飛ばして速度指令PWMのデューティ比Dを最小デューティ比DMINから出力開始し、その後、所定時間毎に設定値ΔDだけ順次増加させるようにしているので、ブラシレスモータ71に供給する駆動開始電流にピークが発生することを確実に抑制することができ、放射ノイズを抑制するとこができると共に、急激なトルクの発生を防止して駆動開始音を小さく抑制することができ、チルト機構7を良好に駆動開始させることができる。しかも、最大テューティ比DMAXがバッテリ電圧VBが増加するに応じて小さい値に減少されるので、ブラシレスモータ71の駆動速度をバッテリ電圧VBにかかわらず一定とすることができ、バッテリ電圧VBの変動に応じてブラシレスモータ71の駆動速度が変動することにより運転者に違和感を与えることを確実に防止することができる。さらに、最大デューティ比DMAXがノイズの影響を受けるデューティ比100%近傍の領域を使用することなく、この領域では最大デューティ比DMAXが100%に設定されるので、ノイズの影響を受けることなくブラシレスモータを良好に駆動することができる。
一方、テレスコピック機構8については、もともと制御原点がミドルコラム5の収縮範囲の最縮み側に設定されているので、ステップS16からステップS18にジャンプすることからブラシレスモータ81を駆動することなく停止状態を維持する。
その後、運転者がチルト位置を調整したい場合には、マニュアルチルトスイッチ部ST1で好みのチルト位置を選択し、これに応じたスイッチ信号ST1が入力されると、入力されたスイッチ信号ST1に応じて逆転方向指令CCW及び速度指令PWMがモータ駆動回路90Aに出力されて、ブラシレスモータ71が例えば逆転されてステアリングホイール2が運転者の所望チルト位置まで下降される。このときにも、前記図6のスロースタート処理が実行される。
同様に、運手者がテレスコ位置を調整した場合には、マニュアルテレスコスイッチ部116を操作して好みのテレスコ位置を選択し、これに応じたスイッチ信号ST2が入力されると、入力されたスイッチ信号ST2に応じて逆転方向指令CCW及び速度指令PWMがモータ駆動回路90Bに出力されて、ブラシレスモータ81が例えば逆転されてステアリングホイール2が運転者の所望テレスコ位置まで伸張される。このときにも、前記図6のスロースタート処理が実行される。
このように、運転者がマニュアルチルトスイッチ部115及びマニュアルテレスコスイッチ部116を操作することにより、ステアリングホイール2を運転者の所望位置に移動させることができる。
その後、運転者が最後に操作したマニュアルチルトスイッチ部115又はマニュアルテレスコスイッチ部116を操作してから所定時間が経過するまでは、マニュアルチルトスイッチ部115及びマニュアルテレスコスイッチ部116での位置選択操作を行うことができるが、所定時間が経過したとき又は車速センサ104で検出した車速検出値Vsが閾値Vst以上となって走行状態と判断されたときにはステップS22又はステップS24からステップS27に移行して、低レベルのリレー制御信号SLをスイッチング素子120に出力することにより、リレー回路108がオフ状態に制御されて、モータ駆動回路90A及び90Bへのバッテリ電圧VBの供給が停止されて、ブラシレスモータ71及び81の駆動が停止され、チルト機構7及びテレスコピック機構8の作動が停止される。
このように、マニュアルチルトスイッチ部115及びマニュアルテレスコスイッチ部116が操作されないで所定時間が経過したとき及び車速検出値Vsが閾値Vst以上となって走行状態となったときには、運転者のチルト位置及びテレスコ位置の調節が完了したものと判断して、リレー回路108をオフ状態とし、モータ駆動回路90A及び90Bへのバッテリ電圧VBの供給を停止するので、以後、チルト機構7及びテレスコピック機構8が不用意に作動されることを確実に防止することができる。
その後、運転者が車両から降車する前に、キースイッチ113をオフ状態とすると、図4の処理においてステップS29からステップS30に移行し、異常判定フラグFAが“0”にリセットされているときにはステップS31に移行して、高レベルのリレー制御信号SLをスイッチング素子120に出力することにより、リレー回路108をオン状態に制御して、モータ駆動回路90A及び90Bにバッテリ電圧VBを供給開始して、チルト機構7及びテレスコピック機構8を作動可能状態とする。
次いで、現在のチルト位置が記憶装置107のチルト位置記憶領域に記憶されているチルト位置と一致するか否かを判定し、チルト位置が記憶されていないので、現在のチルト位置がチルト位置記憶領域に記憶される(ステップS33)。
同様に、現在のテレスコ位置が記憶装置107のテレスコ位置記憶領域に記憶されているテレスコ位置と一致するか否かを判定し、テレスコ位置が記憶されていないので、現在のテレスコ位置がテレスコ位置記憶領域に記憶される(ステップS35)。
次いで、チルト機構7のモータ駆動回路90Aに対して速度指令PWM及び例えば正転指令CWが出力されて、ブラシレスモータ71が正転されて、ステアリングホイール2が上方の上死点となる退避位置に退避され、次いでテレスコピック機構8のモータ駆動回路90Bに対して速度指令PWM及び例えば正転指令CWが出力されて、ブラシレスモータ81が正転されて、ミドルコラム5が収縮されてステアリングホイール2が車両前方側に退避され、運転者の前部に移動空間が形成されて、運転者が乗降を容易に行うことができる。
このように、記憶装置107のチルト位置記憶領域及びテレスコ位置記憶領域にチルト位置及びテレスコ位置が記憶されると、その後は、運手者が乗車してイグニッションスイッチ111をオン状態とする毎に、記憶装置107のチルト位置記憶領域及びテレスコ位置記憶領域に記憶されているチルト位置及びテレスコ位置となるにチルト機構7のブラシレスモータ71及びテレスコピック機構8のブラシレスモータ81が自動的に制御される。
