[go: up one dir, main page]

JP2007109695A - Element cooler excellent in starting characteristics - Google Patents

Element cooler excellent in starting characteristics Download PDF

Info

Publication number
JP2007109695A
JP2007109695A JP2005296047A JP2005296047A JP2007109695A JP 2007109695 A JP2007109695 A JP 2007109695A JP 2005296047 A JP2005296047 A JP 2005296047A JP 2005296047 A JP2005296047 A JP 2005296047A JP 2007109695 A JP2007109695 A JP 2007109695A
Authority
JP
Japan
Prior art keywords
refrigerant
passage
temperature
cooler
10mee
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005296047A
Other languages
Japanese (ja)
Inventor
Kazuo Kitani
一夫 木谷
Takeshi Koyama
健 小山
Kenji Ando
賢二 安東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Precision Products Co Ltd
Original Assignee
Sumitomo Precision Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Precision Products Co Ltd filed Critical Sumitomo Precision Products Co Ltd
Priority to JP2005296047A priority Critical patent/JP2007109695A/en
Publication of JP2007109695A publication Critical patent/JP2007109695A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an element cooler which can be used stably without damaging a semiconductor element by stabilizing temperature controllability at the time of starting when a substance of low global warming potential (e. g. HFC43-10mee) is used as HFC (Hydro Fluoro Carbon) refrigerant. <P>SOLUTION: The element cooler excellent in starting characteristics is a boiling cooler comprising an evaporator where a plurality of passages are arranged in parallel, a condenser stacking a refrigerant passage and an air passage communicating with the evaporator, and refrigerant used for cooling an element by circulating through the refrigerant passage. As a bubbling acceleration treatment, inner surface of the passage in the evaporator is preferably roughened by etching using acid. HFC of low global warming potential (e. g. HFC43-10mee) is preferably employed as the element cooling refrigerant. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、蒸発部と凝縮部を有する沸騰(サーモサイフォン式)冷却器に係り、さらに詳しくは、特性の異なる素子冷却用の冷媒を用いる場合でも、蒸発部の通路内面に前記冷媒の沸騰段階で発生する気泡成長を促進させる処理(以下、「気泡促進処理」という)を施すことにより、冷媒の特性に拘わらず、起動時における温度制御性に優れる素子冷却器に関するものである。   The present invention relates to a boiling (thermosyphon) cooler having an evaporation section and a condensation section. More specifically, even when a refrigerant for element cooling having different characteristics is used, the boiling stage of the refrigerant on the inner surface of the passage of the evaporation section. The element cooler is excellent in temperature controllability at the start-up regardless of the characteristics of the refrigerant by performing the process for promoting the bubble growth generated in the above (hereinafter referred to as “bubble promotion process”).

一般産業分野での交流電源の制御技術または鉄道車両の動力として、所謂インバーターモーターが採用され、インバーターによる電源の制御が行われている。ダイオード、トランジスタ、サイリスタなどの半導体素子を使用して電力の変換、制御、開閉を行うパワーエレクトロニクス技術では、かかる半導体素子の冷却が不可欠である。   A so-called inverter motor is employed as a control technology for an AC power supply in the general industrial field or as power for a railway vehicle, and the power supply is controlled by the inverter. In power electronics technology that uses semiconductor elements such as diodes, transistors, and thyristors to convert, control, and open / close power, it is essential to cool the semiconductor elements.

そのため、従来から種々の素子冷却器が提案されており、例えば、特許文献1では電気絶縁型ヒートパイプとして、蒸発部と凝縮部が内径16mmの鋼管よりなり、この蒸発部と凝縮部がアルミナセラミックスよりなる円筒形の電気絶縁体を介して接続されており、作動用の冷媒としてパーフルオロカーボン(Perfluorocarbon;以下、単に「PFC」という)を封入した構成が提案されている。   Therefore, various element coolers have been proposed. For example, in Patent Document 1, as an electrically insulating heat pipe, an evaporation part and a condensation part are made of a steel pipe having an inner diameter of 16 mm, and the evaporation part and the condensation part are made of alumina ceramics. A configuration has been proposed in which perfluorocarbon (hereinafter simply referred to as “PFC”) is enclosed as a working refrigerant.

また、特許文献2では素子冷却器として、冷媒の凝縮を行うプレートフィン型熱交換器の凝縮部と、相互に連通する多数の中空通路を有する中空面板を用い、これに半導体素子を着設した蒸発部を、ヘッダータンクを介して接続し、該中空通路内に表面に微細な凹凸加工を施したフィンを設けた構成が提案されている。   Moreover, in patent document 2, the condensing part of the plate fin type heat exchanger which condenses a refrigerant | coolant was used as an element cooler, and the hollow surface board which has many hollow passages mutually connected, and the semiconductor element was attached to this. There has been proposed a configuration in which the evaporation parts are connected via a header tank, and fins having fine irregularities on the surface are provided in the hollow passage.

従来の素子冷却器には、冷媒液にフロンが使用されていたが、フロンガスが成層圏まで拡散してオゾン層を破壊し、紫外線量を増大させることが重大な環境問題となり、フロンは廃止となった。フロンに替わる冷媒液として純水などへの変更が行われているが、熱交換器の素材にアルミニウムが使用される場合は、水腐食による水素の発生が懸念される。このため、作動安定性の観点から、水素も塩素も含まない安定したフッ化炭素化合物である、前記「PFC」に代表されるようなオゾン層を破壊しない代替フロンの使用が急増している。   In conventional element coolers, chlorofluorocarbon was used as the coolant, but chlorofluorocarbon gas diffused to the stratosphere, destroying the ozone layer and increasing the amount of ultraviolet rays became a serious environmental problem, and chlorofluorocarbon was abolished. It was. A change to pure water or the like has been made as a refrigerant liquid in place of chlorofluorocarbon, but when aluminum is used as the material of the heat exchanger, there is a concern about generation of hydrogen due to water corrosion. For this reason, from the viewpoint of operational stability, the use of alternative chlorofluorocarbons that are stable fluorocarbon compounds containing neither hydrogen nor chlorine and that do not destroy the ozone layer, as represented by the “PFC”, has been rapidly increasing.

近年、地球環境問題への関心が急速に高まっており、オゾン層破壊だけでなく、地球温暖化に対する影響も評価の対象になっている。地球温暖化に対する影響の評価には、地球温暖化係数(Gloval Warning Potential)が用いられている。地球温暖化係数とは、個々の温室効果ガスの地球温暖化に対する効果を、その持続時間も加味した上で、CO2の効果に対して相対的に表す指標である。 In recent years, interest in global environmental issues has rapidly increased, and not only the destruction of the ozone layer, but also the impact on global warming has been evaluated. A global warming potential is used to evaluate the impact on global warming. The global warming potential is an index that represents the effect of individual greenhouse gases on global warming relative to the effect of CO 2 in consideration of their duration.

