JP2007090397A - Lap fillet welding method - Google Patents
Lap fillet welding method Download PDFInfo
- Publication number
- JP2007090397A JP2007090397A JP2005284199A JP2005284199A JP2007090397A JP 2007090397 A JP2007090397 A JP 2007090397A JP 2005284199 A JP2005284199 A JP 2005284199A JP 2005284199 A JP2005284199 A JP 2005284199A JP 2007090397 A JP2007090397 A JP 2007090397A
- Authority
- JP
- Japan
- Prior art keywords
- welding
- laser
- laser beam
- metal arc
- lap fillet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000003466 welding Methods 0.000 title claims abstract description 136
- 238000000034 method Methods 0.000 title claims abstract description 22
- 239000002184 metal Substances 0.000 claims abstract description 42
- 238000010891 electric arc Methods 0.000 claims abstract description 6
- 239000002131 composite material Substances 0.000 claims description 5
- 230000001678 irradiating effect Effects 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 38
- 229910000831 Steel Inorganic materials 0.000 description 9
- 239000011324 bead Substances 0.000 description 9
- 239000010959 steel Substances 0.000 description 9
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 230000007547 defect Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 230000003068 static effect Effects 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000002893 slag Substances 0.000 description 3
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 2
- 229910000963 austenitic stainless steel Inorganic materials 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009661 fatigue test Methods 0.000 description 2
- 229910000734 martensite Inorganic materials 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000013441 quality evaluation Methods 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000010979 ruby Substances 0.000 description 1
- 229910001750 ruby Inorganic materials 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/346—Working by laser beam, e.g. welding, cutting or boring in combination with welding or cutting covered by groups B23K5/00 - B23K25/00, e.g. in combination with resistance welding
- B23K26/348—Working by laser beam, e.g. welding, cutting or boring in combination with welding or cutting covered by groups B23K5/00 - B23K25/00, e.g. in combination with resistance welding in combination with arc heating, e.g. TIG [tungsten inert gas], MIG [metal inert gas] or plasma welding
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Arc Welding In General (AREA)
- Butt Welding And Welding Of Specific Article (AREA)
- Laser Beam Processing (AREA)
Abstract
Description
本発明は、レーザ溶接とガスメタルアーク溶接の複合溶接からなる重ね隅肉溶接方法に関し、優れた疲労特性が要求される自動車用薄鋼板の重ね隅肉溶接方法として好適なものに関する。 The present invention relates to a lap fillet welding method composed of a composite welding of laser welding and gas metal arc welding, and more particularly to a lap fillet welding method for a thin steel sheet for automobiles that requires excellent fatigue characteristics.
溶接構造物の強度を増加させるために強度の高い材料を使用するが,疲労強度について見てみると,溶接構造物の疲労強度は溶接継手に支配され,材料強度に依らず疲労強度はほぼ一定値となるため,強い材料を使用しても疲労強度は向上しない。 High strength materials are used to increase the strength of the welded structure. Looking at the fatigue strength, the fatigue strength of the welded structure is dominated by the welded joint, and the fatigue strength is almost constant regardless of the material strength. Therefore, fatigue strength does not improve even if a strong material is used.
アーク溶接継手に繰返し応力或いは荷重が負荷される場合,疲労亀裂は溶接止端部から発生する。溶接止端部は形状的に不連続のため応力が集中するためである。 When repeated stress or load is applied to the arc welded joint, fatigue cracks occur from the weld toe. This is because the weld toe portion is discontinuous in shape and stress is concentrated.
例えば、図4は重ね隅肉溶接部の断面形状を示し、上板10と下板20からなる隅肉溶接部でのど厚a等で規定される溶接金属30の形状が不適切な場合は、継手強度が低下する。
溶接継手の疲労強度は,溶接部近傍の引張残留応力および溶接止端部の形状に支配される。
For example, FIG. 4 shows a cross-sectional shape of a lap fillet weld, and if the shape of the
The fatigue strength of welded joints is governed by the tensile residual stress near the weld and the shape of the weld toe.