ところが、演算処理装置106で実行される図5の異常検出処理で、モータ駆動回路90Aに対する速度指令PWMが“0”である状態即ちブラシレスモータ71を駆動していない状態で、モータ駆動回路90Aから入力されるモータ位置検出信号FG1,FG2の何れかが状態変化を生じたときには、モータ駆動回路90Aの下アームを構成する電界効果トランジスタQub〜Qwbに短絡が発生したり、ブラシレスモータ71に地絡等が発生したりして駆動状態となった異常状態であると判断して異常判定フラグFAが“1”にセットされる(ステップS44)。
また、モータ駆動回路90Aに“0”を超える速度指令値PWMが出力されて、ブラシレスモータ71が回転駆動されている状態で、制御装置100及びブラシレスモータ71間に断線が発生してブラシレスモータ71が回転しない状態となったり、過電流検出回路94で過電流を検出したFETゲート駆動回路95によって下アームを構成する電界効果トランジスタQub〜Qwbがオフ状態に制御されてブラシレスモータ71の回転が停止される状態となったりして異常が発生した場合には異常判定フラグFAが“1”にセットされる。
また、モータ駆動回路断線がその回転方向指令CW/CCWとモータ駆動回路90Aから入力されるモータ位置検出信号FG1,FG2の立ち上がり時点の順位即ちモータ位置検出信号FG1及びFG2の何れの位相が進んでいるかを検出してモータ回転方向を検出し(ステップS47)、この回転方向検出値と回転方向指令CW/CCWとが不一致であるときにもモータ駆動回路90Aの異常と判断して異常判定フラグFAを“1”にセットする。
また、テレスコピック機構8のモータ駆動回路90Bについても上記と同様の異常検出が行われる。
そして、モータ駆動回路90A及び90Bの何れかに異常が発生して、異常判定フラグFAが“1”にセットされると、前述した図4のモータ制御処理では、演算処理装置106に電源が投入された初期状態で、異常判定フラグFAが“1”にセットされているときには、ステップS2からステップS3に移行して、低レベルのリレー制御信号SLをスイッチング素子120に出力することにより、直ちにリレー回路108がオフ状態に制御されてモータ制御処理が終了される。このため、モータ駆動回路90A及び90Bに供給されるバッテリ電圧VBを確実に遮断するので、異常発生時にブラシレスモータ71及び81が駆動されることを確実に防止することができる。
なお、上記実施形態においては、ブラシレスモータ71及び81にモータ駆動回路90A及び90Bが内蔵されている場合について説明したが、これに限定されるものではなく、モータ駆動回路90A及び90Bが制御装置100内に設けられている場合でも本発明を適用することができる。ここで、モータとしてはブラシレスモータに限定されるものではなく、ブラシモータや任意の電動モータを適用することができる。
また、上記実施形態においては、図4のモータ制御処理で、イグニッションスイッチ111がオフ状態を継続している状態ではステップS6〜S8で待ちループ処理を行う場合について説明したが、これに限定されるものではなく、前回の走行終了時にチルト機構7及びテレスコピック機構8を退避位置に移動させたときに、イグニッションスイッチ111の状態変化のみを監視する待機処理に移行し、イグニッションスイッチ111がオン状態となったときに図4の処理を復帰させるようにしてもよい。
さらに、上記実施形態においては、制御装置100のレギュレータ103がバッテリ101にヒューズ102を介して直結されている場合について説明したが、これに限定されるものではなく、レギュレータ103にキースイッチ113を介してバッテリ電圧VBを供給するようにしてもよく、この場合には、記憶装置107として不揮発性メモリを適用して、チルト位置、テレスコ位置、エンジン始動回数N等を記憶するようにすればよい。
さらにまた、上記実施形態においては3相ブラシレスモータ71及び81を適用した場合について説明したが、これに限定されるものではなく、4相以上のブラシレスモータを適用することができる外、直流ブラシレスモータも適用することができる。
なおさらに、上記実施形態では、最小デューティ比DMINを20%に設定した場合について説明したが、これに限定されるものではなく、チルト機構7及びテレスコピック機構8の構成に応じてノイズの影響を受けない下限値に設定すればよいものである。
本発明の一実施形態を示す概略構成図である。 本発明に適用し得る制御回路を示すブロック図である。 図2のモータ駆動回路の具体的構成を示すブロック図である。 図2の演算処理装置で実行するモータ制御処理手順の一例を示すフローチャートである。 図2の演算処理装置で実行する異常検出処理手順の一例を示すフローチャートである。 図2の演算処理装置で実行するスロースタート処理手順の一例を示すフローチャートである。 最大デューティ比算出用マップを示す特性線図である。 スロースタート処理を実行したときのデューティ比の変化を示すタイムチャートである。
符号の説明
1…電動式ステアリング装置、2…ステアリングホイール、3…ステアリングシャフト、4…アッパコラム、5…ミドルコラム、6…ロアコラム、7…電動チルト機構、8…電動テレスコピック機構、71…ブラシレスモータ、81…ブラシレスモータ、90A,90B…モータ駆動回路、91u〜91w…位置検出素子、92u〜92w…シュミットトリガ回路、93…三相分配回路、94…過電流検出回路、95…FETゲート駆動回路、96…インバータ回路、100…制御装置、101…バッテリ、103…レギュレータ、104…車速センサ、106…演算処理装置、107…記憶装置、108…リレー回路、111…イグニッションスイッチ、113…キースイッチ、114…ドアスイッチ、115…マニュアルチルトスイッチ部、116…マニュアルテレスコスイッチ部