前述の「PFC」は、水素も塩素も全く含まない非常に安定したフッ化炭化系化合物(例えば、CF4、C26、C614等)であり、良好な代替フロンとしてオゾン層は破壊しない。しかしながら、地球温暖化係数は相対的に高く、例えば、前記C614、いわゆるPFC51−14(以下、単に「PFC51−14」ということがある。)の場合は9000であり、CO2の数千倍もの強力な温室効果を有している。このため、素子冷却器に用いられる冷媒として、前記「PFC」に替えてオゾン層を破壊せず、なおかつ地球温暖化係数が小さい冷媒の使用が望まれている。 The above-mentioned “PFC” is a very stable fluorinated carbon-based compound (for example, CF 4 , C 2 F 6 , C 6 F 14, etc.) that does not contain any hydrogen or chlorine, and is an ozone layer as a good alternative chlorofluorocarbon. Does not destroy. However, the global warming potential is relatively high. For example, in the case of the C 6 F 14 , so-called PFC 51-14 (hereinafter sometimes simply referred to as “PFC 51-14”), it is 9000, and the number of CO 2 It has a thousand times more powerful greenhouse effect. For this reason, as a refrigerant used for the element cooler, it is desired to use a refrigerant that does not destroy the ozone layer and has a low global warming potential instead of the “PFC”.

特開平3−263592号公報JP-A-3-263592 特開平8−204075号公報JP-A-8-204075

本発明者らは、地球環境に対する負荷を低減するため、素子冷却用の冷媒について種々の検討を加えた結果、前記PFCに替えてハイドロフルオロカーボン(Hydrofluorocarbon;以下、これらを総称して「HFC」という)を選択できることを明らかにした。HFCのうち、例えば、HFC43−10meeは、オゾン層を破壊せず(オゾン層破壊係数が0)、前記PFC51−14よりも地球温暖化係数が小さく、温室効果も小さいことから代替フロンとして有効である。   In order to reduce the burden on the global environment, the present inventors have made various studies on the element cooling refrigerant, and as a result, instead of the PFC, hydrofluorocarbon (hereinafter referred to as “HFC”). ) That you can choose. Among HFCs, for example, HFC43-10mee does not destroy the ozone layer (ozone layer depletion coefficient is 0), has a lower global warming coefficient than the PFC51-14, and has a smaller greenhouse effect. is there.

通常、素子冷却器内を循環流通する冷媒は、蒸発部において半導体素子の熱により蒸発され、この蒸発ガスが凝縮部にて冷却され凝縮されて、再び冷媒の液成分は蒸発部へ還流するように構成される。ところが、物質によっては素子冷却用の冷媒として使用すると、素子冷却器の起動時において温度上昇にともなう制御性が不安定になる現象が現れる場合がある。   Usually, the refrigerant circulating in the element cooler is evaporated by the heat of the semiconductor element in the evaporation section, and this evaporated gas is cooled and condensed in the condensation section, so that the liquid component of the refrigerant returns to the evaporation section again. Configured. However, when a substance is used as a coolant for cooling an element, there may be a phenomenon that the controllability associated with the temperature rise becomes unstable when the element cooler is activated.

そこで、起動時の不安定な温度挙動を観察するため、従来の素子冷却用のPFC冷媒としてPFC51−14を使用した場合と、新たにHFC冷媒としてHFC43−10meeを使用した場合とに区分して、素子冷却器における素子取付面、冷媒および空気入口の温度を、起動時から定常状態に至るまで測定した。   Therefore, in order to observe unstable temperature behavior at the time of startup, it is divided into the case where PFC51-14 is used as the conventional PFC refrigerant for element cooling and the case where HFC43-10mee is newly used as the HFC refrigerant. The temperatures of the element mounting surface, the refrigerant, and the air inlet in the element cooler were measured from the time of startup to the steady state.

図1は、素子冷却用のPFC冷媒としてPFC51−14を使用した場合の素子冷却器の起動時における温度制御性を示す図である。図2は、素子冷却用のHFC冷媒としてHFC43−10meeを使用した場合の素子冷却器の起動時における温度制御性を示す図である。いずれの場合も、横軸に起動時からの経過時間を示し、縦軸に素子取付面、冷媒および空気入口の温度を示しており、図中のΔTは過熱度であり、ピーク時の素子取付面温度と冷媒温度との差を示している。   FIG. 1 is a diagram showing temperature controllability at the time of activation of an element cooler when PFC 51-14 is used as a PFC refrigerant for element cooling. FIG. 2 is a diagram showing temperature controllability at the time of starting the element cooler when HFC43-10mee is used as the HFC refrigerant for element cooling. In either case, the horizontal axis indicates the elapsed time from the start-up, the vertical axis indicates the temperature of the element mounting surface, the refrigerant and the air inlet, ΔT in the figure is the degree of superheat, and the element mounting at the peak The difference between the surface temperature and the refrigerant temperature is shown.

PFC冷媒を使用した場合、HFC冷媒を使用した場合ともに起動時から定常状態に至る間に、素子取付面の温度が上昇した後急激な温度の低下(以下、単に「温度の急変」という)が発生するが、詳細に比較すると、PFC51−14を使用した場合には、この温度の急変前に素子取付面温度の最高値が許容温度を超えることがないのに対し、HFC43−10meeを使用した場合には、温度の急変前に素子取付面温度の最高値が許容温度を超えている。   When PFC refrigerant is used and when HFC refrigerant is used, the temperature of the element mounting surface rises and then suddenly decreases (hereinafter simply referred to as “temperature sudden change”) during the period from startup to steady state. However, when PFC51-14 is used, the maximum value of the element mounting surface temperature does not exceed the allowable temperature before this temperature suddenly changes, but HFC43-10mee is used. In this case, the maximum value of the element mounting surface temperature exceeds the allowable temperature before the temperature suddenly changes.

過熱度ΔTに関しても、HFC43−10meeを使用した場合には、PFC51−14を使用した場合に比べ大きな温度差となっており、温度の急変後も約6分間に亘り許容温度を超える状態が継続することが確認される。図1、2に示す許容温度とは、半導体素子が正常に機能する温度の上限であり、許容温度を超えると、素子自体が損傷する可能性がある。   Regarding the degree of superheat ΔT, when HFC43-10mee is used, there is a large temperature difference compared to when PFC51-14 is used, and the state of exceeding the allowable temperature continues for about 6 minutes even after a sudden change in temperature. To be confirmed. The allowable temperature shown in FIGS. 1 and 2 is the upper limit of the temperature at which the semiconductor element functions normally. If the allowable temperature is exceeded, the element itself may be damaged.