溶接継手の疲労強度を向上させる手法として,溶接部の近傍をショットブラスト処理および加熱して引張残留応力を軽減する方法(非特許文献1),オーステナイト系ステンレス製の溶接ワイヤを用いて溶接部をマルテンサイト組織の膨張を利用して引張残留応力を軽減する方法(特許文献1)ならびに溶接止端部をTIGアーク等で再溶融させて平坦化させる方法等,多くの手法が提案されている。
しかしながら,上述した手法は溶接した後にもう一工程が必要で,工数が増加し生産性の低下およびコスト高をもたらす。また,オーステナイト系ステンレス製の溶接ワイヤを用いると溶接部が硬くて脆いマルテンサイト組織になるため伸びが低く加工性が劣り、溶接ワイヤも高価である。 However, the above-described method requires another process after welding, which increases man-hours and leads to lower productivity and higher costs. In addition, when a welding wire made of austenitic stainless steel is used, the welded portion becomes a hard and brittle martensite structure, so that the elongation is low and the workability is inferior, and the welding wire is also expensive.
本発明は,このような要望に答えるべく開発したものであり,レーザとアークを併用した溶接法による薄鋼板の隅肉溶接において溶接止端部を平滑化させ疲労強度の優れたビードを得る、生産性およびコスト的に優れた溶接方法を提供することを目的とするものである。 The present invention was developed to answer such a demand, and in the fillet welding of a thin steel plate by a welding method using both a laser and an arc, the weld toe is smoothed to obtain a bead with excellent fatigue strength. An object of the present invention is to provide a welding method excellent in productivity and cost.
本発明の課題は以下の手段により達成可能である。
1.先行溶接をレーザ溶接、後行溶接をガスメタルアーク溶接とする複合溶接による重ね隅肉溶接方法において、前記レーザ溶接による溶融池が凝固する前に、該溶融池に前記ガスメタルアーク溶接のアーク放電を行い、
前記レーザ溶接におけるレーザのビーム径D(mm)、レーザ出力P(W)および溶接速度v (m/min)が下式の関係を満足することを特徴とする重ね隅肉溶接方法。
120<P/(S・v2)<170 ・・・・・ (1)
ここで、S=π(D/2)2でレーザビームの照射面積を示す。
The object of the present invention can be achieved by the following means.
1. In the lap fillet welding method by composite welding in which the preceding welding is laser welding and the subsequent welding is gas metal arc welding, the arc discharge of the gas metal arc welding is performed on the molten pool before the molten pool is solidified by the laser welding. And
A laser beam diameter D (mm), laser output P (W), and welding speed v (m / min) in the laser welding satisfy the following relationship:
120 <P / (S ・ v 2 ) <170 (1)
Here, the irradiation area of the laser beam is indicated by S = π (D / 2) 2 .
2.前記レーザ溶接におけるレーザビーム中心の狙い位置は,重ね隅肉継手の上板エッジ部から溶接線直角方向に,レーザビーム径をDとして0mm以上、D×3/4mm以下の範囲で、前記ガスメタルアーク溶接のワイヤ狙い位置は、レーザビーム中心の狙い位置より後方で、溶接線平行方向に0.5mm以上,4mm以下の範囲にあることを特徴とする1に記載する重ね隅肉溶接方法。 2. In the laser welding, the target position of the laser beam center is in the range perpendicular to the welding line from the upper plate edge of the lap fillet joint, with the laser beam diameter D being in the range of 0 mm or more and D × 3/4 mm or less. 2. The lap fillet welding method according to 1, wherein the target position of the wire for arc welding is in the range of 0.5 mm or more and 4 mm or less in the direction parallel to the welding line, behind the target position of the center of the laser beam.
3.前記レーザ溶接におけるレーザの照射角度および前記ガスメタルアーク溶接のワイヤ狙い角度θ(deg.)を,溶接方向に垂直な面内において被溶接材の法線方向に対して 5.0≦θ≦40,下板側に傾斜させることを特徴とする1または2に記載の重ね隅肉溶接方法。 3. The laser irradiation angle in the laser welding and the wire aiming angle θ (deg.) In the gas metal arc welding are 5.0 ≦ θ ≦ 40 with respect to the normal direction of the workpiece in a plane perpendicular to the welding direction. The lap fillet welding method according to 1 or 2, wherein the method is inclined to the plate side.
本発明によれば自動車などに用いられる薄鋼板の隅肉溶接において溶接止端部が平滑化し、疲労強度の優れたビードが得られ産業上極めて有用である。 According to the present invention, a weld toe is smoothed in fillet welding of a thin steel plate used in an automobile or the like, and a bead having excellent fatigue strength is obtained, which is extremely useful industrially.