Claims (3)

  1. 後端側にステアリングホイールが装着されるステアリング機構と、該ステアリング機構の傾動位置及び伸縮位置の少なくとも一方を位置調整する電動モータを有する姿勢調整機構と、前記電動モータを駆動制御するモータ駆動回路と、該モータ駆動回路に対して前記姿勢調整機構の位置調整を指令するパルス幅変調信号でなる速度指令値を出力する制御部とを備えた電動式ステアリング装置であって、
    前記制御部は、前記姿勢調整機構の作動を開始する速度指令値を出力する際に、デューティ比を当該姿勢調整機構が低デューティ比のノイズ影響領域を超える最小デューティ比まで増加させた後最大デューティ比まで単位時間当たりのデューティ比変化量を一定値以下に制限して漸増させるように構成されていることを特徴とする電動式ステアリング装置。
  2. 前記制御部は、電源電圧を検出する電源電圧検出手段と、該電源電圧検出手段で検出した電源電圧が増加するに従って最大デューティ比を減少させる最大デューティ比設定手段とを備えていることを特徴とする請求項1に記載の電動式ステアリング装置。
  3. 前記最大デューティ比設定手段は、設定される最大デューティ比が100%近傍の設定値を超えたときに100%に設定するように構成されていることを特徴とする請求項2に記載の電動式ステアリング装置。
JP2005297000A 2005-10-11 2005-10-11 電動式ステアリング装置 Pending JP2007110788A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005297000A JP2007110788A (ja) 2005-10-11 2005-10-11 電動式ステアリング装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005297000A JP2007110788A (ja) 2005-10-11 2005-10-11 電動式ステアリング装置