図1、2に示すように、定常状態に至ってからは、PFC51−14を使用した場合、HFC43−10meeを使用した場合ともに素子取付面の温度が許容温度を超えることはないが、PFC51−14の方がHFC43−10meeに比べ、僅かに定常状態の素子取付面温度が低いことが確認される。   As shown in FIGS. 1 and 2, the temperature of the element mounting surface does not exceed the allowable temperature when the PFC 51-14 is used and when the HFC 43-10mee is used after reaching the steady state. It is confirmed that the element mounting surface temperature in the steady state is slightly lower than that in HFC43-10mee.

上述するように、素子冷却用のHFC冷媒として、例えば、HFC43−10meeを使用する場合には、起動時における温度制御性が安定せず、その起動時の温度挙動により、半導体素子に損傷を与える畏れがあることが明らかとなった。   As described above, for example, when HFC43-10mee is used as the HFC refrigerant for element cooling, the temperature controllability at the start is not stable, and the semiconductor element is damaged by the temperature behavior at the start. It became clear that there was drowning.

この発明は、地球温暖化係数の小さい物質(例えば、HFC43−10mee)を素子冷却用のHFC冷媒として使用した場合でも、素子冷却器の起動時における温度制御性の不安定さを解消し、半導体素子を損傷させることがなく安定して使用できる、起動特性に優れる素子冷却器を提供することを目的としている。   The present invention eliminates the instability of temperature controllability at the start of the element cooler even when a substance having a low global warming potential (for example, HFC43-10mee) is used as the HFC refrigerant for element cooling. An object of the present invention is to provide an element cooler with excellent start-up characteristics that can be used stably without damaging the element.

前記図2に示すHFC43−10meeを使用した場合における起動時の温度挙動パターンでは、素子取付面の最高温度と定常状態温度との差が、例えば6.5℃となった。   In the temperature behavior pattern at the start-up when the HFC43-10mee shown in FIG. 2 is used, the difference between the maximum temperature of the element mounting surface and the steady state temperature is, for example, 6.5 ° C.

まず、本発明者らは、HFC43−10meeが混合物質であることに注目し、その混合比または沸点差が、このような現象の原因ではないかという観点に立って、混合物質の成分比が沸点に及ぼす影響の検討を行った。しかし、シミュレーション結果では、混合物質の成分比が沸点に及ぼす影響は僅かであり、成分比による影響では、前記図1、2に示す結果を説明できないことが判明した。   First, the inventors pay attention to the fact that HFC43-10mee is a mixed substance, and in view of whether the mixing ratio or boiling point difference is the cause of such a phenomenon, the component ratio of the mixed substance is The effect on boiling point was investigated. However, the simulation results show that the influence of the component ratio of the mixed substance on the boiling point is negligible, and the influence of the component ratio cannot explain the results shown in FIGS.

そこで本発明者らは、素子取付面温度の時間経過の中で、起動時から定常状態に達する間に現れる温度の急変、すなわち、前記の6.5℃の温度降下は、加熱面に発生した気泡が十分に成長し、最終的に加熱面を離脱した際に、周囲の冷媒がこの加熱面に流れ込み、熱伝達が急激に促進されることにより生じることに着目した。   Therefore, the inventors of the present invention have made a sudden change in the temperature that appears while the element mounting surface temperature reaches the steady state from the start-up, that is, the temperature drop of 6.5 ° C. occurs on the heating surface. It was noted that when the bubbles grew sufficiently and finally left the heating surface, the surrounding refrigerant flowed into the heating surface and heat transfer was rapidly accelerated.

本発明者らは検討を重ね、起動時における許容温度を超えるような素子取付面の温度上昇は、冷媒の熱力学特性に起因するとともに、冷媒の沸騰段階で発生する気泡の成長と密接に関連すること、そして、この気泡成長の促進は、素子冷却器の蒸発部に施される気泡促進処理により可能となることを知見し、この発明を完成した。   The inventors of the present invention have repeatedly investigated that the temperature rise of the element mounting surface exceeding the allowable temperature at the time of start-up is caused by the thermodynamic characteristics of the refrigerant and closely related to the growth of bubbles generated in the boiling stage of the refrigerant. It has been found that the bubble growth can be promoted by the bubble promotion treatment applied to the evaporation part of the element cooler, and the present invention has been completed.

したがって、本発明の素子冷却器では、複数の通路を並列に配置した構成の蒸発部と、この蒸発部と連通する冷媒通路と空気通路とを積層配置する凝縮部と、前記冷媒通路を循環流通して素子冷却に用いられる冷媒とからなる沸騰冷却器であって、前記蒸発部の通路内面に気泡促進処理を施すことを特徴としている。   Therefore, in the element cooler of the present invention, an evaporator having a configuration in which a plurality of passages are arranged in parallel, a condensing unit in which a refrigerant passage and an air passage communicating with the evaporator are stacked, and circulating through the refrigerant passage A boiling cooler composed of a refrigerant used for element cooling is characterized in that bubble promotion processing is performed on the inner surface of the passage of the evaporation section.

さらに、本発明の素子冷却器では、前記気泡促進処理として、前記蒸発部の通路内面に酸を用いたエッチング処理による粗面化を施すことが望ましい。蒸発部の通路内面をエッチング処理で粗面化することにより、通路面に発生した気泡を消滅させることなく、安定して成長させることができるので、有効に起動時における温度制御性を向上させることができる。   Furthermore, in the element cooler of the present invention, it is preferable that the bubble promotion treatment is performed by roughening the inner surface of the passage of the evaporation section by etching using an acid. By roughening the inner surface of the passage of the evaporation section with an etching process, it is possible to grow stably without erasing the bubbles generated on the passage surface, so that the temperature controllability at startup can be improved effectively. Can do.

また、本発明の素子冷却器では、素子冷却用の冷媒として地球温暖化係数が低いHFCを用いるのが望ましい。前述の通り、地球温暖化係数は個々の温室効果ガスの地球温暖化に対する効果を、CO2の効果に対して相対的に評価した指標であり、本発明が対象とするHFCは、地球温暖化係数がPFC(例えば、PFC51−14(9000))よりも小さいものを適用できる。 In the element cooler of the present invention, it is desirable to use HFC having a low global warming potential as the element cooling refrigerant. As described above, the global warming potential is an index in which the effect of each greenhouse gas on global warming is evaluated relative to the effect of CO 2. The HFC targeted by the present invention is a global warming A coefficient smaller than PFC (for example, PFC51-14 (9000)) can be applied.

具体的には、本発明に適用できるHFCとして、HFC43−10mee(1300)を選択することができる。なお、HFC名称の後に括弧内に示す数値は地球温暖化係数を示している。   Specifically, HFC43-10mee (1300) can be selected as an HFC applicable to the present invention. The numerical value shown in parentheses after the HFC name indicates the global warming potential.