本発明は、重ね隅肉溶接を、先行溶接をレーザ溶接、後行溶接をガスメタルアーク溶接とする複合溶接とし、レーザ溶接後、ガスメタルアーク溶接を行うタイミングおよび個々の溶接条件を最適化することを特徴とする。以下の説明において重ね隅肉溶接継手で上側となる被溶接材を上板、下側となるものを下板とする。 In the present invention, the lap fillet welding is a composite welding in which the preceding welding is laser welding and the subsequent welding is gas metal arc welding, and the timing and individual welding conditions for performing the gas metal arc welding after the laser welding are optimized. It is characterized by that. In the following description, the material to be welded on the upper side of the lap fillet welded joint is the upper plate, and the material to be the lower side is the lower plate.
本発明に係る重ね隅肉溶接では、先行溶接をレーザ溶接、後行溶接をガスメタルアーク溶接とし、ガスメタルアーク溶接は、先行するレーザ溶接による溶融池が凝固する前に、該溶融池に前記ガスメタルアーク溶接のアーク放電を行う。レーザビームの照射によって形成された溶融池にアークを照射すると,アーク放電がレーザ照射部に安定に生成・維持される。 In the lap fillet welding according to the present invention, the preceding welding is laser welding, the subsequent welding is gas metal arc welding, and the gas metal arc welding is performed before the molten pool is solidified by the preceding laser welding. Performs arc discharge for gas metal arc welding. When the molten pool formed by laser beam irradiation is irradiated with an arc, arc discharge is stably generated and maintained in the laser irradiation section.
アーク溶接によって供給された溶融金属は,レーザ溶接によって形成された溶融・加熱領域により冷却速度が緩和され溶接止端部が平坦化する。尚、前記アーク放電は溶融池が含まれる領域に照射されれば良く溶融池に限定しない。 The molten metal supplied by arc welding relaxes the cooling rate by the melting / heating region formed by laser welding, and the weld toe becomes flat. The arc discharge is not limited to the molten pool as long as it is applied to the region including the molten pool.
レーザ溶接はレーザのビーム径D(mm)、レーザ出力P(W)および溶接速度v(m/min)として,式(1)の関係を満足するように設定すると良好な溶接部が得られ好ましい。
120<P/(S・v2)<170 ・・・・・ (1)
ここで、S=π(D/2)2でレーザビームの照射面積を示す。
In laser welding, it is preferable to obtain a good weld by setting the laser beam diameter D (mm), laser output P (W), and welding speed v (m / min) so as to satisfy the relationship of equation (1). .
120 <P / (S ・ v 2 ) <170 (1)
Here, the irradiation area of the laser beam is indicated by S = π (D / 2) 2 .
P/(S・v2)が120以下であると,レーザのパワー密度が低過ぎて下板および上板が加熱できず,アークが不安定になると同時に,溶融金属と下板および上板との馴染みが悪く、特に溶接止端部が平坦化しない。 If P / (S · v 2 ) is 120 or less, the power density of the laser is too low to heat the lower and upper plates, the arc becomes unstable, and at the same time, the molten metal and the lower and upper plates The welding toe is not flattened.
一方,P/(S・v2)が170を超えると,レーザのパワー密度が過大となり,下板の溶け込みが大き過ぎて貫通する。更に,上板も過大に溶融するため溶接部ののど厚が小さくなり静的継手強度が低くなる。 On the other hand, when it exceeds P / (S · v 2) is 170, the power density of the laser becomes excessive, penetration of the lower plate penetrates too large. Furthermore, since the upper plate is melted excessively, the throat thickness of the welded portion is reduced and the strength of the static joint is reduced.
