JP2007093412A - 3次元形状測定装置 - Google Patents
3次元形状測定装置 Download PDFInfo
- Publication number
- JP2007093412A JP2007093412A JP2005283803A JP2005283803A JP2007093412A JP 2007093412 A JP2007093412 A JP 2007093412A JP 2005283803 A JP2005283803 A JP 2005283803A JP 2005283803 A JP2005283803 A JP 2005283803A JP 2007093412 A JP2007093412 A JP 2007093412A
- Authority
- JP
- Japan
- Prior art keywords
- measured
- imaging
- measurement pattern
- dimensional
- imaging system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000003384 imaging method Methods 0.000 claims abstract description 125
- 238000000034 method Methods 0.000 claims abstract description 57
- 238000005259 measurement Methods 0.000 claims description 61
- 230000008569 process Effects 0.000 claims description 3
- 230000008859 change Effects 0.000 abstract description 6
- 238000001514 detection method Methods 0.000 abstract description 5
- 230000003287 optical effect Effects 0.000 abstract description 4
- 238000004364 calculation method Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000004907 flux Effects 0.000 description 2
- 210000001747 pupil Anatomy 0.000 description 2
- 230000004075 alteration Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Images
Landscapes
- Length Measuring Devices By Optical Means (AREA)
Abstract
【課題】被測定面の形状変化が大きいような場合でも、三角測量の原理に基づき、被測定面の3次元形状を高精度に求めることが可能な3次元形状測定装置を得る。
【解決手段】被測定面7に輝線を投影、走査する投影走査系2と、被測定面7に投影されて変形した輝線を互いに異なる方向から撮像する第1および第2の撮像系3,4と、輝線の投影方向を検出する投影方向検出手段5とを備えることにより、第1の3次元座標取得部61によって得られたステレオ法による3次元座標データに基づく形状解析と、第2の3次元座標取得手段によって得られた光切断法による3次元座標データに基づく形状解析とを、適宜組み合わせて実施できるようにする。
【選択図】 図1
【解決手段】被測定面7に輝線を投影、走査する投影走査系2と、被測定面7に投影されて変形した輝線を互いに異なる方向から撮像する第1および第2の撮像系3,4と、輝線の投影方向を検出する投影方向検出手段5とを備えることにより、第1の3次元座標取得部61によって得られたステレオ法による3次元座標データに基づく形状解析と、第2の3次元座標取得手段によって得られた光切断法による3次元座標データに基づく形状解析とを、適宜組み合わせて実施できるようにする。
【選択図】 図1
Description
本発明は、三角測量の原理を用いて被測定面の3次元形状を求める3次元形状測定装置に関し、特に、形状の変化が大きい被測定面への適用が好適な3次元形状測定装置に関する。
