JP2007090429A - Hot rolling method of bar material - Google Patents
Hot rolling method of bar material Download PDFInfo
- Publication number
- JP2007090429A JP2007090429A JP2006228216A JP2006228216A JP2007090429A JP 2007090429 A JP2007090429 A JP 2007090429A JP 2006228216 A JP2006228216 A JP 2006228216A JP 2006228216 A JP2006228216 A JP 2006228216A JP 2007090429 A JP2007090429 A JP 2007090429A
- Authority
- JP
- Japan
- Prior art keywords
- rolling
- hot rolling
- oval
- compressive strain
- square
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 title claims abstract description 56
- 238000000034 method Methods 0.000 title claims abstract description 39
- 238000005098 hot rolling Methods 0.000 title claims abstract description 24
- 238000005096 rolling process Methods 0.000 claims abstract description 85
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 17
- 239000010959 steel Substances 0.000 claims abstract description 17
- 230000006835 compression Effects 0.000 claims description 8
- 238000007906 compression Methods 0.000 claims description 8
- 230000007547 defect Effects 0.000 abstract description 18
- 238000012545 processing Methods 0.000 abstract description 11
- 238000004519 manufacturing process Methods 0.000 abstract description 2
- 230000003247 decreasing effect Effects 0.000 abstract 1
- 239000002994 raw material Substances 0.000 abstract 1
- -1 wire rods Substances 0.000 abstract 1
- 230000037303 wrinkles Effects 0.000 description 12
- 238000002474 experimental method Methods 0.000 description 5
- 238000007493 shaping process Methods 0.000 description 3
- 238000004513 sizing Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 238000012937 correction Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Landscapes
- Control Of Metal Rolling (AREA)
- Metal Rolling (AREA)
Abstract
Description
本発明は、線材、棒鋼、角材などの条材の表面疵を低減させる条材の熱間圧延方法に関するものである。 The present invention relates to a hot rolling method for strips that reduces the surface flaws of strips such as wire rods, steel bars and square bars.
熱間圧延により製造される線材、棒鋼、角材などの条材製品では、表面疵が許容範囲内にあることを保証する必要がある。これは、条材製品に許容以上の表面疵が残存すると、例えば、後続のいわゆる2次加工工程などでの鍛造加工時に、疵部を起点として割れなどの加工欠陥が発生することがあるためである。例えば、線材、棒鋼等の各製品寸法についてのパス(孔型)スケジュールでは、各パスで、ロールフランジ部に圧延材がはみ出す「噛み出し」が発生しないように孔型を設計すれば、無数の孔型形状の組み合わせが可能である。通常、生産性(圧延能率)の観点から、孔型の共通化により、各製品寸法でできるだけ共通の孔型を使用し、この共通化した孔型で、ロール隙の調整のみで高い減面率から低い減面率を実現して圧延が行われる。 It is necessary to ensure that the surface defects are within an acceptable range for strip products such as wire rods, steel bars, square bars and the like manufactured by hot rolling. This is because, if surface flaws exceeding the permissible level remain in the strip product, for example, processing defects such as cracks may occur starting from the flange portion during forging in the subsequent so-called secondary processing step. is there. For example, in the pass (hole type) schedule for each product dimension such as wire rod and bar steel, in each pass, if the hole type is designed so that "rolling out" does not occur, the rolled material protrudes from the roll flange part. Combinations of hole shapes are possible. Usually, from the viewpoint of productivity (rolling efficiency), by using a common hole shape, a common hole shape is used as much as possible for each product dimension. With this common hole shape, a high reduction in area is achieved only by adjusting the roll gap. Therefore, rolling is performed with a low reduction in area.