図1は、レーザビーム、ガスメタルアーク溶接ワイヤの重ね隅肉継手に対する、好ましい狙い位置を説明する模式図で、図において、1は上板、2は下板、3はレーザビームのねらい位置、4はガスメタルアーク溶接のアーク照射のねらい位置、5は溶接進行方向、11は上板1のエッジ部、Dはレーザビーム径を示す。
FIG. 1 is a schematic diagram for explaining a preferred target position for a lap fillet joint of a laser beam and a gas metal arc welding wire. In the figure, 1 is an upper plate, 2 is a lower plate, 3 is a target position of the laser beam,
レーザ溶接におけるレーザビームの狙い位置3はレーザビーム中心(図中、黒点で表示)で,重ね隅肉継手の上板エッジ部11から溶接線5と直角方向に,0mm以上、レーザビーム径D ×3/4mm以下の範囲(図中 l1と表示)で、前記ガスメタルアーク溶接のアーク照射のねらい位置4はワイヤ狙い位置(図中、黒点で表示)で、レーザビームの狙い位置3の後方で、溶接線平行方向に0.5mm以上,4mm以下の範囲(図中 l2と表示)とする。
In laser welding, the target position 3 of the laser beam is the center of the laser beam (indicated by a black dot in the figure), 0 mm or more in the direction perpendicular to the
レーザおよびガスメタルアーク溶接を照射する位置が,上板端部から上板側に,0mm未満であると上板が溶け過ぎ,溶接部の脚長が小さくなり継手強度が低下する。一方,上板端部から上板の反対側にD×3/4mmを超えると,接合部が上板端部から離れ過ぎ,のど厚は小さくなり溶接継手強度が低下する。 If the laser and gas metal arc welding position is less than 0mm from the upper plate edge to the upper plate, the upper plate will melt too much, and the leg length of the weld will be reduced, reducing the joint strength. On the other hand, if it exceeds D × 3 / 4mm from the upper plate end to the opposite side of the upper plate, the joint will be too far from the upper plate end, the throat thickness will decrease, and the weld joint strength will decrease.
上述したように、レーザビーム中心とワイヤ狙い位置を規定すると、溶接線に平行に、すなわち、上板エッジ部11に平行に両者が一直線上となり、上板を多量に溶融させることなく重ね隅肉継手が得られて好ましい。 As described above, when the laser beam center and the wire aiming position are defined, they are aligned in parallel with the weld line, that is, in parallel with the upper plate edge portion 11, and without overlapping the upper plate in large quantities. A joint is obtained and preferable.
図2は好ましい、レーザビームの照射角度およびガスメタルアーク溶接ワイヤの狙い角度を説明する図で,図において6はレーザビーム中心軸およびガスメタルアーク溶接ワイヤ中心を示す。
FIG. 2 is a diagram for explaining a preferable irradiation angle of the laser beam and a target angle of the gas metal arc welding wire. In FIG. 2,
レーザビーム中心軸およびガスメタルアーク溶接ワイヤ中心(いずれも図中、符号6)は溶接方向に垂直な面内において被溶接材(図では下板)の法線方向に対して 5.0≦θ≦40,下板側に角度θだけ傾斜させる。
The center axis of the laser beam and the center of the gas metal arc welding wire (
角度θが,溶接方向に垂直な面内(溶接方向に垂直で鋼板面の法線方向)において5(deg.)未満の場合には,溶接ビードのフランク角(図4参照)が急な角度になり疲労強度の低下やスラグ巻込み等の溶接欠陥を発生することとなる。 If the angle θ is less than 5 (deg.) In the plane perpendicular to the welding direction (perpendicular to the welding direction and normal to the steel plate surface), the flank angle of the weld bead (see Fig. 4) is a steep angle Therefore, a welding defect such as a decrease in fatigue strength and slag entrainment occurs.
一方,角度θが,上記面内に40(deg.)を超える場合には,溶接ビードののど厚が不足するため疲労強度の低下はもとより静的継手強度も低下するようになる。 On the other hand, when the angle θ exceeds 40 (deg.) In the above-mentioned plane, the weld bead has a insufficient throat thickness, so that not only the fatigue strength but also the static joint strength is lowered.
従って,重ね隅肉溶接継手に欠陥が少なく,静的および疲労強度の優れた溶接ビードを得るためには,角度θ(deg.)を 5.0≦θ≦40とすることが好ましい。 Therefore, in order to obtain a weld bead with few defects in the lap fillet welded joint and excellent static and fatigue strength, it is preferable to set the angle θ (deg.) To 5.0 ≦ θ ≦ 40.