以下では、素子冷却器に基づいて説明するが、本発明の適用は素子冷却器にのみに限定されず、ヒートパイプにも適用することができ、蒸発部を構成する鋼管内面に気泡促進処理を施すことにより、起動時における温度制御性を安定させることができる。   In the following, the description will be based on the element cooler, but the application of the present invention is not limited to the element cooler, but can be applied to a heat pipe. By applying, temperature controllability at start-up can be stabilized.

本発明の素子冷却器によれば、素子冷却用のHFC冷媒として地球温暖化係数の小さい物質(例えば、HFC43−10mee)を使用する場合にも、起動時における素子取付面の温度上昇に対する制御特性に優れ、半導体素子を損傷させることがない。さらに、地球温暖化係数の小さい物質を素子冷却用として安定使用を実現することができるので、地球環境に対する負荷を低減できる。   According to the element cooler of the present invention, even when a substance having a small global warming potential (for example, HFC43-10mee) is used as the HFC refrigerant for element cooling, the control characteristics against the temperature rise of the element mounting surface at the start-up Excellent and does not damage the semiconductor element. Furthermore, since a stable use of a substance having a low global warming potential for element cooling can be realized, the burden on the global environment can be reduced.

本発明者らは、素子取付面温度の時間経過の中で、起動時から定常状態に達する間に現れる温度の急変に関して、種々の検討を行った。   The inventors of the present invention have made various studies on the sudden change in temperature that appears while the element mounting surface temperature reaches the steady state from the start-up.

従来、素子冷却用のPFC冷媒としてPFC51−14を使用した場合には、この温度の急変は起動時より比較的短時間で発生したのに対し、HFC冷媒としてHFC43−10meeを使用した場合には、温度の急変の発生タイミングが遅れ、温度の急変発生前の素子取付面の最高温度が許容温度を超えるような事態が発生することになる。そこで、本発明者らは、このような事態を熱力学の理論に基づいて説明することを試みた。   Conventionally, when PFC51-14 was used as the PFC refrigerant for element cooling, this sudden change in temperature occurred in a relatively short time from the start-up, whereas when HFC43-10mee was used as the HFC refrigerant, The occurrence timing of the sudden change in temperature is delayed, and a situation occurs in which the maximum temperature of the element mounting surface before the sudden change in temperature exceeds the allowable temperature. Therefore, the present inventors tried to explain such a situation based on the theory of thermodynamics.

図3は、加熱面に発生した気泡が冷媒中で安定して成長する状態を示した模式図である。本発明者らは、素子取付面温度が急変する時点が、沸騰の開始する時点と対応していることを実験により確認した。上記図3に示すように、沸騰は加熱面上に発生した気泡が消滅することなく安定生長を続け、最終的に加熱面を離脱した時点がその開始時点とみなすことができ、気泡が離脱した瞬間、気泡のあった加熱面が周辺の液により急激に冷却されるため、先述の加熱面温度の急変が生じると考えられる。   FIG. 3 is a schematic diagram showing a state in which bubbles generated on the heating surface stably grow in the refrigerant. The inventors of the present invention have confirmed through experiments that the time at which the element mounting surface temperature suddenly changes corresponds to the time at which boiling starts. As shown in FIG. 3 above, boiling continues stable growth without the bubbles generated on the heating surface disappearing, and the time at which the heating surface is finally removed can be regarded as the starting point, and the bubbles are released. Since the heated surface with bubbles is rapidly cooled by the surrounding liquid at the moment, it is considered that the above-mentioned sudden change in the heated surface temperature occurs.

このような気泡の安定生長が生じるためには、加熱面の温度が周辺の液相温度よりΔT(過熱度)だけ高くなることが必要である。このΔTは熱力学の理論により、次の(式1)で与えられる。   In order for such bubble to stably grow, the temperature of the heating surface needs to be higher than the surrounding liquidus temperature by ΔT (degree of superheat). This ΔT is given by the following (formula 1) according to the theory of thermodynamics.

Figure 2007109695
Figure 2007109695

上記(式1)において、ΔTは過熱度、Tは加熱面(すなわち、素子取付面)温度、Teqは冷媒温度、σは冷媒の表面張力、Rは気泡半径、Lは潜熱およびVVは気泡の比容積を表す。 In the above (Equation 1), ΔT is the degree of superheat, T is the temperature of the heating surface (ie, the element mounting surface), T eq is the refrigerant temperature, σ is the refrigerant surface tension, R is the bubble radius, L is the latent heat, and V V is Represents the specific volume of bubbles.

上記(式1)から、半径Rの気泡が消滅することなく安定して成長するために必要な過熱度ΔTは、冷媒の熱力学特性(表面張力、比容積、潜熱の組み合わせた量)により理論的に決まることが分かる。この冷媒の熱力学特性をC値として、冷媒の表面張力σ、潜熱L、気泡の比容積VVおよび冷媒の温度Teqから定義することにより、次の(式2)を得ることができる。 From the above (Equation 1), the degree of superheat ΔT required for stable growth of bubbles with radius R without disappearing is theoretically determined by the thermodynamic characteristics of the refrigerant (a combined amount of surface tension, specific volume, and latent heat). You can see that By defining the thermodynamic characteristics of the refrigerant as a C value from the surface tension σ of the refrigerant, the latent heat L, the specific volume V V of the bubbles, and the temperature T eq of the refrigerant, the following (Expression 2) can be obtained.

Figure 2007109695
Figure 2007109695

上記(式2)を前記(式1)に代入すると、下記の(式3)に示す関係式を得ることができる。   By substituting the above (Formula 2) into the above (Formula 1), the following relational expression (Formula 3) can be obtained.

Figure 2007109695
Figure 2007109695

(式3)に示す関係式から、同じ半径Rの気泡を安定して成長させるためには、C値が大きい冷媒ほど、より大きな過熱度ΔTを必要とすることが分かる。すなわち、半径Rの気泡が消滅することなく安定して成長するために必要な過熱度ΔTは、冷媒の熱力学特性に依存する。   From the relational expression shown in (Expression 3), it can be seen that a refrigerant having a larger C value requires a larger degree of superheat ΔT in order to stably grow bubbles having the same radius R. That is, the degree of superheat ΔT necessary for stable growth of bubbles with a radius R does not disappear depends on the thermodynamic characteristics of the refrigerant.

図4は、前記(式2)で得られるC値と冷媒温度との関係をHFC43−10meeおよびPFC51−14の冷媒をパラメータとして示した図である。同図では、各冷媒温度におけるPFC51−14のC値を「1」として、これに対するHFC43−10meeのC値を比で示している。   FIG. 4 is a graph showing the relationship between the C value obtained in (Expression 2) and the refrigerant temperature using the HFC43-10mee and PFC51-14 refrigerants as parameters. In the figure, the C value of PFC 51-14 at each refrigerant temperature is set to “1”, and the C value of HFC 43-10mee is shown as a ratio.

