JP2007083161A - Exhaust gas treatment catalyst, exhaust gas treatment method and exhaust gas treatment device - Google Patents
Exhaust gas treatment catalyst, exhaust gas treatment method and exhaust gas treatment device Download PDFInfo
- Publication number
- JP2007083161A JP2007083161A JP2005274930A JP2005274930A JP2007083161A JP 2007083161 A JP2007083161 A JP 2007083161A JP 2005274930 A JP2005274930 A JP 2005274930A JP 2005274930 A JP2005274930 A JP 2005274930A JP 2007083161 A JP2007083161 A JP 2007083161A
- Authority
- JP
- Japan
- Prior art keywords
- exhaust gas
- gas treatment
- catalyst
- titania
- oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 170
- 238000000034 method Methods 0.000 title claims description 24
- 239000007789 gas Substances 0.000 claims abstract description 174
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 claims abstract description 168
- AKEJUJNQAAGONA-UHFFFAOYSA-N sulfur trioxide Chemical compound O=S(=O)=O AKEJUJNQAAGONA-UHFFFAOYSA-N 0.000 claims abstract description 60
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims abstract description 52
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims abstract description 36
- 239000010931 gold Substances 0.000 claims abstract description 34
- 229910052737 gold Inorganic materials 0.000 claims abstract description 32
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims abstract description 29
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 21
- 229910021529 ammonia Inorganic materials 0.000 claims abstract description 18
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 12
- 239000002131 composite material Substances 0.000 claims abstract description 10
- 239000000463 material Substances 0.000 claims abstract description 9
- 229910001930 tungsten oxide Inorganic materials 0.000 claims description 19
- 239000000758 substrate Substances 0.000 claims description 13
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 claims description 8
- 229910052878 cordierite Inorganic materials 0.000 claims description 4
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 claims description 4
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 claims description 3
- 229910052863 mullite Inorganic materials 0.000 claims description 3
- 238000006722 reduction reaction Methods 0.000 abstract description 27
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical compound S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 abstract description 6
- TXKMVPPZCYKFAC-UHFFFAOYSA-N disulfur monoxide Inorganic materials O=S=S TXKMVPPZCYKFAC-UHFFFAOYSA-N 0.000 abstract description 4
- 238000000354 decomposition reaction Methods 0.000 abstract description 2
- 239000000843 powder Substances 0.000 description 18
- 239000002002 slurry Substances 0.000 description 17
- 230000000052 comparative effect Effects 0.000 description 15
- 238000002360 preparation method Methods 0.000 description 15
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 12
- 229910010413 TiO 2 Inorganic materials 0.000 description 11
- 239000002253 acid Substances 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 238000007254 oxidation reaction Methods 0.000 description 9
- 239000011248 coating agent Substances 0.000 description 7
- 238000000576 coating method Methods 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- ZNOKGRXACCSDPY-UHFFFAOYSA-N tungsten trioxide Chemical compound O=[W](=O)=O ZNOKGRXACCSDPY-UHFFFAOYSA-N 0.000 description 7
- 229910052757 nitrogen Inorganic materials 0.000 description 6
- 229910004298 SiO 2 Inorganic materials 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 229910052721 tungsten Inorganic materials 0.000 description 5
- 239000010937 tungsten Substances 0.000 description 5
- 238000002485 combustion reaction Methods 0.000 description 4
- 239000000446 fuel Substances 0.000 description 4
- 230000002378 acidificating effect Effects 0.000 description 3
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 3
- 235000011130 ammonium sulphate Nutrition 0.000 description 3
- 239000003638 chemical reducing agent Substances 0.000 description 3
- 239000006255 coating slurry Substances 0.000 description 3
- 239000000295 fuel oil Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 2
- 239000003245 coal Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- GNTDGMZSJNCJKK-UHFFFAOYSA-N divanadium pentaoxide Chemical compound O=[V](=O)O[V](=O)=O GNTDGMZSJNCJKK-UHFFFAOYSA-N 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 229910052815 sulfur oxide Inorganic materials 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 1
- 235000010724 Wisteria floribunda Nutrition 0.000 description 1
- PXEWDAFPMGFPSV-UHFFFAOYSA-N [W+2]=O.[O-2].[V+5] Chemical compound [W+2]=O.[O-2].[V+5] PXEWDAFPMGFPSV-UHFFFAOYSA-N 0.000 description 1
- -1 ammonium sulfate compound Chemical class 0.000 description 1
- 238000010531 catalytic reduction reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- XAYGUHUYDMLJJV-UHFFFAOYSA-Z decaazanium;dioxido(dioxo)tungsten;hydron;trioxotungsten Chemical compound [H+].[H+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O XAYGUHUYDMLJJV-UHFFFAOYSA-Z 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- FZQYVWUONRVDQB-UHFFFAOYSA-N gold titanium tungsten Chemical compound [Ti][W][Au] FZQYVWUONRVDQB-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000010742 number 1 fuel oil Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- VXUYXOFXAQZZMF-UHFFFAOYSA-N titanium(IV) isopropoxide Chemical compound CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
- Exhaust Gas After Treatment (AREA)
Abstract
Description
本発明は、ディーゼルエンジンを有する車両、ガスタービンおよび燃焼炉等から排出される排ガスに含まれる窒素酸化物(NOx)および三酸化硫黄(SO3)を除去する排ガス処理触媒、排ガス処理方法および排ガス処理装置に関し、特に排ガスに含まれるSO3濃度およびNOx濃度を減少させることができ、硫黄分の高い石炭あるいは重質油等を燃料として燃焼させるボイラの排ガス処理に適用して有用な排ガス処理触媒、排ガス処理方法および排ガス処理装置に関する。 The present invention relates to an exhaust gas treatment catalyst, an exhaust gas treatment method, and an exhaust gas for removing nitrogen oxide (NOx) and sulfur trioxide (SO 3 ) contained in exhaust gas discharged from a vehicle having a diesel engine, a gas turbine, a combustion furnace, and the like. Exhaust gas treatment catalyst that can reduce SO 3 concentration and NOx concentration contained in exhaust gas, and is useful for exhaust gas treatment of boilers that burn high-sulfur coal or heavy oil as fuel The present invention relates to an exhaust gas treatment method and an exhaust gas treatment apparatus.