本発明のレーザ発振器は特に規定しないが,溶接に用いるため出力200ワット以上,好適にはキロワットクラスの出力とすることが好ましい。レーザの種類としては,レーザ光生成媒体としてYAGロッドを用いてハロゲンランプ等でレーザ光を励起するタイプや,レーザダイオード(LD)でレーザ光を励起するタイプのYAGレーザが好ましい。その他に炭酸ガスレーザ,スラブレーザ,ルビーレーザ,エキシマレーザ,半導体レーザ,その他のものを用いることができる。 Although the laser oscillator of the present invention is not particularly defined, it is preferably set to an output of 200 watts or more, preferably a kilowatt class for use in welding. As the type of laser, a YAG laser that excites laser light with a halogen lamp or the like using a YAG rod as a laser light generation medium or a type that excites laser light with a laser diode (LD) is preferable. In addition, carbon dioxide laser, slab laser, ruby laser, excimer laser, semiconductor laser, and others can be used.
光学系には,変向用反射ミラーと数枚の正負の集束レンズを組み合わせた光学系を備えるものが好ましいが、レンズ系を用いずに凹面鏡と凸面鏡の組み合わせだけでレーザ光を集束するようにしてもよい。 It is preferable that the optical system includes an optical system in which a deflecting reflecting mirror and several positive and negative focusing lenses are combined. However, laser light is focused only by a combination of a concave mirror and a convex mirror without using a lens system. May be.
ガスメタルアーク溶接装置は,金属薄板の溶接を対象とするため,溶接用ワイヤは直径1.2mm以下の細径ワイヤを用いるのが好ましい。シールドガスには,アークの安定性と溶接金属の酸化防止とを同時に達成するために,アルゴンガス等の不活ガスを用いることが好ましいが,アルゴンガス中に炭酸ガスを10〜100%の範囲で混合させたガスおよびアルゴンガス中に水素ガス或いはヘリウムガスを2〜20%の範囲で混合させたガスを用いることも可能である。以下、本発明の実施例について説明する。 Since the gas metal arc welding apparatus is intended for welding thin metal plates, it is preferable to use a thin wire with a diameter of 1.2 mm or less as the welding wire. In order to achieve both arc stability and prevention of oxidation of the weld metal, it is preferable to use an inert gas such as argon gas as the shielding gas, but carbon dioxide is contained in the argon gas in the range of 10 to 100%. It is also possible to use a gas in which hydrogen gas or helium gas is mixed in the range of 2 to 20% in the gas mixed in the above and argon gas. Examples of the present invention will be described below.
上板厚が1.6mmおよび下板厚2.0mmの軟鋼板を用いて,両者間に隙間を設けずに隅肉継手を形成し、溶接を行った。隅肉溶接は,先行溶接をYAGレーザ溶接、後行溶接をガスメタルアーク溶接とする複合溶接で行った。 Fillet joints were formed and welded using mild steel plates with an upper plate thickness of 1.6 mm and a lower plate thickness of 2.0 mm without any gaps between them. Fillet welding was performed by composite welding with YAG laser welding as the pre-welding and gas metal arc welding as the subsequent welding.
YAGレーザ溶接およびガスメタルアーク溶接は,レーザビーム中心位置とワイヤ中心の間隔は1mm、照射角度は,溶接方向に垂直に鋼板面の法線方向に対して角度θ(deg.)を20度として溶接を行った。YAGレーザ出力Pは,加工点で1kw、2kWおよび3kWに設定した。ビーム径D(mm),溶接速度v(m/min)を変化させた。 In YAG laser welding and gas metal arc welding, the distance between the laser beam center position and the wire center is 1 mm, and the irradiation angle is perpendicular to the welding direction and the angle θ (deg.) Is 20 degrees with respect to the normal direction of the steel plate surface. Welding was performed. The YAG laser output P was set to 1kw, 2kW and 3kW at the machining point. The beam diameter D (mm) and welding speed v (m / min) were varied.
得られた溶接部の品質評価は,シェンク型の片振り曲げ疲労試験を行い。破断寿命1000万回で破断しない最大応力範囲を疲労限度σWと定義し,該疲労限度σWが200Mpaを超える値となる条件を,良好と判定した。 For the quality evaluation of the welded part, the Schenk-type swing swing fatigue test was conducted. The maximum stress range that does not break at a breaking life of 10 million times was defined as the fatigue limit σW, and the condition under which the fatigue limit σW exceeded 200 MPa was judged as good.