従来、三角測量の原理を利用する3次元形状測定装置としては、被測定面を互いに異なる方向から2つの撮像系で撮像して視差の情報から形状を求めるステレオ法という手法を用いるものが知られている。ステレオ法では、2つの撮像系により撮像された画像間の対応点を求める対応点探索が必要となるが、これを精度良く行なうことができれば、高精度な測定結果を得ることが可能となる。下記特許文献1には、2つの画像間の対応点の判別を容易とするため、被測定面に点状や線状の測定用パターンを投影することが記載されている。
また、ステレオ法における2つの撮像系の一方を、光スポット(点状の測定用パターン)や、輝線(直線状の測定用パターン)の投影走査系に置き換えた光切断法という手法を用いるものも知られている(下記特許文献2参照)。光切断法は、被測定面に光スポットや輝線を投影、走査し、それを投影方向とは異なる方向から撮像するものであり、撮像時点における光スポットや輝線の投影方向を検出すること、および投影走査系と撮像系との距離(基線長)を求めておくことが必要であるが、一般的なステレオ法における対応点探索が不要なため解析が容易となる。
しかしながら、従来のステレオ法および光切断法においては、形状変化が大きい被測定面を測定する場合、被測定面に対する撮像系の向きによっては、被測定面の一部領域を観察することができないため、高精度な測定結果を得ることができないという問題がある。
ステレオ法の場合、異なる2方向から同時に撮像された画像が、被測定面の全領域に亘って必要となるが、被測定面に対する2つの撮像系の向きを固定すると、被測定面の一部領域については一方の撮像系でしか撮像できないことがある。上記特許文献1には、被測定面と2つの撮像系との位置関係を変化させることが開示されているが、位置関係の変動に伴う測定誤差が生じる虞がある。
光切断法の場合でも、光スポットや輝線(の一部)を観察することができない領域が被測定面上に生じることがあり、そのような領域については、被測定面の3次元データを求めることが困難となる。例えば、輝線の一部が欠けて観察された場合において、輝線が直線であることを利用して、欠けた領域の3次元データを補完する手法も存在するが、精度が低下することは否めない。
本発明は、このような事情に鑑みなされたものであり、被測定面の形状変化が大きいような場合でも、三角測量の原理に基づき、被測定面の3次元形状を高精度に求めることが可能な3次元形状測定装置を提供することを目的とする。
上記課題を解決するため本発明の3次元形状測定装置では、ステレオ法による形状解析と光切断法による形状解析とを、適宜組み合わせて行なえるようにしている。
すなわち、本発明に係る3次元形状測定装置は、被測定面に測定用パターンを投影、走査する投影走査系と、
前記被測定面に投影、走査された前記測定用パターンを互いに異なる方向から撮像する第1および第2の撮像系と、
前記測定用パターンの投影方向を検出する投影方向検出手段と、
前記第1の撮像系により撮像された画像上における前記測定用パターンの座標と、該第1の撮像系と同じタイミングで前記第2の撮像系により撮像された画像上における前記測定用パターンの座標との対応関係、および前記第1および第2の撮像系の間に設定された第1基線長に基づき、前記測定用パターンが投影された位置における前記被測定面の3次元座標を求める第1の3次元座標取得手段と、
前記第1の撮像系により撮像された画像上における前記測定用パターンの座標と、該第1の撮像系と前記投影走査系との間に設定された第2基線長と、前記投影方向とに基づき、および/または、前記第2の撮像系により撮像された画像上における前記測定用パターンの座標と、該第2の撮像系と前記投影走査系との間に設定された第3基線長と、前記投影方向とに基づき、前記測定用パターンが投影された位置における前記被測定面の3次元座標を求める第2の3次元座標取得手段と、
前記測定用パターンが前記被測定面を走査する過程において、前記第1および第2の3次元座標取得手段によりそれぞれ求められた3次元座標データを、適宜組み合わせて前記被測定面の3次元形状を求める3次元形状解析手段と、を備えてなることを特徴とする。
前記被測定面に投影、走査された前記測定用パターンを互いに異なる方向から撮像する第1および第2の撮像系と、
前記測定用パターンの投影方向を検出する投影方向検出手段と、
前記第1の撮像系により撮像された画像上における前記測定用パターンの座標と、該第1の撮像系と同じタイミングで前記第2の撮像系により撮像された画像上における前記測定用パターンの座標との対応関係、および前記第1および第2の撮像系の間に設定された第1基線長に基づき、前記測定用パターンが投影された位置における前記被測定面の3次元座標を求める第1の3次元座標取得手段と、
