[go: up one dir, main page]

JP2007093544A - Axial direction vibration measuring method and vibration measuring apparatus of rolling bearing - Google Patents

Axial direction vibration measuring method and vibration measuring apparatus of rolling bearing Download PDF

Info

Publication number
JP2007093544A
JP2007093544A JP2005286760A JP2005286760A JP2007093544A JP 2007093544 A JP2007093544 A JP 2007093544A JP 2005286760 A JP2005286760 A JP 2005286760A JP 2005286760 A JP2005286760 A JP 2005286760A JP 2007093544 A JP2007093544 A JP 2007093544A
Authority
JP
Japan
Prior art keywords
vibration
inner ring
rolling bearing
axial direction
axial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005286760A
Other languages
Japanese (ja)
Other versions
JP2007093544A5 (en
Inventor
Manda Noda
万朶 野田
Yasuyuki Muto
泰之 武藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2005286760A priority Critical patent/JP2007093544A/en
Publication of JP2007093544A publication Critical patent/JP2007093544A/en
Publication of JP2007093544A5 publication Critical patent/JP2007093544A5/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Rolling Contact Bearings (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

【課題】 転がり軸受1のアキシアル方向の振動特性を精度良く測定する。
【解決手段】 転がり軸受1のアキシアル方向の剛性に関し、この転がり軸受1よりも小さいばね定数を有する弾性部材20を介して、内輪3にアキシアル荷重を付与する。そして、この状態で、外輪2を回転させつつ上記内輪3のアキシアル方向の振動を測定する。この結果、この内輪3と共に変位する部材を軽量にでき、固有振動数を大きくできると共に、上記弾性部材20により上記内輪3の振動絶縁を図れ、上記課題を解決できる。
【選択図】 図1
PROBLEM TO BE SOLVED To accurately measure the vibration characteristics in the axial direction of a rolling bearing 1.
An axial load is applied to an inner ring 3 via an elastic member 20 having a spring constant smaller than that of the rolling bearing 1 with respect to the rigidity in the axial direction of the rolling bearing 1. In this state, the vibration in the axial direction of the inner ring 3 is measured while rotating the outer ring 2. As a result, the member that is displaced together with the inner ring 3 can be lightened, the natural frequency can be increased, and the elastic member 20 can insulate the vibration of the inner ring 3 to solve the above problem.
[Selection] Figure 1

Description

この発明は、例えば、モータ等の回転装置の回転主軸を支持する為の転がり軸受等、使用状態で静寂性を要求される回転装置の回転部分に組み込む転がり軸受の、アキシアル方向の振動を測定する為に利用する。   This invention measures the vibration in the axial direction of a rolling bearing incorporated in a rotating part of a rotating device that requires quietness in use, such as a rolling bearing for supporting a rotating main shaft of a rotating device such as a motor. Use for this purpose.

各種回転装置の回転部材を支持する為の転がり軸受の振動を測定する事が、従来から行なわれている。例えば図4〜5に示す様に、転がり軸受1を構成する外輪2にアキシアル荷重を付与しつつ(予圧を付与した状態で)、同じく内輪3を回転主軸4によりを回転させた状態で、上記外輪2の外周面に当接乃至近接対向させた振動ピックアップ5により、この外輪2のラジアル方向の振動を測定する事が行なわれている。一方、使用時に静寂性が要求される回転装置、例えばモータ等の主軸を支持する転がり軸受の場合には、この転がり軸受を支持する為のブラケット(軸受ハウジング部分)が、この転がり軸受のラジアル方向に関して平面状(薄板状)となる場合が多い。そして、この様な平面状のブラケットにより転がり軸受を支持する場合、この転がり軸受のアキシアル方向の支持剛性を確保しにくくなり、この転がり軸受がアキシアル方向に振動し易くなる可能性がある。この為、この様な状態で使用される転がり軸受の場合には、ラジアル方向だけでなく、アキシアル方向の振動を抑制する事が、上記モータ等の回転装置の静寂性を確保する面で重要となる。   Conventionally, the vibration of a rolling bearing for supporting a rotating member of various rotating devices is measured. For example, as shown in FIGS. 4 to 5, while applying an axial load to the outer ring 2 constituting the rolling bearing 1 (in a state where a preload is applied), the inner ring 3 is also rotated by the rotation main shaft 4, The vibration in the radial direction of the outer ring 2 is measured by the vibration pickup 5 that is in contact with or close to the outer peripheral surface of the outer ring 2. On the other hand, in the case of a rotating device that requires quietness when used, for example, a rolling bearing that supports a spindle of a motor or the like, a bracket (bearing housing portion) for supporting the rolling bearing is provided in the radial direction of the rolling bearing. Is often flat (thin plate). When the rolling bearing is supported by such a flat bracket, it is difficult to secure the supporting rigidity in the axial direction of the rolling bearing, and this rolling bearing may easily vibrate in the axial direction. For this reason, in the case of a rolling bearing used in such a state, it is important to suppress the vibration in the axial direction as well as the radial direction in order to ensure the quietness of the rotating device such as the motor. Become.

この様に転がり軸受のアキシアル方向の振動を抑制する為には、この転がり軸受のアキシアル方向の振動を測定すると共に、その振動の評価(例えば振動量が許容範囲か否か等の判定)を行なう必要がある。例えば特許文献1には、図6に示す様な、転がり軸受1のアキシアル方向の振動を測定する為の振動測定装置6が記載されている。この振動測定装置6は、無端ベルト14により回転駆動される中空回転主軸7の内側に被測定軸8を、Oリング等の緩衝部材9、9を介して支持している。この為、この被測定軸8は、上記中空回転主軸7の内側で、アキシアル方向の変位を許容されつつ、この中空回転主軸7と同期して回転する。上記転がり軸受1の振動を測定する場合には、この転がり軸受1の内輪3を上記被測定軸8の一端部に外嵌する。そして、この転がり軸受1の外輪2を図示しない治具等により静止させた(回転を阻止した)状態で、上記中空回転主軸7並びに被測定軸8を回転させつつ、この被測定軸8の軸方向変位量を検出器15により検出する事で、上記転がり軸受1の内輪3のアキシアル方向の振動量を測定する。   In order to suppress the axial vibration of the rolling bearing in this way, the vibration of the rolling bearing in the axial direction is measured and the vibration is evaluated (for example, whether or not the vibration amount is within an allowable range). There is a need. For example, Patent Document 1 discloses a vibration measuring device 6 for measuring vibration in the axial direction of a rolling bearing 1 as shown in FIG. In this vibration measuring device 6, a shaft 8 to be measured is supported via a buffer member 9, such as an O-ring, inside a hollow main spindle 7 that is rotationally driven by an endless belt 14. Therefore, the shaft 8 to be measured rotates in synchronism with the hollow rotation main shaft 7 while allowing displacement in the axial direction inside the hollow rotation main shaft 7. When measuring the vibration of the rolling bearing 1, the inner ring 3 of the rolling bearing 1 is fitted on one end of the shaft 8 to be measured. Then, in a state where the outer ring 2 of the rolling bearing 1 is stopped by a jig (not shown) or the like (rotation is prevented), the hollow rotating main shaft 7 and the measured shaft 8 are rotated while the shaft of the measured shaft 8 is rotated. By detecting the amount of directional displacement by the detector 15, the amount of vibration in the axial direction of the inner ring 3 of the rolling bearing 1 is measured.

