[go: up one dir, main page]

JP2007090390A - Corrugated web girder welding method - Google Patents

Corrugated web girder welding method Download PDF

Info

Publication number
JP2007090390A
JP2007090390A JP2005283584A JP2005283584A JP2007090390A JP 2007090390 A JP2007090390 A JP 2007090390A JP 2005283584 A JP2005283584 A JP 2005283584A JP 2005283584 A JP2005283584 A JP 2005283584A JP 2007090390 A JP2007090390 A JP 2007090390A
Authority
JP
Japan
Prior art keywords
welding
corrugated web
layer
arc
girder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005283584A
Other languages
Japanese (ja)
Inventor
Takanobu Sano
孝信 佐野
Masatomo Murayama
雅智 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2005283584A priority Critical patent/JP2007090390A/en
Publication of JP2007090390A publication Critical patent/JP2007090390A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

【課題】良好な溶接ビード外観を、簡便に得る。
【解決手段】波形ウェブ桁10の波形ウェブ板12とフランジ板14の接合部を隅肉溶接するための波形ウェブ桁の溶接方法において、2台の自動溶接手段22、24の溶接トーチ23、25を、波形ウェブの平行部の略中央の同じ位置に向けて配置し、同時に溶接を開始して、同じ溶融池から各々反対方向に進行させ、各々の溶接アークを停止させることなく、円弧部、傾斜部及び次の円弧部を経て、次の平行部Eまで溶接する。
【選択図】図3
A good weld bead appearance is easily obtained.
In a corrugated web girder welding method for fillet welding a corrugated web plate 12 and a flange plate 14 of a corrugated web girder 10, welding torches 23, 25 of two automatic welding means 22, 24 are provided. Are arranged toward the same position in the substantially center of the parallel portion of the corrugated web, and welding is started at the same time, proceeding in the opposite directions from the same molten pool, without stopping each welding arc, It welds to the following parallel part E through an inclination part and the following circular arc part.
[Selection] Figure 3

Description

本発明は、波形ウェブ桁の波形ウェブ板とフランジ板の接合部を隅肉溶接するための波形ウェブ桁の溶接方法に係り、特に、鋼製橋梁の波形鋼板ウェブ橋を工場内で施工する際に用いるのに好適な、良好な溶接ビード外観を簡便に得ることが可能な波形ウェブ桁の溶接方法に関する。   The present invention relates to a corrugated web girder welding method for fillet welding a corrugated web plate and a flange plate of a corrugated web girder, and in particular, when corrugated steel web bridges of steel bridges are constructed in a factory. The present invention relates to a method for welding corrugated web girders capable of easily obtaining a good weld bead appearance.

鋼製橋梁の波形鋼板ウェブ橋の工場内施工に際して、波形ウェブ桁10の波形ウェブ板12とフランジ板14との隅肉溶接(首溶接とも称する)は、一般に、図1に示す如く、屈曲した波形ウェブ板12を立てた状態(以下、立置き施工法と称する)で部材を設置し、隅肉溶接を実施している。   When the corrugated steel web bridge of the steel bridge is constructed in the factory, the fillet weld (also referred to as neck welding) between the corrugated web plate 12 and the flange plate 14 of the corrugated web girder 10 is generally bent as shown in FIG. Members are installed in a state where the corrugated web plate 12 is erected (hereinafter referred to as a standing construction method), and fillet welding is performed.

この立置き施工法の施工順序は、例えば次のとおりである。   The construction sequence of this standing construction method is, for example, as follows.

(1)該当部材が、ウェブ板12とフランジ板14を仮付け溶接された状態で搬入される。このとき、フランジ板14には、現地据付時にコンクリートに埋め込まれる付属品(アングル16や鉄筋等)が、既に外側(ウェブ板12と反対側)に溶接された状態で納入される。   (1) The corresponding member is carried in with the web plate 12 and the flange plate 14 being tack-welded. At this time, accessories (an angle 16 and a reinforcing bar) embedded in the concrete at the time of field installation are already delivered to the flange plate 14 while being welded to the outside (the side opposite to the web plate 12).

(2)片側のフランジ面を下にして部材を配置するが、付属品(16)を回避して固定する。   (2) Although the member is arranged with the flange surface on one side facing down, it is fixed by avoiding the accessory (16).

(3)下側の隅肉溶接部の溶接施工(下向き水平隅肉溶接・両面)を実施する。   (3) Weld the lower fillet welds (downward horizontal fillet welds / both sides).

(4)溶接終了後、部材を反転させて、(2)(3)と同様に施工を実施する。   (4) After welding is completed, the member is reversed and the construction is performed in the same manner as (2) and (3).

なお、波形ウェブ桁ではないが、同様に複雑な形状である船殻外板の溶接方法が特許文献1に記載され、箱形断面形状の鋼構造物を、レール上を走行する自動溶接機を用いて溶接する自動溶接装置が特許文献2に記載され、管交差部を多関節ロボットを用いて溶接する方法が特許文献3に記載され、複数の溶接ロボットを用いて溶接する際の制御装置及び制御方法が特許文献4に記載されている。   In addition, although it is not a corrugated web girder, the welding method of the hull outer plate which is similarly complicated shape is described in patent document 1, and the automatic welding machine which drive | works a box-shaped cross-section steel structure on a rail is described. Patent Document 2 describes an automatic welding apparatus that uses and welds a pipe intersection using an articulated robot, and describes a control apparatus for welding using a plurality of welding robots. A control method is described in Patent Document 4.