前記第1の撮像系により撮像された画像上における前記測定用パターンの座標と、該第1の撮像系と前記投影走査系との間に設定された第2基線長と、前記投影方向とに基づき、および/または、前記第2の撮像系により撮像された画像上における前記測定用パターンの座標と、該第2の撮像系と前記投影走査系との間に設定された第3基線長と、前記投影方向とに基づき、前記測定用パターンが投影された位置における前記被測定面の3次元座標を求める第2の3次元座標取得手段と、
前記測定用パターンが前記被測定面を走査する過程において、前記第1および第2の3次元座標取得手段によりそれぞれ求められた3次元座標データを、適宜組み合わせて前記被測定面の3次元形状を求める3次元形状解析手段と、を備えてなることを特徴とする。
本発明の3次元形状測定装置において、第2の3次元座標取得手段は、第1および第2の撮像系のうちいずれか一方の撮像系のみが測定用パターンを撮像可能であった場合に、該一方の撮像系により撮像された測定用パターンの画像上における座標と、前記第2および第3基線長のうち該一方の撮像系に対応する方の基線長と、前記投影方向とに基づき、該一方の撮像系により撮像された測定用パターンが投影された位置における被測定面の3次元座標を求めるように構成されている、とすることができる。
また、投影走査系は、回動する反射ミラーを介して測定用パターンを被測定面に投影、走査するように構成することができ、この場合、第1および第2の撮像系は、反射ミラーの回動中心を挟んで互いに対称に配置されていることが好ましい。
本発明の3次元形状測定装置によれば、上記構成を備えていることにより、第1の3次元座標取得手段によって得られた3次元座標データに基づく形状解析(ステレオ法による形状解析)と、第2の3次元座標取得手段によって得られた3次元座標データに基づく形状解析(光切断法による形状解析)とを、適宜組み合わせて実施することが可能となる。
これにより、例えば、2つの撮像系により同時に測定用パターンを撮像可能であった場合には、ステレオ法による形状解析を行ない、2つの撮像系のうちいずれか一方の撮像系のみが測定用パターンを撮像可能であった場合には、光切断法による形状解析を行なうことができる。
被測定面の形状変化が大きい場合でも、投影走査系により被測定面に投影、走査された測定用パターンを、2つの撮像系により互いに異なる方向から撮像することによって、被測定面の各領域について、少なくとも一方の撮像系においては測定用パターンを撮像し得る確率は高くなる。したがって、本発明の3次元形状測定装置によれば、被測定面と撮像系との相対的位置を変化させなくとも、形状変化が大きい被測定面の3次元座標データを略全域に亘って得ることができるので、その3次元形状を高精度に測定することが可能となる。
以下、本発明の実施形態について図面を参照しつつ詳細に説明する。図1は本発明の一実施形態に係る3次元形状測定装置の全体構成を示す図であり、図2はその測定原理を示す概略図である。
図1に示す3次元形状測定装置は、三角測量の原理を用いて被測定面7の3次元形状を測定解析するものであり、図示せぬ三脚に支持された装置本体1と、コンピュータ等からなる解析装置6とを備えてなる。
装置本体1は、被測定面7に輝線(直線状の測定用パターン)K(図2参照)を投影、走査する投影走査系2と、被測定面7に投影されて変形した輝線K0(図2参照)を互いに異なる方向から撮像する第1および第2の撮像系3,4と、輝線Kの投影方向を検出する投影方向検出手段5と、を備えてなる。
上記投影走査系2は、半導体レーザ装置等からなる光源部21と、投影レンズ22と、回動可能な反射ミラーからなる走査ミラー23を有してなる。光源部21からは直進性の高い光が出力されるように構成されており、投影レンズ22は、光源部21からの出力光を輝線生成用の光束に変換して走査ミラー23の回動中心(走査ミラー23の回動軸C(図2参照)と、投影走査系2の光軸L1との交点に位置する。以下「基点P1」と称す)に向けて出射するように構成されている。また、上記走査ミラー23は、図示せぬ回動装置を介して装置筺体に支持されており、回動装置により回動せしめられながら投影レンズ22からの光束を反射することにより、上記輝線Kを所定の角度範囲で走査するようになっている。
上記第1の撮像系3は、被測定面7に投影、走査された輝線K0を、輝線K0の投影方向とは異なる方向から撮像するものであり、図1に示すように、撮像レンズ31と撮像カメラ32とを有してなる。撮像カメラ32は、CCDやCMOS等の撮像面で形成される撮像面33を備えており、撮像レンズ31は、被測定面7に投影、走査された輝線K0の像を、撮像面33上に結像させるように構成されている。また、撮像カメラ32は、撮像面33上に結像された画像情報を画像信号に変換し、解析装置6に出力するようになっている。