前記孔型設計の一例を示すと、パススケジュールの一部に「角−オーバル(楕円)」圧延方式を用いる場合、オーバル(楕円)孔型は、以下の寸法範囲で設計される(例えば、非特許文献1参照)。
B/H=2.4〜4.6(B:孔型出側の圧延材の幅、H:孔型出側の圧延材の高さ)
C/H=1.1〜2.4(C:孔型入側の圧延材(角)の対辺寸法、H:孔型出側の圧延材の高さ)
r=(1/4〜1/6)C(r:孔型入側の圧延材(角)のコーナー、C:孔型入側の圧延材(角)の対辺寸法)
このように各寸法比および入側素材のコーナーrに範囲を設けてあるのは、各寸法比を上記範囲内で変えることにより、所要の減面率を確保できる孔型設計を可能にするためである。
B / H = 2.4 to 4.6 (B: width of rolled material on the punched side, H: height of rolled material on the punched side)
C / H = 1.1 to 2.4 (C: opposite side dimension of rolled material (corner) on the inlet side of the hole mold, H: height of rolled material on the outlet side of the hole mold)
r = (1/4 to 1/6) C (r: corner of rolled material (corner) on the entrance side of the hole mold, C: opposite side dimension of rolled material (corner) on the entrance side of the hole mold)
As described above, the range is provided for each dimension ratio and the corner r of the entry side material in order to enable a hole-type design that can secure a required area reduction rate by changing each dimension ratio within the above range. It is.
しかし、上記範囲内にある寸法比およびコーナーrを選択して孔型を設計しても、オーバル孔型に充満した圧延材表層部の周方向の圧縮ひずみが表面疵発生限界の値を超える場合があり、その場合には当然表面疵が発生する。図1(a)、(b)は前記「角−オーバル」圧延方式の一例を示したもので、表1に孔型寸法および前記寸法比等の所要のデータを記載した。この場合、FEMを用いた変形解析により求めたオーバル(楕円)孔型1に充満した前記圧延材周方向の圧縮ひずみの最小値は−0.88である。この圧延材周方向の圧縮ひずみの定義については後述する。図1(a)のオーバル孔型1を加工した一対のロールを用いて、図1(b)に示した角鋼材2を通常の熱間圧延温度域に加熱し、熱間圧延実験を実施したところ、前記最小値の圧縮ひずみの近傍に表面疵の発生が認められた。図1(a)に示した表1の寸法のオーバル孔型1は、実機圧延で用いられている孔型の1つであり、前記熱間圧延実験での表面疵の発生は、通常10スタンド(10パス)以上で圧延されて、線材、棒鋼製品に仕上げる実機圧延過程の少なくとも1スタンド(1パス)以上で、表面疵が発生する状態になっていたことを示している。
However, even if the hole mold is designed by selecting the dimension ratio and the corner r within the above range, the circumferential compressive strain of the surface layer of the rolled material filled in the oval hole mold exceeds the surface flaw generation limit value. In that case, naturally surface flaws occur. FIGS. 1A and 1B show an example of the “square-oval” rolling method, and Table 1 lists required data such as the hole size and the size ratio. In this case, the minimum value of the compressive strain in the circumferential direction of the rolled material filled in the oval (elliptical) hole mold 1 obtained by deformation analysis using FEM is −0.88. The definition of the compressive strain in the circumferential direction of the rolled material will be described later. A
条材の表面疵等の表面性状を改善する手段として、例えば、特許文献1では「角−オーバル」圧延方式などで、圧延後のオーバル圧延材などの自由表面に生じた凹部の形状をサイジングローラで整形し、表面疵の発生状態を改善する方法が開示されている。
しかし、前記圧延材自由表面の凹部の発生は、圧延機のモータパワーまたは剛性が不足しているため、当該パスでの減面率を小さくしなければならないことに起因しており、圧延機のモータパワーに余裕がある最新ミルでは自由表面に凹部が発生するような軽圧下パスは採用されない。仮に圧延材の自由表面に凹部が生じた場合でも、軽圧下のサイジングローラを用いて整形することにより、整形時の自由表面に新たな凹部が発生するおそれがある。さらに、新たな凹部が発生した場合、この凹部の最深部に周方向の極大圧縮ひずみ(圧縮ひずみの最小値)が生じることになり、内部にスケールが取り込まれた微細な表面疵が発生する。従って、サイジングローラで整形しても微細な表面疵を改善し得るものではなく、近年の、例えば、製品疵深さが0.02mm以下という非常に厳しい表面疵保証を行うことができない。 However, the occurrence of recesses on the free surface of the rolling material is caused by the fact that the reduction in the area of the rolling mill must be reduced because the motor power or rigidity of the rolling mill is insufficient. The latest mill with sufficient motor power does not use a light pressure path that creates a recess on the free surface. Even if a concave portion is formed on the free surface of the rolled material, there is a possibility that a new concave portion is generated on the free surface during shaping by shaping using a sizing roller under light pressure. Furthermore, when a new concave portion is generated, a circumferential maximum compressive strain (minimum value of the compressive strain) is generated at the deepest portion of the concave portion, and a fine surface flaw having a scale taken therein is generated. Therefore, even if shaping with a sizing roller, fine surface wrinkles cannot be improved, and in recent years, for example, a very severe surface wrinkle guarantee that the product wrinkle depth is 0.02 mm or less cannot be performed.