Publications (1)

Publication Number Publication Date
JP2007110788A true JP2007110788A (ja) 2007-04-26

Family

ID=38036198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005297000A Pending JP2007110788A (ja) 2005-10-11 2005-10-11 電動式ステアリング装置

Country Status (1)

Country Link
JP (1) JP2007110788A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010106764A1 (ja) * 2009-03-17 2010-09-23 株式会社ジェイテクト モータ制御装置及び電動パワーステアリング装置
WO2011155160A1 (ja) * 2010-06-08 2011-12-15 パナソニック株式会社 モータ駆動装置およびブラシレスモータ、並びにモータ駆動方法
US8294407B2 (en) 2009-07-10 2012-10-23 Jtekt Corporation Motor controller and electric power steering system
DE102019116760B3 (de) * 2019-06-21 2020-08-27 Nidec Motors & Actuators (Germany) Gmbh Verfahren zur gleichmäßigen Höhenverstellung einer Lenksäule eines Kraftfahrzeuges
US20210291894A1 (en) * 2020-03-23 2021-09-23 Steering Solutions Ip Holding Corporation Systems and methods of improved speed regulation for power rake columns

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0847295A (ja) * 1994-08-04 1996-02-16 Sanyo Electric Co Ltd モータ制御装置
JPH10178800A (ja) * 1996-12-19 1998-06-30 Aisin Seiki Co Ltd ステッピングモ−タ駆動装置
JPH1169867A (ja) * 1997-08-11 1999-03-09 Matsushita Electric Ind Co Ltd センサレスdcブラシレスモータの制御駆動装置および制御駆動方法
JP2000175476A (ja) * 1998-12-04 2000-06-23 Matsushita Electric Ind Co Ltd インバータ装置
JP2004282911A (ja) * 2003-03-17 2004-10-07 Matsushita Electric Ind Co Ltd ブラシレスdcモータの駆動方法及びその装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0847295A (ja) * 1994-08-04 1996-02-16 Sanyo Electric Co Ltd モータ制御装置
JPH10178800A (ja) * 1996-12-19 1998-06-30 Aisin Seiki Co Ltd ステッピングモ−タ駆動装置
JPH1169867A (ja) * 1997-08-11 1999-03-09 Matsushita Electric Ind Co Ltd センサレスdcブラシレスモータの制御駆動装置および制御駆動方法
JP2000175476A (ja) * 1998-12-04 2000-06-23 Matsushita Electric Ind Co Ltd インバータ装置
JP2004282911A (ja) * 2003-03-17 2004-10-07 Matsushita Electric Ind Co Ltd ブラシレスdcモータの駆動方法及びその装置

