[go: up one dir, main page]

JP2007109807A - Magnetoresistive element, magnetic head, and magnetic recording apparatus - Google Patents

Magnetoresistive element, magnetic head, and magnetic recording apparatus Download PDF

Info

Publication number
JP2007109807A
JP2007109807A JP2005297937A JP2005297937A JP2007109807A JP 2007109807 A JP2007109807 A JP 2007109807A JP 2005297937 A JP2005297937 A JP 2005297937A JP 2005297937 A JP2005297937 A JP 2005297937A JP 2007109807 A JP2007109807 A JP 2007109807A
Authority
JP
Japan
Prior art keywords
film
magnetic
layer
electromagnetic shield
magnetoresistive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005297937A
Other languages
Japanese (ja)
Inventor
Takahiro Ibusuki
隆弘 指宿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2005297937A priority Critical patent/JP2007109807A/en
Publication of JP2007109807A publication Critical patent/JP2007109807A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Heads (AREA)
  • Hall/Mr Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetoresistive element which generates low level noise and assures excellent anti-external magnetic field strength, and also to provide a magnetic head and a magnetic recording device. <P>SOLUTION: The magnetoresistive element comprises a lower electromagnetic shield layer and an upper electromagnetic shield layer functioning as electrode and electromagic shield, and a magnetoresistive film held between these two electromagnetic shield layers. The element can feed electrical power in the direction perpendicular to the film surface of the same magnetoresistive element. At least any of these two electromagnetic shield layers is formed of three layers of soft magnetic film/non-magnetic film/soft magnetic film. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、磁気記録装置において磁気情報を再生(読み取り)するための磁気抵抗効果素子、磁気情報を記録(書き込み)または再生するための磁気ヘッドおよび磁気記録装置に関し、特に、いわゆる磁気抵抗効果膜(スピンバルブ膜ともいう)や磁気トンネル接合膜を用いて、積層方向にセンス電流を流す膜面垂直通電型(CPP:Current Perpendicular to Plane)構造を有する磁気抵抗効果素子に関する。   The present invention relates to a magnetoresistive element for reproducing (reading) magnetic information in a magnetic recording apparatus, a magnetic head and a magnetic recording apparatus for recording (writing) or reproducing magnetic information, and in particular, a so-called magnetoresistive film. The present invention relates to a magnetoresistive effect element having a film-perpendicular-to-plane (CPP) structure in which a sense current is passed in the stacking direction using a magnetic tunnel junction film (also referred to as a spin valve film).

従来、磁気記録装置の磁気ヘッドには、磁気記録媒体に記録された情報を再生するための再生用素子として磁気抵抗効果素子が用いられてきた。磁気抵抗効果素子は高記録密度化に伴い、磁界感度が高い磁気抵抗効果膜を備えたものが主流となっている。磁気抵抗効果膜は二つの強磁性層、すなわち反強磁性層により磁化を固定された磁化固定層と、磁気記録媒体からの漏洩磁界に応じて磁化の向きが変わる磁化自由層を含んで構成される。   Conventionally, a magnetoresistive element has been used as a reproducing element for reproducing information recorded on a magnetic recording medium in a magnetic head of a magnetic recording apparatus. As the magnetoresistive effect element is increased, the one having a magnetoresistive effect film having high magnetic field sensitivity is becoming mainstream as the recording density is increased. The magnetoresistive film includes two ferromagnetic layers, that is, a magnetization fixed layer whose magnetization is fixed by an antiferromagnetic layer, and a magnetization free layer whose magnetization direction changes according to the leakage magnetic field from the magnetic recording medium. The

これまでは、磁気抵抗効果膜の面内方向にセンス電流を流すCIP(Current−In−Plane)構造が主に用いられてきた。しかし、最近では、更なる高記録密度化を図るために、磁気抵抗効果膜の積層方向にセンス電流を流すCPP構造が提案され、次世代再生用素子として盛んに研究が行われている(たとえば特許文献1参照。)。   Until now, a CIP (Current-In-Plane) structure in which a sense current flows in the in-plane direction of the magnetoresistive effect film has been mainly used. However, recently, in order to further increase the recording density, a CPP structure in which a sense current is passed in the stacking direction of the magnetoresistive effect film has been proposed, and research is actively conducted as a next-generation reproducing element (for example, (See Patent Document 1).

このCPP構造の磁気抵抗効果膜では、信号出力は、CPP構造の磁気抵抗効果膜の積層方向にセンス電流Isを流し、磁化自由層の磁化と、非磁性中間層を挟んで存在する磁化固定層の第二の強磁性層の磁化の相対的な向きに応じて磁気抵抗が変化することにより、磁気抵抗効果膜の両端に生じる電圧変化として検出される。磁化固定層は、たとえば、二つの強磁性層(軟磁性材料よりなる第一の強磁性層および軟磁性材料よりなる第二の強磁性層)が非磁性結合層を介して反強磁性的に結合した積層フェリ構造を有する。この積層フェリ構造は、二つの強磁性層の磁化が互いに反平行をなすので、正味の磁化の大きさが小さくなり、反磁界を低減し、正味の磁化を抑制しつつ反強磁性層との交換結合を増加させ、確実に磁化固定層の磁化方向を固定できる。   In the magnetoresistive effect film having the CPP structure, the signal output flows the sense current Is in the stacking direction of the magnetoresistive effect film having the CPP structure, and the magnetization fixed layer exists between the magnetization of the magnetization free layer and the nonmagnetic intermediate layer. The change in the magnetic resistance according to the relative direction of the magnetization of the second ferromagnetic layer is detected as a voltage change that occurs across the magnetoresistive film. For example, the fixed magnetization layer includes two ferromagnetic layers (a first ferromagnetic layer made of a soft magnetic material and a second ferromagnetic layer made of a soft magnetic material) antiferromagnetically via a nonmagnetic coupling layer. It has a laminated laminated ferri structure. In this laminated ferrimagnetic structure, the magnetizations of the two ferromagnetic layers are antiparallel to each other, so the magnitude of the net magnetization is reduced, the demagnetizing field is reduced, and the net magnetization is suppressed while suppressing the net magnetization. The exchange coupling can be increased and the magnetization direction of the magnetization fixed layer can be reliably fixed.

このとき、隣り合うビットからの信号磁界を吸収する電磁シールドとして機能を有する電磁シールド層に、これまで電流が流れていなかったセンス電流Isが流れ、電磁シールド層が、隣り合うビットからの媒体磁界の吸収と同時にセンス電流の電極としての機能を有することになる。
特開2002−208744号公報(特許請求の範囲)
At this time, the sense current Is, to which no current has previously flowed, flows through the electromagnetic shield layer that functions as an electromagnetic shield that absorbs the signal magnetic field from the adjacent bit, and the electromagnetic shield layer has a medium magnetic field from the adjacent bit. At the same time as the absorption of light, it functions as a sense current electrode.
JP 2002-208744 A (Claims)

電磁シールド層は、通常単層の軟磁性膜から形成されるが、電磁シールド層に形成される磁区、例えば磁気抵抗効果膜および後述する磁区制御膜の凹部に形成される電磁シールドの磁区から磁気抵抗効果膜側へ漏洩する静磁界による磁気抵抗効果素子の性能低下が問題となっている。   The electromagnetic shield layer is usually formed of a single-layer soft magnetic film. However, the magnetic domain is formed from the magnetic domain formed in the electromagnetic shield layer, for example, the magnetic domain of the electromagnetic shield formed in the recess of the magnetoresistive effect film and the magnetic domain control film described later. There is a problem that the performance of the magnetoresistive effect element is deteriorated due to a static magnetic field leaking to the resistance effect film side.

この問題を解決するには、電磁シールド層において、磁気抵抗効果膜の性能を低下させるローカルな磁区の発生を抑えることが必要であるが、現行の単層の電磁シールドでは、上記問題を解決することができない。   In order to solve this problem, it is necessary to suppress the occurrence of local magnetic domains in the electromagnetic shield layer that degrade the performance of the magnetoresistive film. However, the current single-layer electromagnetic shield solves the above problem. I can't.

本発明は、この問題を解決し、電磁シールド層において、磁気抵抗効果膜の性能を低下させるローカルな磁区の発生を抑える技術を提供することを目的としている。本発明の他の目的および利点は、以下の説明から明らかになるであろう。   An object of the present invention is to solve this problem and to provide a technique for suppressing the generation of local magnetic domains in the electromagnetic shield layer that lowers the performance of the magnetoresistive film. Other objects and advantages of the present invention will become apparent from the following description.

本発明では、電磁シールド層を3層構造とすることで、電流磁界を積極的に利用し、センス電流Isから発生する電流磁界により、電磁シールド層において、磁気抵抗効果膜の性能を低下させるローカルな磁区の発生を抑える。   In the present invention, since the electromagnetic shield layer has a three-layer structure, the current magnetic field is positively utilized, and the local current that lowers the performance of the magnetoresistive effect film in the electromagnetic shield layer by the current magnetic field generated from the sense current Is. Suppresses the occurrence of magnetic domains.

本発明の一態様によれば、電極および電磁シールドとして機能する下部電磁シールド層と上部電磁シールド層、および当該二つの電磁シールド層に挟まれた磁気抵抗効果膜を含んでなり、当該磁気抵抗効果膜の膜面に対して垂直方向に通電可能な磁気抵抗効果素子であって、少なくとも一つの電磁シールド層が軟磁性膜/非磁性膜/軟磁性膜の3層で形成されてなる磁気抵抗効果素子が提供される。本発明態様により、低ノイズで外部磁場耐性に優れた、磁気抵抗効果素子が得られる。   According to one aspect of the present invention, the magnetoresistive effect film includes a lower electromagnetic shield layer and an upper electromagnetic shield layer that function as an electrode and an electromagnetic shield, and a magnetoresistive effect film sandwiched between the two electromagnetic shield layers. A magnetoresistive effect element capable of energizing in a direction perpendicular to the film surface of the film, wherein at least one electromagnetic shield layer is formed of three layers of soft magnetic film / nonmagnetic film / soft magnetic film An element is provided. According to the aspect of the present invention, a magnetoresistive element having low noise and excellent external magnetic field resistance can be obtained.