上記第2の撮像系4は、被測定面7に投影、走査された輝線K0を、輝線K0の投影方向および第1の撮像系3とは異なる方向から撮像するものであり、図1に示すように、撮像レンズ41と撮像カメラ42とを有してなる。撮像カメラ42は、CCDやCMOS等の撮像面で形成される撮像面43を備えており、撮像レンズ41は、被測定面7に投影、走査された輝線K0の像を、撮像面43上に結像させるように構成されている。また、撮像カメラ42は、撮像面43上に結像された画像情報を画像信号に変換し、解析装置6に出力するようになっている。
本実施形態において、第1および第2の撮像系3,4は、上記基点P1(走査ミラー23の回動中心)を挟んで互いに対称に配置されている。すなわち、図1において、第1の撮像系3における撮像レンズ31の入射瞳の中心(以下「基点P2」と称す)と、第2の撮像系4における撮像レンズ41の入射瞳の中心(以下「基点P3」と称す)とは、上記基点P1を挟んで左右対称に配置されている。また、第1および第2の撮像系3,4の各光軸L2,L3の向きが、互いに左右対称となるように配置されている。これにより、第1および第2の撮像系3,4の収差等に起因する測定誤差を左右対称とすることができるので、誤差補正が容易となるという利点がある。
また、第1および第2の撮像系3,4の相互間と、これらと上記投影走査系2との間には、被測定面7の形状解析の際に行なわれる演算において、その長さが重要なパラメータとなる基線長がそれぞれ設定されている。本実施形態においては、上述の基点P2,P3間に第1基線長d1が設定されており、基点P1,P2間に第2基線長d2が、基点P1,P3間に第3基線長d3が、それぞれ設定されている。なお、上述した対称性により、本実施形態においては、d2=d3であり、またd1=d2+d3となっている。
上記投影方向検出手段5は、ロータリーエンコーダ等を有してなり、上記走査ミラー23の回動角度に基づき輝線Kの投影方向を検出し、その検出信号を解析装置6に出力するようになっている。
一方、上記解析装置6は、メモリに格納された処理プログラムや、CPU、演算回路等によりそれぞれ構成される第1の3次元座標取得部61、第2の3次元座標取得部62、および3次元形状解析部63を備えてなる。
第1の3次元座標取得部61は、第1の3次元座標取得手段を構成するものであり、第1の撮像系3により撮像された画像上における輝線KL(図2参照)の座標と、第1の撮像系3と同じタイミングで第2の撮像系4により撮像された画像上における輝線KR(図2参照)の座標との対応関係、および第1および第2の撮像系3,4の間に設定された第1基線長d1に基づき、輝線K0が投影された位置における被測定面7の3次元座標を求めるように構成されている。
第2の3次元座標取得部62は、第2の3次元座標取得手段を構成するものであり、第1の撮像系3により撮像された画像上における輝線KLの座標と、第1の撮像系3と投影走査系2との間に設定された第2基線長d2と、輝線K0の投影方向とに基づき、および/または、第2の撮像系4により撮像された画像上における輝線KRの座標と、第2の撮像系4と投影走査系2との間に設定された第3基線長d3と、輝線K0の投影方向とに基づき、輝線K0が投影された位置における被測定面7の3次元座標を求めるように構成されている。
3次元形状解析部63は、3次元形状解析手段を構成するものであり、輝線K0が被測定面7を走査する過程において、第1および第2の3次元座標取得部61,62によりそれぞれ求められた3次元座標データを、適宜組み合わせて被測定面7の3次元形状を求めるように構成されている。
次に、本実施形態に係る3次元形状測定装置の作用、および測定解析手順について説明する。
(1)3次元形状測定装置の略正面に設置された被測定面7に対し、投影走査系2が輝線Kを投影、走査する。図2に示すように、輝線Kは鉛直方向に延びる直線状のパターンであり、走査方向は水平方向とされている。
(2)被測定面7に投影され、被測定面7の形状に応じて変形した輝線K0を、その走査期間中の所定のタイミング毎に、第1および第2の撮像系3,4によって、互いに異なる方向から同時に撮像する。撮像された各画像情報は、共に第1および第2の3次元座標取得部61,62へと順次送られる。なお、第1および第2の撮像系3,4においては、各撮像面33,43上の複数の画素に跨って輝線K0が結像されるように、予め撮像倍率等の調整が行なわれている。
(3)第1および第2の撮像系3,4による撮像タイミングに同期して、投影方向検出手段5により輝線Kの投影方向を検出し、その情報が第2の3次元座標取得部62へと送られる。