特開平7−9128号公報Japanese Patent Laid-Open No. 7-9128 特開2002−1535号公報JP 2002-1535 A 特開平10−58139号公報JP-A-10-58139 特開2001−273022号公報JP 2001-273022 A

しかしながら、立置き施工法では、フランジ板14にアングル部材16や鉄筋が付属しているので、部材を立に配材し固定するとき、これらが突起物となり回避して固定しなければならず、多大な作業時間がかかる。又、ウェブ桁高Hには2mを越える高いものも多数存在しており、固定作業や溶接作業が危険な作業になり、安全に細心の注意を払う必要がある。   However, in the standing construction method, since the angle member 16 and the reinforcing bar are attached to the flange plate 14, when distributing and fixing the member upright, these must be fixed to avoid protrusions, It takes a lot of work time. Further, there are many web girder heights H exceeding 2 m, and fixing work and welding work become dangerous work, and it is necessary to pay close attention to safety.

このため立置き施工法ではなく、波形ウェブ板12を水平に置く横置き施工法では、部材の固定作業が一般に不要になる他、安全性も格段に向上するが、溶接部に傾斜部の施工が発生するため、半自動溶接では、高度な施工技能が要求される。又、水平部と傾斜部を分割して溶接すれば、それぞれの溶接点を結合する始終端部でビード継ぎ部が発生し、溶接ビードの外観検査に合格するためには、継ぎ目処理を平滑に仕上る必要があるという問題点を有していた。即ち、橋梁業界の溶接施工では、不連続ビードが好まれないため、一般にビードの継き目が発生した場合、溶接後に手直し作業を行なう必要があり、これには多大な作業員、作業時間が発生し、製作コストの増大の一因となっていた。   For this reason, the horizontal installation method in which the corrugated web plate 12 is placed horizontally rather than the vertical installation method generally eliminates the need for fixing the members and greatly improves safety. Therefore, advanced construction skills are required in semi-automatic welding. In addition, if the horizontal part and the inclined part are welded separately, a bead joint is generated at the start / end part connecting the respective weld points, and the seam treatment is smoothed to pass the appearance inspection of the weld bead. There was a problem that it was necessary to finish. That is, in welding construction in the bridge industry, discontinuous beads are not preferred, so in general, when a bead seam occurs, it is necessary to perform rework after welding, which requires a lot of labor and time. Generated and contributed to an increase in production costs.

一方、前記特許文献1乃至4に記載の技術は、いずれも、そのままでは、波形ウェブ桁の溶接には適していなかった。   On the other hand, none of the techniques described in Patent Documents 1 to 4 are suitable for welding corrugated web girders as they are.

本発明は、前記従来の問題点を解決するべくなされたもので、良好な溶接ビード外観を簡便に得ることが可能な波形ウェブ桁の溶接方法を提供することを課題とする。   The present invention has been made to solve the above-described conventional problems, and an object of the present invention is to provide a method for welding corrugated web girders capable of easily obtaining a good weld bead appearance.

本発明は、波形ウェブ桁の波形ウェブ板とフランジ板の接合部を隅肉溶接するための波形ウェブ桁の溶接方法において、2台の自動溶接手段(溶接ロボットや自動溶接機)の溶接トーチを、波形ウェブの平行部の略中央の同じ位置に向けて配置し、同時に溶接を開始して、同じ溶融池から各々反対方向に進行させ、各々の溶接アークを停止させることなく、円弧部、傾斜部及び次の円弧部を経て、次の平行部まで溶接するようにして、前記課題を解決したものである。   The present invention relates to a welding method of a corrugated web girder for welding fillet at a joint between a corrugated web plate and a flange plate of a corrugated web girder, and includes a welding torch of two automatic welding means (welding robot and automatic welding machine). Arranged toward the same position in the center of the parallel part of the corrugated web, start welding at the same time, proceed in the opposite direction from the same molten pool, without stopping each welding arc, This problem is solved by welding to the next parallel part through the part and the next arc part.

又、前記波形ウェブ板を水平置きとして、前記溶接を行なうことにより、部材の固定作業を不要とし、作業時間を短縮すると共に、安全性も高めたものである。   Further, by performing the welding with the corrugated web plate placed horizontally, the fixing operation of the member is unnecessary, the working time is shortened, and the safety is improved.

又、前記溶接を、波形ウェブの山平行部から開始して、谷平行部まで行なうようにしたものである。   Further, the welding is performed from the peak parallel part of the corrugated web to the valley parallel part.

又、前記溶接を多層盛にて行なうようにして、隅肉脚長が長い場合にも対応できるようにしたものである。   In addition, the welding is performed in a multi-layered manner so that it can cope with a case where the fillet leg length is long.

又、前記多層盛溶接において、溶接線倣い制御法を利用して、初層の倣い軌跡を記憶し、2層目以降には、初層溶接の倣い軌跡にトーチ狙い位置のシフト量を加味して溶接倣いを行なうようにして、多層盛溶接でも適切な溶接倣いが行えるようにしたものである。   Also, in the multi-layer welding, the welding trajectory control method is used to store the first layer scanning trajectory, and for the second and subsequent layers, the shift amount of the target position of the torch is added to the first layer welding tracing trajectory. In this way, appropriate welding copying can be performed even in multi-layer welding.

又、前記多層盛溶接において、少なくとも初層はトーチを回転させる回転アーク溶接を行なうようにして、適切な多層盛溶接が行えるようにしたものである。   In the multi-layer welding, at least the first layer is subjected to rotating arc welding that rotates the torch so that appropriate multi-layer welding can be performed.

又、前記多層盛溶接の終端位置を、パス毎にずらしてカスケード処理するようにして、ビード継ぎ目が目立たなくなるようにしたものである。   Also, the end position of the multi-layer welding is shifted for each pass and cascaded so that the bead seam becomes inconspicuous.

又、前記溶接を、溶接終端部でビード継ぎが発生するよう波形ウェブ板の長手方向に繰り返すことにより、全長にわたってビード継ぎ部がきれいな溶接が行えるようにしたものである。   Further, the welding is repeated in the longitudinal direction of the corrugated web plate so that the bead joint is generated at the welding end portion, so that the bead joint can be welded cleanly over the entire length.