前記二つの電磁シールド層が、共に、軟磁性膜/非磁性膜/軟磁性膜の3層で形成されてなること、前記磁気抵抗効果膜が、磁化の方向が実質的に一方の方向に固定された強磁性膜を有する磁化固定層と、非磁性中間層と、磁化の方向が外部磁界に応じて変化する強磁性膜よりなる磁化自由層とを含み、これらの層の膜面に対して垂直方向に通電可能であること、前記軟磁性膜の少なくともいずれか一つが、高抵抗アモルファス軟磁性材料であってもよい軟磁性材料からなるものであること、前記軟磁性材料が、NiFeまたはCoNbZrであること、高抵抗アモルファス軟磁性材料である場合にはFeCuNbSiBであること、前記軟磁性膜の少なくともいずれか一つの比抵抗が25μΩcm以上であること、前記軟磁性膜の一層の膜厚が、当該軟磁性膜を含んでなる電磁シールド層の全体の膜厚の40%以上であること、前記非磁性膜の少なくともいずれか一つの比抵抗が2.1μΩcm以下であること、前記非磁性膜の少なくともいずれか一つが、Au、AgまたはCuからなること、前記非磁性膜の一層の膜厚が、当該非磁性膜を含んでなる電磁シールド層の全体の膜厚の20%以下であること、が好ましい。   The two electromagnetic shield layers are both formed of a soft magnetic film / non-magnetic film / soft magnetic film, and the magnetoresistive film has a magnetization direction substantially fixed in one direction. Including a magnetization fixed layer having a ferromagnetic film formed thereon, a nonmagnetic intermediate layer, and a magnetization free layer made of a ferromagnetic film whose magnetization direction changes in response to an external magnetic field. It is possible to energize in the vertical direction, at least one of the soft magnetic films is made of a soft magnetic material which may be a high resistance amorphous soft magnetic material, and the soft magnetic material is made of NiFe or CoNbZr In the case of a high resistance amorphous soft magnetic material, it is FeCuNbSiB, the specific resistance of at least one of the soft magnetic films is 25 μΩcm or more, and the thickness of one layer of the soft magnetic film Is 40% or more of the total thickness of the electromagnetic shielding layer comprising the soft magnetic film, the specific resistance of at least one of the nonmagnetic films is 2.1 μΩcm or less, and the nonmagnetic At least one of the films is made of Au, Ag or Cu, and the thickness of one layer of the nonmagnetic film is 20% or less of the total thickness of the electromagnetic shield layer including the nonmagnetic film. It is preferable.

本発明の更に他の態様によれば、上記磁気抵抗効果素子を備えた磁気ヘッドおよび、この磁気ヘッドを備えた磁気記録装置が提供される。本発明態様により、低ノイズで外部磁場耐性に優れた磁気ヘッドおよび磁気記録装置が得られる。   According to still another aspect of the present invention, there are provided a magnetic head including the magnetoresistive element and a magnetic recording apparatus including the magnetic head. According to the aspect of the present invention, a magnetic head and a magnetic recording apparatus having low noise and excellent external magnetic field resistance can be obtained.

本発明により、低ノイズで外部磁場耐性に優れた、磁気抵抗効果素子、磁気ヘッドおよび磁気記録装置が得られる。   According to the present invention, a magnetoresistive effect element, a magnetic head, and a magnetic recording apparatus having low noise and excellent external magnetic field resistance can be obtained.

以下に、本発明の実施の形態を図、実施例等を使用して説明する。なお、これらの図、実施例等および説明は本発明を例示するものであり、本発明の範囲を制限するものではない。本発明の趣旨に合致する限り、他の実施の形態も本発明の範疇に属し得ることは言うまでもない。図中、同一の符号は同一の要素を表す。図の要素毎の寸法は実際の寸法を反映、縮尺したものではない。たとえば、一般的に、磁気抵抗効果膜の厚さは0.05μm程度、電磁シールド層の厚さはそれぞれ1〜2μm程度であるが、理解を容易にするため、磁気抵抗効果膜を大きめに描いてある。   Embodiments of the present invention will be described below with reference to the drawings, examples and the like. In addition, these figures, Examples, etc. and description illustrate the present invention, and do not limit the scope of the present invention. It goes without saying that other embodiments may also belong to the category of the present invention as long as they match the gist of the present invention. In the drawings, the same reference numeral represents the same element. The dimensions for each element in the figure reflect the actual dimensions and are not scaled. For example, the thickness of the magnetoresistive film is generally about 0.05 μm, and the thickness of the electromagnetic shield layer is about 1 to 2 μm, but the magnetoresistive film is drawn larger for easy understanding. It is.

本発明に係る磁気抵抗効果素子は、電極および電磁シールドとして機能する下部電磁シールド層と上部電磁シールド層およびこれら二つの電磁シールド層に挟まれた磁気抵抗効果膜を含んでなり、磁気抵抗効果膜の膜面に対して垂直方向に通電可能な(すなわちCPP型の)磁気抵抗効果素子であって、これら二つの電磁シールド層の少なくともいずれか一方が、軟磁性膜/非磁性膜/軟磁性膜の3層で形成されてなる。すなわち、従来の単層の電磁シールド層の中間に電流を集中させる非磁性膜を挿入したものである。   A magnetoresistive effect element according to the present invention comprises a lower electromagnetic shield layer and an upper electromagnetic shield layer that function as an electrode and an electromagnetic shield, and a magnetoresistive effect film sandwiched between these two electromagnetic shield layers. A magnetoresistive effect element that can be energized in the direction perpendicular to the film surface (ie, CPP type), and at least one of these two electromagnetic shield layers is a soft magnetic film / non-magnetic film / soft magnetic film It is formed by three layers. That is, a nonmagnetic film for concentrating current is inserted in the middle of a conventional single-layer electromagnetic shield layer.

本発明により、電磁シールド層における層内方向の電流磁界を一様にすることができ、これにより、電磁シールド層において、磁気抵抗効果膜の性能を低下させるローカルな磁区の発生を抑え、電磁シールド層から磁気抵抗効果膜側へ漏洩する漏れ磁界による磁気抵抗効果素子の性能低下を防止できる。また、このことに付随して、磁気抵抗効果膜および後述する磁区制御膜の凸凹部分による静磁界の発生を抑制できる。このようにして、本発明により、低ノイズで外部磁場耐性に優れた、磁気抵抗効果素子が得られる。   According to the present invention, it is possible to make the current magnetic field in the in-layer direction uniform in the electromagnetic shield layer, thereby suppressing the generation of local magnetic domains that deteriorate the performance of the magnetoresistive effect film in the electromagnetic shield layer. The performance degradation of the magnetoresistive element due to the leakage magnetic field leaking from the layer to the magnetoresistive film side can be prevented. Further, accompanying this, generation of a static magnetic field due to the convex and concave portions of the magnetoresistive effect film and the magnetic domain control film described later can be suppressed. Thus, according to the present invention, a magnetoresistive element having low noise and excellent external magnetic field resistance can be obtained.

電磁シールド層は、その少なくともいずれか一方が、軟磁性膜/非磁性膜/軟磁性膜の3層で形成されていれば本発明の効果を得ることができるが、二つの電磁シールド層の両方が軟磁性膜/非磁性膜/軟磁性膜の3層で形成されていてもよく、より好ましい。いずれか一方のみが軟磁性膜/非磁性膜/軟磁性膜の3層で形成されている場合には、磁区の安定性の要求がより強いことおよび、情報書き込み時の磁界が上部電磁シールド層の方により大きくかかるため、磁区が乱される影響が強いこと等から、上部電磁シールド層を3層で形成する方が好ましいことが多い。   The effect of the present invention can be obtained if at least one of the electromagnetic shield layers is formed of three layers of soft magnetic film / nonmagnetic film / soft magnetic film. May be formed of three layers of soft magnetic film / nonmagnetic film / soft magnetic film, and is more preferable. When only one of them is formed of three layers of a soft magnetic film / non-magnetic film / soft magnetic film, there is a stronger demand for the stability of the magnetic domain and the magnetic field at the time of writing information is the upper electromagnetic shield layer. Therefore, it is often preferable to form the upper electromagnetic shield layer in three layers because the magnetic domain is strongly disturbed.