又、特許文献2には、図7〜8に示す様な、転がり軸受1のアキシアル方向の振動を測定する為の振動測定装置6aが記載されている。この振動測定装置6aは、上記転がり軸受1を構成する内輪3に押圧子10により所定のアキシアル荷重を付与しつつ、回転主軸4aにより外輪2を回転させる。そして、この状態で、上記押圧子10に連設した検出センサ11により、上記内輪3の振動加速度を測定する。この様な特許文献2に記載された振動測定装置6aの場合には、この様に測定した振動加速度の大きさに応じて、上記転がり軸受1の良否判定を行なう(振動加速度が所定値以上であれば不良品とする)。又、特許文献3には、転がり軸受の内輪又は外輪を傾けた(回転中心軸に対して傾斜させた)状態で、この転がり軸受の振動を測定する技術が記載されている。又、特許文献4には、軌道輪に付与するアキシアル荷重の方向を切り換えられる玉軸受用検査装置が記載されている。   Patent Document 2 describes a vibration measuring device 6a for measuring vibration in the axial direction of the rolling bearing 1 as shown in FIGS. The vibration measuring device 6a rotates the outer ring 2 by the rotation main shaft 4a while applying a predetermined axial load to the inner ring 3 constituting the rolling bearing 1 by the presser 10. In this state, the vibration acceleration of the inner ring 3 is measured by the detection sensor 11 provided continuously with the presser 10. In the case of the vibration measuring apparatus 6a described in Patent Document 2, the quality of the rolling bearing 1 is determined according to the magnitude of the vibration acceleration measured in this way (vibration acceleration is a predetermined value or more). If there is a defective product) Patent Document 3 describes a technique for measuring vibration of a rolling bearing in a state where the inner ring or outer ring of the rolling bearing is tilted (tilted with respect to the rotation center axis). Patent Document 4 describes a ball bearing inspection device capable of switching the direction of an axial load applied to a race.

ところで、転がり軸受のアキシアル方向の振動は、例えば非特許文献1、2に記載されている様に、図9に示す様な、転がり軸受1をばねとした振動モデル(固有振動系)として考える事ができる。この場合に、この転がり軸受1のアキシアルばね定数をKとし、外輪2或いは内輪3の質量をMとすると、この転がり軸受のアキシアル方向の固有振動数Fは、次の(1)式で表せる。
F=1/(2π)・√(K/M) ‐‐‐(1)
ここで、上記転がり軸受1を構成する内輪3のアキシアル方向の変位を阻止すると共に、同じく外輪2のアキシアル方向の変位を許容する(フリーとした)状態で、この外輪2のアキシアル方向の振動を求める場合には、上記質量Mは、この外輪2の質量となる。そして、この場合に上記(1)式から求められる上記固有振動数Fは、外輪質量系アキシアル方向固有振動数となる。一方、上記外輪2のアキシアル方向に関する変位を阻止すると共に、内輪3のアキシアル方向の変位を許容する(フリーとした)状態で、この内輪3の振動を求める場合には、上記Mはこの内輪3の質量となる。そして、この場合に上記(1)式から求められる上記固有振動数Fは、内輪質量系アキシアル方向固有振動数となる。
By the way, the vibration in the axial direction of the rolling bearing is considered as a vibration model (natural vibration system) with the rolling bearing 1 as a spring as shown in FIG. Can do. In this case, assuming that the axial spring constant of the rolling bearing 1 is K and the mass of the outer ring 2 or the inner ring 3 is M, the natural frequency F in the axial direction of the rolling bearing can be expressed by the following equation (1).
F = 1 / (2π) · √ (K / M) --- (1)
Here, in the state where the axial displacement of the inner ring 3 constituting the rolling bearing 1 is prevented and the axial displacement of the outer ring 2 is allowed (free), the vibration of the outer ring 2 in the axial direction is prevented. When obtaining, the mass M is the mass of the outer ring 2. In this case, the natural frequency F obtained from the expression (1) is the natural frequency in the axial direction of the outer ring mass system. On the other hand, when the vibration of the inner ring 3 is obtained in a state where the displacement of the outer ring 2 in the axial direction is prevented and the displacement of the inner ring 3 in the axial direction is allowed (free), M is the inner ring 3. Mass. In this case, the natural frequency F obtained from the equation (1) is the natural frequency in the axial direction of the inner ring mass system.

又、図10は、玉軸受の外輪質量系の振動スペクトル、即ち、この玉軸受を構成する内輪のアキシアル方向の変位を阻止した状態で、同じく外輪のアキシアル方向の振動を測定した場合の、この玉軸受の振動特性を表している。尚、この図3は、呼び番号6200の玉軸受(内径10mm、外径30mm、幅9mm)の測定結果を表しているが、中型、大型モータ等に組み込まれる並径玉軸受(内径が10〜30mm程度)に就いても、同様の結果を得られる。この様な線図から明らかな様に、所定の振動数(周波数)、即ち、1.5KHz程度で、明瞭な共振ピークが出現する事が分かる。この共振ピークの振動数(周波数)が、外輪質量系アキシアル方向固有振動数(共振周波数)となる。又、この固有振動数(共振周波数)よりも高い周波数領域では、振動スペクトルが急激に減衰する。この為、この固有振動数(1.5KHz)よりも高い周波数領域では、振動測定感度を得にくくなる(振動が小さくなる)事が分かる。   Further, FIG. 10 shows the vibration spectrum of the outer ring mass system of the ball bearing, that is, when the axial vibration of the outer ring is measured in the state where the inner ring constituting the ball bearing is prevented from being displaced in the axial direction. It represents the vibration characteristics of ball bearings. FIG. 3 shows the measurement results of a ball bearing having an identification number 6200 (inner diameter 10 mm, outer diameter 30 mm, width 9 mm). The same result can be obtained even for the case of about 30 mm). As is clear from such a diagram, it can be seen that a clear resonance peak appears at a predetermined frequency (frequency), that is, about 1.5 KHz. The frequency (frequency) of this resonance peak is the natural frequency (resonance frequency) of the outer ring mass system axial direction. Further, in the frequency region higher than the natural frequency (resonance frequency), the vibration spectrum is rapidly attenuated. Therefore, it can be seen that it is difficult to obtain vibration measurement sensitivity (vibration is reduced) in a frequency region higher than the natural frequency (1.5 KHz).

一方、例えばモータ等の回転装置の音響性能を評価する上では、4〜5KHzの高周波領域での転がり軸受の振動(音響)を測定する事が重要になる。この様な高周波領域で振動を測定する(測定感度を得る)為には、言い換えれば、振動特性の評価を十分に行なえる程度に転がり軸受を振動させる為には、上記転がり軸受のアキシアル方向の固有振動数Fを高くする事が好ましい。この様に固有振動数Fを高くする為には、上記式(1)から明らかな様に、ばね定数Kを大きくしたり、質量Mを小さくする事が考えられる。このうちのばね定数Kを大きくする場合には、転がり軸受に付与するアキシアル方向の荷重Laを大きくする事が考えられる。但し、この様にアキシアル方向の荷重Laを大きくすると、実際の運転時にこの転がり軸受に加わる荷重と、振動測定時に付与する荷重Laとが大きくずれて、測定結果の信頼性が低下する他、この転がり軸受に損傷を生じる可能性がある。一方、上記質量Mを小さくする為には、外輪2に比べて質量の小さい内輪3の振動(内輪質量系の振動)を測定する事が考えられる。但し、前述した特許文献1〜2に記載された従来技術の場合には、この様に内輪3の振動を測定する場合でも、振動特性を精度良く測定できない可能性がある。   On the other hand, when evaluating the acoustic performance of a rotating device such as a motor, it is important to measure the vibration (sound) of the rolling bearing in a high frequency region of 4 to 5 KHz. In order to measure vibration in such a high frequency region (to obtain measurement sensitivity), in other words, to vibrate the rolling bearing to such an extent that the vibration characteristics can be sufficiently evaluated, the axial direction of the rolling bearing is not limited. It is preferable to increase the natural frequency F. In order to increase the natural frequency F in this way, it is conceivable to increase the spring constant K or decrease the mass M, as is apparent from the above equation (1). When the spring constant K is increased, it is conceivable to increase the axial load La applied to the rolling bearing. However, if the load La in the axial direction is increased in this way, the load applied to the rolling bearing during actual operation and the load La applied during vibration measurement are greatly shifted, reducing the reliability of the measurement results. There is a possibility of causing damage to the rolling bearing. On the other hand, in order to reduce the mass M, it is conceivable to measure the vibration of the inner ring 3 having a smaller mass than the outer ring 2 (vibration of the inner ring mass system). However, in the case of the prior art described in Patent Documents 1 and 2 described above, there is a possibility that the vibration characteristics cannot be measured accurately even when the vibration of the inner ring 3 is measured in this way.