表1に試験条件および得られた疲労強度を、図3に試験結果を図示する。120<P/(S・v2<170を満足する範囲において、疲労限度σWが200Mpaを超え、本発明により、良好な疲労特性を有する隅肉溶接継手が得られることが確認された。ここでS=π(D/2)2はレーザビーム照射面積を示す。 Table 1 shows the test conditions and the obtained fatigue strength, and FIG. 3 shows the test results. In a range where 120 <P / (S · v 2 <170 is satisfied, the fatigue limit σW exceeds 200 MPa, and it was confirmed that a fillet welded joint having good fatigue characteristics can be obtained by the present invention. S = π (D / 2) 2 indicates the laser beam irradiation area.
レーザの狙い位置とガスメタルアークの狙い位置の溶接部品質に及ぼす影響およびレーザの照射角度の,疲労強度に及ぼす影響を調査した。 The effects of laser aiming position and gas metal arc aiming position on weld quality and the effect of laser irradiation angle on fatigue strength were investigated.
上下の板厚がそれぞれ,0.8と1.6mmおよび1.6と2.0mm軟鋼板鋼板を用いて,隙間をゼロにして重ね隅肉溶接を行った。溶接は,YAGレーザ溶接とガスメタルアーク溶接を複合化した本発明に係る溶接法で行った。 Lap fillet welding was performed using 0.8 and 1.6 mm and 1.6 and 2.0 mm mild steel plates with upper and lower plate thicknesses with zero gap. Welding was performed by the welding method according to the present invention in which YAG laser welding and gas metal arc welding were combined.
溶接条件は,レーザ狙い位置とガスメタルアーク溶接の狙い位置を0.0mmから5.0mmまで変化させ,レーザ照射角度を0度から50度まで変化させ,レーザ出力1,3kWで行った。 The welding conditions were as follows: the laser target position and the gas metal arc welding target position were changed from 0.0 mm to 5.0 mm, the laser irradiation angle was changed from 0 to 50 degrees, and the laser output was 1,3 kW.
溶接部の品質評価は,シェンク型の片振り曲げ疲労試験を行い。破断寿命1000万回で破断しない最大応力範囲を疲労限度σWと定義し,この値を求めた。評価結果は,疲労限度が200Mpaを超える値となる条件を,良好と判定した。 For the quality evaluation of welded parts, a Schenck-type swing-bending fatigue test was performed. The maximum stress range where the rupture life was 10 million times and did not rupture was defined as the fatigue limit σW, and this value was obtained. As a result of the evaluation, the condition where the fatigue limit exceeded 200 MPa was judged as good.
表2に、試験条件を示す。実験結果から,レーザビームとアークの照射間隔は,0.5mm以上,4mm以下の範囲で,かつ,レーザおよびガスメタルアーク溶接の照射角度は,溶接方向に垂直で重ね隅肉鋼板面の法線方向に対して角度θ(deg.)を 5.0≦θ≦40の範囲において、疲労限度が200MPaを超える値が得られた。 Table 2 shows the test conditions. From the experimental results, the irradiation interval of the laser beam and the arc is in the range of 0.5 mm or more and 4 mm or less, and the irradiation angle of the laser and gas metal arc welding is perpendicular to the welding direction and the normal direction of the stack fillet steel plate surface In contrast, the fatigue limit exceeded 200 MPa when the angle θ (deg.) Was in the range of 5.0 ≦ θ ≦ 40.
レーザの狙い位置とガスメタルアークの狙い位置が4mmを超えて設定された場合には,両者の距離が離れ過ぎているため,レーザ照射によるアークの安定化および集中効果が僅かに低下して,溶接欠陥の発生個数が増加するが,実用上支障は無い。 When the laser target position and the gas metal arc target position are set to exceed 4 mm, the distance between the two is too far, and the effect of stabilizing and concentrating the arc by laser irradiation is slightly reduced. Although the number of weld defects is increased, there is no practical problem.
一方,レーザの狙い位置とガスメタルアークの狙い位置が0.5mm未満で設定された場合には,アーク溶接による溶滴がレーザと干渉して溶接ビードが不連続になり好ましくない。 On the other hand, if the laser target position and the gas metal arc target position are set to less than 0.5 mm, the weld bead becomes discontinuous because the droplets from the arc welding interfere with the laser.