次に図1−A,Bを使用して本発明に係る電磁シールド層の構造を説明する。図1−Aは、本発明に係る電磁シールド層の構造の模式的斜視図、図1−Bは、その電磁シールド層をZ方向に見た図{ABS面(浮上面:Air Bearing Surface)から見た図}である。図1−A,Bに示すように、本発明に係る二つの電磁シールド層28,32は、それぞれ三層構造を有する。すなわち、下部電磁シールド層28は二層の軟磁性膜28aと一層の非磁性膜28bとからなり、上部電磁シールド層32は二層の軟磁性膜32aと一層の非磁性膜32bとからなっている。このような構造とすることで、非磁性膜に集中して流れるセンス電流Isからの電流磁界により、電磁シールド層において、磁気抵抗効果膜の性能を低下させるローカルな磁区の発生を抑えることができる。図1−A,B中、白抜きの太い矢印は磁化の方向を示し、白抜きでない直線状の太い矢印はセンス電流Isの方向を示す。図1−B中の×を含む丸印は、センス電流が紙面に向かって流れ込んでいることを意味し、黒丸を含む丸印は、センス電流が紙面から流れ出ていることを意味する。曲線状の矢印はそのセンス電流による電流磁界を表している。このようにして、曲線状の矢印で表されるセンス電流Isから発生する電流磁界を積極的に利用して、電磁シールド層における層内方向の電流磁界を一様にすることができ、これにより、電磁シールド層において、磁気抵抗効果膜の性能を低下させるローカルな磁区の発生を抑えるのである。   Next, the structure of the electromagnetic shielding layer according to the present invention will be described with reference to FIGS. 1A is a schematic perspective view of the structure of the electromagnetic shielding layer according to the present invention, and FIG. 1B is a view of the electromagnetic shielding layer in the Z direction (from the ABS surface (air bearing surface)). The figure seen}. As shown in FIGS. 1A and 1B, the two electromagnetic shield layers 28 and 32 according to the present invention each have a three-layer structure. That is, the lower electromagnetic shield layer 28 is composed of two soft magnetic films 28a and a single nonmagnetic film 28b, and the upper electromagnetic shield layer 32 is composed of two soft magnetic films 32a and a single nonmagnetic film 32b. Yes. With such a structure, it is possible to suppress the generation of local magnetic domains that degrade the performance of the magnetoresistive film in the electromagnetic shield layer due to the current magnetic field from the sense current Is that flows concentratedly in the nonmagnetic film. . 1A and 1B, a white thick arrow indicates the direction of magnetization, and a straight thick arrow that is not white indicates the direction of the sense current Is. In FIG. 1-B, a circle including “X” means that the sense current is flowing toward the paper surface, and a circle including a black circle means that the sense current is flowing out from the paper surface. A curved arrow represents a current magnetic field generated by the sense current. In this way, the current magnetic field generated from the sense current Is represented by the curved arrow can be positively utilized to make the current magnetic field in the in-layer direction uniform in the electromagnetic shield layer. In the electromagnetic shield layer, the generation of local magnetic domains that reduce the performance of the magnetoresistive film is suppressed.

本発明に係る磁気抵抗効果膜は、磁化の方向が実質的に一方の方向に固定された強磁性膜を有する磁化固定層と、非磁性中間層と、磁化の方向が外部磁界に応じて変化する強磁性膜よりなる磁化自由層とを含み、これらの層の膜面に対して垂直方向に通電可能であることが好ましい。このようなスピンバルブ構造を取ることにより、低ノイズで外部磁場耐性に優れた磁気抵抗効果素子や磁気ヘッドが得られる。   The magnetoresistive film according to the present invention includes a magnetization fixed layer having a ferromagnetic film whose magnetization direction is substantially fixed in one direction, a nonmagnetic intermediate layer, and a magnetization direction that changes according to an external magnetic field. It is preferable that current can be passed in a direction perpendicular to the film surfaces of these layers. By adopting such a spin valve structure, it is possible to obtain a magnetoresistive effect element and a magnetic head having low noise and excellent external magnetic field resistance.

次に、図3および図2を用いて、本発明に係る磁気抵抗効果素子と誘導型記録素子を備えた複合型磁気ヘッドについて説明する。磁気情報の読み取りのための本発明に係る磁気抵抗効果素子は、磁気情報の書き込みのための誘導型磁気記録素子と組み合わされて、複合型の磁気ヘッドを形成する。図3は、このような複合型磁気ヘッドの構造例であって、下部電磁シールド層28が二層の軟磁性膜28aと一層の非磁性膜28bとからなり、上部電磁シールド層32が二層の軟磁性膜32aと一層の非磁性膜32bとからなっている様子を示す図である。   Next, a composite type magnetic head provided with a magnetoresistive effect element and an induction type recording element according to the present invention will be described with reference to FIGS. A magnetoresistive effect element according to the present invention for reading magnetic information is combined with an inductive magnetic recording element for writing magnetic information to form a composite magnetic head. FIG. 3 shows an example of the structure of such a composite magnetic head. The lower electromagnetic shield layer 28 is composed of two soft magnetic films 28a and one nonmagnetic film 28b, and the upper electromagnetic shield layer 32 is formed of two layers. It is a figure which shows a mode that it consists of the soft-magnetic film | membrane 32a and the non-magnetic film | membrane 32b of one layer.

図3中、複合型磁気ヘッドは、紙面(磁気記録媒体面に該当)に対向して配置されており、磁気記録媒体の移動方向は矢印Xで示す方向である。紙面に垂直な方向がハイト方向である。   In FIG. 3, the composite magnetic head is disposed so as to face the paper surface (corresponding to the magnetic recording medium surface), and the moving direction of the magnetic recording medium is the direction indicated by the arrow X. The direction perpendicular to the paper surface is the height direction.

図3を参照して、複合型磁気ヘッド20は、ヘッドスライダの基体となるAl−TiC(アルチック)等からなる平坦なセラミック基板等の上(本例の場合はセラミック基板21上のアルミナ膜26上)に形成された磁気抵抗効果素子22と、その上に形成された誘導型磁気記録素子23とから構成されている。 Referring to FIG. 3, the composite magnetic head 20 is formed on a flat ceramic substrate or the like made of Al 2 O 3 —TiC (AlTiC) or the like serving as a base of the head slider (on the ceramic substrate 21 in this example). The magnetoresistive effect element 22 is formed on the alumina film 26, and the inductive magnetic recording element 23 is formed thereon.

誘導型磁気記録素子23は、磁気記録媒体対向面に磁気記録媒体のトラック幅に相当する幅Lを有する上部磁極24Aと、非磁性材料からなる記録ギャップ層25を挟んで上部磁極24Aに対向する下部磁極24Bと、上部磁極24Aと下部磁極24Bとを磁気的に接続するヨーク(図示されず)と、ヨークを巻回し、記録電流により磁場をする誘起するコイル(図示されず)等からなる。上部磁極24A、下部磁極24Bおよびヨークは、軟磁性材料より構成され、記録磁界を確保するために飽和磁束密度の大きい材料、たとえば、Ni80Fe20、CoZrNb、FeN、FeSiN、FeCo合金等から造られる。   The inductive magnetic recording element 23 is opposed to the upper magnetic pole 24A across the upper magnetic pole 24A having a width L corresponding to the track width of the magnetic recording medium and the recording gap layer 25 made of a non-magnetic material. The lower magnetic pole 24B, a yoke (not shown) that magnetically connects the upper magnetic pole 24A and the lower magnetic pole 24B, a coil (not shown) that winds the yoke and induces a magnetic field by a recording current, and the like. The upper magnetic pole 24A, the lower magnetic pole 24B and the yoke are made of a soft magnetic material, and are made of a material having a high saturation magnetic flux density, such as Ni80Fe20, CoZrNb, FeN, FeSiN, FeCo alloy, etc. in order to secure a recording magnetic field.

磁気抵抗効果素子22は、セラミック基板21表面に形成されたアルミナ膜26上に、下部電磁シールド層28、磁気抵抗効果膜1、アルミナ膜31、上部電磁シールド層32が順次積層された構成となっており、下部電磁シールド層28、磁気抵抗効果膜1、および上部電磁シールド層32が電気的に接続されている。磁気抵抗効果膜1の両側には、約10nm以下の膜厚の絶縁膜33を介して磁区制御膜34が形成されている。磁区制御膜34は、たとえば、Cr/CoCrPtの積層膜からなり、磁気抵抗効果膜1を構成する磁化固定層および磁化自由層の単磁区化を図り、バルクハウゼンノイズの発生を防止するための膜である。   The magnetoresistive effect element 22 has a configuration in which a lower electromagnetic shield layer 28, a magnetoresistive effect film 1, an alumina film 31, and an upper electromagnetic shield layer 32 are sequentially laminated on an alumina film 26 formed on the surface of the ceramic substrate 21. The lower electromagnetic shield layer 28, the magnetoresistive effect film 1, and the upper electromagnetic shield layer 32 are electrically connected. Magnetic domain control films 34 are formed on both sides of the magnetoresistive effect film 1 via insulating films 33 having a thickness of about 10 nm or less. The magnetic domain control film 34 is made of, for example, a laminated film of Cr / CoCrPt, and is a film for preventing the occurrence of Barkhausen noise by making the magnetization fixed layer and the magnetization free layer constituting the magnetoresistive effect film 1 into a single domain. It is.

抵抗変化を検知するセンス電流Isは、たとえば上部電磁シールド層32から磁気抵抗効果膜1を通じて下部電磁シールド層28に流れ、磁気記録媒体からの漏洩磁界に対応して変化する磁気抵抗効果膜1の磁気抵抗を信号電圧として検出して、磁気記録媒体に記録された情報を再生する。なお、下部電磁シールド層28および上部電磁シールド層32はセンス電流の流路としての機能と電磁シールドの機能を兼ね備えている。磁気抵抗効果素子22および誘導型磁気記録素子23は、腐食等を防止するためアルミナ膜や水素化カーボン膜等により覆われている。   The sense current Is for detecting the resistance change flows, for example, from the upper electromagnetic shield layer 32 to the lower electromagnetic shield layer 28 through the magnetoresistive effect film 1 and changes in response to the leakage magnetic field from the magnetic recording medium. Information recorded on the magnetic recording medium is reproduced by detecting the magnetic resistance as a signal voltage. The lower electromagnetic shield layer 28 and the upper electromagnetic shield layer 32 have both a function as a sense current flow path and an electromagnetic shield function. The magnetoresistive element 22 and the induction type magnetic recording element 23 are covered with an alumina film, a hydrogenated carbon film, or the like in order to prevent corrosion or the like.