即ち、実際にアキシアル方向の振動を測定する場合、上記式(1)中の質量Mは、転がり軸受1の軌道輪(内輪3の振動を測定する場合はこの内輪、外輪2の振動を測定する場合はこの外輪2)のみの質量だけでなく、この軌道輪(内輪3或いは外輪2)を含む、この軌道輪と共に変位(振動)する部材全体(被測定系全体)の質量となる。この為、前述した特許文献1に記載された技術、即ち、前記図6に示した振動測定装置6で振動測定を行なう場合、上記質量Mは、内輪3の質量だけでなく、この内輪3の質量に、この内輪3と共に変位する部材である被測定軸8の質量を加えた値となる。この為、上記質量Mが、上記内輪3単体のみの質量に比べて相当に大きくなり、その分、固有振動数Fが小さくなる。そして、この様に固有振動数Fが小さくなる分、高周波領域で測定感度を得られにくくなる(振動しなくなる)。例えば、上記4〜5KHzの高周波領域で振動を測定した場合に、その測定値が実際の振動量(内輪3単体の振動量)に比べて小さくなり、上記転がり軸受1の振動特性を精度良く測定できなくなる可能性がある。   That is, when actually measuring the vibration in the axial direction, the mass M in the above formula (1) is the vibration of the bearing ring of the rolling bearing 1 (if the vibration of the inner ring 3 is measured, the vibration of the inner ring and the outer ring 2 is measured. In this case, not only the mass of only the outer ring 2) but also the mass of the entire member (the entire system to be measured) including this race ring (inner ring 3 or outer ring 2) that is displaced (vibrated) with this race ring. For this reason, when the vibration measurement is performed with the technique described in Patent Document 1 described above, that is, with the vibration measuring device 6 shown in FIG. 6, the mass M is not only the mass of the inner ring 3 but also the inner ring 3. This is a value obtained by adding the mass of the shaft 8 to be measured which is a member that is displaced together with the inner ring 3 to the mass. For this reason, the mass M is considerably larger than the mass of the single inner ring 3 alone, and the natural frequency F is accordingly reduced. As the natural frequency F becomes smaller in this way, it becomes difficult to obtain measurement sensitivity in the high frequency region (no vibration). For example, when vibration is measured in the high frequency range of 4 to 5 KHz, the measured value is smaller than the actual vibration amount (vibration amount of the inner ring 3 alone), and the vibration characteristics of the rolling bearing 1 are accurately measured. It may not be possible.

又、前述した特許文献2に記載された技術、即ち、前記図7〜8に示した振動測定装置6aの場合には、圧電変換素子により構成される検出センサ11が、押圧子10を押圧する為の加圧手段12を構成するアーム13に取り付けられている。この為、この検出器11の自由な運動が阻害される可能性がある。即ち、本来被測定物である内輪3と一体的に運動すべき上記検出器11が、上記アーム13の拘束を受けて、この内輪3本来の振動を精度良く測定できなくなる可能性がある。   Further, in the case of the technique described in Patent Document 2 described above, that is, in the case of the vibration measuring device 6a shown in FIGS. 7 to 8, the detection sensor 11 constituted by a piezoelectric conversion element presses the pressing element 10. It attaches to the arm 13 which comprises the pressurizing means 12 for this. For this reason, the free movement of the detector 11 may be hindered. That is, there is a possibility that the detector 11 that should move integrally with the inner ring 3 that is the object to be measured cannot measure the inherent vibration of the inner ring 3 with high accuracy due to the restraint of the arm 13.

実開昭56−25245号公報Japanese Utility Model Publication No. 56-25245 特開平5−126628号公報JP-A-5-126628 特開2004−361390号公報JP 2004-361390 A 特開2000−292314号公報JP 2000-292314 A 五十嵐昭男、「入門講座・ころがり軸受7 ころがり軸受の振動と音響」、雑誌「潤滑」、社団法人日本潤滑学会(現トライボロジー学会)、1971年、第16巻、第4号、p.307Akio Igarashi, “Introductory Course, Rolling Bearings 7 Vibration and Acoustics of Rolling Bearings”, Magazine “Lubrication”, Japan Lubrication Society (now Tribology Society), 1971, Vol. 16, No. 4, p. 307 転がり軸受工学編集委員会編、「転がり軸受工学」、初版、株式会社養賢堂、昭和50年7月10日、p.140−142Rolling Bearing Engineering Editorial Committee, “Rolling Bearing Engineering”, first edition, Yokendo Co., Ltd., July 10, 1975, p. 140-142

本発明の転がり軸受のアキシアル方向の振動測定方法及び振動測定装置は、上述の様な事情に鑑みて、この転がり軸受のアキシアル方向の振動特性を精度良く測定すべく発明したものである。   The axial direction vibration measuring method and vibration measuring apparatus of the present invention are invented to accurately measure the axial direction vibration characteristics of the rolling bearing in view of the above-described circumstances.

本発明の転がり軸受のアキシアル方向の振動測定方法及び振動測定装置が測定対象とする転がり軸受は、内輪の外周面に設けた内輪軌道と外輪の内周面に設けた外輪軌道との間に複数の転動体を設けて成る。
そして、請求項1に記載した転がり軸受のアキシアル方向の振動測定方法は、上記転がり軸受のアキシアル方向の剛性に関し、この転がり軸受よりも小さい(アキシアル)ばね定数を有する弾性部材(例えば、合成樹脂、ゴムの如きエラストマー等の高分子材料により造られたもの、或いは、板ばね、コイルばね等のばね要素等)を介して、上記内輪にアキシアル荷重を付与しつつ、上記外輪を回転させる。そして、この状態で、上記内輪のアキシアル方向の振動を測定する。
尚、この測定は、上記内輪の回転を阻止する(静止させる)と共に、上記外輪のアキシアル方向に関する変位を阻止した状態で行なう。又、上記弾性部材は、例えばモータ用途の転がり軸受のアキシアルばね定数は2N/μm〜20N/μm程度である為、この値に比べて小さい値、より好ましくは十分に小さい値(例えば1/2以下、より好ましくは1/10以下、更に好ましくは1/100以下)で例えば0.02〜2N/μm、より好ましくは、0.02〜1N/μm程度のばね定数を有するものとする。
The rolling bearing according to the present invention has a plurality of rolling bearings between the inner ring raceway provided on the outer peripheral surface of the inner ring and the outer ring raceway provided on the inner peripheral surface of the outer ring. The rolling element is provided.
The axial vibration measurement method of the rolling bearing according to claim 1 relates to an elastic member (for example, synthetic resin, etc.) having a smaller (axial) spring constant than the rolling bearing with respect to the rigidity in the axial direction of the rolling bearing. The outer ring is rotated while an axial load is applied to the inner ring via a polymer made of a polymer material such as elastomer such as rubber, or a spring element such as a leaf spring or a coil spring. In this state, the vibration in the axial direction of the inner ring is measured.
This measurement is performed in a state in which the inner ring is prevented from rotating (stationary) and the outer ring is prevented from displacement in the axial direction. The elastic member has, for example, an axial spring constant of a rolling bearing for use in a motor of about 2 N / μm to 20 N / μm, and therefore is smaller than this value, more preferably a sufficiently small value (for example, 1/2 The spring constant is preferably 1/10 or less, more preferably 1/100 or less), for example, 0.02 to 2 N / μm, and more preferably about 0.02 to 1 N / μm.