そこで、本発明の課題は、線材、棒鋼、角材などの条材の熱間圧延工程での圧延変形による微細な表面疵の発生を抑制し、近年の厳しい表面疵保証を満足する条材製品を製造するための条材の熱間圧延方法を提供することである。 Therefore, an object of the present invention is to reduce the occurrence of fine surface defects due to rolling deformation in the hot rolling process of strips such as wire rods, bar steel, square bars, etc. It is to provide a method of hot rolling a strip for manufacturing.
前記の課題を解決するために、本発明では以下の構成を採用したのである。 In order to solve the above problems, the present invention employs the following configuration.
即ち、請求項1に係る条材の熱間圧延方法は、素材ビレットから、複数配置した圧延機のロールに設けた孔型によるそれぞれの圧延方式で断面積を順次減少させ、所要の製品寸法に仕上げる条材の熱間圧延方法であって、前記それぞれの圧延方式の孔型での圧延材周方向の圧縮ひずみが−0.5以上となるように圧延材の断面積を減少させることを特徴とする。 That is, the method of hot rolling strip material according to claim 1 is to reduce the cross-sectional area sequentially by the respective rolling methods by the hole mold provided in the roll of a plurality of rolling mills arranged from the raw billet, to the required product dimensions. A method of hot rolling a strip material to be finished, characterized in that the cross-sectional area of the rolled material is reduced so that the compressive strain in the circumferential direction of the rolled material in the hole molds of the respective rolling methods is −0.5 or more. And
本発明者らは、孔型での圧延変形による圧延材の表面疵発生原因を究明するために、モデル実験および変形解析を行った結果、圧延変形によって生じる圧延材周方向の圧縮ひずみと圧延後の圧延材横断面での表面疵深さに相関があることを見出した。ここで、周方向の圧縮ひずみとは、図2に示すように、入側圧延材3の孔型4による圧延変形前後の要素eの、圧延材表面側の曲線状の一辺の長さS0、S1の変化から次式で算出される慣用ひずみである。
ε=(S1−S0)/S0
As a result of conducting model experiments and deformation analysis in order to investigate the cause of surface flaws in the rolled material due to rolling deformation in the hole mold, the present inventors found that the compression strain in the circumferential direction of the rolled material caused by rolling deformation and the post-rolling It was found that there was a correlation between the surface depth in the cross section of the rolled material. Here, as shown in FIG. 2, the circumferential compressive strain is the length S 0 of the curved side of the rolled material surface side of the element e before and after the rolling deformation by the
ε = (S 1 −S 0 ) / S 0
なお、この圧縮ひずみεは、通常、圧延変形後の長さS1の方が圧延変形前の長さS0より小さいため負の数値で示されるが、S0からS1に変化する変化量自体が大きくなるほど小さな数値となる。従って、圧縮ひずみεとして得られる値は通常負の数値で表されるため、本明細書では、例えば、前記変化量自体の最大の値を「圧縮ひずみの最小値」というように表現している。 The compressive strain ε is generally indicated by a negative value because the length S 1 after the rolling deformation is smaller than the length S 0 before the rolling deformation, but the amount of change that changes from S 0 to S 1. The larger the value, the smaller the value. Therefore, since the value obtained as the compression strain ε is usually represented by a negative value, in this specification, for example, the maximum value of the change amount itself is expressed as “minimum value of the compression strain”. .