(4)第1の撮像系3から送られてきた画像情報に基づき、第1の3次元座標取得部61において、第1の撮像系3により撮像された画像上における輝線KL上の各点の座標(図2において(xi,yi)と例示)を求める。この座標の特定に際しては、画像上における輝線KLの線幅中心を求める必要があるが、線幅中心の特定方法としては、2値化処理による方法や、強度分布がガウス分布に従うとして、線幅内で強度がピークとなる位置を求める方法などを用いることができる。
(5)第2の撮像系4から送られてきた画像情報に基づき、第1の3次元座標取得部61において、第2の撮像系4により撮像された画像上における輝線KR上の各点の座標(図2において(x´p,y´q)と例示)を求める。この座標の特定方法は、上述したのと同様である。
(6)第1の3次元座標取得部61において、輝線KL上の各点が輝線KR上のどこに位置するのかを求める対応点探索を行ない、これにより、第1の撮像系3により撮像された画像上における輝線KLの座標と、第1の撮像系3と同じタイミングで第2の撮像系4により撮像された画像上における輝線KRの座標との対応関係を求める。なお、対応点探索の手法としては、一方の画像上における視線を他方の画像上に投影した線(「エピポーラ線」と称される)の上において、パターンマッチング等の手法を用いて対応点を探索する手法を用いることができる。
(7)第1の3次元座標取得部61において、互いに対応付けられた輝線KL,KRの各座標情報と、上記第1基線長d1とに基づき、輝線K0が投影された位置における被測定面7の3次元座標(図2において(X,Y,Z)と例示)を、三角測量の原理を用いて求める。なお、この3次元座標(以下「第1手法による3次元座標」と称す)を求める手法としては、ステレオ法において用いられる一般的な算定手法を用いることができる。
(8)第2の3次元座標取得部62において、第1の撮像系3から送られてきた画像情報に基づき、第1の撮像系3により撮像された画像上における輝線KL上の各点の座標を求めるとともに、第2の撮像系4から送られてきた画像情報に基づき、第2の撮像系4により撮像された画像上における輝線KR上の各点の座標を求める。
(9)第2の3次元座標取得部62において、求められた輝線KLの座標と、上記第2基線長d2と、輝線K0の投影方向とに基づき、輝線K0が投影された位置における被測定面7の3次元座標(以下「第2手法による3次元座標」と称す)を求めるとともに、同じく求められた輝線KRの座標と、上記第3基線長d3と、輝線K0の投影方向とに基づき、輝線K0が投影された位置における被測定面7の3次元座標(以下「第3手法による3次元座標」と称す)を、三角測量の原理を用いて求める。なお、これら第2手法および第3手法による3次元座標を求める手法としては、光切断法において用いられる一般的な算定手法を用いることができる。
(10)上記(4)〜(9)の手順を、輝線K0の走査期間中の所定のタイミング毎に、第1および第2の撮像系3,4により撮像された各画像情報に対して行なう。これにより、被測定面7の全域に亘って、上述した第1手法による3次元座標〜第3手法による3次元座標までの被測定面7に係る計3組の3次元座標が得られることになる。
(11)3次元形状解析部63において、第1および第2の3次元座標取得部61,62によりそれぞれ求められた被測定面7に係る3組の3次元座標データを、適宜組み合わせて被測定面7の3次元形状を求める。このデータの組合せは、例えば、次のように行なう。すなわち、第1手法による3次元座標は、第1および第2の撮像系3,4の双方が輝線K0を撮像し得た場合のみ求めることができる。一方、第2手法による3次元座標は、第1の撮像系3だけが輝線K0を撮像し得た場合のみでも求めることができ、第3手法による3次元座標は、第2の撮像系3だけが輝線K0を撮像し得た場合のみでも求めることができる。そこで、基本的には、第1手法による3次元座標に基づき、被測定面7の3次元形状を求め、第1手法による3次元座標が得られない被測定面7の領域については、第2手法による3次元座標(第1の撮像系3だけが輝線K0を撮像し得た場合)、または第3手法による3次元座標(第2の撮像系3だけが輝線K0を撮像し得た場合)を、補完的に用いて3次元形状を求めるようにする。