又、この様な請求項1に記載した振動測定方法を実施する場合に好ましくは、請求項2に記載した様に、上記内輪と共に変位(振動)する部材(例えば、内輪と弾性部材との間に挟持される押圧片)に一体に設けた振動検出手段により、この内輪のアキシアル方向の振動を測定する。
又、請求項3に記載した様に、上記内輪と共に変位する部材の重さを変える事により、この内輪を含む、この内輪と共に変位する部材全体の固有振動数(共振周波数)を所望の値に調節した状態で、上記内輪のアキシアル方向の振動を測定する。
Further, when the vibration measuring method described in claim 1 is carried out, it is preferable that the member that is displaced (vibrated) together with the inner ring (for example, between the inner ring and the elastic member) as described in claim 2. The vibration in the axial direction of the inner ring is measured by vibration detection means provided integrally with the pressing piece held between the two.
In addition, as described in claim 3, by changing the weight of the member displaced together with the inner ring, the natural frequency (resonant frequency) of the entire member displaced together with the inner ring including the inner ring is set to a desired value. In the adjusted state, the vibration in the axial direction of the inner ring is measured.

又、請求項4に記載した転がり軸受のアキシアル方向の振動測定装置は、上記内輪にアキシアル荷重を付与する為の荷重付与手段と、上記転がり軸受のアキシアル方向の剛性に関し、この転がり軸受よりも小さいばね定数を有する弾性部材と、上記内輪の振動を検出する為の振動検出手段と、上記外輪を回転させる為の回転駆動手段とを備える。そして、上記荷重付与手段により上記弾性部材を介して上記内輪にアキシアル荷重を付与しつつ、上記回転駆動手段により上記外輪を回転させる。この際、上記内輪は、回転を阻止した(静止させた)状態とする共に、上記外輪は、上記アキシアル方向に関する変位を阻止した状態とする。そして、この状態で、上記振動検出手段により上記内輪のアキシアル方向の振動を測定する。   According to a fourth aspect of the present invention, the axial vibration measuring device of the rolling bearing is smaller than the rolling bearing in terms of load applying means for applying an axial load to the inner ring and rigidity in the axial direction of the rolling bearing. An elastic member having a spring constant, vibration detecting means for detecting vibration of the inner ring, and rotation driving means for rotating the outer ring are provided. Then, the outer ring is rotated by the rotation driving unit while an axial load is applied to the inner ring through the elastic member by the load applying unit. At this time, the inner ring is in a state in which rotation is prevented (stationary), and the outer ring is in a state in which displacement in the axial direction is prevented. In this state, the vibration in the axial direction of the inner ring is measured by the vibration detecting means.

又、この様な請求項4に記載した振動測定装置を実施する場合に好ましくは、請求項5に記載した様に、上記内輪と共に変位する部材(例えば、内輪と弾性部材との間に挟持される押圧片)に振動検出手段を一体に設ける。
又、請求項6に記載した様に、上記内輪と共に変位する部材の重さを所望の値に調節可能とする。この場合に好ましくは、上記内輪を含む、この内輪と共に変位する部材全体の固有振動数(共振周波数)を所望の値に調節した状態で、上記内輪のアキシアル方向の振動を測定する。
Further, when implementing the vibration measuring apparatus according to the fourth aspect, it is preferable that, as described in the fifth aspect, a member that is displaced together with the inner ring (for example, sandwiched between the inner ring and the elastic member). The vibration detecting means is provided integrally with the pressing piece.
Further, as described in claim 6, the weight of the member displaced together with the inner ring can be adjusted to a desired value. In this case, preferably, the vibration in the axial direction of the inner ring is measured in a state where the natural frequency (resonance frequency) of the entire member including the inner ring and displaced with the inner ring is adjusted to a desired value.

上述の様に構成する本発明の転がり軸受のアキシアル方向の振動測定方法及び振動測定装置によれば、この転がり軸受のアキシアル方向の振動特性を精度良く測定できる。
即ち、外輪に比べて軽量である内輪の振動を測定する為、この外輪の振動を測定する場合に比べて、固有振動数(共振周波数)を大きくできる。又、この内輪に弾性部材を介してアキシアル荷重を付与するだけで、この内輪は回転させない。この為、この内輪と共に変位(振動)する部材も、(回転伝達を行なう必要がないので)例えば特許文献1に記載された振動測定装置の場合に比べて軽量に構成でき、この面からも固有振動数を大きくできる(内輪単体の固有振動数に近付けられる)。そして、この様に固有振動数を大きくできる(内輪単体での固有振動数に近付けられる)分、高周波領域での感度を確保でき(高周波領域でも振動特性の評価を正確に行なえる程度に内輪を振動させる事ができ)、例えば4〜5KHzの高周波領域での音響特性を精度良く測定できる。しかも、上記弾性部材は、転がり軸受のアキシアル方向に関する剛性に関し、小さいばね定数を有するものとしている為、この弾性部材により上記内輪の振動絶縁を図れる。即ち、この弾性部材により、上記内輪にアキシアル荷重を付与しつつ、この内輪の運動(変位、振動)を許容できる。この為、この内輪本来の振動を精度良く測定できる。
According to the axial-direction vibration measuring method and vibration measuring apparatus of the present invention configured as described above, the vibration characteristics in the axial direction of the rolling bearing can be accurately measured.
That is, since the vibration of the inner ring, which is lighter than the outer ring, is measured, the natural frequency (resonance frequency) can be increased as compared with the case of measuring the vibration of the outer ring. Further, only an axial load is applied to the inner ring via an elastic member, and the inner ring is not rotated. For this reason, the member that is displaced (vibrated) together with the inner ring can also be configured to be lighter than the case of the vibration measuring device described in, for example, Patent Document 1 (because it is not necessary to transmit rotation). Can increase the frequency (can approach the natural frequency of the inner ring alone). As the natural frequency can be increased in this way (close to the natural frequency of the inner ring alone), the sensitivity in the high frequency region can be secured (the inner ring can be accurately evaluated even in the high frequency region). For example, the acoustic characteristics in a high frequency region of 4 to 5 KHz can be measured with high accuracy. Moreover, since the elastic member has a small spring constant with respect to the rigidity in the axial direction of the rolling bearing, vibration insulation of the inner ring can be achieved by the elastic member. In other words, the elastic member can allow movement (displacement, vibration) of the inner ring while applying an axial load to the inner ring. For this reason, the inherent vibration of the inner ring can be accurately measured.

又、前述の請求項2、5に記載した構成を採用すれば、上記内輪と共に変位する部材全体の質量を更に小さくできる。この為、上記固有振動数(共振周波数)を更に大きくでき(内輪単体の固有振動数に更に近付けられ)、その分高周波領域でも振動特性を精度良く測定できる。
又、前述の請求項3、6に記載した構成を採用すれば、内輪と共に変位(振動)する部材(例えば押圧片)の重さを調節する事により、例えば転がり軸受を組み込むモータ等の回転装置の固有振動数(共振周波数)に合わせた状態で、この転がり軸受の振動を測定できる。この為、この転がり軸受を回転装置に組み込まなくても、この回転装置に組み込んだ状態と同様の状態で、この転がり軸受の振動を精度良く測定する事ができる。
Moreover, if the structure described in Claims 2 and 5 is adopted, the mass of the entire member displaced together with the inner ring can be further reduced. Therefore, the natural frequency (resonance frequency) can be further increased (closer to the natural frequency of the inner ring alone), and the vibration characteristics can be measured with high accuracy even in the high frequency region.
Further, if the configuration described in the third and sixth aspects is adopted, a rotating device such as a motor incorporating a rolling bearing is adjusted by adjusting the weight of a member (for example, a pressing piece) that is displaced (vibrated) together with the inner ring. The vibration of the rolling bearing can be measured in a state matched to the natural frequency (resonance frequency) of the bearing. For this reason, even if this rolling bearing is not incorporated in the rotating device, the vibration of the rolling bearing can be accurately measured in the same state as that incorporated in the rotating device.