従って,健全な溶接部を得るためには、レーザの狙い位置とガスメタルアークの狙い位置の距離を0.5mm以上,4mm以下に設定することが好ましい。 Therefore, in order to obtain a sound weld, it is preferable to set the distance between the laser target position and the gas metal arc target position to 0.5 mm or more and 4 mm or less.
レーザおよびガスメタルアーク溶接の照射角度が,溶接方向に垂直に鋼板面の法線方向に対して0 deg.の場合には,溶接ビードのトウ角が30度を超える急な角度になり疲労強度の低下やスラグ巻込み等の溶接欠陥を発生する。 When the irradiation angle of laser and gas metal arc welding is 0 deg. Perpendicular to the welding direction and normal to the steel sheet surface, the toe angle of the weld bead becomes a steep angle exceeding 30 degrees, resulting in fatigue strength. Welding defects such as slag entrainment and slag entrainment occur.
一方,レーザおよびガスメタルアーク溶接の照射角度が,溶接方向に垂直に鋼板面の法線方向に対して40 deg.を超える場合には,溶接ビードののど厚が不足するため疲労強度の低下はもとより静的継手強度も低下するようになる。 On the other hand, when the irradiation angle of laser and gas metal arc welding exceeds 40 ° with respect to the normal direction of the steel sheet surface perpendicular to the welding direction, the fatigue strength decreases because the throat thickness of the weld bead is insufficient. Of course, the static joint strength also decreases.
以上の結果から,重ね隅肉溶接継手に欠陥が少なく,静的および疲労強度の優れた溶接ビードを得るためには,レーザおよびガスメタルアーク溶接の照射角度は,溶接方向に垂直に鋼板面の法線方向に対して角度θ(deg.)を 5.0≦θ≦40の範囲で上板に対して反対方向に傾斜させるように設定することが好適であることが明らかになった。 From the above results, in order to obtain a weld bead with few defects in the lap fillet welded joint and excellent in static and fatigue strength, the irradiation angle of laser and gas metal arc welding should be perpendicular to the welding direction. It has become clear that it is preferable to set the angle θ (deg.) With respect to the normal direction so as to be inclined in the opposite direction with respect to the upper plate in the range of 5.0 ≦ θ ≦ 40.
1 上板
2 下板
3 レーザビームのねらい位置
4 ガスメタルアーク溶接のアーク照射のねらい位置
5 溶接進行方向
6 レーザビーム中心軸(ガスメタルアーク溶接ワイヤ中心軸)
11 上板エッジ部
D レーザビーム径
1
11 Upper plate edge D Laser beam diameter
Claims (3)
前記レーザ溶接におけるレーザのビーム径D(mm)、レーザ出力P(W)および溶接速度v(m/min)が下式の関係を満足することを特徴とする重ね隅肉溶接方法。
120<P/(S・v2)<170 ・・・・・ (1)
ここで、S=π(D/2)2 In the lap fillet welding method by composite welding in which the preceding welding is laser welding and the subsequent welding is gas metal arc welding, the arc discharge of the gas metal arc welding is performed on the molten pool before the molten pool is solidified by the laser welding. And
A laser beam diameter D (mm), a laser output P (W), and a welding speed v (m / min) in the laser welding satisfy the following relationship:
120 <P / (S ・ v 2 ) <170 (1)
Where S = π (D / 2) 2
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005284199A JP2007090397A (en) | 2005-09-29 | 2005-09-29 | Lap fillet welding method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005284199A JP2007090397A (en) | 2005-09-29 | 2005-09-29 | Lap fillet welding method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007090397A true JP2007090397A (en) | 2007-04-12 |
Family
ID=37976673
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005284199A Pending JP2007090397A (en) | 2005-09-29 | 2005-09-29 | Lap fillet welding method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007090397A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102430866A (en) * | 2010-09-29 | 2012-05-02 | 贵阳铝镁设计研究院有限公司 | Method for preventing deformation of welding reinforcing steel plate at upper flange of crane beam |
CN103447700A (en) * | 2013-08-29 | 2013-12-18 | 张家港市恒运新材料科技有限公司 | Method for welding galvanized steel and aluminum |
CN106312315A (en) * | 2015-07-03 | 2017-01-11 | (株)星宇Hitech | Method for joining different kinds of plates |