なお、上述した手順では、第2の3次元座標取得部62において、第2手法による3次元座標と第3手法による3次元座標との双方を常時求めるようにしているが、第1および第2の撮像系3,4の双方が輝線K0を撮像し得た場合には、その輝線K0が投影された被測定面7の領域については、第2手法および第3手法による3次元座標の算定は行なわず、第1および第2の撮像系3,4のうちいずれか一方の撮像系のみが輝線K0を撮像し得た場合のみ、その輝線K0が投影された被測定面7の領域については、撮像し得た方の撮像系の画像情報に基づく3次元座標(第1の撮像系3のみが撮像し得た場合は第2手法による3次元座標、第2の撮像系3のみが撮像し得た場合は第3手法による3次元座標)を求めるようにしてもよい。
また、本実施形態では、第1および第2の撮像系3,4の2つの撮像系を備えているが、3つ以上の撮像系を備えるようにしてもよい。さらに、本実施形態では、1つの直線状の測定用パターン(輝線K)を被測定面7に投影し、これを走査するようにしているが、複数の直線状の測定用パターンを被測定面7に投影、走査するようにしたり、点状の投影用パターンを被測定面7に投影、走査するようにしたり、他の図形からなる投影用パターンを被測定面7に投影、走査するようにしたりすることも可能である。
1 装置本体
2 投影走査系
3 第1の撮像系
4 第2の撮像系
5 投影方向検出手段
6 解析装置
7 被測定面
21 光源部
22 投影レンズ
23 走査ミラー
31,41 撮像レンズ
32,42 撮像カメラ
33,43 撮像面
61 第1の3次元座標取得部
62 第2の3次元座標取得部
63 3次元形状解析部
L1〜L3 光軸
P1〜P3 基点
d1 第1基線長
d2 第2基線長
d3 第3基線長
K 輝線
K0 (投影されて変形した)輝線
KL (第1の撮像系により撮像された画像上における)輝線
KR (第2の撮像系により撮像された画像上における)輝線
C 回動軸
2 投影走査系
3 第1の撮像系
4 第2の撮像系
5 投影方向検出手段
6 解析装置
7 被測定面
21 光源部
22 投影レンズ
23 走査ミラー
31,41 撮像レンズ
32,42 撮像カメラ
33,43 撮像面
61 第1の3次元座標取得部
62 第2の3次元座標取得部
63 3次元形状解析部
L1〜L3 光軸
P1〜P3 基点
d1 第1基線長
d2 第2基線長
d3 第3基線長
K 輝線
K0 (投影されて変形した)輝線
KL (第1の撮像系により撮像された画像上における)輝線
KR (第2の撮像系により撮像された画像上における)輝線
C 回動軸
Claims (4)
- 被測定面に測定用パターンを投影、走査する投影走査系と、
前記被測定面に投影、走査された前記測定用パターンを互いに異なる方向から撮像する第1および第2の撮像系と、
前記測定用パターンの投影方向を検出する投影方向検出手段と、
前記第1の撮像系により撮像された画像上における前記測定用パターンの座標と、該第1の撮像系と同じタイミングで前記第2の撮像系により撮像された画像上における前記測定用パターンの座標との対応関係、および前記第1および第2の撮像系の間に設定された第1基線長に基づき、前記測定用パターンが投影された位置における前記被測定面の3次元座標を求める第1の3次元座標取得手段と、
前記第1の撮像系により撮像された画像上における前記測定用パターンの座標と、該第1の撮像系と前記投影走査系との間に設定された第2基線長と、前記投影方向とに基づき、および/または、前記第2の撮像系により撮像された画像上における前記測定用パターンの座標と、該第2の撮像系と前記投影走査系との間に設定された第3基線長と、前記投影方向とに基づき、前記測定用パターンが投影された位置における前記被測定面の3次元座標を求める第2の3次元座標取得手段と、
前記測定用パターンが前記被測定面を走査する過程において、前記第1および第2の3次元座標取得手段によりそれぞれ求められた3次元座標データを、適宜組み合わせて前記被測定面の3次元形状を求める3次元形状解析手段と、
を備えてなることを特徴とする3次元形状測定装置。 - 前記第2の3次元座標取得手段は、前記第1および第2の撮像系のうちいずれか一方の撮像系のみが前記測定用パターンを撮像可能であった場合に、該一方の撮像系により撮像された前記測定用パターンの画像上における座標と、前記第2および第3基線長のうち該一方の撮像系に対応する方の基線長と、前記投影方向とに基づき、該一方の撮像系により撮像された前記測定用パターンが投影された位置における前記被測定面の3次元座標を求めるように構成されている、ことを特徴とする3次元形状測定装置。
- 前記投影走査系は、回動する反射ミラーを介して前記測定用パターンを前記被測定面に投影、走査するように構成されている、ことを特徴とする請求項1または2記載の3次元形状測定装置。