図3は、図1(a)、(b)に示した「角−オーバル」圧延方式の1パス熱間実験圧延の結果を示したものである。この実験圧延では、表面に疵が存在しないように仕上げた異なる対辺寸法およびコーナRの角鋼(17mm〜21mm角、JIS SWRCH45K)を、直径230mmのロールに加工したオーバル孔型(半径R=23.6mm、高さH=5mm)への入側素材に用いて、圧延変形による周方向の圧縮ひずみεを変化させた。圧延は、前記入側素材の角鋼を1000℃に加熱し、ロール周速1.5m/minで行った。入側素材の各角鋼寸法の場合について、FEM(剛塑性一般化平面ひずみモデル)変形解析結果を用いて周方向の圧縮ひずみεを算出して横軸の圧延材周方向の圧縮ひずみεの最小値を求め、1パス圧延後の圧延材の横断面の表面疵深さを光学顕微鏡で観察して縦軸の横断面疵深さを求めた。図3に示す●がこの変形解析で求めた結果であり、この図3から、素材に全く表面疵が存在しない状態でも、周方向の圧縮ひずみεが小さな値になるにつれて表面疵が発生することがわかる。また、周方向の圧縮ひずみεが大きな値になるほど表面疵深さも浅くなり、周方向の圧縮ひずみεが−0.5以上では表面疵深さが0.02mm以下となって、後続の加工工程で加工欠陥が発生するような問題となる表面疵が発生しなくなり、さらに周方向の圧縮ひずみεを−0.35以上とすることによって圧延変形によって表面疵が発生しなくなることがわかる。 FIG. 3 shows the result of the one-pass hot experimental rolling of the “square-oval” rolling method shown in FIGS. 1 (a) and 1 (b). In this experimental rolling, an oval hole type (radius R = 23 .2) obtained by processing a square steel of different opposite side dimensions and corner R (17 mm to 21 mm square, JIS SWRCH45K) finished so that no wrinkles exist on the surface into a roll having a diameter of 230 mm. 6 mm, height H = 5 mm), and the compression strain ε in the circumferential direction due to rolling deformation was changed. The rolling was performed at a roll peripheral speed of 1.5 m / min by heating the square steel of the entry side material to 1000 ° C. For each square steel dimension of the entry side material, calculate the circumferential compressive strain ε using the FEM (Rigid Plastic Generalized Plane Strain Model) deformation analysis result, and minimize the lateral compressive strain ε in the circumferential direction of the rolled material. The value was determined, and the surface depth of the cross section of the rolled material after one-pass rolling was observed with an optical microscope to determine the depth of the cross section on the vertical axis. The ● shown in FIG. 3 is the result obtained by this deformation analysis. From FIG. 3, even when the surface does not have any surface defects, the surface defects occur as the compressive strain ε in the circumferential direction becomes smaller. I understand. Further, as the circumferential compressive strain ε increases, the surface wrinkle depth becomes shallower. When the circumferential compressive strain ε is −0.5 or more, the surface wrinkle depth becomes 0.02 mm or less. It can be seen that surface flaws that would cause processing defects do not occur, and that surface flaws do not occur due to rolling deformation by setting the circumferential compressive strain ε to −0.35 or more.
なお、変形解析では解析誤差を生じる懸念があるので実際の圧延材の表面にその周方向に1mm間隔で平行にケガキ線を入れ熱間圧延を行い圧延前と圧延後の間隔を測ることでモデル実験を行い、圧縮ひずみと表面疵深さの関係を調査した。図3の○がこの調査で求めた結果であり、前記の変形解析で求めた結果とほぼ対応しており、やはり、周方向の圧縮ひずみεが−0.5以上で問題となる表面疵が発生しなくなることがわかる。また、周方向の圧縮ひずみεを−0.35以上とすることによって圧延変形によって表面疵が発生しなくなることもわかる。 In addition, there is a concern that an analysis error may occur in the deformation analysis, so a model is obtained by measuring the interval before and after rolling with hot rolling by putting a marking line parallel to the surface of the actual rolled material at 1 mm intervals in the circumferential direction. Experiments were conducted to investigate the relationship between compressive strain and surface depth. The circles in FIG. 3 are the results obtained in this investigation, which almost correspond to the results obtained in the deformation analysis described above, and the surface defects that cause problems when the circumferential compressive strain ε is −0.5 or more are also shown. It turns out that it does not occur. It can also be seen that surface flaws do not occur due to rolling deformation by setting the circumferential compressive strain ε to −0.35 or more.