本発明においては、図2に示す如く、2本の溶接トーチの溶接開始点Sをほぼ同一としたので、2本のアーク発生時に形成される2つの溶融池を1つに結合させて1プール化することによって、最大の利点が得られる。即ち、溶融池が1プール化すると、溶接ビードの継ぎ目が無くなり、アークスタート時点で平滑な溶接ビードが得られ、あたかも1本の連続した溶接線のように見える。このため、スタート時点Sでの手直し作業が不要になる。   In the present invention, as shown in FIG. 2, since the welding start points S of the two welding torches are substantially the same, two pools formed when two arcs are generated are combined into one pool. The maximum advantage can be obtained. That is, when the pool is made into one pool, there is no weld bead joint, and a smooth weld bead is obtained at the time of arc start, which looks like one continuous weld line. This eliminates the need for rework at the start point S.

特に、図2に示したように、波形ウェブ板12を水平置きとした方法では、部材の固定作業が一般に不要になる他、安全面も格段に向上する。なお、波形ウェブ板12を水平置きとすると、溶接姿勢が時々刻々と変化するが、溶接姿勢の変化に合わせて、その度に溶接を停止し、溶接条件を変更させる施工法を採用すると、ビード継ぎ目が多数発生し、手直し作業が必要になる。そこで、時々刻々の溶接姿勢の変化に対して、溶接条件の調整が可能な自動溶接手段、例えば、溶接線に沿ったトーチの移動と溶接条件を固定シーケンスにより制御して、繰返し同じ溶接部を溶接する自動溶接機や、上位制御部より、溶接部材、溶接条件等の情報を設定し、多軸のロボットを用いて溶接する、多様なワーク形状に対して溶接が可能な溶接ロボット(例えば多関節溶接ロボット)を用いることが望ましい。   In particular, as shown in FIG. 2, in the method in which the corrugated web plate 12 is placed horizontally, the fixing operation of the members is generally unnecessary, and the safety is greatly improved. If the corrugated web plate 12 is placed horizontally, the welding posture changes from moment to moment. However, if a construction method is adopted in which welding is stopped and the welding conditions are changed in accordance with the change in the welding posture, Many seams are generated, and rework is required. Therefore, automatic welding means that can adjust the welding conditions in response to changes in the welding position from moment to moment, for example, the movement of the torch along the welding line and the welding conditions are controlled by a fixed sequence, and the same welded portion is repeatedly Welding robots that can weld to various workpiece shapes (for example, multiple welding) that set information such as welding members and welding conditions from an automatic welder that performs welding and a host controller, and perform welding using a multi-axis robot. It is desirable to use a joint welding robot.

以下図面を参照して、本発明の実施形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本発明の第1実施形態は、図3に示す如く、ロボットスライド軸20上水平方向に移動自在な、2台の協調動作が可能な(例えば6軸)多関節型のツイン溶接ロボット22、24を用いて、本発明を実施するものである。図において、23、25は、各溶接ロボット22、24の溶接トーチである。   In the first embodiment of the present invention, as shown in FIG. 3, the articulated twin welding robots 22 and 24 that can move in the horizontal direction on the robot slide shaft 20 and can perform two cooperative operations (for example, six axes) are provided. Is used to implement the present invention. In the figure, 23 and 25 are welding torches of the welding robots 22 and 24, respectively.

施工に際しては、図4に手順を示す如く、まず、ステップ100の配材で、波形ウェブ板12とフランジ板14を仮付けした状態で、図2に示した如く、水平置きする。   At the time of construction, as shown in the procedure of FIG. 4, first, the corrugated web plate 12 and the flange plate 14 are temporarily attached with the distribution material of step 100, as shown in FIG.

次いで、ステップ102のデータ読込で、波形ウェブ板12の設計図面をロボットが読み取り、溶接線を入力する。   Next, in step 102, the robot reads the design drawing of the corrugated web plate 12 and inputs a weld line.

次いでステップ104の事前センシングで、2台の溶接ロボット22、24がそれぞれ、図5に示す如く、溶接前に例えば数箇所ずつのワイヤタッチセンシングを実施し、溶接ワイヤ自体を接触子として用いて、ワイヤと母材間の接触の有無から母材の位置を検出する。そして部材形状の組立誤差等を検知し、ステップ102で読み込んだ溶接線情報を修正する。又、2台の溶接ロボット22、24の座標軸の誤差を修正するために、同一点をセンシングしておき、補正する。   Next, in step 104, the two welding robots 22 and 24 perform, for example, several points of wire touch sensing before welding, as shown in FIG. 5, and use the welding wire itself as a contact, The position of the base material is detected from the presence or absence of contact between the wire and the base material. Then, an assembly error or the like of the member shape is detected, and the weld line information read in step 102 is corrected. Also, in order to correct the error of the coordinate axes of the two welding robots 22 and 24, the same point is sensed and corrected.

次いでステップ106に進み、初層溶接を行う。具体的には、図3に示した如く、2台の溶接ロボット22、24の溶接アーク点が、波の上の中央部付近で近接した状態とし、その後図6に例示する如く、電極ノズル30の中心に送給され、通電チップ32の先端で所定量偏心された溶接ワイヤ34を備えた電極ノズル30をモータ36で回転させることにより、ワイヤ先端のアークが溶融池38上を回転するようにした高速回転アーク溶接法により、同時にアークスタート(溶接開始)を行い、それぞれ反対方向へ溶接を進行させる。これにより、溶接開始点Sで溶融池が1プール化するために溶接ビードの継ぎ目が無くなり、アークスタート地点Sで平滑な溶接ビードが得られる。   Next, the routine proceeds to step 106, where the first layer welding is performed. Specifically, as shown in FIG. 3, the welding arc points of the two welding robots 22 and 24 are close to each other in the vicinity of the center of the wave, and thereafter, as illustrated in FIG. The electrode nozzle 30 having the welding wire 34 that is fed to the center of the power supply tip and is eccentric by a predetermined amount at the tip of the energizing tip 32 is rotated by the motor 36 so that the arc at the tip of the wire rotates on the molten pool 38. Arc start (welding start) is simultaneously performed by the high-speed rotating arc welding method, and welding is advanced in the opposite directions. As a result, since the weld pool is pooled at the welding start point S, the weld bead seam is eliminated, and a smooth weld bead is obtained at the arc start point S.