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8890459B2 (en) 2009-03-17 2014-11-18 Jtekt Corporation Motor control device and electric power steering system
JP2010220414A (ja) * 2009-03-17 2010-09-30 Jtekt Corp モータ制御装置及び電動パワーステアリング装置
WO2010106764A1 (ja) * 2009-03-17 2010-09-23 株式会社ジェイテクト モータ制御装置及び電動パワーステアリング装置
CN102349227A (zh) * 2009-03-17 2012-02-08 株式会社捷太格特 电机控制装置和电动动力转向装置
EP2273668A3 (en) * 2009-07-10 2017-07-19 Jtekt Corporation Motor controller and electric power steering system
US8294407B2 (en) 2009-07-10 2012-10-23 Jtekt Corporation Motor controller and electric power steering system
JP5158290B2 (ja) * 2010-06-08 2013-03-06 パナソニック株式会社 モータ駆動装置およびブラシレスモータ、並びにモータ駆動方法
US8796967B2 (en) 2010-06-08 2014-08-05 Panasonic Corporation Motor drive device, brushless motor, and motor drive method
WO2011155160A1 (ja) * 2010-06-08 2011-12-15 パナソニック株式会社 モータ駆動装置およびブラシレスモータ、並びにモータ駆動方法
DE102019116760B3 (de) * 2019-06-21 2020-08-27 Nidec Motors & Actuators (Germany) Gmbh Verfahren zur gleichmäßigen Höhenverstellung einer Lenksäule eines Kraftfahrzeuges
WO2020254586A1 (de) * 2019-06-21 2020-12-24 Nidec Motors & Actuators (Germany) Gmbh Verfahren zur gleichmässigen höhenverstellung einer lenksäule eines kraftfahrzeuges
CN114126952A (zh) * 2019-06-21 2022-03-01 德国日本电产电机与驱动器有限公司 用于机动车辆的转向柱的高度统一调节的方法
US11904928B2 (en) 2019-06-21 2024-02-20 Nidec Motors & Actuators (Germany) Gmbh Method for the uniform height adjustment of a steering column of a motor vehicle
US20210291894A1 (en) * 2020-03-23 2021-09-23 Steering Solutions Ip Holding Corporation Systems and methods of improved speed regulation for power rake columns
CN113437906A (zh) * 2020-03-23 2021-09-24 操纵技术Ip控股公司 用于电动倾斜柱的改进的速度调节的系统和方法
US11807290B2 (en) * 2020-03-23 2023-11-07 Steering Solutions Ip Holding Corporation Systems and methods of improved speed regulation for power rake columns

Similar Documents

Publication Publication Date Title
JP5151128B2 (ja) 電動式ステアリング装置
US11338839B2 (en) Electrically adjustable steering
CN114401881A (zh) 转向控制装置
EP2088058B1 (en) Electric power steering device
JP2006513086A (ja) 自動車のかじ取りハンドルとかじ取りされる車輪とを同期させるための方法
CN101306666B (zh) 电动镜控制装置和倒车联动动作控制方法
JP5614576B2 (ja) 車両用操舵装置
JP7087854B2 (ja) ステアリング制御装置
US9457836B2 (en) Power steering apparatus
KR20230095481A (ko) 반력 모터의 구동을 제어하는 장치 및 방법
JP2007110788A (ja) 電動式ステアリング装置
JP7338572B2 (ja) ステアリングホイール位置調整装置
JP2005343323A (ja) 電動パワーステアリング装置
JP4923506B2 (ja) 電動式ステアリング装置
JP2007106180A (ja) 電動式ステアリング装置
JP4876716B2 (ja) 電動パワーステアリング制御装置
JP4982995B2 (ja) 電動式ステアリング装置
JP4802648B2 (ja) 電動式ステアリング装置
JP5515851B2 (ja) 電動式ステアリング位置調整装置及び車両
JP5052424B2 (ja) ミラー装置
JP2004203315A (ja) 駐車支援装置
JP4470684B2 (ja) 電動パワーステアリング装置
JPH08336237A (ja) 作業機の電気負荷制御装置
KR20210145389A (ko) 전동식 조향장치 및 그 제어방법
JP4910561B2 (ja) 電動パワーステアリング装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080917

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20090130

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20101022

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111004