図4の結果から、熱力学の理論による(式1)〜(式3)による解析が冷媒の特性実験と良い整合を示していることが分かる。HFC43−10meeのC値は、実際の冷媒使用範囲50〜60℃において、PFC51−14のC値の約1.08倍であり、半径Rの気泡が消滅することなく安定して成長するための過熱度ΔTはHFC43−10meeの方が大きくなり、HFC43−10meeを使用した場合に温度の急変の発生タイミングが遅れることと符合する。   From the results of FIG. 4, it can be seen that the analysis by (Equation 1) to (Equation 3) based on the theory of thermodynamics is in good agreement with the refrigerant characteristic experiment. The C value of HFC43-10mee is about 1.08 times the C value of PFC51-14 in the actual refrigerant use range of 50-60 ° C., so that bubbles with a radius R can grow stably without disappearing. The degree of superheat ΔT is larger in HFC43-10mee, which corresponds to the delay in the occurrence of a sudden change in temperature when HFC43-10mee is used.

繰り返しになるが、PFC51−14を使用した場合には、温度の急変は起動時より比較的短時間で発生するのに対し、HFC43−10meeを使用した場合には、発生タイミングが遅れ、温度の急変発生前に素子取付面の温度が許容温度を超えるようになる。   Again, when using PFC51-14, a sudden change in temperature occurs in a relatively short time from the start, whereas when using HFC43-10mee, the generation timing is delayed and the temperature The temperature of the element mounting surface exceeds the allowable temperature before sudden change occurs.

これは、半径Rの気泡が消滅することなく安定して成長するために必要な過熱度ΔTが、冷媒の熱力学特性であるC値に依存し、前記図4の結果から、HFC43−10meeのC値がPFC51−14の約1.08倍となり、過熱度ΔTの低下が図れず、起動時から安定沸騰状態への移行が遅れることによる。   This is because the degree of superheat ΔT required for stable growth of bubbles of radius R without annihilation depends on the C value which is the thermodynamic characteristic of the refrigerant. From the results of FIG. This is because the C value is about 1.08 times that of PFC 51-14, the degree of superheat ΔT cannot be reduced, and the transition from the startup to the stable boiling state is delayed.

本発明の素子冷却器において、前記(式3)における過熱度ΔTを低下させるには、C値は冷媒固有の熱力学特性値であることから、可能な手段として気泡半径Rを大きくする必要がある。このため、本発明者らは、さらに検討を重ねた結果、加熱面に気泡促進処理を施すことにより、加熱面の性状を変化させ、気泡発生の核を増やし、気泡の発生や合体を活性化することで、前記(式3)において気泡半径を大きくすることと同等の効果が得られることに着目した。   In the element cooler of the present invention, in order to reduce the degree of superheat ΔT in (Equation 3), since the C value is a thermodynamic characteristic value unique to the refrigerant, it is necessary to increase the bubble radius R as a possible means. is there. For this reason, as a result of further investigations, the present inventors changed the properties of the heating surface by applying bubble promotion treatment to the heating surface, increased the bubble generation nucleus, and activated the generation and coalescence of bubbles. By doing so, attention was paid to the effect equivalent to increasing the bubble radius in the above (Formula 3).

具体的に、蒸発部の通路内面に気泡促進処理を施す手段として、蒸発部の通路内面を粗面化することが有効である。すなわち、素子冷却用のHFC冷媒として、例えば、HFC43−10meeを使用する場合であっても、蒸発部の通路内面を粗面化することによって、気泡の発生や合体を促進し、気泡半径を大きくすることと同等の効果を得られ、これにより過熱度ΔTを低下させ、素子取付面の温度を許容温度以下に制御することが可能となる。   Specifically, it is effective to roughen the inner surface of the passage of the evaporation unit as a means for performing bubble promotion processing on the inner surface of the passage of the evaporation unit. That is, even when HFC43-10mee is used as the HFC refrigerant for element cooling, for example, by roughening the inner surface of the passage of the evaporation section, the generation and coalescence of bubbles are promoted, and the bubble radius is increased. As a result, it is possible to reduce the degree of superheat ΔT and to control the temperature of the element mounting surface below the allowable temperature.

蒸発部の粗面化は、ブラスト処理、グラインダー等で行っても良いが、これらの処理の場合は、押し出し型材のような中空の形材内部までは処理することは困難であり、また、コストの上昇を招くという問題点がある。   The roughening of the evaporation part may be performed by blasting, grinder, etc., but in these processes, it is difficult to process the inside of a hollow shape such as an extruded mold, and the cost is also low. There is a problem of inviting a rise.

上記の問題を解決する手段として、発明者らは、中空状の押し出し型材を用いて蒸発部を形成する際に、酸エッチングにて沸騰面となる内部面を粗面化することで、細長い通路構成であっても所定の粗面が得られ、蒸発部の気泡促進が可能となることを知見した。しかも、酸エッチングによる粗面化の効果は、その外観に拘わらず顕著であり、効果の意外性も明らかにした。エッチングによる粗面化方法には、蒸発通路部材に用いた材料に応じて酸エッチング液を適宜選定し、要求される面粗度や表面性状に応じて処理時間、液温度などを適宜選定すると良い。   As a means for solving the above problem, the inventors formed a long and narrow passage by roughening an inner surface that becomes a boiling surface by acid etching when forming an evaporation section using a hollow extruded mold material. It was found that even with the configuration, a predetermined rough surface can be obtained, and bubbles can be promoted in the evaporation section. Moreover, the effect of roughening by acid etching is remarkable regardless of its appearance, and the unexpectedness of the effect has also been clarified. In the roughening method by etching, an acid etching solution is appropriately selected according to the material used for the evaporation passage member, and a processing time, a liquid temperature, and the like are appropriately selected according to required surface roughness and surface properties. .

通常、蒸発通路部材としてはアルミニウム材が用いられるが、アルミニウム材に対するエッチング液組成や処理条件としては、慣用されるいずれのものも採用できる。   Usually, an aluminum material is used as the evaporating passage member, but any commonly used etching solution composition and processing conditions for the aluminum material can be employed.

(本発明の素子冷却器の構成例)
本発明が対象とする素子冷却器は、複数の通路を並列に配置した構成の蒸発部と、この蒸発部と連通する冷媒通路と空気通路とを積層配置する凝縮部と、前記冷媒通路を循環流通して素子冷却に用いられる冷媒とから構成される。本発明の素子冷却器の構成例を図面に基づいて詳述する。
(Configuration example of element cooler of the present invention)
An element cooler targeted by the present invention includes an evaporator having a configuration in which a plurality of passages are arranged in parallel, a condenser having a refrigerant passage and an air passage communicating with the evaporator, and a circulation passage through the refrigerant passage. It is comprised from the refrigerant | coolant which distribute | circulates and is used for element cooling. A configuration example of the element cooler of the present invention will be described in detail with reference to the drawings.