つぎに、図2を参照して、本発明に係る磁気抵抗効果膜の一例について説明する。図2は、図3における磁気抵抗効果素子22を構成する磁気抵抗効果膜1の一例の断面図である。この例では、磁気抵抗効果膜が、下地層(図示せず)の上に、磁化固定層6、非磁性中間層7、磁化自由層8および保護層が順次積層された、CPP構造のシングルスピンバルブ構造を有する。   Next, an example of the magnetoresistive film according to the present invention will be described with reference to FIG. FIG. 2 is a cross-sectional view of an example of the magnetoresistive film 1 constituting the magnetoresistive element 22 in FIG. In this example, the magnetoresistive film is a single spin having a CPP structure in which a magnetization fixed layer 6, a nonmagnetic intermediate layer 7, a magnetization free layer 8 and a protective layer are sequentially laminated on an underlayer (not shown). It has a valve structure.

下地層は、図3に示す下部電磁シールド28の表面にスパッタ法等により形成される。下地層は、NiCr、NiFeCr、Ta/NiFe、Ru等からなり、その厚さは一般的に4nm以上である。   The underlayer is formed by sputtering or the like on the surface of the lower electromagnetic shield 28 shown in FIG. The underlayer is made of NiCr, NiFeCr, Ta / NiFe, Ru or the like, and generally has a thickness of 4 nm or more.

本発明に係る磁化固定層6は磁化の方向が実質的に一方の方向に固定された強磁性膜を有することが必要である。「実質的に」とは、「磁化の方向が一方の方向に固定された磁化固定層が一枚の膜からなる必要はなく、複数の膜からなる場合でも、全体として磁化の方向が一方の方向に固定されておればよいことを意味している。図3では、磁化固定層6が、下地層上に、反強磁性層2、第一の強磁性層3、非磁性結合層4、第二の強磁性層5の順に形成した積層体から構成されている。   The magnetization fixed layer 6 according to the present invention needs to have a ferromagnetic film whose magnetization direction is substantially fixed in one direction. “Substantially” means that the magnetization pinned layer whose magnetization direction is fixed in one direction does not have to be a single film, and even when it is composed of a plurality of films, 3, the magnetization fixed layer 6 has an antiferromagnetic layer 2, a first ferromagnetic layer 3, a nonmagnetic coupling layer 4, It is comprised from the laminated body formed in order of the 2nd ferromagnetic layer 5. FIG.

反強磁性層は、IrMn、PtMn、PdPtMn等から造ることができ、その厚さは、4nm以上であるのが一般的である。第一の強磁性層3と第二の強磁性層5とは、非磁性結合層4を介して反強磁性的に交換結合している。   The antiferromagnetic layer can be made of IrMn, PtMn, PdPtMn, etc., and its thickness is generally 4 nm or more. The first ferromagnetic layer 3 and the second ferromagnetic layer 5 are antiferromagnetically exchange-coupled via the nonmagnetic coupling layer 4.

本発明に係る第一の強磁性層3と第二の強磁性層5とはともに軟磁性材料からなり、膜厚1〜30nmのCo、Fe、Niおよびこれらの元素を含んでなる合金から構成することができる。たとえば、FeCo、NiFe(パーマロイ)、FeCoCu等を例示することができる。また、場合によっては、強磁性を消失しない範囲において、他の元素を添加してもよい。添加元素としては、B、C、N、O、F、Sc、Ti、V、Cr、Mn、Zn、Ga、Ge、As、Se、Y、Zr、Nb、Mo、Tc、Ru、Rh、Pd、Ag、Cd、In、Sn、Sb、Te、Hf、Ta、W、Re、Os、Ir、Pt、Au、Hg、Tl、Pb、Bi、PoまたはAtを挙げることができる。なお、第一および第二の強磁性層は、それぞれ、1層のみならず、2層以上の積層体としてもよい。   Both the first ferromagnetic layer 3 and the second ferromagnetic layer 5 according to the present invention are made of a soft magnetic material, and are made of Co, Fe, Ni having a film thickness of 1 to 30 nm and an alloy containing these elements. can do. For example, FeCo, NiFe (permalloy), FeCoCu, etc. can be exemplified. Further, depending on the case, other elements may be added as long as ferromagnetism is not lost. As additive elements, B, C, N, O, F, Sc, Ti, V, Cr, Mn, Zn, Ga, Ge, As, Se, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd , Ag, Cd, In, Sn, Sb, Te, Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg, Tl, Pb, Bi, Po, or At. Each of the first and second ferromagnetic layers may be a laminate of not only one layer but also two or more layers.

本発明に係る非磁性結合層は、膜厚0.4nm〜1.5nm(好ましくは0.4nm〜0.9nm)の範囲のRu、Rh、Ir、Ru系合金、Rh系合金、Ir系合金等の非磁性材料から構成することができる。Ru系合金としては、Ruに、Co、Cr、Fe、Ni、およびMnのうちいずれか一つを加えたものが好適である。   The non-magnetic coupling layer according to the present invention comprises Ru, Rh, Ir, Ru-based alloy, Rh-based alloy, Ir-based alloy having a film thickness in the range of 0.4 nm to 1.5 nm (preferably 0.4 nm to 0.9 nm). It can comprise from nonmagnetic materials, such as. As the Ru-based alloy, an alloy obtained by adding any one of Co, Cr, Fe, Ni, and Mn to Ru is preferable.

本発明に係る非磁性中間層は、たとえばスパッタ法等により形成された、膜厚1.5nm〜10nmの導電性材料より構成され、たとえばCu膜、Al膜等により構成される。   The nonmagnetic intermediate layer according to the present invention is made of a conductive material having a film thickness of 1.5 nm to 10 nm formed by, for example, sputtering, and is made of, for example, a Cu film, an Al film, or the like.

本発明に係る磁化自由層は磁化の方向が外部磁界に応じて変化する強磁性膜よりなる。この磁化自由層は非磁性中間層の表面にスパッタ法等により形成され、膜厚が1nm〜30nmのCo、Fe、Niおよびこれらの元素からなる強磁性材料、たとえば、NiFe(パーマロイ)、FeCo、FeCoB等、または、これらの膜の積層体により構成される。磁化自由層の磁化は面内方向を向いており、磁気記録媒体より漏洩する磁場の方向に応じて磁化の向きが変わる。その結果、磁化自由層の磁化と磁化固定層の磁化とのなす角に対応して磁化固定層/非磁性中間層/磁化自由層の積層体の抵抗値が変化する。   The magnetization free layer according to the present invention comprises a ferromagnetic film whose magnetization direction changes according to an external magnetic field. This magnetization free layer is formed on the surface of the nonmagnetic intermediate layer by sputtering or the like, and has a film thickness of 1 nm to 30 nm of Co, Fe, Ni and a ferromagnetic material composed of these elements, for example, NiFe (Permalloy), FeCo, FeCoB or the like, or a laminated body of these films. The magnetization of the magnetization free layer faces in the in-plane direction, and the magnetization direction changes according to the direction of the magnetic field leaking from the magnetic recording medium. As a result, the resistance value of the layered structure of the magnetization fixed layer / nonmagnetic intermediate layer / magnetization free layer changes in accordance with the angle between the magnetization of the magnetization free layer and the magnetization of the magnetization fixed layer.

磁化自由層は積層構造を有していてもよい。図4は、磁化自由層のそのような例の要部拡大図である。図4を参照して、本例では、非磁性中間層46上に設けられた磁化自由層47は強磁性層47a/非磁性導電層47bの繰り返しからなる、いわゆる積層磁化自由層構造を有し、その上に保護層48が設けられている。図4に示す積層磁化自由層構造は、強磁性層47a/非磁性導電層47bの2回の繰り返しを示しており、磁化自由層47の表面および底面の層を強磁性層47aとする。強磁性層47aを上記磁化自由層と同様の材料、非磁性導電層47bを上記非磁性中間層と同様の材料(好ましくはCu)から構成することができる。このように磁化自由層を積層磁化自由層構造とすることで、磁化自由層の保磁力を低下して磁界感度を向上すると共に、磁気抵抗変化率の向上を図ることができる。   The magnetization free layer may have a laminated structure. FIG. 4 is an enlarged view of a main part of such an example of the magnetization free layer. Referring to FIG. 4, in this example, the magnetization free layer 47 provided on the nonmagnetic intermediate layer 46 has a so-called laminated magnetization free layer structure composed of repetition of the ferromagnetic layer 47a / nonmagnetic conductive layer 47b. A protective layer 48 is provided thereon. The laminated magnetization free layer structure shown in FIG. 4 shows two repetitions of the ferromagnetic layer 47a / nonmagnetic conductive layer 47b, and the surface and bottom layers of the magnetization free layer 47 are the ferromagnetic layers 47a. The ferromagnetic layer 47a can be made of the same material as the magnetization free layer, and the nonmagnetic conductive layer 47b can be made of the same material (preferably Cu) as the nonmagnetic intermediate layer. Thus, by making the magnetization free layer have a laminated magnetization free layer structure, the coercive force of the magnetization free layer can be reduced to improve the magnetic field sensitivity and to improve the magnetoresistance change rate.

積層磁化自由層構造は、強磁性層47a/非磁性導電層47bの繰り返しが、2回〜3回の範囲が好ましく、強磁性層47aの膜厚は1nm〜2nmの範囲に設定することが好ましく、非磁性導電層47bの膜厚は0.3nm〜2nmの範囲に設定することが好ましい。また、強磁性層47a同士は互いに異なる組成の強磁性層の積層体としてもよい。   In the laminated magnetization free layer structure, the repetition of the ferromagnetic layer 47a / nonmagnetic conductive layer 47b is preferably in the range of 2 to 3 times, and the thickness of the ferromagnetic layer 47a is preferably set in the range of 1 nm to 2 nm. The film thickness of the nonmagnetic conductive layer 47b is preferably set in the range of 0.3 nm to 2 nm. Further, the ferromagnetic layers 47a may be a laminate of ferromagnetic layers having different compositions.