また、冷間での鉛にケガキ線を入れて前記と同様の条件でモデル実験を行い、圧縮ひずみと表面疵深さの関係を調査した。図3の▲がこの調査で求めた結果であり、前記の変形解析で求めた結果とほぼ対応しており、やはり、周方向の圧縮ひずみεが−0.5以上で問題となる表面疵が発生しなくなることがわかる。また、周方向の圧縮ひずみεを−0.35以上とすることによって圧延変形によって表面疵が発生しなくなることもわかる。 In addition, a model experiment was conducted under the same conditions as described above by putting a marking line on the cold lead, and the relationship between the compressive strain and the surface wrinkle depth was investigated. The ▲ in FIG. 3 is the result obtained by this investigation, which almost corresponds to the result obtained by the deformation analysis described above, and the surface flaw that becomes a problem when the circumferential compressive strain ε is −0.5 or more is also shown. It turns out that it does not occur. It can also be seen that surface flaws do not occur due to rolling deformation by setting the circumferential compressive strain ε to −0.35 or more.
すなわち、実際に熱間素材、或いは鉛(冷間)を圧延しても変形解析した結果とほぼ同様の結果を得ることができた。よって、変形解析で求めた結果が正しいことを実機計測により確証した。 In other words, even when the hot material or lead (cold) was actually rolled, a result almost the same as the result of the deformation analysis could be obtained. Therefore, it was confirmed by actual measurement that the result obtained by deformation analysis was correct.
請求項2に係る条材の熱間圧延方法は、前記圧延方式が、角−オーバル圧延方式を含むことを特徴とする。
The method for hot rolling strip according to
前記条材の熱間圧延では、通常、「角−オーバル」圧延方式のオーバル孔型で、圧延材の自由表面またはその近傍に絶対値で最も大きな周方向の圧縮ひずみが発生する傾向にあるため、この「角−オーバル」圧延方式で周方向の圧縮ひずみが−0.5以上となるように圧延変形させることが、後続のパス(孔型)で問題となる深さの表面疵の発生を防止するために重要である。 In the hot rolling of the strip material, usually, it is an “oval-oval” rolling type oval hole type, and there is a tendency that the largest circumferential compressive strain is generated in the absolute value on or near the free surface of the rolled material. In this "square-oval" rolling method, rolling deformation is performed so that the compressive strain in the circumferential direction becomes -0.5 or more. Is important to prevent.
請求項3に係る条材の熱間圧延方法は、前記条材が線材または棒鋼である熱間圧延方法である。 The method of hot rolling a strip according to claim 3 is a hot rolling method in which the strip is a wire or a steel bar.
線材および棒鋼では、後続の加工工程で高加工度の冷間加工を受ける場合が多く、特に製品表面に残る表面疵についての品質要求は、近年、一段と厳しくなってきているため、圧延変形に伴う表面疵の発生を防止することが極めて重要である。 In the case of wire rods and bar steels, cold processing with a high degree of processing is often performed in subsequent processing steps, and in particular, the quality requirements for surface defects remaining on the product surface have become more severe in recent years. It is extremely important to prevent the occurrence of surface flaws.
本発明では、線材、棒鋼、角材(角鋼)などの条材の熱間孔型圧延工程で、各圧延方式の孔型内での圧延変形による圧延材周方向の圧縮ひずみを−0,5以上となる孔型スケジュールで熱間圧延を行うようにしたので、圧延変形によって後続の加工工程での加工欠陥を引き起こすような問題となる表面疵が発生せず、近年の厳しい表面疵保証にも対応できる表面品質の優れた条材製品を提供することが可能となる。 In the present invention, in the hot hole rolling process for strips such as wire rods, bar steel, square bars (square bars), etc., the compression strain in the circumferential direction of the rolled material due to rolling deformation in the hole molds of each rolling method is −0.5 or more. Since the hot rolling is performed in the hole type schedule, the surface defects that cause processing defects in subsequent processing steps due to rolling deformation do not occur, and the recent severe surface defects guarantee is also supported. It is possible to provide a strip product with excellent surface quality.
以下、本発明の実施形態を実施例に基づいて詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail based on examples.