図1〜2は、請求項1、2、4、5に対応する、本発明の実施の形態の第1例を示している。本例の振動測定装置6bが測定対象とする転がり軸受1は、外輪2と、内輪3と、複数個の転動体16、16とから成る。そして、このうちの内輪3の外周面に設けた内輪軌道17と、上記外輪2の内周面に設けた外輪軌道18との間に、上記各転動体16、16を転動自在に設ける事で、これら外輪2と内輪3との相対回転を許容する。又、本例の振動測定装置6bは、この様な転がり軸受1のアキシアル方向(図1の左右方向)の振動を測定する為のもので、荷重付与手段19と、弾性部材20と、振動検出手段21と、回転駆動手段22とを備える。   1 and 2 show a first example of an embodiment of the present invention corresponding to claims 1, 2, 4, and 5. FIG. A rolling bearing 1 to be measured by the vibration measuring device 6b of this example includes an outer ring 2, an inner ring 3, and a plurality of rolling elements 16,16. The rolling elements 16 and 16 are provided between the inner ring raceway 17 provided on the outer peripheral surface of the inner ring 3 and the outer ring raceway 18 provided on the inner peripheral surface of the outer ring 2 so as to be able to roll. Thus, relative rotation between the outer ring 2 and the inner ring 3 is allowed. The vibration measuring device 6b of this example is for measuring the vibration of the rolling bearing 1 in the axial direction (left-right direction in FIG. 1), and includes a load applying means 19, an elastic member 20, and vibration detection. Means 21 and rotational drive means 22 are provided.

このうちの荷重付与手段19は、上記内輪3に所定のアキシアル荷重(図1の右方に押圧する荷重)を付与する為のもので、押圧装置23と、押圧片24とにより構成している。このうちの押圧装置23は、例えば油圧アクチュエータ、エアーアクチュエータ、或いは、圧縮コイルばね、板ばね等のばね部材等により構成するもので、所定の押圧力を発生するものである。尚、この押圧装置23は、この様な油圧式、エアー圧(空気圧)式、ばね圧式によるもの以外の型式のものでも、上記内輪3に所定のアキシアル荷重を付与できるものであれば採用可能である。又、上記押圧片24は、上記押圧装置23により上記弾性部材20を介して上記内輪3を押圧するものである。又、上記弾性部材20は、上記転がり軸受1のアキシアル方向の剛性に関し、この転がり軸受1よりも小さいばね定数を有するものとしている。この様な特性を有するものとしては、例えば合成樹脂、ゴムの如きエラストマー等の高分子材料により造られたもの、或いは、板ばね、コイルばね等のばね要素等が採用可能である。   Of these, the load applying means 19 is for applying a predetermined axial load (a load to be pressed to the right in FIG. 1) to the inner ring 3, and is constituted by a pressing device 23 and a pressing piece 24. . Of these, the pressing device 23 is configured by, for example, a hydraulic actuator, an air actuator, or a spring member such as a compression coil spring or a leaf spring, and generates a predetermined pressing force. The pressing device 23 may be of any type other than the hydraulic type, air pressure (pneumatic) type, and spring pressure type as long as it can apply a predetermined axial load to the inner ring 3. is there. The pressing piece 24 presses the inner ring 3 through the elastic member 20 by the pressing device 23. The elastic member 20 has a spring constant smaller than that of the rolling bearing 1 with respect to the rigidity of the rolling bearing 1 in the axial direction. As those having such characteristics, for example, those made of a polymer material such as synthetic resin and elastomer such as rubber, or spring elements such as leaf springs and coil springs can be employed.

本例の場合は、上記弾性部材20を円筒状(リング状)のものとしている。そして、この様な円筒状の弾性部材20の軸方向両端縁を、上記押圧装置23の側面と上記押圧片24の片側面とに全周に亙り当接させた状態で、これら押圧装置23と押圧片24との間に挟持されている。尚、上記弾性部材20は、この様に押圧装置23と押圧片24との両側面に全周に亙り当接させるもの(円筒状のもの)の他、例えば円柱状のものを円周方向に複数個(例えば3本)配置する事により構成する事もできる。   In the case of this example, the elastic member 20 is cylindrical (ring-shaped). Then, both end edges in the axial direction of such a cylindrical elastic member 20 are in contact with the side surface of the pressing device 23 and the one side surface of the pressing piece 24 over the entire circumference. It is sandwiched between the pressing piece 24. In addition, the elastic member 20 is not only a member that is in contact with both sides of the pressing device 23 and the pressing piece 24 over the entire circumference (cylindrical member), for example, a cylindrical member in the circumferential direction. It can also be configured by arranging a plurality (for example, three).

又、上記振動検出手段21は、上記内輪3の振動を検出するもので、例えば圧電式の加速度センサ(加速度ピックアップ)等の振動センサ25により構成している。本例の場合は、この振動センサ25を上記押圧片24と一体に設けており、後述する様に測定時には、これら押圧片24並びに振動センサ25が上記内輪3と共に振動(変位)する。この様に内輪3と共に変位する上記押圧片24並びに振動センサ25は、前述した様に軽量である事が、上記内輪3本来(内輪3単体)の振動を測定する面で、更には、固有振動数を大きくして、高周波領域での測定感度を向上させる面で、好ましい。この為、本実施例の場合には、上記押圧片24を、アルミニウム合金、チタン合金、セラミック等の、比重が小さく、且つ、剛性の高い材料により造っている。又、図示の例の場合は、上記押圧片24を、上記内輪3の側面に当接するフランジ部26と、この内輪3に内嵌する嵌合部27とにより構成している。但し、この押圧片24の更なる軽量化を図るべく、上記嵌合部27を省略して上記フランジ部26のみとした円板状のものとする事もできる。   The vibration detection means 21 detects the vibration of the inner ring 3 and is constituted by a vibration sensor 25 such as a piezoelectric acceleration sensor (acceleration pickup). In the case of this example, the vibration sensor 25 is provided integrally with the pressing piece 24, and the pressing piece 24 and the vibration sensor 25 vibrate (displace) together with the inner ring 3 during measurement as described later. As described above, the pressing piece 24 and the vibration sensor 25 that are displaced together with the inner ring 3 are light in weight as described above. In addition, the inner ring 3 itself (inner ring 3 alone) measures vibrations. This is preferable in terms of increasing the number and improving the measurement sensitivity in the high frequency region. For this reason, in the case of the present embodiment, the pressing piece 24 is made of a material having a small specific gravity and a high rigidity, such as an aluminum alloy, a titanium alloy, or a ceramic. In the case of the illustrated example, the pressing piece 24 is constituted by a flange portion 26 that contacts the side surface of the inner ring 3 and a fitting portion 27 that fits inside the inner ring 3. However, in order to further reduce the weight of the pressing piece 24, it is possible to omit the fitting portion 27 and use only the flange portion 26.

又、上記振動センサ25を、圧電式加速度センサ等の接触式のものに代えて、レーザドップラ式振動検出器等の非接触式のものを使用する事もできる。この様に構成すれば、上記振動センサ25分の質量も低減でき、上記内輪3と共に変位(振動)する部材の更なる軽量化を図れる。この様な軽量化は、上述した様に、上記内輪3本来(内輪3単体)の振動を測定すると共に、固有振動数を大きくして、高周波領域での測定感度を向上させる面で、好ましい。何れにしても、上記振動センサ25の出力信号は、図示しない測定回路に送られて、振動量の計測表示、振動レベルの合否判定、振動スペクトル分析等、目的に応じた信号処理が行なわれる。   Further, the vibration sensor 25 may be a non-contact type sensor such as a laser Doppler type vibration detector instead of a contact type sensor such as a piezoelectric acceleration sensor. If comprised in this way, the mass for the said vibration sensor 25 minutes can also be reduced, and the further weight reduction of the member displaced (vibrated) with the said inner ring | wheel 3 can be achieved. As described above, such weight reduction is preferable in terms of measuring the vibration of the inner ring 3 itself (inner ring 3 alone) and increasing the natural frequency to improve measurement sensitivity in a high frequency region. In any case, the output signal of the vibration sensor 25 is sent to a measurement circuit (not shown) to perform signal processing according to the purpose such as measurement display of vibration amount, pass / fail judgment of vibration level, vibration spectrum analysis, and the like.