本発明に係る保護層は、磁化自由層の表面にスパッタ法等により形成され、たとえばRu、Cu、Ta、Au、Al、Wからなる導電性膜、またはこれらの積層体等から構成することができる。このようにすると、熱処理等の間に磁気抵抗効果膜1が酸化されることを防止できる。また、保護層にCu膜を用いることで、磁化自由層と磁性/非磁性界面を形成して抵抗変化率を向上させることができる。   The protective layer according to the present invention is formed on the surface of the magnetization free layer by sputtering or the like, and may be composed of, for example, a conductive film made of Ru, Cu, Ta, Au, Al, W, or a laminate thereof. it can. In this way, it is possible to prevent the magnetoresistive film 1 from being oxidized during the heat treatment or the like. In addition, by using a Cu film as the protective layer, the resistance change rate can be improved by forming a magnetic / nonmagnetic interface with the magnetization free layer.

本発明に係る電磁シールド層は、三層構造とすることで電流磁界により、電磁シールド層の磁化の向きが反平行状態となる。磁区制御膜34からの磁界の影響も考慮すると図1に示すように電流を流し、磁気抵抗効果素子膜に隣接する電磁シールドの磁化方向を、着磁の際に決められた磁区制御膜の磁化方向に一致させる流れとすべきである。このようにして、図1に示すように、電磁シールド層の磁化の向きが反平行状態になるようにすれば、電磁シールド層における層内方向の電流磁界を一様にすることができ、これにより、電磁シールド層において、磁気抵抗効果膜の性能を低下させるローカルな磁区の発生を抑え、電磁シールド層から磁気抵抗効果膜側へ漏洩する漏れ磁界を抑制することができる。   Since the electromagnetic shield layer according to the present invention has a three-layer structure, the direction of magnetization of the electromagnetic shield layer becomes antiparallel due to the current magnetic field. Considering the influence of the magnetic field from the magnetic domain control film 34, a current is passed as shown in FIG. 1, and the magnetization direction of the electromagnetic shield adjacent to the magnetoresistive effect element film is set to the magnetization of the magnetic domain control film determined at the time of magnetization. The flow should match the direction. In this way, as shown in FIG. 1, if the direction of magnetization of the electromagnetic shield layer is antiparallel, the current magnetic field in the in-layer direction of the electromagnetic shield layer can be made uniform. Thus, in the electromagnetic shield layer, the generation of local magnetic domains that degrade the performance of the magnetoresistive effect film can be suppressed, and the leakage magnetic field leaking from the electromagnetic shield layer to the magnetoresistive effect film side can be suppressed.

本発明に係る電磁シールド層は、下部電磁シールド層の厚さが10μm程度、下部電磁シールド層の厚さが10数μmであることが一般的であるが、その他の厚さであってもよい。たとえば、一つの電磁シールド層の厚さを1μm程度とすることも可能である。   In general, the electromagnetic shield layer according to the present invention has a thickness of the lower electromagnetic shield layer of about 10 μm and a thickness of the lower electromagnetic shield layer of several tens of μm, but may have other thicknesses. . For example, the thickness of one electromagnetic shield layer can be about 1 μm.

本発明に係る電磁シールド層を形成する四つの軟磁性膜の内の少なくともいずれか一つは、一般的な軟磁性材料から作製することができる。たとえば、Co、Fe、Ni等の元素を含んでなる合金から構成することができる。より具体的には、NiFe(パーマロイ)、CoNbZrを例示することができる。また、場合によっては、強磁性を消失しない範囲において、他の元素を添加してもよい。添加元素としては、B、C、N、O、F、Sc、Ti、V、Cr、Mn、Zn、Ga、Ge、As、Se、Y、Zr、Nb、Mo、Tc、Ru、Rh、Pd、Ag、Cd、In、Sn、Sb、Te、Hf、Ta、W、Re、Os、Ir、Pt、Au、Hg、Tl、Pb、Bi、PoまたはAtを挙げることができる。さらに、軟磁性材料として高抵抗アモルファス軟磁性材料を使用してもよい。高抵抗アモルファス軟磁性材料は、より効果的に電流が非磁性膜に集中し、高い電流磁界が得られる点でより好ましい。FeCuNbSiBを例として挙げることができる。   At least one of the four soft magnetic films forming the electromagnetic shield layer according to the present invention can be made of a general soft magnetic material. For example, it can be composed of an alloy containing an element such as Co, Fe, or Ni. More specifically, NiFe (permalloy) and CoNbZr can be exemplified. Further, depending on the case, other elements may be added as long as ferromagnetism is not lost. As additive elements, B, C, N, O, F, Sc, Ti, V, Cr, Mn, Zn, Ga, Ge, As, Se, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd , Ag, Cd, In, Sn, Sb, Te, Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg, Tl, Pb, Bi, Po, or At. Further, a high resistance amorphous soft magnetic material may be used as the soft magnetic material. The high resistance amorphous soft magnetic material is more preferable in that the current concentrates more effectively on the nonmagnetic film and a high current magnetic field can be obtained. An example is FeCuNbSiB.

本発明に係る非磁性膜の材質については特に制限はなく、公知の材料を使用できるが、後述する理理由から、Au、AgまたはCuが好ましい。ただし、本発明に係る非磁性膜のすべてがAu、AgまたはCuでない場合も含まれる。   The material of the nonmagnetic film according to the present invention is not particularly limited, and a known material can be used, but Au, Ag, or Cu is preferable for the reason described later. However, the case where all of the nonmagnetic films according to the present invention are not Au, Ag, or Cu is included.

本発明に係る電磁シールド層を使用する場合、電流磁界を利用して、電磁シールド層における層内方向の電流磁界を一様にし、これにより、電磁シールド層において、磁気抵抗効果膜の性能を低下させるローカルな磁区の発生を理想的に抑えるためには、軟磁性膜、非磁性膜の比抵抗の比に応じて、膜厚を変えることが重要であることが見出された。   When the electromagnetic shield layer according to the present invention is used, the current magnetic field is used to make the current magnetic field in the in-layer direction uniform in the electromagnetic shield layer, thereby reducing the performance of the magnetoresistive film in the electromagnetic shield layer. In order to ideally suppress the generation of local magnetic domains, it has been found that it is important to change the film thickness according to the specific resistance ratio of the soft magnetic film and the nonmagnetic film.

その理由を以下に示す。まず、電磁シールド層内部に発生する電流磁界を定式化する必要がある。電流磁界を簡単に導出するため、図5(図1−Bの符号28または32で表される電磁シールド層と同様な図)に示す、軟磁性膜28A/非磁性膜28B/軟磁性膜28Aの3層で形成された電磁シールド層の断面図において、軟磁性膜28A/非磁性膜28B/軟磁性膜28Aのそれぞれの層の厚さの中心にある、3×99個の正方格子(黒丸で示す)を仮定し、磁気抵抗効果膜の中心部に対応する中心点Aでの電流磁界を導出する。ここで、非磁性膜、軟磁性膜のそれぞれの格子一つに流れる電流を、それぞれi、ish、非磁性膜、軟磁性膜の比抵抗を、それぞれρ、ρsh、電磁シールド層厚をLsh、電磁シールド層厚に占める非磁性膜の割合をx(従って非磁性膜の層厚がxLsh)とする。このように定義した時の中心部A点に発生する電流磁界は次のように記述される。 The reason is as follows. First, it is necessary to formulate a current magnetic field generated inside the electromagnetic shield layer. In order to easily derive the current magnetic field, the soft magnetic film 28A / nonmagnetic film 28B / soft magnetic film 28A shown in FIG. 5 (similar to the electromagnetic shield layer represented by reference numeral 28 or 32 in FIG. 1B) 3 × 99 square lattices (black circles) in the center of the thickness of each of the soft magnetic film 28A / nonmagnetic film 28B / soft magnetic film 28A. The current magnetic field at the center point A corresponding to the center portion of the magnetoresistive film is derived. Here, the current flowing through each lattice of the non-magnetic film and the soft magnetic film is represented by i c , i sh , the specific resistance of the non-magnetic film and the soft magnetic film, respectively, ρ c , ρ sh , and the electromagnetic shield layer. The thickness is L sh , and the ratio of the nonmagnetic film to the electromagnetic shield layer thickness is x (therefore, the thickness of the nonmagnetic film is xL sh ). The current magnetic field generated at the central point A when defined in this way is described as follows.

Figure 2007109807
ここで、ri:格子点iからA点までのベクトル、ii:格子点iを流れる電流ベクトル(iiの大きさは、格子点が軟磁性膜部分、非磁性膜部分に有る場合で、それぞれish、icで与えられる)とする。
Figure 2007109807
Here, r i : vector from lattice point i to point A, i i : current vector flowing through lattice point i (i i is the magnitude when the lattice point is in the soft magnetic film part and the non-magnetic film part. , Given by i sh and i c , respectively).

計算結果を下記に示す。ここで、Hは電磁シールド層の膜面に直交する方向への磁界、Hは電磁シールド層の面内方向への磁界を表す。 The calculation results are shown below. Here, H x represents a magnetic field in a direction perpendicular to the film surface of the electromagnetic shield layer, and H y represents a magnetic field in an in-plane direction of the electromagnetic shield layer.

Figure 2007109807
この計算結果より、電磁シールド層の膜面に直交する方向への磁界Hが0であることがわかる。
Figure 2007109807
From this calculation result, it can be seen that the magnetic field H x in the direction orthogonal to the film surface of the electromagnetic shield layer is zero.

センス電流Isは、各格子点を流れる電流i,ishの和がセンス電流Isとなるので、
99i+198ish=Is
となる。
As the sense current Is, the sum of the currents i c and i sh flowing through the lattice points becomes the sense current Is.
99i c + 198i sh = Is
It becomes.

また、各格子は並列回路をなし、各格子に掛かる電圧が同じなので次式が成り立つ。   In addition, each grid forms a parallel circuit, and the voltage applied to each grid is the same, so the following equation holds.