その後、図2に示した如く、それぞれの溶接部位で時々刻々と溶接条件(溶接電流、アーク電圧、溶接速度、トーチ角度等)を変化させながら、山上の平行部(山平行部と称する)12Aから上円弧部12B、傾斜(下進)直線部12C、下円弧部12D、谷平行部12Eへと連続施工を実施する。このとき、傾斜直線部12Cでは、溶融池が重力によって垂れ落ちないように、アーク圧力で保持する必要があり、ビード形成と合わせた溶接条件を選定する。そして谷平行部12Eのしかるべき時点で溶接停止する。   Thereafter, as shown in FIG. 2, while changing the welding conditions (welding current, arc voltage, welding speed, torch angle, etc.) at each welding part, the parallel part (referred to as a mountain parallel part) 12A To the upper arc portion 12B, the inclined (downward) straight portion 12C, the lower arc portion 12D, and the valley parallel portion 12E. At this time, in the inclined straight portion 12C, it is necessary to hold the molten pool with the arc pressure so that the molten pool does not sag due to gravity, and a welding condition combined with bead formation is selected. Then, the welding is stopped at the appropriate time of the valley parallel part 12E.

波形ウェブ板12の寸法が図7に示す如くであり、1.2mmφのソリッドワイヤを溶接ワイヤ34とし、Ar−CO混合ガスをシールドガスとした場合の初層溶接条件の例を表1に示す。 The dimensions of the corrugated web plate 12 are as shown in FIG. 7, and examples of initial layer welding conditions when a 1.2 mmφ solid wire is used as the welding wire 34 and Ar—CO 2 mixed gas is used as the shielding gas are shown in Table 1. Show.

Figure 2007090390
Figure 2007090390

この際、溶接線が連続的に変化するため、全線でアーク位置をセンシングする必要があり、例えば高速回転アーク溶接法による溶接線倣いを実施し、溶接線に対するチップ・母材間距離や、溶接線と直交方向のずれ量を、溶接電流、アーク電圧あるいは短絡移行状態等の変化情報から捉え、トーチの位置修正へフィードバックする。これは、溶接前の設計図面から得られた溶接線の情報と実際の溶接線とでは、切断、組立、製作誤差が発生しており、その影響を無視することはできないからである。   At this time, since the welding line changes continuously, it is necessary to sense the arc position in all lines. For example, the welding line is copied by the high-speed rotating arc welding method, the distance between the tip and the base material with respect to the welding line, the welding The amount of deviation in the direction orthogonal to the line is captured from change information such as the welding current, arc voltage, or short-circuit transition state, and fed back to torch position correction. This is because cutting, assembly, and manufacturing errors occur between the information on the weld line obtained from the design drawing before welding and the actual weld line, and the influence cannot be ignored.

ここで、初層に回転アーク溶接を利用する利点は次のとおりである。即ち、ステップ104における初層前のセンシング、例えばワイヤタッチセンシングでは、溶接線全線をセンシングすることは実質的に不可能で、実際のワークの微小な誤差については検出できない。それに対して、回転アーク溶接では、溶接中はほぼ常時、開先中心からの揺動中心の開先幅方向の位置ずれを、溶接電流波形やアーク電圧波形の揺動中心位置に対する非対称性からセンシングして(アークセンサと称する)、溶接トーチの狙い位置が常に開先中心となるように制御しているので、溶接線全線のセンシングが可能となる。又、溶接トーチを横方向に運棒せずに溶接進行のみに動かす図8(B)に示すようなストレート溶接では、溶け込み形状が中央部に集中し易く、高電流域では更にその傾向が強い。一方、図8(A)に示す回転アーク溶接では、平坦な溶け込み形状が得られ、これは高電流化しても、同様の傾向がある。その結果、直進傾斜部12Cの下進溶接でも、回転アーク及び高電流化により、広い範囲でも深い溶け込み形状が得られる。   Here, advantages of using the rotary arc welding for the first layer are as follows. That is, in the sensing before the first layer in step 104, for example, wire touch sensing, it is practically impossible to sense the entire weld line, and it is impossible to detect a minute error of the actual workpiece. On the other hand, in rotating arc welding, the displacement in the groove width direction of the oscillation center from the groove center is sensed almost always during welding from the asymmetry of the welding current waveform and arc voltage waveform with respect to the oscillation center position. Thus, the welding torch is always controlled so that the target position of the welding torch is always at the groove center, so that the entire welding line can be sensed. Further, in the straight welding as shown in FIG. 8B in which the welding torch is moved only in the welding direction without moving the welding rod in the horizontal direction, the penetration shape tends to concentrate on the central portion, and the tendency is further strong in the high current region. . On the other hand, in the rotating arc welding shown in FIG. 8A, a flat penetration shape is obtained, which has the same tendency even when the current is increased. As a result, even in the downward welding of the linearly inclined portion 12C, a deep penetration shape can be obtained even in a wide range due to the rotating arc and high current.