表2は、115mm角の素材ピレット(鋼種SCM435)から製品寸法φ17mmの線材を15パス(孔型)で圧延するための実機圧延機列の各ロールスタンド(以下スタンドと記す)に設けた孔型を示したものである。粗圧延機列のNo.1〜No.7スタンドでは、「ボックス−オーバル(楕円)」、「オーバル−丸」および「丸−オーバル」、「オーバル−角」および「角−オーバル」の各圧延方式が、中間圧延機列のNo.9〜No.11スタンドでは、「オーバル−角」および「角−オーバル」圧延方式が、仕上げ圧延機列のNo.12〜No.15スタンドでは、「オーバル−丸」および「丸−オーバル」圧延方式がそれぞれ用いられている。FEMを用いて各圧延方式の孔型における圧延変形による圧延材周方向の圧縮ひずみの最小値を求めたところ、No.11スタンドの角(23mm角)孔型での圧延変形でのみ、圧延材周方向の圧縮ひずみの最小値が−0.5以上でないことが判明した。このため、前記圧縮ひずみが−0.5以上となるようにNo.11スタンドの角(23mm角)孔型の溝底部Rを大きくする孔型修正を行った。このように、「角−オーバル」圧延方式のみならず、「オーバル−角」圧延方式でも圧延材周方向の圧縮ひずみが−0.5以上でないことがある。なお、一般に「丸−オーバル」および「オーバル−丸」圧延方式では圧延材周方向の圧縮ひずみに問題が生じることはほとんどない。 Table 2 shows the hole types provided in each roll stand (hereinafter referred to as a stand) of an actual rolling mill row for rolling a wire rod having a product size of φ17 mm in 15 passes (hole type) from a 115 mm square material billet (steel grade SCM435). Is shown. In the No. 1 to No. 7 stand of the rough rolling mill, each rolling of “box-oval (elliptical)”, “oval-round” and “round-oval”, “oval-angle” and “square-oval” For the No. 9 to No. 11 stand of the intermediate rolling mill row, the “Oval-Square” and “Square-Oval” rolling methods are used for the No. 12 to No. 15 stand of the finish rolling mill row. The “round” and “round-oval” rolling systems are used respectively. When the minimum value of the compressive strain in the circumferential direction of the rolled material due to rolling deformation in the hole mold of each rolling method was determined using FEM, the rolled material was obtained only in the rolling deformation of the No. 11 stand corner (23 mm square) hole mold. It was found that the minimum value of the circumferential compressive strain was not more than -0.5. For this reason, the hole type correction which enlarged the corner | angular (23 mm square) hole type groove bottom part R of No. 11 stand was performed so that the said compression strain might be more than -0.5. Thus, not only the “square-oval” rolling method, but also the “oval-square” rolling method, the compressive strain in the circumferential direction of the rolled material may not be −0.5 or more. In general, in the “round-oval” and “oval-round” rolling methods, there is almost no problem with the compressive strain in the circumferential direction of the rolled material.
前記115mm角素材ビレットに表面疵が残存しないように鋼片手入れを行い、加熱炉で1050℃程度の熱間圧延温度域に加熱した後、表2に示した圧延方式でφ17mmのコイル線材に仕上げた。このコイル線材の先後端部の寸法不良部分を切り捨てた後、改めてコイル線材の先端部、後端部および中央部からサンプリングして表面疵検査を実施したところ、深さ0.02mmを超える表面疵は認められなかった。 The steel billet is cleaned so that no surface flaws remain on the 115 mm square billet, heated to a hot rolling temperature range of about 1050 ° C. in a heating furnace, and then finished into a φ17 mm coil wire by the rolling method shown in Table 2. It was. After cutting off the defective portion at the front and rear ends of the coil wire, the surface flaw inspection was performed by sampling again from the front end, the rear end and the center of the coil wire, and the surface flaw exceeding a depth of 0.02 mm was obtained. Was not recognized.