Figure 2007109807
以上の式を使用すれば、いかなる非磁性膜、軟磁性膜材料の組み合わせでも、電流磁界(すなわち、電磁シールド層の面内方向への磁界H)を最大とする最適膜厚が導出できる。Hyを最大にする膜厚の関係であれば、その電流磁界により電磁シールド層における層内方向の電流磁界を最大限に一様にし、これにより、電磁シールド層において、磁気抵抗効果膜の性能を低下させるローカルな磁区の発生を最大限に抑えていると考えることができる。
Figure 2007109807
If the above formula is used, the optimum film thickness that maximizes the current magnetic field (that is, the magnetic field H y in the in-plane direction of the electromagnetic shield layer) can be derived for any combination of non-magnetic film and soft magnetic film materials. If the film thickness relationship maximizes Hy, the current magnetic field makes the current magnetic field in the in-layer direction uniform in the electromagnetic shield layer to the maximum, thereby improving the performance of the magnetoresistive effect film in the electromagnetic shield layer. It can be considered that generation of local magnetic domains to be reduced is suppressed to the maximum.

このような三層構造の電磁シールド層を有してなる磁気抵抗効果素子は、磁気情報を記録または再生するための磁気記録装置の磁気ヘッドに好適に使用することができる。図6は、本発明に係る磁気抵抗効果素子を使用した磁気記録装置の要部を示す図である。図6を参照して、磁気記録装置90は、ハウジング91内に、スピンドル(図示されず)により駆動されるハブ92、ハブ92に固定され回転される磁気記録媒体93、アクチュエータユニット94、アクチュエータユニット94に取り付けられ磁気記録媒体93の半径方向に移動できるアーム95およびサスペンション96、サスペンション96に支持された磁気ヘッド20が設けられている。この磁気ヘッド20を、図1−A,Bに示したような磁気抵抗効果素子22とその上に形成された誘導型磁気記録素子23から構成することにより、高分解能を有する磁気記録装置が得られる。   A magnetoresistive element having such a three-layered electromagnetic shield layer can be suitably used for a magnetic head of a magnetic recording apparatus for recording or reproducing magnetic information. FIG. 6 is a diagram showing a main part of a magnetic recording apparatus using the magnetoresistive effect element according to the present invention. Referring to FIG. 6, a magnetic recording apparatus 90 includes a housing 92, a hub 92 driven by a spindle (not shown), a magnetic recording medium 93 fixed to the hub 92 and rotated, an actuator unit 94, and an actuator unit. 94, an arm 95 and a suspension 96 that are movable in the radial direction of the magnetic recording medium 93, and a magnetic head 20 supported by the suspension 96 are provided. By constructing the magnetic head 20 from the magnetoresistive effect element 22 as shown in FIGS. 1A and 1B and the inductive magnetic recording element 23 formed thereon, a magnetic recording apparatus having high resolution can be obtained. It is done.

なお、本発明で用いる磁気記録媒体は、垂直磁気記録方式であれば、磁気ディスクに限定されず、磁気テープであってもよい。   The magnetic recording medium used in the present invention is not limited to a magnetic disk as long as it is a perpendicular magnetic recording system, and may be a magnetic tape.

次に本発明の実施例を詳述する。   Next, examples of the present invention will be described in detail.

図7は、一つの電磁シールド層の総膜厚を1μm、センス電流Isを7mAとした場合に、軟磁性膜の材料としてNiFeを使用し、非磁性膜の材料としてCuを選択したときの、電磁シールド膜厚に占める非磁性膜の割合xに対する電流磁界の変化(左側の縦軸)および非磁性膜への電流集中の割合(右側の縦軸)を、上記の式を利用して求めた結果を示している。   FIG. 7 shows a case where NiFe is used as the material of the soft magnetic film and Cu is selected as the material of the nonmagnetic film when the total film thickness of one electromagnetic shield layer is 1 μm and the sense current Is is 7 mA. The change of the current magnetic field with respect to the ratio x of the nonmagnetic film to the electromagnetic shield film thickness (left vertical axis) and the ratio of current concentration on the nonmagnetic film (right vertical axis) were obtained using the above formula. Results are shown.

この結果より、電流磁界(図5のHy)の最大が1.65Oeであり、その時の電流集中の割合が75.4%、電磁シールド厚に占める非磁性膜の割合xが16%であることが理解される。すなわち、軟磁性膜の材料としてNiFeを使用し、非磁性膜の材料としてCuを選択した場合には、電磁シールド層の膜厚に占める非磁性膜の割合xを16%とすることにより、電流磁界を1.65Oeと最大にして、非磁性膜への電流集中の割合を75.4%と高くできることが理解できる。   From this result, the maximum of the current magnetic field (Hy in FIG. 5) is 1.65 Oe, the current concentration ratio at that time is 75.4%, and the ratio x of the nonmagnetic film to the electromagnetic shield thickness is 16%. Is understood. That is, when NiFe is used as the material of the soft magnetic film and Cu is selected as the material of the nonmagnetic film, the ratio x of the nonmagnetic film to the film thickness of the electromagnetic shield layer is set to 16%. It can be seen that the magnetic field can be maximized to 1.65 Oe and the rate of current concentration on the nonmagnetic film can be increased to 75.4%.

この程度の電流磁界では、隣り合うビットからの信号磁界を吸収するという電磁シールド層としての機能には支障ないので、電流磁界が大きければ大きいほど、電磁シールド層において、磁気抵抗効果膜の性能を低下させるローカルな磁区の発生を抑え易くなり好ましい。非磁性膜への電流集中は、非磁性膜の膜厚を薄くできるので、一般的に好ましい。   Such a current magnetic field does not interfere with the function of the electromagnetic shield layer that absorbs the signal magnetic field from adjacent bits. Therefore, the larger the current magnetic field, the more the performance of the magnetoresistive film in the electromagnetic shield layer. This is preferable because it is easy to suppress the generation of local magnetic domains to be lowered. Current concentration on the nonmagnetic film is generally preferable because the film thickness of the nonmagnetic film can be reduced.

この計算を様々な軟磁性材料、非磁性材料に対してまとめたものが、表1である。表1は、上記軟磁性の材料として、NiFe、CoNbZr、FeCuNbSiB、上記非磁性膜の材料として、Au、Ag、Cuを選択し、電磁シールド層の膜厚を1μm、センス電流を7mAとした場合に、これらの組み合わせに対して、電流磁界が最大となる場合の電磁シールド膜厚全体に占める非磁性膜厚の割合および電流集中の割合の計算結果を示す。   Table 1 summarizes this calculation for various soft magnetic materials and non-magnetic materials. Table 1 shows the case where NiFe, CoNbZr, FeCuNbSiB is selected as the soft magnetic material, Au, Ag, Cu is selected as the material of the nonmagnetic film, the thickness of the electromagnetic shield layer is 1 μm, and the sense current is 7 mA. The calculation results of the ratio of the nonmagnetic film thickness and the ratio of current concentration in the total electromagnetic shield film thickness when the current magnetic field is maximized are shown for these combinations.

Figure 2007109807
この表より得られた、様々な材料の組み合わせについて、変化する軟磁性膜と非磁性膜の比抵抗の比に対する、最大電流磁界、一つの電磁シールド層全体の膜厚に占める非磁性膜の膜厚の割合および非磁性膜への電流集中の割合の関係を図8に示す。図8より、軟磁性膜の比抵抗対非磁性膜の比抵抗の比が大きくなるにつれ、電流磁界の大きさを大きくでき、また、非磁性膜の膜厚の電磁シールド層の総膜厚に占める割合を低下でき、電磁シールド層の総膜厚の0.2%程度で、電流集中の割合が99%、電流磁界の大きさが2.2Oe程度まで増加することが理解される。
Figure 2007109807
For the combination of various materials obtained from this table, the maximum current magnetic field to the ratio of the specific resistance of the soft magnetic film to the nonmagnetic film, the film of the nonmagnetic film occupying the entire film thickness of one electromagnetic shield layer FIG. 8 shows the relationship between the ratio of thickness and the ratio of current concentration on the nonmagnetic film. From FIG. 8, as the ratio of the specific resistance of the soft magnetic film to the specific resistance of the nonmagnetic film increases, the magnitude of the current magnetic field can be increased, and the total thickness of the electromagnetic shield layer can be increased to the nonmagnetic film thickness. It can be understood that the ratio can be reduced, the ratio of current concentration increases to 99%, and the magnitude of the current magnetic field increases to about 2.2 Oe at about 0.2% of the total film thickness of the electromagnetic shield layer.

これらの結果から、軟磁性膜と非磁性膜の比抵抗、膜厚、材質等については次のことが言える。   From these results, the following can be said for the specific resistance, film thickness, material, etc. of the soft magnetic film and the nonmagnetic film.

すなわち、電磁シールド層を構成する軟磁性膜の比抵抗については、高抵抗の材料を使用することが好ましい。たとえば、NiFe、CoZrNb、FeCuNbSiBの比抵抗は、それぞれ、〜25、〜200、〜100000μΩcm程度であるので、比抵抗の具体的な値としては、25μΩcm以上であることが好ましいと言えよう。   That is, it is preferable to use a high resistance material for the specific resistance of the soft magnetic film constituting the electromagnetic shield layer. For example, the specific resistances of NiFe, CoZrNb, and FeCuNbSiB are about ˜25, ˜200, and ˜100,000 μΩcm, respectively. Therefore, it can be said that the specific value of the specific resistance is preferably 25 μΩcm or more.

非磁性膜の比抵抗としては、低ければ低い方が好ましく、具体的には、Au、CuおよびAgが好ましい。従って、これらの材料での結果から、具体的な非磁性膜の比抵抗としては2.1μΩcm以下であることが好ましいといえる。   The specific resistance of the nonmagnetic film is preferably as low as possible. Specifically, Au, Cu and Ag are preferable. Therefore, it can be said from the results with these materials that the specific resistance of the specific nonmagnetic film is preferably 2.1 μΩcm or less.