図5は、本発明の沸騰冷却器の構成例を示す分解斜視説明図である。図5に示すように、冷却器1は、水平配置される蒸発部2の上面に、プレートフィン型熱交換器の凝縮部3を逆T字型に接合した基本構造を有する。蒸発部2は、3枚の蒸発通路部材4、5、6が2か所の接合部で接合一体化した構成である。すなわち、中央に位置する蒸発通路部材5の両側端面にそれぞれ蒸発通路部材4、6を当接させて、摩擦撹拌の接合方法によって強固に、かつ均質に接合されている。   FIG. 5 is an exploded perspective view showing a configuration example of the boiling cooler of the present invention. As shown in FIG. 5, the cooler 1 has a basic structure in which a condensing unit 3 of a plate fin type heat exchanger is joined in an inverted T shape on an upper surface of a horizontally disposed evaporation unit 2. The evaporating section 2 has a configuration in which three evaporating passage members 4, 5, and 6 are joined and integrated at two joining sections. That is, the evaporating passage members 4 and 6 are brought into contact with both end faces of the evaporating passage member 5 located at the center, respectively, and are firmly and uniformly joined by a friction stirring joining method.

各蒸発通路部材4、5、6は、奥行き方向に隔壁7を形成して複数の通路8が設けられた押し出し型材からなる。各通路内の上下面には小さな凹凸からなるフィン面を設けて表面積を拡大させている。   Each of the evaporation passage members 4, 5, 6 is made of an extrusion mold material in which a partition wall 7 is formed in the depth direction and a plurality of passages 8 are provided. Fin surfaces made up of small irregularities are provided on the upper and lower surfaces in each passage to increase the surface area.

接合一体化された蒸発通路部材4、5、6の通路開口端には、閉塞板材9をろう付けすることで閉塞して蒸発部2を形成している。また、蒸発部上面の凝縮部3の接合予定部には、各通路の並列方向に所定幅の開口部10を設けてあり、この開口部を各通路方向に所定間隔で複数配置することで、多数の通路に連通する穴部を所定パターンで配置した連通穴部11を形成した。   The evaporation path member 2 is closed by brazing the closing plate material 9 at the passage opening ends of the evaporation path members 4, 5, 6 that are integrally joined to form the evaporation part 2. Further, in the planned joining portion of the condensing unit 3 on the upper surface of the evaporation unit, openings 10 having a predetermined width are provided in the parallel direction of the passages, and a plurality of openings are arranged at predetermined intervals in the direction of the passages. A communication hole portion 11 in which holes communicating with a large number of passages were arranged in a predetermined pattern was formed.

凝縮部3は、蒸発部2の通路と連通穴部を介して連通する冷媒通路12と、連通穴部をスペーサーバー13で閉塞する空気通路14とを交互に水平方向に積層配置したプレートフィン型熱交換器の構成からなる。   The condensing unit 3 is a plate fin type in which a refrigerant passage 12 that communicates with the passage of the evaporation unit 2 via a communication hole portion and an air passage 14 that closes the communication hole portion with a spacer bar 13 are alternately stacked in the horizontal direction. Consists of a heat exchanger configuration.

冷媒通路12は、プレート15間に流体の分散性に優れたセレートフィン16を挟み上面および両側をスペーサーバー17にて閉塞する構成であり、同通路内を冷媒が上昇かつ下降可能となり、空気通路は、同プレート間にコルゲートフィン18を挟み上面および下面をスペーサーバー17で接合して、コルゲートフィン18の水平方向隙間に空気が通過可能になる。   The refrigerant passage 12 has a structure in which serrated fins 16 having excellent fluid dispersibility are sandwiched between the plates 15 and the upper surface and both sides thereof are closed by the spacer bar 17. The refrigerant can be raised and lowered in the passage, and the air passage is The corrugated fins 18 are sandwiched between the plates and the upper and lower surfaces are joined by the spacer bar 17 so that air can pass through the gaps in the horizontal direction of the corrugated fins 18.

凝縮部3は、プレート間にセレートフィンまたはコルゲートフィンを挟み、所要位置にスペーサーバーを配置してろう付け一体化することでプレートフィン型熱交換器の構成を形成でき、ここではさらに、凝縮部上部に冷媒通路にのみ連通する上部ヘッダータンク19を配置して、各冷媒通路間の冷媒量の偏りを防止する構成を採用している。   The condensing unit 3 can form a plate fin type heat exchanger structure by sandwiching serrated fins or corrugated fins between plates and arranging a spacer bar at a required position to be integrated by brazing. The upper header tank 19 that communicates only with the refrigerant passages is disposed in the upper portion of the tank so as to prevent the deviation of the refrigerant amount between the refrigerant passages.

蒸発通路部材4、5、6は、組み立て性や気密性から、アルミニウム材による押し出し型材として製造するが、いずれの製法にて形成されたものも採用できる。また、受熱して冷媒の蒸発部2として機能するため、被冷却用素子を着設するが直接載置可能なように着設用のねじ孔を設けた構成の他、半導体素子の載置用プレート等を着設する構成など、冷却器として要求される仕様に応じて、種々構成の蒸発通路部材4、5、6を採用できる。
(起動時の温度制御性)
前記図5に示す素子冷却器を用い、各蒸発通路部材に対して、濃度の薄い硝酸の酸エッチング槽に浸漬して、0.3〜0.7μm程度粗面となるよう通路内面を粗面化した。素子冷却用の冷媒としてHFC43−10meeを封入し、素子冷却器を得た。得られた冷却器に半導体素子を着設して、素子取付面、冷媒および空気入口の温度を、起動時から定常状態に至るまで測定した。
The evaporating passage members 4, 5, and 6 are manufactured as extruded molds made of an aluminum material because of their ease of assembly and airtightness, but any of them can be used. Further, in order to receive heat and function as the refrigerant evaporating unit 2, in addition to the configuration in which the element to be cooled is mounted, but the mounting screw hole is provided so that it can be directly mounted, the semiconductor element is mounted. Depending on the specifications required for the cooler, such as a configuration in which a plate or the like is installed, various configurations of the evaporating passage members 4, 5, 6 can be employed.
(Temperature controllability at startup)
Using the element cooler shown in FIG. 5, the inner surface of the passage is roughened so that each evaporation passage member is immersed in an acid etching tank of nitric acid having a low concentration to have a rough surface of about 0.3 to 0.7 μm. Turned into. HFC43-10mee was enclosed as a cooling element cooling element to obtain an element cooler. A semiconductor element was attached to the obtained cooler, and the temperatures of the element mounting surface, the refrigerant, and the air inlet were measured from the start to the steady state.