表3は、前記115mm角素材ビレットからのφ17mmのコイル線材への圧延の際に、表2に示したNo.11スタンドの角(23mm角)での圧延変形による周方向の圧縮ひずみの最小値を、この角孔型の溝底部Rを変更して変化させた場合の製品表面疵の発生状況を、疵深さ0.02mmを境界として判定した結果である。表中の×は深さ0.02mmを超える表面疵が認められた場合、○は深さ0.02mm以下の表面疵が認められた場合、◎は表面疵の発生が認められなかった場合をそれぞれ示している。表3から、圧延変形による周方向圧縮ひずみが−0.5未満の場合には、深さが0.02mmを超える表面疵の発生が認められるのに対し、前記圧縮ひずみが−0.5以上になると深さが0.02mmを超える表面疵の発生は認められず、さらにこの圧縮ひずみが−0.35以上になると圧延変形による表面疵の発生が認められなくなることがわかる。 Table 3 shows the minimum value of the compressive strain in the circumferential direction due to rolling deformation at the corner (23 mm square) of No. 11 stand shown in Table 2 when rolling from the 115 mm square billet to a φ17 mm coil wire rod. Is the result of determining the occurrence state of product surface wrinkles when the square hole type groove bottom portion R is changed, with a wrinkle depth of 0.02 mm as a boundary. X in the table indicates that surface defects exceeding a depth of 0.02 mm are observed, ○ indicates that surface defects of a depth of 0.02 mm or less are observed, and ◎ indicates that generation of surface defects is not observed. Each is shown. From Table 3, when the circumferential compressive strain due to rolling deformation is less than -0.5, the occurrence of surface defects with a depth exceeding 0.02 mm is observed, whereas the compressive strain is -0.5 or more. It can be seen that generation of surface flaws with a depth exceeding 0.02 mm is not observed, and generation of surface flaws due to rolling deformation is not observed when this compressive strain is -0.35 or more.
このように、例えば、表2に示した各圧延方式の孔型での圧延変形による周方向の圧縮ひずみをFEMなどの変形解析手段を用いて算出し、この圧縮ひずみが−0.5未満の場合には、前述のように、溝底部Rを大きくするなどの孔型形状を変更して、圧延に使用するすべての孔型での圧延材周方向の圧縮ひずみを−0.5以上にすることにより、圧延変形に伴う表面疵深さを0.02mm以下に抑制することが可能となる。なお、本実施形態では、すべての孔型で周方向の圧縮ひずみがすべて−0.5以上になるように、望ましくは−0.35以上になるように型形状の修正などにより、各スタンドへの減面率の配分を適正化するもので、原則としてパス数の増加を必要とするものではない。 Thus, for example, the compressive strain in the circumferential direction due to the rolling deformation in each rolling method shown in Table 2 is calculated using a deformation analysis means such as FEM, and this compressive strain is less than −0.5. In this case, as described above, the shape of the hole shape such as increasing the groove bottom R is changed so that the compressive strain in the circumferential direction of the rolled material in all the hole shapes used for rolling becomes −0.5 or more. Thereby, it becomes possible to suppress the surface wrinkle depth accompanying rolling deformation to 0.02 mm or less. In the present embodiment, each stand is fixed to each stand by correcting the shape of the mold so that all the compressive strains in the circumferential direction are −0.5 or more, preferably −0.35 or more. This is to optimize the distribution of the area reduction rate, and in principle, does not require an increase in the number of passes.
条材圧延のパススケジュールは、表2に一例を示したように、ボックス→ボックス、オーバル(楕円)→丸→オーバル、菱→角→菱等の圧延方式(孔型系列)があり、さらに各圧延方式においてもそれぞれ孔型形状を規定するため、パススケジュールは無限といえるほど多数存在し得るが、本発明は圧延周方向の圧縮ひずみが−0.5以上、望ましくは−0.35以上となるように各圧延方式における孔型形状を設計することにより、どのようなパススケジュールにも対応できるものである。 As shown in Table 2, the rolling schedule of strip material has rolling methods (hole series) such as box → box, oval (oval) → circle → oval, diamond → square → diamond, etc. Even in the rolling method, since the hole shape is defined, there can be an infinite number of pass schedules. However, in the present invention, the compressive strain in the rolling circumferential direction is −0.5 or more, preferably −0.35 or more. Thus, any pass schedule can be accommodated by designing the hole shape in each rolling method.