なお、上記条件は、必ずしも軟磁性膜や非磁性膜のすべてについて充足される必要はなく、少なくともいずれか一つについて充足されていればよい場合もある。   The above condition does not necessarily have to be satisfied for all of the soft magnetic film and the non-magnetic film, and may be satisfied for at least one of them.

非磁性膜の一層の膜厚としては、この非磁性膜を含んでなる電磁シールド層の全体の膜厚の20%以下であることが好ましいと言える。0.2〜20%の範囲が実際的でより好ましい。従って、軟磁性膜の一層の膜厚としては、この軟磁性膜を含んでなる電磁シールド層の全体の膜厚の40%以上であることが好ましく、40〜49.9%の範囲がより好ましいと言える。   It can be said that the thickness of one layer of the nonmagnetic film is preferably 20% or less of the total film thickness of the electromagnetic shield layer including the nonmagnetic film. A range of 0.2 to 20% is practical and more preferable. Accordingly, the film thickness of one layer of the soft magnetic film is preferably 40% or more of the entire film thickness of the electromagnetic shielding layer including the soft magnetic film, and more preferably in the range of 40 to 49.9%. It can be said.

なお、上記に開示した内容から、下記の付記に示した発明が導き出せる。   In addition, the invention shown to the following additional remarks can be derived from the content disclosed above.

(付記1)
電極および電磁シールドとして機能する下部電磁シールド層と上部電磁シールド層、および当該二つの電磁シールド層に挟まれた磁気抵抗効果膜を含んでなり、当該磁気抵抗効果膜の膜面に対して垂直方向に通電可能な磁気抵抗効果素子であって、少なくとも一方の電磁シールド層が軟磁性膜/非磁性膜/軟磁性膜の3層で形成されてなる磁気抵抗効果素子。
(Appendix 1)
A lower electromagnetic shield layer and an upper electromagnetic shield layer that function as an electrode and an electromagnetic shield, and a magnetoresistive film sandwiched between the two electromagnetic shield layers, and perpendicular to the film surface of the magnetoresistive film A magnetoresistive effect element capable of energizing a magnetic field, wherein at least one electromagnetic shield layer is formed of three layers of a soft magnetic film / nonmagnetic film / soft magnetic film.

(付記2)
前記二つの電磁シールド層が、共に、軟磁性膜/非磁性膜/軟磁性膜の3層で形成されてなる、付記1に記載の磁気抵抗効果素子。
(Appendix 2)
The magnetoresistive effect element according to appendix 1, wherein the two electromagnetic shield layers are each formed of three layers of a soft magnetic film / a nonmagnetic film / a soft magnetic film.

(付記3)
前記磁気抵抗効果膜が、磁化の方向が実質的に一方の方向に固定された強磁性膜を有する磁化固定層と、非磁性中間層と、磁化の方向が外部磁界に応じて変化する強磁性膜よりなる磁化自由層とを含み、これらの層の膜面に対して垂直方向に通電可能である、付記1または2に記載の磁気抵抗効果素子。
(Appendix 3)
The magnetoresistive film includes a magnetization fixed layer having a ferromagnetic film whose magnetization direction is substantially fixed in one direction, a nonmagnetic intermediate layer, and a ferromagnetic material whose magnetization direction changes according to an external magnetic field. The magnetoresistive effect element according to appendix 1 or 2, which includes a magnetization free layer made of a film and is capable of energizing in a direction perpendicular to the film surfaces of these layers.

(付記4)
前記軟磁性膜の少なくともいずれか一つが、高抵抗アモルファス軟磁性材料であってもよい軟磁性材料からなるものである、付記1〜3のいずれかに記載の磁気抵抗効果素子。
(Appendix 4)
The magnetoresistive effect element according to any one of appendices 1 to 3, wherein at least one of the soft magnetic films is made of a soft magnetic material which may be a high-resistance amorphous soft magnetic material.

(付記5)
前記軟磁性材料が、NiFeまたはCoNbZrである、付記4に記載の磁気抵抗効果素子。
(Appendix 5)
The magnetoresistive effect element according to appendix 4, wherein the soft magnetic material is NiFe or CoNbZr.

(付記6)
高抵抗アモルファス軟磁性材料がFeCuNbSiBである、付記4または5に記載の磁気抵抗効果素子。
(Appendix 6)
The magnetoresistive element according to appendix 4 or 5, wherein the high-resistance amorphous soft magnetic material is FeCuNbSiB.

(付記7)
前記軟磁性膜の少なくともいずれか一つの比抵抗が25μΩcm以上である、付記1〜5のいずれかに記載の磁気抵抗効果素子。
(Appendix 7)
The magnetoresistive element according to any one of appendices 1 to 5, wherein the specific resistance of at least one of the soft magnetic films is 25 μΩcm or more.

(付記8)
前記軟磁性膜の一層の膜厚が、当該軟磁性膜を含んでなる電磁シールド層の全体の膜厚の40%以上である、付記1〜7のいずれかに記載の磁気抵抗効果素子。
(Appendix 8)
The magnetoresistive effect element according to any one of appendices 1 to 7, wherein the thickness of one layer of the soft magnetic film is 40% or more of the total film thickness of the electromagnetic shield layer including the soft magnetic film.

(付記9)
前記非磁性膜の少なくともいずれか一つの比抵抗が2.1μΩcm以下である、付記1〜8のいずれかに記載の磁気抵抗効果素子。
(Appendix 9)
The magnetoresistive element according to any one of appendices 1 to 8, wherein the specific resistance of at least one of the nonmagnetic films is 2.1 μΩcm or less.

(付記10)
前記非磁性膜の少なくともいずれか一つが、Au、AgまたはCuからなる、付記9に記載の磁気抵抗効果素子。
(Appendix 10)
The magnetoresistive element according to appendix 9, wherein at least one of the nonmagnetic films is made of Au, Ag, or Cu.

(付記11)
前記非磁性膜の一層の膜厚が、当該非磁性膜を含んでなる電磁シールド層の全体の膜厚の20%以下である、付記1〜10のいずれかに記載の磁気抵抗効果素子。
(Appendix 11)
The magnetoresistive effect element according to any one of appendices 1 to 10, wherein a thickness of one layer of the nonmagnetic film is 20% or less of a total thickness of the electromagnetic shield layer including the nonmagnetic film.

(付記12)
付記1〜11のいずれかに記載の磁気抵抗効果素子を備えた磁気ヘッド。
(Appendix 12)
A magnetic head comprising the magnetoresistive element according to any one of appendices 1 to 11.

(付記13)
付記12に記載の磁気ヘッドを備えた磁気記録装置。
(Appendix 13)
A magnetic recording apparatus comprising the magnetic head according to appendix 12.

本発明に係る電磁シールド層の構造の模式的斜視図である。It is a typical perspective view of the structure of the electromagnetic shielding layer which concerns on this invention. 図1−Aの電磁シールド層をABS面から見た図である。It is the figure which looked at the electromagnetic shielding layer of Drawing 1-A from the ABS side. 磁気抵抗効果膜の一例の断面図である。It is sectional drawing of an example of a magnetoresistive effect film. 複合型磁気ヘッドの構造例を示す図である。It is a figure which shows the structural example of a composite type magnetic head. 磁化自由層の要部拡大図である。It is a principal part enlarged view of a magnetization free layer. 電流磁界導出のための電磁シールド層の模式図である。It is a schematic diagram of the electromagnetic shielding layer for electric current magnetic field derivation | leading-out. 本発明に係る磁気抵抗効果素子を使用した磁気記録装置の要部を示す図である。It is a figure which shows the principal part of the magnetic-recording apparatus using the magnetoresistive effect element based on this invention. 軟磁性膜の材料としてNiFeを使用し、非磁性膜の材料としてCuを選択したときの電流磁界および電流集中の割合を示すグラフである。It is a graph which shows the ratio of the current magnetic field and current concentration when NiFe is used as the material of the soft magnetic film and Cu is selected as the material of the nonmagnetic film. 軟磁性材料と非磁性材料の比抵抗の比に対する、(a)最大電流磁界、(b)電磁シールド層に占める非磁性膜の割合、(c)電流集中の割合を示すグラフである。It is a graph which shows (a) the maximum current magnetic field, (b) the ratio of the nonmagnetic film in the electromagnetic shield layer, and (c) the ratio of current concentration with respect to the specific resistance ratio of the soft magnetic material and the nonmagnetic material.