又、前記回転駆動手段22は、前記外輪2を回転させる為のもので、図示しないモータ等の駆動源により回転駆動される回転主軸28により構成している。この回転主軸28は、軸方向先端部(図1の左端部)に、上記外輪2をがたつきなく内嵌する為の凹部29を設けている。振動測定時には、この凹部29に上記外輪2を内嵌した状態で所定の回転速度で回転する。この様な測定時には、上記回転主軸28の振動が上記内輪3の振動として検出される事は好ましくない為、この回転主軸28は高剛性のものとする。   The rotation drive means 22 is for rotating the outer ring 2 and is constituted by a rotation main shaft 28 that is driven to rotate by a drive source such as a motor (not shown). The rotating main shaft 28 is provided with a concave portion 29 for fitting the outer ring 2 into the axial front end portion (left end portion in FIG. 1) without rattling. At the time of vibration measurement, the outer ring 2 is fitted in the recess 29 and rotates at a predetermined rotational speed. In such a measurement, since it is not preferable that the vibration of the rotation main shaft 28 is detected as the vibration of the inner ring 3, the rotation main shaft 28 is assumed to be highly rigid.

上述の様に構成する本例の振動測定装置6bにより、転がり軸受1のアキシアル方向の振動を測定する場合には、この転がり軸受1の外輪2を上記回転主軸28の凹部29に内嵌すると共に、押圧片24を内輪3の端面に突き当てる。そして、上記弾性部材20を介して上記押圧装置23によりこの内輪3を図1の右方に押圧しつつ(アキシアル荷重を付与しつつ)、この内輪3の回転を阻止した状態(静止させた状態)で、上記回転主軸28を回転させる。そして、この回転主軸28の回転に基づき上記外輪2を、上記アキシアル方向に関する変位を阻止した状態で回転させる。そして、この状態で上記振動センサ25により上記内輪3のアキシアル方向の振動を測定する。   When vibration in the axial direction of the rolling bearing 1 is measured by the vibration measuring device 6b of the present example configured as described above, the outer ring 2 of the rolling bearing 1 is fitted in the recess 29 of the rotating main shaft 28. The pressing piece 24 is abutted against the end face of the inner ring 3. Then, while the inner ring 3 is pressed to the right in FIG. 1 by the pressing device 23 via the elastic member 20 (while an axial load is applied), the rotation of the inner ring 3 is prevented (stationary state). ) To rotate the rotary spindle 28. Then, based on the rotation of the rotating main shaft 28, the outer ring 2 is rotated in a state in which displacement in the axial direction is prevented. In this state, the vibration sensor 25 measures the vibration of the inner ring 3 in the axial direction.

上述の様に構成する本例の振動測定装置6bによれば、この転がり軸受1のアキシアル方向の振動特性を精度良く測定できる。
即ち、この転がり軸受1の振動として、上記外輪2に比べて軽量である上記内輪3の振動を測定する為、この外輪2の振動を測定する場合に比べて、固有振動数(共振周波数)を大きくできる。又、この内輪3に弾性部材20を介してアキシアル荷重を付与するだけで、この内輪3は回転させない。この為、例えば前述の特許文献1に記載した様な振動測定装置6(図6参照)に比べて、この内輪3と共に変位(振動)する部材も軽量に構成でき、この面からも固有振動数を大きくできる(内輪3単体の固有振動数に近付けられる)。そして、この様に固有振動数を大きくできる(内輪3単体での固有振動数に近付けられる)分、高周波領域での感度を確保でき(高周波領域でも振動特性の評価を正確に行なえる程度に内輪3を振動させる事ができ)、例えば4〜5KHzの高周波領域での音響特性を精度良く測定できる。しかも、上記弾性部材20は、転がり軸受のアキシアル方向に関する剛性に関し、小さいばね定数を有するものとしている為、この弾性部材20により上記内輪3(並びに押圧片24)の振動絶縁を図れる。即ち、この弾性部材20により、上記内輪3にアキシアル荷重を付与しつつ、この内輪3(並びに押圧片24)の運動(変位、振動)を許容できる。又、上記押圧片24も軽量である為、この押圧片24も上記内輪3と一体的に変位(振動)する。この為、この内輪3の振動を減衰又は歪曲する事なく、上記押圧片24に一体に設けた振動センサ25により検出でき、この内輪3本来の振動を精度良く測定できる。
According to the vibration measuring device 6b of this example configured as described above, the vibration characteristics in the axial direction of the rolling bearing 1 can be measured with high accuracy.
That is, as the vibration of the rolling bearing 1, the vibration of the inner ring 3 that is lighter than the outer ring 2 is measured. Therefore, the natural frequency (resonance frequency) is set as compared with the case of measuring the vibration of the outer ring 2. Can be big. Further, only an axial load is applied to the inner ring 3 via the elastic member 20, and the inner ring 3 is not rotated. For this reason, for example, compared to the vibration measuring device 6 (see FIG. 6) as described in Patent Document 1, the member that is displaced (vibrated) together with the inner ring 3 can be configured to be lighter, and the natural frequency can also be seen from this surface. Can be increased (can approach the natural frequency of the single inner ring 3). As the natural frequency can be increased in this way (close to the natural frequency of the single inner ring 3), the sensitivity in the high frequency region can be secured (the inner ring can be accurately evaluated even in the high frequency region). 3 can be vibrated), for example, acoustic characteristics in a high frequency region of 4 to 5 KHz can be measured with high accuracy. In addition, since the elastic member 20 has a small spring constant with respect to the rigidity in the axial direction of the rolling bearing, the elastic member 20 can insulate the inner ring 3 (and the pressing piece 24) from vibration. That is, the elastic member 20 can allow the inner ring 3 (and the pressing piece 24) to move (displace, vibrate) while applying an axial load to the inner ring 3. Further, since the pressing piece 24 is also lightweight, the pressing piece 24 is also displaced (vibrated) integrally with the inner ring 3. Therefore, the vibration of the inner ring 3 can be detected by the vibration sensor 25 provided integrally with the pressing piece 24 without being attenuated or distorted, and the inherent vibration of the inner ring 3 can be accurately measured.

又、本例の場合には、上述の様に内輪3と共に変位する部材である押圧片24に振動センサ25を一体に設けている為、上記内輪3と共に変位する部材の質量を更に小さくできる。この為、上記固有振動数(共振周波数)を更に大きくでき(内輪3単体の固有振動数に更に近付けられ)、その分高周波領域でも振動特性を精度良く測定できる。
尚、図2は、本例の振動測定装置6bで呼び番号6200の玉軸受(内径10mm、外径30mm、幅9mm)の振動を測定した結果(振動スペクトル)を示している。この様な図2の線図と、前述の図10の線図を比較すれば明らかな様に、本例の振動測定装置6bによれば、固有振動数(共振周波数)を50%程度高くできる。又、例えばモータ等の回転装置の音響性能を評価する上で重要となる、5KHz程度までの振動(音響)に関して、共振周波数よりも高周波数領域とこの共振周波数以下の平坦特性部分とを比較した場合に、従来の測定装置の場合では、高周波領域が平坦部分に比べて20dB程度低下しているのに対して、本例の場合は10dB程度の低下に留められる。
In the case of this example, since the vibration sensor 25 is integrally provided on the pressing piece 24 that is a member that is displaced together with the inner ring 3 as described above, the mass of the member that is displaced together with the inner ring 3 can be further reduced. Therefore, the natural frequency (resonance frequency) can be further increased (closer to the natural frequency of the single inner ring 3), and the vibration characteristics can be measured with high accuracy even in the high frequency region.
FIG. 2 shows the result (vibration spectrum) of the vibration measurement of the ball bearing (inner diameter: 10 mm, outer diameter: 30 mm, width: 9 mm) of the reference number 6200 with the vibration measuring device 6b of this example. As apparent from comparing the diagram of FIG. 2 with the diagram of FIG. 10 described above, according to the vibration measuring apparatus 6b of this example, the natural frequency (resonance frequency) can be increased by about 50%. . In addition, for vibration (acoustic) up to about 5 KHz, which is important in evaluating the acoustic performance of a rotating device such as a motor, for example, a comparison was made between a frequency region higher than the resonance frequency and a flat characteristic portion below this resonance frequency. In this case, in the case of the conventional measuring apparatus, the high-frequency region is reduced by about 20 dB compared to the flat portion, but in the case of this example, the reduction is only about 10 dB.