1…オーバル(楕円)孔型
1a…オーバル圧延材
2…角鋼材
3…入側圧延材
4…孔型
5…出側圧延材
DESCRIPTION OF SYMBOLS 1 ... Oval (ellipse) hole type |
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006228216A JP4130924B2 (en) | 2005-08-31 | 2006-08-24 | Hot rolling method for strip |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005252367 | 2005-08-31 | ||
JP2006228216A JP4130924B2 (en) | 2005-08-31 | 2006-08-24 | Hot rolling method for strip |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007090429A true JP2007090429A (en) | 2007-04-12 |
JP4130924B2 JP4130924B2 (en) | 2008-08-13 |
Family
ID=37976703
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006228216A Active JP4130924B2 (en) | 2005-08-31 | 2006-08-24 | Hot rolling method for strip |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4130924B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009250829A (en) * | 2008-04-08 | 2009-10-29 | Radioactive Waste Management Funding & Research Center | Method for simple three-dimensional analysis of welding deformation and residual stress |
JP2011230130A (en) * | 2010-04-23 | 2011-11-17 | Kobe Steel Ltd | Method of rolling bar steel |
CN112044950A (en) * | 2020-08-13 | 2020-12-08 | 西北工业大学 | 3D-SPD (three-dimensional-Surge protective device) forming method for large-size superfine pearlite medium-carbon steel bar |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4658884B2 (en) * | 2006-09-13 | 2011-03-23 | 株式会社神戸製鋼所 | Rolling method for steel strip |
-
2006
- 2006-08-24 JP JP2006228216A patent/JP4130924B2/en active Active
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009250829A (en) * | 2008-04-08 | 2009-10-29 | Radioactive Waste Management Funding & Research Center | Method for simple three-dimensional analysis of welding deformation and residual stress |
JP2011230130A (en) * | 2010-04-23 | 2011-11-17 | Kobe Steel Ltd | Method of rolling bar steel |
CN112044950A (en) * | 2020-08-13 | 2020-12-08 | 西北工业大学 | 3D-SPD (three-dimensional-Surge protective device) forming method for large-size superfine pearlite medium-carbon steel bar |
Also Published As
Publication number | Publication date |
---|---|
JP4130924B2 (en) | 2008-08-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7174761B2 (en) | Method of manufacturing a seamless pipe | |
JP4130924B2 (en) | Hot rolling method for strip | |
JP2019038035A (en) | Hat-shaped steel sheet pile, manufacturing method of hat-shaped steel sheet pile, and manufacturing facility therefor | |
US10730087B2 (en) | Method for producing H-shaped steel and H-shaped steel product | |
JP2007061908A (en) | Method for hot-rolling bar material | |
JP4456586B2 (en) | Hot rolling method for strip | |
KR101434810B1 (en) | Mandrel mill and method for manufacturing seamless pipe | |
JP2007290006A (en) | Method of rolling billet | |
JP4917980B2 (en) | Hot rolling method for wire and bar | |
JP6417991B2 (en) | Shaped steel edger rolling mill with flange | |
JP6680284B2 (en) | Rolling mill leveling setting method, rolling mill leveling setting device, and steel plate manufacturing method | |
JP4713349B2 (en) | Manufacturing method of multiple bars with different diameters | |
US20200391261A1 (en) | Method for producing h-shaped steel | |
US20190022719A1 (en) | Method for producing h-shaped steel | |
JP4284918B2 (en) | Method of manufacturing base material for drawing | |
CN115591951B (en) | A method for identifying the risk of hot rolling sickle bending and cold rolling cavity opening accidents | |
JP2006341267A (en) | Free forging method and stepped anvil for free forging | |
EP3388160A1 (en) | Method for producing steel h-beam, and rolling mill | |
KR19990052833A (en) | Wire rod rolled ball roll and rolling method using the same | |
EP3610959A1 (en) | H-shaped steel manufacturing method | |
JP4871250B2 (en) | Strip rolling method | |
RU2346762C1 (en) | Method for rolling of sectional bars | |
US11292039B2 (en) | Method for producing H-shaped steel | |
JP3673434B2 (en) | Hot finish rolling method for wire and bar | |
US20190023307A1 (en) | Method for producing h-shaped steel and h-shaped steel product |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080215 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080219 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080414 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080520 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080526 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4130924 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110530 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110530 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120530 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120530 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130530 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140530 Year of fee payment: 6 |