符号の説明Explanation of symbols

1 磁気抵抗効果膜
2 反強磁性層
3 第一の強磁性層
4 非磁性結合層
5 第二の強磁性層
6 磁化固定層
7 非磁性中間層
8 磁化自由層
20 複合型磁気ヘッド
21 基板
22 磁気抵抗効果素子
23 誘導型磁気記録素子
24A 上部磁極
24B 下部磁極
25 記録ギャップ層
26 アルミナ膜
28 下部電磁シールド層
28A 軟磁性膜
28B 非磁性膜
31 アルミナ膜
32 上部電磁シールド層
32A 軟磁性膜
32B 非磁性膜
33 絶縁膜
34 磁区制御膜
46 非磁性中間層
47 磁化自由層
48 保護層
90 磁気記録装置
91 ハウジング
92 ハブ
93 磁気記録媒体
94 アクチュエータユニット
95 アーム
96 サスペンション
DESCRIPTION OF SYMBOLS 1 Magnetoresistance effect film | membrane 2 Antiferromagnetic layer 3 1st ferromagnetic layer 4 Nonmagnetic coupling layer 5 2nd ferromagnetic layer 6 Magnetization fixed layer 7 Nonmagnetic intermediate | middle layer 8 Magnetization free layer 20 Composite type magnetic head 21 Substrate 22 Magnetoresistive element 23 Inductive magnetic recording element 24A Upper magnetic pole 24B Lower magnetic pole 25 Recording gap layer 26 Alumina film 28 Lower electromagnetic shield layer 28A Soft magnetic film 28B Nonmagnetic film 31 Alumina film 32 Upper electromagnetic shield layer 32A Soft magnetic film 32B Non Magnetic film 33 Insulating film 34 Magnetic domain control film 46 Nonmagnetic intermediate layer 47 Magnetization free layer 48 Protective layer 90 Magnetic recording device 91 Housing 92 Hub 93 Magnetic recording medium 94 Actuator unit 95 Arm 96 Suspension

Claims (5)

電極および電磁シールドとして機能する下部電磁シールド層と上部電磁シールド層、および当該二つの電磁シールド層に挟まれた磁気抵抗効果膜を含んでなり、当該磁気抵抗効果膜の膜面に対して垂直方向に通電可能な磁気抵抗効果素子であって、少なくとも一方の電磁シールド層が軟磁性膜/非磁性膜/軟磁性膜の3層で形成されてなる磁気抵抗効果素子。   A lower electromagnetic shield layer and an upper electromagnetic shield layer that function as an electrode and an electromagnetic shield, and a magnetoresistive film sandwiched between the two electromagnetic shield layers, and perpendicular to the film surface of the magnetoresistive film A magnetoresistive effect element capable of energizing a magnetic field, wherein at least one electromagnetic shield layer is formed of three layers of a soft magnetic film / nonmagnetic film / soft magnetic film. 前記磁気抵抗効果膜が、磁化の方向が実質的に一方の方向に固定された強磁性膜を有する磁化固定層と、非磁性中間層と、磁化の方向が外部磁界に応じて変化する強磁性膜よりなる磁化自由層とを含み、これらの層の膜面に対して垂直方向に通電可能である、請求項1に記載の磁気抵抗効果素子。   The magnetoresistive film includes a magnetization fixed layer having a ferromagnetic film whose magnetization direction is substantially fixed in one direction, a nonmagnetic intermediate layer, and a ferromagnetic material whose magnetization direction changes according to an external magnetic field. The magnetoresistive effect element according to claim 1, further comprising a magnetization free layer made of a film and capable of being energized in a direction perpendicular to the film surfaces of these layers. 前記軟磁性膜の少なくともいずれか一つが、高抵抗アモルファス軟磁性材料であってもよい軟磁性材料からなるものである、請求項1または2に記載の磁気抵抗効果素子。   The magnetoresistive effect element according to claim 1 or 2, wherein at least one of the soft magnetic films is made of a soft magnetic material which may be a high-resistance amorphous soft magnetic material. 請求項1〜3のいずれかに記載の磁気抵抗効果素子を備えた磁気ヘッド。   A magnetic head comprising the magnetoresistive effect element according to claim 1. 請求項4に記載の磁気ヘッドを備えた磁気記録装置。   A magnetic recording apparatus comprising the magnetic head according to claim 4.
JP2005297937A 2005-10-12 2005-10-12 Magnetoresistive element, magnetic head, and magnetic recording apparatus Withdrawn JP2007109807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005297937A JP2007109807A (en) 2005-10-12 2005-10-12 Magnetoresistive element, magnetic head, and magnetic recording apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005297937A JP2007109807A (en) 2005-10-12 2005-10-12 Magnetoresistive element, magnetic head, and magnetic recording apparatus

Publications (1)

Publication Number Publication Date
JP2007109807A true JP2007109807A (en) 2007-04-26

Family

ID=38035448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005297937A Withdrawn JP2007109807A (en) 2005-10-12 2005-10-12 Magnetoresistive element, magnetic head, and magnetic recording apparatus

Country Status (1)

Country Link
JP (1) JP2007109807A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009252342A (en) * 2008-04-02 2009-10-29 Headway Technologies Inc Composite seed layer, magnetic reproduction head provided with it, and forming method of tmr sensor and ccp-cpp-gmr sensor
US8049997B2 (en) 2008-09-29 2011-11-01 Tdk Corporation Magnetoresistive element including a pair of free layers coupled to a pair of shield layers
US8089734B2 (en) 2010-05-17 2012-01-03 Tdk Corporation Magnetoresistive element having a pair of side shields
US8130475B2 (en) 2009-10-20 2012-03-06 Tdk Corporation Method for manufacturing CPP-type thin film magnetic head provided with a pair of magnetically free layers
US8179642B2 (en) 2009-09-22 2012-05-15 Tdk Corporation Magnetoresistive effect element in CPP structure and magnetic disk device
US8189303B2 (en) 2008-08-12 2012-05-29 Tdk Corporation Thin film magnetic head having a pair of magnetic layers whose magnetization is controlled by shield layers
US8369048B2 (en) 2009-08-31 2013-02-05 Tdk Corporation CPP-type thin film magnetic head provided with side shields including a pair of antimagnetically exchanged-coupled side shield magnetic layers
US8477461B2 (en) 2008-07-29 2013-07-02 Tdk Corporation Thin film magnetic head having a pair of magnetic layers whose magnetization is controlled by shield layers
US9490421B2 (en) 2012-12-21 2016-11-08 Samsung Electronics Co., Ltd. Method and system for providing vertical spin transfer switched magnetic junctions and memories using such junctions
US10593357B2 (en) 2016-11-21 2020-03-17 Headway Technologies, Inc. Hard magnet stabilized shield for double (2DMR) or triple (3DMR) dimension magnetic reader structures

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009252342A (en) * 2008-04-02 2009-10-29 Headway Technologies Inc Composite seed layer, magnetic reproduction head provided with it, and forming method of tmr sensor and ccp-cpp-gmr sensor
US8477461B2 (en) 2008-07-29 2013-07-02 Tdk Corporation Thin film magnetic head having a pair of magnetic layers whose magnetization is controlled by shield layers
US8189303B2 (en) 2008-08-12 2012-05-29 Tdk Corporation Thin film magnetic head having a pair of magnetic layers whose magnetization is controlled by shield layers
US8049997B2 (en) 2008-09-29 2011-11-01 Tdk Corporation Magnetoresistive element including a pair of free layers coupled to a pair of shield layers
US8369048B2 (en) 2009-08-31 2013-02-05 Tdk Corporation CPP-type thin film magnetic head provided with side shields including a pair of antimagnetically exchanged-coupled side shield magnetic layers
US8179642B2 (en) 2009-09-22 2012-05-15 Tdk Corporation Magnetoresistive effect element in CPP structure and magnetic disk device
US8130475B2 (en) 2009-10-20 2012-03-06 Tdk Corporation Method for manufacturing CPP-type thin film magnetic head provided with a pair of magnetically free layers
US8089734B2 (en) 2010-05-17 2012-01-03 Tdk Corporation Magnetoresistive element having a pair of side shields
US9490421B2 (en) 2012-12-21 2016-11-08 Samsung Electronics Co., Ltd. Method and system for providing vertical spin transfer switched magnetic junctions and memories using such junctions
US10593357B2 (en) 2016-11-21 2020-03-17 Headway Technologies, Inc. Hard magnet stabilized shield for double (2DMR) or triple (3DMR) dimension magnetic reader structures
US11217274B2 (en) 2016-11-21 2022-01-04 Headway Technologies, Inc. Hard magnetic stabilized shield for double (2DMR) or triple (3DMR) dimension magnetic reader structures

Similar Documents

Publication Publication Date Title
JP3807254B2 (en) Magnetoresistive effect element, magnetoresistive effect type magnetic sensor, and magnetoresistive effect type magnetic head
JP3618654B2 (en) Magnetoresistive element, magnetic head, and magnetic recording / reproducing apparatus
JP4735872B2 (en) Thin film magnetic head
JP3462832B2 (en) Magnetic resistance sensor, magnetic head and magnetic recording / reproducing apparatus using the same
US8014108B2 (en) Magnetoresistive device of the CPP type, utilizing insulating layers interposed in shield layers to form a closed magnetic path usable in a disk system
JP3657916B2 (en) Magnetoresistive head and perpendicular magnetic recording / reproducing apparatus
JP2004103730A (en) Magnetoresistive effect element, magnetic head, and magnetic reproducer
JP2002025013A (en) Magnetic tunnel junction laminated head and method of manufacturing the same
JP2009289390A (en) Magnetoresistive device of cpp type, and magnetic disk system
US8098464B2 (en) CPP-type magneto resistance element having a pair of free layers and spacer layer sandwiched therebetween
US9514771B2 (en) Magneto-resistive effect element with recessed antiferromagnetic layer
US20140293475A1 (en) Cpp-type magnetoresistive element including a rear bias structure and lower shields with inclined magnetizations
JP2008112841A (en) Magnetoresistive element, thin film magnetic head, substrate, wafer, head gimbal assembly, hard disk device
US9129622B2 (en) CPP-type magnetoresistance effect element and magnetic disk device
JP2009176401A (en) Cpp-type magneto resistance effect element and magnetic disk unit
US20080144228A1 (en) Magnetic head and magnetic disk apparatus
KR100690492B1 (en) Magnetoresistive element, magnetic head, and magnetic memory apparatus
JP2007109807A (en) Magnetoresistive element, magnetic head, and magnetic recording apparatus
JP4160945B2 (en) Magnetoresistive element, thin film magnetic head, head gimbal assembly, and hard disk drive
KR100776870B1 (en) Magnetoresistive element, magnetic head and magnetic recording/reproducing apparatus
JP3817399B2 (en) Magnetoresistive sensor
JP4204385B2 (en) Thin film magnetic head
JP2006080144A (en) Magnetoresistive element, thin film magnetic head, head gimbal assembly, and hard disk drive
JP2009176400A (en) Cpp-type magneto resistance effect element and magnetic disk unit
JP2005328064A (en) Magnetoresistance effect element and forming method therefor, and thin film magnetic head and manufacturing method therefor

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090106