ステップ106の回転アークによる初層溶接が終了後、隅肉溶接の脚長サイズに応じて、多層盛溶接が必要な場合は、ステップ108で2パス目以降の積層溶接を行なう。水平姿勢の隅肉溶接の最大脚長は9〜11mmであり、11mm以上の1パス施行は、重力により、溶接金属が垂れ下がって不能であり、下進溶接では最大脚長が更に小さくなり6mm程度であるため、例えば、隅肉脚長が6mmの場合は1層1パス、9mmの場合は2層3パス、13mmの場合は3層6パスとする。具体的には、再び2台の溶接ロボット22、24が山上の平行部12Aで接近してアークを再スタートさせ、山平行部12A→上円弧部12B→傾斜直線部12C→下円弧部12D→谷平行部12Eへと溶接を進行させる。この2パス目以降の上層溶接は、溶接トーチを溶接進行方向にのみ動かし、横方向には動かさないストレート溶接を行なう。それは、このストレート溶接が、高速回転アーク溶接と比べ、特に下進溶接で、アークの安定性に優れるためである。特に2層目以降の場合、高速回転アーク溶接では、それ以前の溶接ビードをも溶かすために、垂れ落ちし易い傾向にある。   After the first layer welding by the rotating arc in step 106 is completed, if multi-layer welding is necessary according to the leg length size of fillet welding, the lamination welding in the second and subsequent passes is performed in step 108. The maximum leg length for fillet welding in a horizontal position is 9 to 11 mm, and it is impossible to perform one pass of 11 mm or more due to gravity, the weld metal hangs down, and the maximum leg length is further reduced to about 6 mm in downward welding. Therefore, for example, when the fillet leg length is 6 mm, one layer is one pass, when it is 9 mm, two layers are three passes, and when it is 13 mm, three layers are six passes. Specifically, the two welding robots 22 and 24 again approach the mountain top parallel part 12A to restart the arc, and the mountain parallel part 12A → the upper arc part 12B → the inclined linear part 12C → the lower arc part 12D → Welding proceeds to the valley parallel part 12E. In the upper layer welding after the second pass, straight welding is performed in which the welding torch is moved only in the welding direction and not in the lateral direction. This is because this straight welding is superior in arc stability particularly in the downward welding compared to the high-speed rotating arc welding. In particular, in the case of the second and subsequent layers, high-speed rotating arc welding tends to sag because it melts the previous weld bead.

この2パス目以降では、初層と同じ溶接線を溶接するので、初層の倣い軌跡と同一の動きをすればよい。但し、一般に多層盛の場合は、それまでの積層ビード形状を考慮して、狙い位置を変動(シフト)させるので、そのシフト量を考慮する。即ち、隅肉溶接の形成を考慮して、トーチ狙い位置を図9に示す如くシフトさせるが、溶接線倣いによる修正には、次の2つのパターンがある。   In the second and subsequent passes, since the same weld line as the first layer is welded, the same movement as the tracing locus of the first layer may be performed. However, in general, in the case of multi-layer assembling, the target position is changed (shifted) in consideration of the stacked bead shape so far, so the shift amount is taken into consideration. That is, in consideration of the formation of fillet welds, the target position of the torch is shifted as shown in FIG. 9, but there are the following two patterns for the correction by the welding line copying.

(1)ステップ104のワイヤタッチセンシング情報を元に、溶接線の修正を行なう。   (1) Based on the wire touch sensing information in step 104, the weld line is corrected.

(2)ステップ104のワイヤタッチセンシング及びステップ106のアークセンサによる溶接線倣いの補正量を記憶しておき、両者の補正分を修正する。   (2) The correction amount of the wire touch sensing in step 104 and the welding line scanning by the arc sensor in step 106 is stored, and the correction amount of both is corrected.

この2パス目以降の溶接条件の例を表2に示す。   Table 2 shows an example of welding conditions after the second pass.

Figure 2007090390
Figure 2007090390

なお、多層盛による熱変形が問題になる場合は、2パス目以降でも、1パス目と同様の溶接線倣い制御を行うことができる。   When thermal deformation due to the multi-layer build-up becomes a problem, the welding line scanning control similar to that in the first pass can be performed after the second pass.

ステップ110で、1つの波の施工が完了したと判断されたときには、ステップ112に進み、隣りの波の例えば山中央へ溶接ロボット22、24を移動させ、ステップ104〜110を繰り返して、ステップ114で片面が完了したと判定されるまで、当該部材の溶接施工を順次実施する。   When it is determined in step 110 that the construction of one wave is completed, the process proceeds to step 112, the welding robots 22 and 24 are moved to the center of the adjacent wave, for example, the mountain, and steps 104 to 110 are repeated. The welding work of the member is sequentially performed until it is determined that one side is completed.

片面が完了した場合には、ステップ118に進み、部材の上下を反転させ、ステップ116で両面が完了したと判定されるまで、ステップ104〜114を繰り返して、所定の溶接を完了させる。   When one side is completed, the process proceeds to step 118, the members are turned upside down, and steps 104 to 114 are repeated until it is determined in step 116 that both sides are completed, thereby completing the predetermined welding.

多層盛溶接の場合、終端部のビード継ぎ目を1箇所で重ねると、不連続部が重なるため、その部分のビード形状が悪化してしまう。そこで、ビード継ぎを目立たなくするため、図10に示す如く、カスケード(段差)処理することで、不連続部をできるだけ目立たないようにしている。各パス毎のカスケード量は、例えば30〜80mmとすることができる。   In the case of multi-layer welding, when the bead seam at the end portion is overlapped at one place, the discontinuous portions overlap, and the bead shape at that portion is deteriorated. Therefore, in order to make the bead joint inconspicuous, as shown in FIG. 10, a discontinuous portion is made inconspicuous as much as possible by performing a cascade process. The cascade amount for each path can be set to 30 to 80 mm, for example.

本実施形態においては、ビードの継ぎ目を谷平行部12のみとしているため、継ぎ目処理が容易であり、平滑化し易い。特に、終端同士とした場合には、終端同士のビード継ぎ目は、継ぎ目処理が容易であり、平滑化し易い。   In this embodiment, since the seam of the bead is only the valley parallel part 12, the seam processing is easy and smoothing is easy. In particular, when the ends are connected to each other, the bead seams between the ends are easy to process and smooth.