図3は、請求項1〜6に対応する、本発明の実施の形態の第2例を示している。本例の場合には、内輪3(図1参照)と共に変位する部材である、押圧片24aの重さを所望の値に調節可能としている。この為に、本実施例の場合は、この押圧片24aの嵌合部27の先端部(図3の右端部)に錘30を着脱可能としている。この錘30は、鉛合金等の比重の大きい材料により造られたもので、上記嵌合部27の先端部に、ねじ止め、接着、圧着等により結合固定する。そして、この様に押圧片24aの重さを可変とする事により、この内輪3を含む、この内輪3と共に変位(振動)する部材全体(押圧片24a並びに振動センサ25)の固有振動数を所望の値に調節した状態で、この内輪3のアキシアル方向の振動を測定する。   FIG. 3 shows a second example of an embodiment of the present invention corresponding to claims 1 to 6. In the case of this example, the weight of the pressing piece 24a, which is a member that is displaced together with the inner ring 3 (see FIG. 1), can be adjusted to a desired value. Therefore, in the case of the present embodiment, the weight 30 can be attached to and detached from the distal end portion (the right end portion in FIG. 3) of the fitting portion 27 of the pressing piece 24a. The weight 30 is made of a material having a large specific gravity, such as a lead alloy, and is coupled and fixed to the distal end portion of the fitting portion 27 by screwing, adhesion, pressure bonding, or the like. In this way, by making the weight of the pressing piece 24a variable, the natural frequency of the entire member (the pressing piece 24a and the vibration sensor 25) including the inner ring 3 and displaced (vibrates) together with the inner ring 3 is desired. The vibration in the axial direction of the inner ring 3 is measured in a state adjusted to this value.

この様な本例の場合には、上記内輪3と共に変位する部材である押圧片24aの重さを調節する事により、例えば転がり軸受1(図1参照)を組み込むモータ等の回転装置の固有振動数(共振周波数)に合わせた状態で、この転がり軸受1(内輪3)の振動を測定できる。この為、この転がり軸受1を回転装置に組み込まなくても、この回転装置に組み込んだ状態と同様の状態で、この転がり軸受1の振動を精度良く測定する事ができる。
その他の構成及び作用は、前述した第1例と同様である為、重複する図示並びに説明は省略する。
In the case of this example, by adjusting the weight of the pressing piece 24a which is a member that is displaced together with the inner ring 3, for example, the natural vibration of a rotating device such as a motor incorporating the rolling bearing 1 (see FIG. 1). The vibration of the rolling bearing 1 (inner ring 3) can be measured in a state matched to the number (resonance frequency). For this reason, even if this rolling bearing 1 is not incorporated in the rotating device, the vibration of the rolling bearing 1 can be measured with high accuracy in the same state as that incorporated in the rotating device.
Other configurations and operations are the same as those in the first example described above, and thus overlapping illustrations and descriptions are omitted.

本発明の実施の形態の第1例を示す断面図。Sectional drawing which shows the 1st example of embodiment of this invention. 図1に示した装置により玉軸受のアキシアル方向の振動を測定した結果を示す線図。The diagram which shows the result of having measured the vibration of the axial direction of a ball bearing with the apparatus shown in FIG. 本発明の実施の形態の第2例を示す要部正面図。The principal part front view which shows the 2nd example of embodiment of this invention. 従来の転がり軸受のラジアル方向の振動を測定する為の測定装置を示す正面図。The front view which shows the measuring apparatus for measuring the vibration of the radial direction of the conventional rolling bearing. 図4の左から見た図。The figure seen from the left of FIG. 従来の転がり軸受のアキシアル方向の振動を測定する為の測定装置の第1例を示す断面図。Sectional drawing which shows the 1st example of the measuring apparatus for measuring the vibration of the axial direction of the conventional rolling bearing. 同第2例を示す正面図。The front view which shows the 2nd example. 測定時における図7のA部に相当する拡大断面図。The expanded sectional view equivalent to the A section of Drawing 7 at the time of measurement. 転がり軸受のアキシアル方向の振動特性を説明する為の振動モデル図。The vibration model figure for demonstrating the vibration characteristic of the axial direction of a rolling bearing. 従来の測定装置で玉軸受のアキシアル方向の振動を測定した結果を示す線図。The diagram which shows the result of having measured the vibration of the axial direction of the ball bearing with the conventional measuring apparatus.

符号の説明Explanation of symbols

1 転がり軸受
2 外輪
3 内輪
4、4a 回転主軸
5 振動ピックアップ
6、6a、6b 振動測定装置
7 中空回転主軸
8 被測定軸
9 弾性部材
10 押圧子
11 検出センサ
12 加圧手段
13 アーム
14 無端ベルト
15 検出器
16 転動体
17 内輪軌道
18 外輪軌道
19 荷重付与手段
20 弾性部材
21 振動検出手段
22 回転駆動手段
23 押圧装置
24、24a 押圧片
25 振動センサ
26 フランジ部
27 嵌合部
28 回転主軸
29 凹部
30 錘
DESCRIPTION OF SYMBOLS 1 Rolling bearing 2 Outer ring 3 Inner ring 4, 4a Rotation main shaft 5 Vibration pick-up 6, 6a, 6b Vibration measuring device 7 Hollow rotation main shaft 8 Measuring shaft 9 Elastic member 10 Presser 11 Detection sensor 12 Pressurizing means 13 Arm 14 Endless belt 15 Detector 16 Rolling element 17 Inner ring raceway 18 Outer ring raceway 19 Load applying means 20 Elastic member 21 Vibration detecting means 22 Rotating drive means 23 Pressing device 24, 24a Pressing piece 25 Vibration sensor 26 Flange part 27 Fitting part 28 Rotating spindle 29 Concave part 30 Weight

Claims (6)