- 前記第1および第2の撮像系は、前記反射ミラーの回動中心を挟んで互いに対称に配置されている、ことを特徴とする請求項3記載の3次元形状測定装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005283803A JP2007093412A (ja) | 2005-09-29 | 2005-09-29 | 3次元形状測定装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005283803A JP2007093412A (ja) | 2005-09-29 | 2005-09-29 | 3次元形状測定装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007093412A true JP2007093412A (ja) | 2007-04-12 |
Family
ID=37979310
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005283803A Withdrawn JP2007093412A (ja) | 2005-09-29 | 2005-09-29 | 3次元形状測定装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007093412A (ja) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009002912A (ja) * | 2007-06-25 | 2009-01-08 | Nippon Steel Corp | 発光する対象物の3次元プロフィールの計測方法および装置 |
JP2009074814A (ja) * | 2007-09-19 | 2009-04-09 | Kyonan Seiki Kk | 光切断法による3次元形状測定装置 |
JP2010091492A (ja) * | 2008-10-10 | 2010-04-22 | Fujifilm Corp | 3次元形状計測用撮影装置および方法並びにプログラム |
JP2010537183A (ja) * | 2007-08-17 | 2010-12-02 | レニショウ パブリック リミテッド カンパニー | 非接触プローブ |
WO2012132865A1 (ja) * | 2011-03-31 | 2012-10-04 | 東レエンジニアリング株式会社 | 突出部高さ測定装置及び方法 |
KR101568226B1 (ko) * | 2014-06-17 | 2015-11-11 | 한국기계연구원 | 특징점 사영을 이용한 형상 계측장치 |
KR101569849B1 (ko) * | 2014-06-17 | 2015-11-18 | 한국기계연구원 | 복수의 카메라를 이용한 형상 인식장치 |
JP2015534091A (ja) * | 2012-11-07 | 2015-11-26 | アルテック・ヨーロッパ・ソシエテ・ア・レスポンサビリテ・リミテ | 3次元の物体の直線寸法を制御する方法 |
US9329030B2 (en) | 2009-09-11 | 2016-05-03 | Renishaw Plc | Non-contact object inspection |
-
2005
- 2005-09-29 JP JP2005283803A patent/JP2007093412A/ja not_active Withdrawn
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009002912A (ja) * | 2007-06-25 | 2009-01-08 | Nippon Steel Corp | 発光する対象物の3次元プロフィールの計測方法および装置 |
US8792707B2 (en) | 2007-08-17 | 2014-07-29 | Renishaw Plc | Phase analysis measurement apparatus and method |
JP2010537183A (ja) * | 2007-08-17 | 2010-12-02 | レニショウ パブリック リミテッド カンパニー | 非接触プローブ |
US8605983B2 (en) | 2007-08-17 | 2013-12-10 | Renishaw Plc | Non-contact probe |
US8923603B2 (en) | 2007-08-17 | 2014-12-30 | Renishaw Plc | Non-contact measurement apparatus and method |