即ち、ビード継ぎ目には、図11に示す如く、(A)溶接開始点(始端)Sの上に次の始端Sを重ねる始端―始端継S―S、(B)始端Sの上に次の溶接終了点(終端)Eを重ねる始端―終端継S―E、(C)終端Eの上に次の始端Sを重ねる終端―始端継E−S、(D)終端Eの上に次の終端Eを重ねる終端―終端継E−Eの4種類があるが、始端Sは、母材の温度が未だ上がっていないため、溶接ビードが拡がらず、丸みを帯びた凸ビードになり易い。一方、終端Eには、クレータと呼ばれる凹みが生じる。このクレータは、電流が高いほど大きいので、高電流施工のロボット施工では、特に問題となる。従って、終了点近くで電流や溶接速度を下げ、時には停止又は逆走して、凹みを埋める。   That is, at the bead seam, as shown in FIG. 11, (A) a start end-start end joint SS on which the next start end S is superimposed on the welding start point (start end) S, and (B) Welding end point (end) E is overlapped with the start end-terminal end SE, (C) The end point is overlapped with the start end S over the end end-start end end ES, and (D) the end end is over the end E. There are four types of end-to-end joint EE where E is overlapped. However, since the temperature of the base material has not yet risen at the start end S, the weld bead does not expand and tends to be a rounded convex bead. On the other hand, a dent called a crater occurs at the end E. Since this crater is larger as the current is higher, this crater is particularly problematic in high current construction robot construction. Therefore, the current and welding speed are lowered near the end point, and sometimes stop or reverse run to fill the dent.

ロボット溶接でのビード継ぎの場合、始端Sの狭く凸状のビードを解消する運棒は難しく、終端Eのクレータを埋める動作は比較的容易である。特に、ビード継ぎでは、2本の溶接線を重ねることで、より凸形状になり易い。よって、ビード継ぎでは、できる限り始端Sを避け、若しくは、後から溶接した側での始端Sを避ける。特に、最初の溶接、後からの溶接のいずれも、始端Sは難度が高く難しい。更に、ビード継ぎ部分で手直しが発生した場合にも、図11(A)(C)のように始端Sが残るビード継ぎは、上盛り溶接+グラインダ切削が必要であるが、図11(B)(D)のように始端Sが残らないビード継ぎは、グラインダ切削のみで済む場合が多く、最小限の労力で施工を完了することができる。従って、図11(D)に示す終端E−終端Eが最も望ましい。   In the case of bead splicing in robot welding, it is difficult to carry a rod that eliminates the narrow convex bead at the start end S, and the operation of filling the crater at the end E is relatively easy. In particular, a bead joint tends to be more convex by overlapping two weld lines. Therefore, in the bead joint, the starting end S is avoided as much as possible, or the starting end S on the side welded later is avoided. In particular, in both the first welding and the subsequent welding, the starting edge S is difficult and difficult. Further, even when reworking occurs at the bead joint portion, the bead joint in which the starting end S remains as shown in FIGS. 11A and 11C requires overlay welding + grinder cutting, but FIG. The bead joint where the starting edge S does not remain as in (D) is often only required by grinder cutting, and the construction can be completed with a minimum of labor. Therefore, terminal E-terminal E shown in FIG.

次に、図12を参照して、図13に示すような小型自動溶接機を用いて溶接するようにした、本発明の第2実施形態を説明する。   Next, referring to FIG. 12, a second embodiment of the present invention in which welding is performed using a small automatic welding machine as shown in FIG. 13 will be described.

本実施形態は、走行レール40上を走行する2台の小型溶接台車42、44上の溶接トーチ43、45により溶接するようにしたものである。図13において、46は溶接トーチ43のホルダ、47は台車42の車輪、48はケーブル、図12において、50は、溶接条件の設定、溶接・走行のオンオフ管理、及び、2台の溶接台車42、44の同期制御を行なうための制御ボックスである。   In the present embodiment, welding is performed by welding torches 43 and 45 on two small welding carts 42 and 44 that travel on the traveling rail 40. 13, 46 is a holder of the welding torch 43, 47 is a wheel of the carriage 42, 48 is a cable, 50 in FIG. 12 is a welding condition setting, welding / running on / off management, and two welding carriages 42. , 44 is a control box for performing synchronous control.

なお、前記実施形態においては、いずれも、波形ウェブ板12のウェブが水平置きとなるようにしていたので、施工が特に容易である。なお、本発明の適用対象は、必ずしも水平置きに限定されない。   In each of the above embodiments, the web of the corrugated web plate 12 is set horizontally, so that the construction is particularly easy. The application target of the present invention is not necessarily limited to horizontal placement.

又、ウェブ板12の同じ側を続けて溶接するのではなく、片側ずつ交互に溶接しても構わない。溶接開始位置も山平行部12Aの中央位置に限定されず、中央からずれた位置や、谷平行部12Eから溶接を開始しても構わない。ウェブの波の数も1以上であれば本発明を適用できる。   Further, the same side of the web plate 12 may not be continuously welded, but may be alternately welded one by one. The welding start position is not limited to the center position of the mountain parallel part 12A, and welding may be started from a position shifted from the center or from the valley parallel part 12E. The present invention can be applied if the number of web waves is 1 or more.

更に、溶接線倣い制御法も、ワイヤタッチセンサ(溶接開始前)やアークセンサ(溶接中)によるものに限定されず、光学センサなどを用いて、他の方法で、溶接線からのずれ量に応じて溶接トーチ位置を制御するものでも構わない。   Further, the welding line scanning control method is not limited to the one using the wire touch sensor (before welding) or the arc sensor (during welding), and the amount of deviation from the welding line can be adjusted by another method using an optical sensor or the like. The welding torch position may be controlled accordingly.