内輪の外周面に設けた内輪軌道と外輪の内周面に設けた外輪軌道との間に複数の転動体を設けて成る転がり軸受の、アキシアル方向の振動測定方法であって、この転がり軸受のアキシアル方向の剛性に関し、この転がり軸受よりも小さいばね定数を有する弾性部材を介して、上記内輪にアキシアル荷重を付与しつつ、上記外輪を回転させた状態で、上記内輪のアキシアル方向の振動を測定する事を特徴とする、転がり軸受のアキシアル方向の振動測定方法。   An axial vibration measurement method for a rolling bearing comprising a plurality of rolling elements between an inner ring raceway provided on an outer peripheral surface of an inner ring and an outer ring raceway provided on an inner peripheral surface of an outer ring, comprising: With regard to the rigidity in the axial direction, the vibration in the axial direction of the inner ring is measured while the outer ring is rotated while applying an axial load to the inner ring through an elastic member having a smaller spring constant than that of the rolling bearing. A method for measuring vibration in the axial direction of a rolling bearing, characterized by: 内輪と共に変位する部材に一体に設けた振動検出手段により、この内輪のアキシアル方向の振動を測定する、請求項1に記載した転がり軸受のアキシアル方向の振動測定方法。   2. The method of measuring axial vibration of a rolling bearing according to claim 1, wherein vibration in the axial direction of the inner ring is measured by vibration detecting means provided integrally with a member that is displaced together with the inner ring. 内輪と共に変位する部材の重さを変える事により、この内輪を含む、この内輪と共に変位する部材全体の固有振動数を所望の値に調節した状態で、この内輪のアキシアル方向の振動を測定する、請求項1〜2のうちの何れか1項に記載した転がり軸受のアキシアル方向の振動測定方法。   By changing the weight of the member displaced with the inner ring, the vibration in the axial direction of the inner ring is measured in a state where the natural frequency of the entire member including the inner ring and the member displaced with the inner ring is adjusted to a desired value. A method for measuring vibration in the axial direction of the rolling bearing according to claim 1. 内輪の外周面に設けた内輪軌道と外輪の内周面に設けた外輪軌道との間に複数の転動体を設けて成る転がり軸受の、アキシアル方向の振動測定装置であって、上記内輪にアキシアル荷重を付与する為の荷重付与手段と、上記転がり軸受のアキシアル方向の剛性に関し、この転がり軸受よりも小さいばね定数を有する弾性部材と、上記内輪の振動を検出する為の振動検出手段と、上記外輪を回転させる為の回転駆動手段とを備え、上記荷重付与手段により上記弾性部材を介して上記内輪にアキシアル荷重を付与しつつ、上記回転駆動手段により上記外輪を回転させ、この状態で上記振動検出手段により上記内輪のアキシアル方向の振動を測定する事を特徴とする、転がり軸受のアキシアル方向の振動測定装置。   An axial vibration measuring device for a rolling bearing comprising a plurality of rolling elements provided between an inner ring raceway provided on an outer peripheral surface of an inner ring and an outer ring raceway provided on an inner peripheral surface of an outer ring. A load applying means for applying a load; an elastic member having a spring constant smaller than that of the rolling bearing with respect to the rigidity in the axial direction of the rolling bearing; a vibration detecting means for detecting vibration of the inner ring; A rotation driving means for rotating the outer ring, the axial force is applied to the inner ring via the elastic member by the load applying means, and the outer ring is rotated by the rotation driving means. An axial vibration measurement apparatus for a rolling bearing, characterized by measuring the axial vibration of the inner ring by a detecting means. 内輪と共に変位する部材に振動検出手段を一体に設けた、請求項4に記載した転がり軸受のアキシアル方向の振動測定装置。   The apparatus for measuring vibration in the axial direction of a rolling bearing according to claim 4, wherein a vibration detecting means is integrally provided on a member that is displaced together with the inner ring. 内輪と共に変位する部材の重さを所望の値に調節可能とした、請求項4〜5のうちの何れか1項に記載した転がり軸受のアキシアル方向の振動測定装置。   6. The vibration measuring apparatus in the axial direction of a rolling bearing according to claim 4, wherein the weight of the member displaced together with the inner ring can be adjusted to a desired value. 7.
JP2005286760A 2005-09-30 2005-09-30 Axial direction vibration measuring method and vibration measuring apparatus of rolling bearing Withdrawn JP2007093544A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005286760A JP2007093544A (en) 2005-09-30 2005-09-30 Axial direction vibration measuring method and vibration measuring apparatus of rolling bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005286760A JP2007093544A (en) 2005-09-30 2005-09-30 Axial direction vibration measuring method and vibration measuring apparatus of rolling bearing

Publications (2)

Publication Number Publication Date
JP2007093544A true JP2007093544A (en) 2007-04-12
JP2007093544A5 JP2007093544A5 (en) 2008-05-01

Family

ID=37979431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005286760A Withdrawn JP2007093544A (en) 2005-09-30 2005-09-30 Axial direction vibration measuring method and vibration measuring apparatus of rolling bearing

Country Status (1)

Country Link
JP (1) JP2007093544A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102589877A (en) * 2012-02-29 2012-07-18 湖南湖大艾盛汽车技术开发有限公司 Method for judging performance of support member for transmission shafts of automobile
KR101393362B1 (en) * 2013-08-13 2014-05-12 에이아이시스템즈 주식회사 Sensor holding apparatus
WO2014167942A1 (en) * 2013-04-12 2014-10-16 Ntn株式会社 Inspection device
CN106441550A (en) * 2016-09-13 2017-02-22 安徽工程大学 Bearing vibration signal acquisition device
CN111487023A (en) * 2020-05-19 2020-08-04 中国科学院沈阳自动化研究所 Static rigidity testing device for elastic ring supporting structure of rotor system of aircraft engine
CN112924174A (en) * 2021-04-07 2021-06-08 中浙高铁轴承有限公司 Routine testing machine for bearing of railway axle box and routine testing method for bearing
CN114674540A (en) * 2022-03-23 2022-06-28 中国核动力研究设计院 Method, system and device for acquiring frequency domain characteristic parameters of vibration isolation element
CN115235771A (en) * 2022-09-21 2022-10-25 苏州开密科智能装备科技有限公司 Bearing vibration detection equipment

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102589877A (en) * 2012-02-29 2012-07-18 湖南湖大艾盛汽车技术开发有限公司 Method for judging performance of support member for transmission shafts of automobile
WO2014167942A1 (en) * 2013-04-12 2014-10-16 Ntn株式会社 Inspection device
JP2014206448A (en) * 2013-04-12 2014-10-30 Ntn株式会社 Inspection device
US9683915B2 (en) 2013-04-12 2017-06-20 Ntn Corporation Inspection device
KR101393362B1 (en) * 2013-08-13 2014-05-12 에이아이시스템즈 주식회사 Sensor holding apparatus
CN106441550A (en) * 2016-09-13 2017-02-22 安徽工程大学 Bearing vibration signal acquisition device
CN111487023A (en) * 2020-05-19 2020-08-04 中国科学院沈阳自动化研究所 Static rigidity testing device for elastic ring supporting structure of rotor system of aircraft engine
CN111487023B (en) * 2020-05-19 2021-11-26 中国科学院沈阳自动化研究所 Static rigidity testing device for elastic ring supporting structure of rotor system of aircraft engine
CN112924174A (en) * 2021-04-07 2021-06-08 中浙高铁轴承有限公司 Routine testing machine for bearing of railway axle box and routine testing method for bearing
CN114674540A (en) * 2022-03-23 2022-06-28 中国核动力研究设计院 Method, system and device for acquiring frequency domain characteristic parameters of vibration isolation element
CN114674540B (en) * 2022-03-23 2024-01-23 中国核动力研究设计院 Method, system and device for acquiring frequency domain characteristic parameters of vibration isolation element
CN115235771A (en) * 2022-09-21 2022-10-25 苏州开密科智能装备科技有限公司 Bearing vibration detection equipment

Similar Documents

Publication Publication Date Title
US7503216B2 (en) Device and method for evaluating rigidity of bearing device, device and method for manufacturing bearing device, and bearing device
JP2882105B2 (en) Method and apparatus for measuring the preload of a rolling bearing
JP3551033B2 (en) Apparatus and method for evaluating bearing stiffness
CN103968986B (en) Device and method for determining bearing pre-fastening
JP2008249664A (en) Rigidity evaluation apparatus and evaluation method for rolling bearing unit
JP6091970B2 (en) Inspection device
JP3428264B2 (en) Rotational accuracy measuring device for rolling bearings
JP2007093544A (en) Axial direction vibration measuring method and vibration measuring apparatus of rolling bearing
US9261111B2 (en) Balancing device, particularly for turbocompressors, and corresponding method
JP4092563B2 (en) Resonance measuring device and resonance measuring method of bearing device
JP2011174824A (en) Apparatus for evaluation of bearing rigidity
JP6410059B2 (en) Vibration measuring apparatus and vibration measuring method for high-speed rotating machine
CN105651473A (en) Method for automatic determination of dynamic stiffness of object
JP6004085B2 (en) Soundproof wheels for railway vehicles
JP2008503698A (en) Device for guiding the shaft while vibrating
JP2006105894A (en) Rotating apparatus for measuring characteristics of rolling bearing, characteristic measuring apparatus and characteristic measuring method of rolling bearing
JP4075030B2 (en) Rolling bearing device
JP2003329512A (en) Apparatus and method for measurement of natural oscillation frequency of roller bearing
JP4525415B2 (en) Engine balance measuring apparatus and method
JP3736250B2 (en) Method and apparatus for measuring radial resonance frequency of rolling bearing unit
JP2005172717A (en) Vibration measurement device for rolling bearings
JP2001194223A5 (en) Method and apparatus for measuring radial resonance frequency of rolling bearing unit
JP3896803B2 (en) Preload application method and preload application device for double row rolling bearing device
JP2004205315A (en) Motion evaluating method for bearing structure
JP2003075298A (en) Vibration characteristics inspection device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070521

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080313

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080313

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090828