WO2020115942A1 (en) * | 2018-12-03 | 2020-06-11 | 日本軽金属株式会社 | Joining method |
WO2021197542A1 (en) * | 2020-04-02 | 2021-10-07 | Thyssenkrupp Steel Europe Ag | Method for manufacturing a steel vehicle wheel, and steel vehicle wheel manufactured accordingly |
CN114845832A (en) * | 2019-12-25 | 2022-08-02 | 日本轻金属株式会社 | Joining method |
-
2005
- 2005-09-29 JP JP2005284199A patent/JP2007090397A/en active Pending
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102430866A (en) * | 2010-09-29 | 2012-05-02 | 贵阳铝镁设计研究院有限公司 | Method for preventing deformation of welding reinforcing steel plate at upper flange of crane beam |
CN102430866B (en) * | 2010-09-29 | 2014-12-10 | 贵阳铝镁设计研究院有限公司 | Method for preventing deformation of reinforcement steel plate welded on top flange of crane girder |
CN103447700A (en) * | 2013-08-29 | 2013-12-18 | 张家港市恒运新材料科技有限公司 | Method for welding galvanized steel and aluminum |
CN106312315A (en) * | 2015-07-03 | 2017-01-11 | (株)星宇Hitech | Method for joining different kinds of plates |
US9889526B2 (en) | 2015-07-03 | 2018-02-13 | Sungwoo Hitech Co., Ltd. | Laser welding method for welding dissimilar metal plates |
JP2020089893A (en) * | 2018-12-03 | 2020-06-11 | 日本軽金属株式会社 | Joining method |
WO2020115942A1 (en) * | 2018-12-03 | 2020-06-11 | 日本軽金属株式会社 | Joining method |
CN113039037A (en) * | 2018-12-03 | 2021-06-25 | 日本轻金属株式会社 | Bonding method |
JP7119960B2 (en) | 2018-12-03 | 2022-08-17 | 日本軽金属株式会社 | Joining method |
CN113039037B (en) * | 2018-12-03 | 2023-11-14 | 日本轻金属株式会社 | Bonding method |
CN114845832A (en) * | 2019-12-25 | 2022-08-02 | 日本轻金属株式会社 | Joining method |
US12257647B2 (en) | 2019-12-25 | 2025-03-25 | Nippon Light Metal Company, Ltd. | Joining method |
WO2021197542A1 (en) * | 2020-04-02 | 2021-10-07 | Thyssenkrupp Steel Europe Ag | Method for manufacturing a steel vehicle wheel, and steel vehicle wheel manufactured accordingly |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kawahito et al. | Elucidation of high-power fibre laser welding phenomena of stainless steel and effect of factors on weld geometry | |
JP3762676B2 (en) | Work welding method | |
JPH08300172A (en) | Manufacture of welded steel tube | |
JP2004306084A (en) | Combined welding method of laser welding and arc welding | |
JP2005334974A (en) | Laser welding method | |
CN107309563A (en) | A kind of laser electrical arc complex welding method of high-grade pipe line steel | |
JP3767369B2 (en) | Method of lap welding of thin steel plates and welded thin steel plates | |
JP2009262182A (en) | Laser arc hybrid welding head | |
JP2003164983A (en) | Welding method for metallic member | |
JPH08257773A (en) | Laser welding method | |
JP4308124B2 (en) | Laser beam brazing method and laser irradiation apparatus | |
JP3767350B2 (en) | Welding method of galvanized steel sheet | |
JP2007090397A (en) | Lap fillet welding method | |
JP2008221314A (en) | Laser beam welding method | |
JP7416999B2 (en) | Laser-arc hybrid welding equipment | |
JPH06198472A (en) | High-speed laser beam welding method | |
CN112207443B (en) | Laser arc hybrid welding device | |
JP2001205465A (en) | Method of composite welding by laser arc and welding equipment | |
JP2002178176A (en) | Butt welding method and welded thin steel sheet | |
JP2012192445A (en) | Laser welding method for thin steel sheet | |
JP3767359B2 (en) | Butt welding method and welded thin steel plate | |
JP2004195528A (en) | Laser irradiation arc welding method of magnesium or magnesium alloy | |
JP5489005B2 (en) | Welding method | |
JP7219195B2 (en) | Laser-arc hybrid welding equipment | |
JP2006297452A (en) | Laser welding method |