溶接対象の波形ウェブ桁を立置きした状態を示す斜視図The perspective view which shows the state which stood up the waveform web girder of welding object 本発明による溶接線を示す斜視図The perspective view which shows the welding line by this invention 本発明の第1実施形態による施工状況を示す側面図The side view which shows the construction condition by 1st Embodiment of this invention 同じく溶接手順を示す流れ図Flow chart showing welding procedure 同じくワイヤセンシング位置の例を示す(A)平面図及び(B)側面図(A) Top view and (B) Side view showing examples of wire sensing positions 同じく初層溶接に用いる高速回転アーク溶接状態を示す斜視図The perspective view which shows the high-speed rotation arc welding state similarly used for first layer welding 同じく波形ウェブ板の寸法の例を示す側面図Side view showing an example of corrugated web plate dimensions (A)高速回転アーク溶接と(B)ストレート溶接の溶接トーチの動きと溶接ビードを示す斜視図及び平面図(A) Perspective view and plan view showing movement of welding torch and welding bead of high-speed rotating arc welding and (B) straight welding 同じく多層盛溶接の(A)各パスの狙い位置と(B)各パス間のシフト量を示す正面図Similarly, (A) Front view showing the target position of each pass and (B) shift amount between each pass of multi-layer welding 同じくビード継ぎのカスケード処理を示す斜視図The perspective view which similarly shows the cascade process of a bead joint 同じく各種ビード継ぎを比較して示す平面図A plan view comparing various bead joints 本発明の第2実施形態による施工状況を示す斜視図The perspective view which shows the construction condition by 2nd Embodiment of this invention 第2実施形態で用いる自動溶接機の例を示す斜視図The perspective view which shows the example of the automatic welding machine used by 2nd Embodiment

符号の説明Explanation of symbols

10…波形ウェブ桁
12…波形ウェブ板
12A…山平行部
12B…上円弧部
12C…傾斜直線部
12D…下円弧部
12E…谷平行部
14…フランジ板
20…ロボットスライド軸
22、24…溶接ロボット
23、25、43、45…溶接トーチ
38…溶接池(プール)
40…走行レール
42、44…溶接台車
50…制御ボックス
DESCRIPTION OF SYMBOLS 10 ... Corrugated web girder 12 ... Corrugated web board 12A ... Mountain parallel part 12B ... Upper circular arc part 12C ... Inclined straight line part 12D ... Lower circular arc part 12E ... Valley parallel part 14 ... Flange plate 20 ... Robot slide shaft 22, 24 ... Welding robot 23, 25, 43, 45 ... Welding torch 38 ... Weld pool (pool)
40 ... travel rails 42, 44 ... welding cart 50 ... control box

Claims (8)

波形ウェブ桁の波形ウェブ板とフランジ板の接合部を隅肉溶接するための波形ウェブ桁の溶接方法において、
2台の自動溶接手段の溶接トーチを、波形ウェブの平行部の略中央の同じ位置に向けて配置し、
同時に溶接を開始して、同じ溶融池から各々反対方向に進行させ、
各々の溶接アークを停止させることなく、円弧部、傾斜部及び次の円弧部を経て、次の平行部まで溶接することを特徴とする波形ウェブ桁の溶接方法。
In the welding method of the corrugated web girder for welding the fillet weld of the corrugated web plate and the flange plate of the corrugated web girder,
Place the welding torches of the two automatic welding means toward the same position in the approximate center of the parallel part of the corrugated web,
Start welding at the same time, proceed in the opposite direction from the same molten pool,
A welding method for a corrugated web girder, wherein welding is performed up to a next parallel portion through an arc portion, an inclined portion, and a next arc portion without stopping each welding arc.
前記波形ウェブ板を水平置きとして、前記溶接を行なうことを特徴とする請求項1に記載の波形ウェブ桁の溶接方法。   2. The corrugated web girder welding method according to claim 1, wherein the welding is performed with the corrugated web plate placed horizontally. 前記溶接を、波形ウェブの山平行部から開始して、谷平行部まで行なうことを特徴とする請求項1又は2に記載の波形ウェブ桁の溶接方法。   The welding method for corrugated web girders according to claim 1 or 2, wherein the welding is performed from a peak parallel portion of the corrugated web to a valley parallel portion. 前記溶接を多層盛にて行なうことを特徴とする請求項1乃至3のいずれかに記載の波形ウェブ桁の溶接方法。   4. The corrugated web girder welding method according to claim 1, wherein the welding is performed in a multi-layered manner. 前記多層盛溶接において、溶接線倣い制御法を利用して、初層の倣い軌跡を記憶し、2層目以降には、初層溶接の倣い軌跡にトーチ狙い位置のシフト量を加味して溶接倣いを行なうことを特徴とする請求項4に記載の波形ウェブ桁の溶接方法。   In the multi-layer welding, the welding trajectory control method is used to store the tracing trajectory of the first layer, and in the second and subsequent layers, welding is performed by adding the shift amount of the torch target position to the tracing trajectory of the first layer welding. 5. The corrugated web girder welding method according to claim 4, wherein copying is performed. 前記多層盛溶接において、少なくとも初層はトーチを回転させる高速回転アーク溶接を行なうことを特徴とする請求項4又は5に記載の波形ウェブ桁の溶接方法。   6. The corrugated web girder welding method according to claim 4, wherein in the multi-layer welding, at least a first layer is subjected to high-speed rotating arc welding in which a torch is rotated. 前記多層盛溶接の終端位置を、パス毎にずらしてカスケード処理することを特徴とする請求項4乃至6のいずれかに記載の波形ウェブ桁の溶接方法。   7. The corrugated web girder welding method according to claim 4, wherein the end position of the multi-layer welding is shifted for each pass and cascaded. 前記溶接を、溶接終端部でビード継ぎが発生するよう波形ウェブ板の長手方向に繰り返すことを特徴とする請求項1乃至7のいずれかに記載の波形ウェブ桁の溶接方法。   8. The method for welding corrugated web girders according to claim 1, wherein the welding is repeated in the longitudinal direction of the corrugated web plate so that a bead joint is generated at a welding end portion.
JP2005283584A 2005-09-29 2005-09-29 Corrugated web girder welding method Pending JP2007090390A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005283584A JP2007090390A (en) 2005-09-29 2005-09-29 Corrugated web girder welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005283584A JP2007090390A (en) 2005-09-29 2005-09-29 Corrugated web girder welding method

Publications (1)