図6は、酸エッチングによる粗面化処理を行い、HFC冷媒としてHFC43−10meeを使用した場合の素子冷却器の起動時における温度制御性を示す図である。図7に示すように、起動時から定常状態に至る間に温度の急変が現れるが、酸エッチングによる粗面化処理を行った効果によって、前記図2に現れる温度の急変に比べ、明らかに小さくなっていることが分かる。そして、素子取付面の温度が許容温度を超えることはなかった。   FIG. 6 is a diagram showing the temperature controllability at the time of starting the element cooler when the roughening process is performed by acid etching and HFC43-10mee is used as the HFC refrigerant. As shown in FIG. 7, a sudden change in temperature appears from the start to the steady state, but the effect of the roughening treatment by acid etching is clearly smaller than the sudden change in temperature shown in FIG. You can see that And the temperature of the element mounting surface did not exceed the allowable temperature.

また、蒸発通路面の粗面化に伴う熱伝達促進効果によって、定常状態における素子取付面および冷媒の温度も、酸エッチングによる粗面化処理を行わない場合より低下した。さらに、図1の場合(PFC冷媒としてPFC51−14を使用した場合)と比較しても、定常状態では、同等の機能性を有することが確認される。   Further, due to the heat transfer promoting effect accompanying the roughening of the evaporation passage surface, the temperature of the element mounting surface and the refrigerant in the steady state is also lower than when the roughening process by acid etching is not performed. Furthermore, even when compared with the case of FIG. 1 (when PFC51-14 is used as the PFC refrigerant), it is confirmed that the same functionality is obtained in the steady state.

以上の結果から、起動時におけるHFC冷媒(例えば、HFC43−10mee)の過熱度を低下させるには、蒸発部の加熱面を粗面化し、気泡発生を活性化することが有効であることが確認された。加熱面の粗面化に伴う熱伝達促進効果による定常状態の温度低下も併せると、酸エッチングによる粗面化処理を行えば、HFC冷媒(例えば、HFC43−10mee)は、従来のPFC冷媒(例えば、PFC51−14)と同様に、素子冷却用の溶媒として使用可能である。   From the above results, it is confirmed that it is effective to roughen the heating surface of the evaporation section and activate bubble generation in order to reduce the degree of superheating of the HFC refrigerant (for example, HFC43-10mee) at startup. It was done. Combined with the steady-state temperature decrease due to the heat transfer promoting effect accompanying the roughening of the heating surface, if the roughening treatment by acid etching is performed, the HFC refrigerant (for example, HFC43-10mee) is a conventional PFC refrigerant (for example, , PFC51-14), and can be used as a solvent for cooling the element.

本発明の素子冷却器によれば、素子冷却用のHFC冷媒として地球温暖化係数の小さい物質(例えば、HFC43−10mee)を使用する場合にも、起動時における素子取付面の温度上昇に対する制御特性に優れ、半導体素子を損傷させることがない。さらに、地球温暖化係数の小さい物質を素子冷却用として安定使用を実現することができるので、地球環境に対する負荷を低減できるので、エレクトロニクス技術分野等の産業技術分野において、半導体素子の冷却用として広く利用することができる。   According to the element cooler of the present invention, even when a substance having a small global warming potential (for example, HFC43-10mee) is used as the HFC refrigerant for element cooling, the control characteristics against the temperature rise of the element mounting surface at the start-up Excellent and does not damage the semiconductor element. Furthermore, since a stable use of a substance with a low global warming potential can be realized for element cooling, the load on the global environment can be reduced. Therefore, it is widely used for semiconductor element cooling in industrial technology fields such as the electronics technology field. Can be used.

素子冷却用のPFC冷媒としてPFC51−14を使用した場合の素子冷却器の起動時における温度制御性を示す図である。It is a figure which shows the temperature controllability at the time of starting of an element cooler at the time of using PFC51-14 as a PFC refrigerant | coolant for element cooling. 素子冷却用のHFC冷媒としてHFC43−10meeを使用した場合の素子冷却器の起動時における温度制御性を示す図である。It is a figure which shows the temperature control property at the time of starting of an element cooler at the time of using HFC43-10mee as an HFC refrigerant | coolant for element cooling. 加熱面に発生した気泡が冷媒中で安定して成長する状態を示した模式図である。It is the schematic diagram which showed the state which the bubble generate | occur | produced on the heating surface grew stably in a refrigerant | coolant. (式2)で得られるC値と冷媒温度との関係をHFC43−10meeおよびPFC51−14の冷媒をパラメータとして示した図である。It is the figure which showed the refrigerant | coolant of HFC43-10mee and PFC51-14 as a parameter about the relationship between C value obtained by (Formula 2), and refrigerant | coolant temperature. 本発明の沸騰冷却器の構成例を示す分解斜視説明図である。It is a disassembled perspective explanatory drawing which shows the structural example of the boiling cooler of this invention. 酸エッチングによる粗面化処理を行い、HFC冷媒としてHFC43−10meeを使用した場合の素子冷却器の起動時における温度制御性を示す図である。It is a figure which shows the temperature controllability at the time of starting of an element cooler at the time of performing the roughening process by acid etching and using HFC43-10mee as a HFC refrigerant | coolant.

符号の説明Explanation of symbols

1.冷却器 2.蒸発部
3.凝縮部 4.蒸発通路部材(端部)
5.蒸発通路部材(中央部) 6.蒸発通路部材(端部)
7.隔壁 8.通路
9.閉塞板材 10.開口部
11.連通穴部 12.冷媒通路
13.スペーサーバー 14.空気通路
15.プレート 16.セレートフィン
17.スペーサーバー 18.コルゲートフィン
19.上部ヘッダータンク 20.加熱面
21.発生した気泡 22.成長した気泡
23.気泡半径R 24.消滅した気泡
1. Cooler 2. Evaporation section Condensing part 4. Evaporation passage member (end)
5. 5. Evaporation passage member (central part) Evaporation passage member (end)
7). Septum 8 Passage 9. Blocking plate material 10. Opening 11. Communication hole 12. Refrigerant passage 13. Spacer bar 14. Air passage 15. Plate 16. Serrate fins17. Spacer bar 18. Corrugated fin 19. Upper header tank 20. Heating surface 21. Generated bubbles 22. Grown bubbles 23. Bubble radius R 24. Vanished bubbles

Claims (4)