USRE46012E1 (en) | 2007-08-17 | 2016-05-24 | Renishaw Plc | Non-contact probe |
JP2009074814A (ja) * | 2007-09-19 | 2009-04-09 | Kyonan Seiki Kk | 光切断法による3次元形状測定装置 |
JP2010091492A (ja) * | 2008-10-10 | 2010-04-22 | Fujifilm Corp | 3次元形状計測用撮影装置および方法並びにプログラム |
US9329030B2 (en) | 2009-09-11 | 2016-05-03 | Renishaw Plc | Non-contact object inspection |
WO2012132865A1 (ja) * | 2011-03-31 | 2012-10-04 | 東レエンジニアリング株式会社 | 突出部高さ測定装置及び方法 |
JP2015534091A (ja) * | 2012-11-07 | 2015-11-26 | アルテック・ヨーロッパ・ソシエテ・ア・レスポンサビリテ・リミテ | 3次元の物体の直線寸法を制御する方法 |
KR101568226B1 (ko) * | 2014-06-17 | 2015-11-11 | 한국기계연구원 | 특징점 사영을 이용한 형상 계측장치 |
KR101569849B1 (ko) * | 2014-06-17 | 2015-11-18 | 한국기계연구원 | 복수의 카메라를 이용한 형상 인식장치 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008241643A (ja) | 3次元形状測定装置 | |
CN100412501C (zh) | 图像获取设备 | |
US9046360B2 (en) | System and method of acquiring three dimensional coordinates using multiple coordinate measurement devices | |
US20140268178A1 (en) | System and method of acquiring three dimensional coordinates using multiple coordinate measurement devices | |
JP2006514739A5 (ja) | ||
JP2006514739A (ja) | 歯科用レーザデジタイザシステム | |
JP6625617B2 (ja) | カメラ画像で投影構造パターンの構造要素を特定する方法および装置 | |
JPH11148807A (ja) | バンプ高さ測定方法及びバンプ高さ測定装置 | |
KR20190074841A (ko) | 옵티컬 트래킹 시스템 및 옵티컬 트래킹 방법 | |
WO2004044522A1 (ja) | 3次元形状計測方法およびその装置 | |
WO2022050279A1 (ja) | 三次元計測装置 | |
JP2002139304A (ja) | 距離測定装置、及び距離測定方法 | |
JP2017510793A (ja) | 2つのカメラからの曲線の集合の構造化光整合 | |
JP2021193400A (ja) | アーチファクトを測定するための方法 | |
JP2007508557A (ja) | 三次元物体を走査するための装置 | |
JP2015072197A (ja) | 形状測定装置、構造物製造システム、形状測定方法、構造物製造方法、及び形状測定プログラム | |
JP2007093412A (ja) | 3次元形状測定装置 | |
JP3817640B1 (ja) | 三次元形状計測システム | |
JP2002022424A (ja) | 3次元測定装置 | |
JPH11118438A (ja) | 3次元形状測定方法および装置 | |
US10060733B2 (en) | Measuring apparatus | |
JP2003329418A (ja) | 3次元計測装置 | |
JP6508763B2 (ja) | 表面検査装置 | |
JP5280918B2 (ja) | 形状測定装置 | |
JP2005189205A (ja) | 3次元形状計測装置および方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20081202 |