Publication Number Publication Date
JP2007090390A true JP2007090390A (en) 2007-04-12

Family

ID=37976667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005283584A Pending JP2007090390A (en) 2005-09-29 2005-09-29 Corrugated web girder welding method

Country Status (1)

Country Link
JP (1) JP2007090390A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013137131A1 (en) * 2012-03-12 2013-09-19 小池酸素工業株式会社 Welding apparatus
EP3421167A1 (en) * 2017-06-26 2019-01-02 Fronius International GmbH Method and device for sampling a workpiece surface of a metallic workpiece
CN111761122A (en) * 2020-07-30 2020-10-13 山东华舜重工集团有限公司 Automatic welding production line for corrugated plate H-shaped steel for automobile high-strength crossbeam
CN113798630A (en) * 2021-09-26 2021-12-17 湖南中飞幕墙有限公司 Assembly welding process for steel structural member of building

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60118384A (en) * 1983-11-29 1985-06-25 Mitsubishi Heavy Ind Ltd Controlling method of multi-layer fillet welding
JPS62137176A (en) * 1985-12-09 1987-06-20 Fuji Heavy Ind Ltd Automatic copying welding method for end edge of corrugated panel
JPH04237566A (en) * 1991-01-21 1992-08-26 Nkk Corp Automatic welding device of corrugated panel
JPH06640A (en) * 1992-06-19 1994-01-11 Nkk Corp Horizontal multilayer welding method
JPH06297144A (en) * 1993-04-16 1994-10-25 Mitsubishi Heavy Ind Ltd Horizontal automatic fillet arc welding method
JPH08155638A (en) * 1994-12-01 1996-06-18 Nkk Corp One side butt welding of fixed tube

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60118384A (en) * 1983-11-29 1985-06-25 Mitsubishi Heavy Ind Ltd Controlling method of multi-layer fillet welding
JPS62137176A (en) * 1985-12-09 1987-06-20 Fuji Heavy Ind Ltd Automatic copying welding method for end edge of corrugated panel
JPH04237566A (en) * 1991-01-21 1992-08-26 Nkk Corp Automatic welding device of corrugated panel
JPH06640A (en) * 1992-06-19 1994-01-11 Nkk Corp Horizontal multilayer welding method
JPH06297144A (en) * 1993-04-16 1994-10-25 Mitsubishi Heavy Ind Ltd Horizontal automatic fillet arc welding method
JPH08155638A (en) * 1994-12-01 1996-06-18 Nkk Corp One side butt welding of fixed tube

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013137131A1 (en) * 2012-03-12 2013-09-19 小池酸素工業株式会社 Welding apparatus
JP2013215800A (en) * 2012-03-12 2013-10-24 Koike Sanso Kogyo Co Ltd Welding apparatus
CN104169034A (en) * 2012-03-12 2014-11-26 小池酸素工业株式会社 Welding apparatus
EP3421167A1 (en) * 2017-06-26 2019-01-02 Fronius International GmbH Method and device for sampling a workpiece surface of a metallic workpiece
WO2019002141A1 (en) * 2017-06-26 2019-01-03 Fronius International Gmbh Method and device for scanning a workpiece surface of a metal workpiece
US20200139474A1 (en) * 2017-06-26 2020-05-07 Fronius International Gmbh Method and Device for Scanning a Workpiece Surface of a Metal Workpiece
US11738402B2 (en) * 2017-06-26 2023-08-29 Fronius International Gmbh Method and device for scanning a workpiece surface of a metal workpiece
CN111761122A (en) * 2020-07-30 2020-10-13 山东华舜重工集团有限公司 Automatic welding production line for corrugated plate H-shaped steel for automobile high-strength crossbeam
CN111761122B (en) * 2020-07-30 2022-09-16 山东华舜重工集团有限公司 Automatic welding production line for corrugated plate H-shaped steel for automobile high-strength crossbeam
CN113798630A (en) * 2021-09-26 2021-12-17 湖南中飞幕墙有限公司 Assembly welding process for steel structural member of building

Similar Documents

Publication Publication Date Title
JP4933935B2 (en) Single-side welding apparatus and single-side welding method
KR100900856B1 (en) Control System and Control Method of Automatic Welding Device for Vertical and Horizontal Fillet Welding
WO2021256129A1 (en) Control method for portable welding robot, welding control device, portable welding robot, and welding system
KR101194951B1 (en) Automatic welding Method for Joining block
KR20220013495A (en) Welding control method of portable welding robot, welding control device, portable welding robot and welding system
CN117564404B (en) Automatic welding method of large-scale reinforcing mesh based on AI vision
JP2004017088A (en) Multi-layer welding method and multi-layer automatic welding apparatus
JP2003290921A (en) Multilayer overlay welding method and multilayer overlay automatic welding apparatus
JP2007090390A (en) Corrugated web girder welding method
CN114981031A (en) Gas-shielded arc welding method and method for manufacturing steel pipe
JP2003334662A (en) Pulse plasma automatic welding method for lap welding of thin plate and its device
JP5149526B2 (en) Single-side welding equipment
CN114713944B (en) Railway wagon end wall part welding method
JP3079486B2 (en) Welding apparatus and welding method for square steel pipe
JP3326716B2 (en) Bead lap welding method and its automatic welding device
JP3323784B2 (en) Control method of bead lap welding
JP2002239723A (en) Welding method, welding apparatus used to this method and welded joint and welded structure manufactured with this method
JP2002096170A (en) Amendment method of automatic sensing process in automatic programming of arc welding robot
JPH06234074A (en) Welding method by welding robot
JP3435447B2 (en) Traveling robot
JP2023050273A (en) Welding robot system for steel pipe column
JPH06198442A (en) Welding equipment and method for square steel pipes
KR100540585B1 (en) Welding Weaving Method of Robot
JPH06190556A (en) Weaving method for upward welding and control method for welding robot to perform the same welding
JP2002178153A (en) Narrow groove multi-layer fill arc welding method for extremely thick steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110510