複数の通路を並列に配置した構成の蒸発部と、この蒸発部と連通する冷媒通路と空気通路とを積層配置する凝縮部と、前記冷媒通路を循環流通して素子冷却に用いられる冷媒とからなる沸騰冷却器であって、
前記蒸発部の通路内面に前記冷媒の沸騰段階で発生する気泡成長を促進させる処理(以下、「気泡促進処理」という)を施すことを特徴とする起動特性に優れる素子冷却器。
An evaporation section having a configuration in which a plurality of passages are arranged in parallel, a condensing section in which a refrigerant passage communicating with the evaporation section and an air passage are stacked, and a refrigerant used for element cooling by circulating through the refrigerant passage A boiling cooler
An element cooler with excellent start-up characteristics, characterized in that a process (hereinafter referred to as “bubble promoting process”) that promotes bubble growth generated in the boiling stage of the refrigerant is applied to the inner surface of the passage of the evaporator.
前記気泡促進処理として、前記蒸発部の通路内面に酸を用いたエッチング処理による粗面化が施されることを特徴とする請求項1に記載の起動特性に優れる素子冷却器。   2. The element cooler with excellent start-up characteristics according to claim 1, wherein as the bubble promotion treatment, the inner surface of the passage of the evaporation portion is roughened by an etching treatment using an acid. 前記の素子冷却用の冷媒が地球温暖化係数の低いハイドロフルオロカーボンであることを特徴とする請求項1に記載の起動特性に優れる素子冷却器。   2. The element cooler with excellent start-up characteristics according to claim 1, wherein the element cooling refrigerant is a hydrofluorocarbon having a low global warming potential. 前記気泡促進処理として、前記蒸発部の通路内面に酸を用いたエッチング処理による粗面化が施されることを特徴とする請求項3に記載の起動特性に優れる素子冷却器。
The element cooler with excellent start-up characteristics according to claim 3, wherein the bubble promotion treatment is performed by roughening the inner surface of the passage of the evaporation portion by an etching treatment using an acid.
JP2005296047A 2005-10-11 2005-10-11 Element cooler excellent in starting characteristics Pending JP2007109695A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005296047A JP2007109695A (en) 2005-10-11 2005-10-11 Element cooler excellent in starting characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005296047A JP2007109695A (en) 2005-10-11 2005-10-11 Element cooler excellent in starting characteristics

Publications (1)

Publication Number Publication Date
JP2007109695A true JP2007109695A (en) 2007-04-26

Family

ID=38035357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005296047A Pending JP2007109695A (en) 2005-10-11 2005-10-11 Element cooler excellent in starting characteristics

Country Status (1)

Country Link
JP (1) JP2007109695A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011117058A (en) * 2009-12-07 2011-06-16 Sumitomo Electric Ind Ltd Film deposition system and film deposition method
WO2012043117A1 (en) * 2010-09-30 2012-04-05 日本電気株式会社 Vapor phase cooling apparatus, and electronic equipment using same
JPWO2011145618A1 (en) * 2010-05-19 2013-07-22 日本電気株式会社 Boiling cooler
JP5956099B1 (en) * 2015-03-30 2016-07-20 株式会社ExaScaler Electronic equipment cooling system
WO2016157397A1 (en) * 2015-03-30 2016-10-06 株式会社ExaScaler Electronic-device cooling system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0942817A (en) * 1995-07-26 1997-02-14 Hitachi Ltd Refrigerator and condenser
JP2002134670A (en) * 2000-10-20 2002-05-10 Sumitomo Precision Prod Co Ltd Thermo-siphon type cooler

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0942817A (en) * 1995-07-26 1997-02-14 Hitachi Ltd Refrigerator and condenser
JP2002134670A (en) * 2000-10-20 2002-05-10 Sumitomo Precision Prod Co Ltd Thermo-siphon type cooler

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011117058A (en) * 2009-12-07 2011-06-16 Sumitomo Electric Ind Ltd Film deposition system and film deposition method
JPWO2011145618A1 (en) * 2010-05-19 2013-07-22 日本電気株式会社 Boiling cooler
WO2012043117A1 (en) * 2010-09-30 2012-04-05 日本電気株式会社 Vapor phase cooling apparatus, and electronic equipment using same
US9386724B2 (en) 2010-09-30 2016-07-05 Nec Corporation Vapor phase cooling apparatus and electronic equipment using same
JP5956099B1 (en) * 2015-03-30 2016-07-20 株式会社ExaScaler Electronic equipment cooling system
WO2016157396A1 (en) * 2015-03-30 2016-10-06 株式会社ExaScaler Electronic-device cooling system
WO2016157397A1 (en) * 2015-03-30 2016-10-06 株式会社ExaScaler Electronic-device cooling system
JPWO2016157397A1 (en) * 2015-03-30 2018-01-25 株式会社ExaScaler Electronic equipment cooling system
US10123454B2 (en) 2015-03-30 2018-11-06 Exascaler Inc. Electronic-device cooling system

Similar Documents

Publication Publication Date Title
Marengo et al. Pulsating heat pipes: experimental analysis, design and applications
Mao et al. A critical review on measures to suppress flow boiling instabilities in microchannels
Lee et al. Flow boiling characteristics in plain and porous coated microchannel heat sinks
US7261144B2 (en) Bubble generator
Xie et al. Multi-nozzle array spray cooling for large area high power devices in a closed loop system
Liu et al. Effects of microstructured surface and mixed surfactants on the heat transfer performance of pulsed spray cooling
US20050121180A1 (en) Use of graphite foam materials in pumped liquid, two phase cooling, cold plates
JP2001196778A (en) Cooling device by cpl
Priy et al. A hydrophobic porous substrate-based vapor venting technique for mitigating flow boiling instabilities in microchannel heat sink
US20140076519A1 (en) Methods for Stabilizing Flow in Channels and System Thereof
Halon et al. Heat transfer characteristics of flow boiling in a micro channel array with various inlet geometries
JPWO2007102498A1 (en) Boiling cooling method, boiling cooling device, flow channel structure, and application product thereof
Tang et al. Experimental investigation of transition process from nucleate boiling to microbubble emission boiling under transient heating modes
Cheng et al. High heat flux cooling technologies using microchannel evaporators: fundamentals and challenges
JP2010121791A (en) Ebullient cooling apparatus
JP2007109695A (en) Element cooler excellent in starting characteristics
Holloway et al. Liquid film wave patterns and dryout in microgap channel annular flow
Shkarah et al. Boiling two phase flow in microchannels: a review
KR20160088402A (en) Device for use with a refrigerant fluid for increasing thermodynamic performance
Adera et al. Capillary-limited evaporation from well-defined microstructured surfaces
Lee et al. Flow boiling in plain and porous coated microchannels
TW202305301A (en) Vapor chamber and working fluid used therefor
Kiritkumar et al. Experimental Investigations of Flat Plate Oscillating Heat Pipe
Wake Study of Dual-tapered Manifold Microgap Spacing and Taper Angle on Pool Boiling Characteristics
Ren Steady-State and Transient Study of Flow Boiling in Microchannels Using Microgrooves/Micronozzles

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20081002

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20110114

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110411

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110524