ボイラ、ガスタービンおよび燃焼炉等から排出される排ガス中の窒素酸化物(NOx)を除去する方法として、窒素酸化物除去触媒(以下「脱硝触媒」と略す)の存在下で、アンモニア(NH3)を還元剤としNOxを無害な窒素および水に分解するアンモニア接触還元法が実用化されている。 As a method for removing nitrogen oxides (NOx) in exhaust gas discharged from boilers, gas turbines, combustion furnaces, etc., ammonia (NH 3 ) in the presence of a nitrogen oxide removal catalyst (hereinafter abbreviated as “denitration catalyst”). ) Is used as a reducing agent, and an ammonia catalytic reduction method in which NOx is decomposed into harmless nitrogen and water has been put into practical use.
前記ボイラ等では、硫黄分の高い石炭あるいはC重油などを燃料として利用するものがある。このような燃料を燃焼させて生じる排ガスには高濃度の二酸化硫黄(SO2)および三酸化硫黄(SO3)が存在する。このような排ガスを処理する際には、NOxを還元して除去するNOx還元除去反応と同時に、SO2から三酸化硫黄(SO3)への酸化反応が生じて、排ガス中のSO3が増加する。このSO3と、前記NOx還元除去反応にて還元剤として使用される未反応分のNH3とが、低温領域で容易に結合して、酸性硫酸アンモニウム等の化合物が生成する。この酸性硫酸アンモニウム等の化合物およびSO3により、後流に配置されている熱交換器等の各種装置の内部や配管が腐食して、目詰まりや一部閉塞等が生じ圧力損失を上昇させてしまう。そのため、集塵機の集塵能力を向上させるなどの対策を講じる必要がある。 Some of the boilers and the like use coal having a high sulfur content or C heavy oil as fuel. High concentrations of sulfur dioxide (SO 2 ) and sulfur trioxide (SO 3 ) exist in the exhaust gas produced by burning such fuel. When treating such exhaust gas, an NOx reduction and removal reaction that reduces and removes NOx, simultaneously with an oxidation reaction from SO 2 to sulfur trioxide (SO 3 ), increases SO 3 in the exhaust gas. To do. This SO 3 and unreacted NH 3 used as a reducing agent in the NOx reduction and removal reaction are easily combined in a low temperature region to produce a compound such as acidic ammonium sulfate. This acidic ammonium sulfate compound and SO 3 corrode the inside and piping of various devices such as heat exchangers arranged in the downstream, resulting in clogging, partial blockage, etc. and increasing pressure loss. . Therefore, it is necessary to take measures such as improving the dust collection capability of the dust collector.
優れた脱硝性能と、SO2からSO3への酸化反応が生じにくい低SO2酸化能とを有する脱硝触媒として、タングステン酸化物やバナジウム酸化物−タングステン酸化物等をチタニアに担持させた触媒が知られている。 As a denitration catalyst having excellent denitration performance and low SO 2 oxidation ability that hardly causes oxidation reaction from SO 2 to SO 3 , a catalyst in which tungsten oxide or vanadium oxide-tungsten oxide is supported on titania is used. Are known.
しかし、このような脱硝触媒を用いても、0.1%オーダでSO2からSO3への酸化反応が生じることが知られている。脱硝反応と同時に起こるSO2からSO3への酸化反応をゼロ、さらには、排ガス中のSO3濃度を低減することが望まれ、これまでにも、例えば、特許文献1に記載の発明、および特許文献2に記載の発明など種々の技術が提案されている。 However, it is known that even when such a denitration catalyst is used, an oxidation reaction from SO 2 to SO 3 occurs in the order of 0.1%. It is desired that the oxidation reaction from SO 2 to SO 3 occurring simultaneously with the denitration reaction is zero, and further, it is desired to reduce the SO 3 concentration in the exhaust gas. For example, the invention described in Patent Document 1 and Various techniques such as the invention described in Patent Document 2 have been proposed.
そこで、本発明は、上記実情に鑑みて提案されたもので、触媒の性能低下および触媒後流に配置される装置の腐食の原因となる酸性硫安等を含むS物質の出発物質である排ガスに共存するSO3およびNOxをさらに効率良く低減し、且つ、触媒そのものの中でのSO3の生成をさらに抑制する排ガス処理触媒、排ガス処理方法および排ガス処理装置を提供することを目的とする。 Therefore, the present invention has been proposed in view of the above circumstances, and is an exhaust gas that is a starting material of S material containing acidic ammonium sulfate and the like that causes deterioration in the performance of the catalyst and corrosion of the device disposed downstream of the catalyst. It is an object of the present invention to provide an exhaust gas treatment catalyst, an exhaust gas treatment method, and an exhaust gas treatment device that more efficiently reduce the coexisting SO 3 and NOx and further suppress the generation of SO 3 in the catalyst itself.
上述した課題を解決する第1の発明に係る排ガス処理触媒は、排ガスに含まれる窒素酸化物および三酸化硫黄を除去する排ガス処理触媒であって、チタニア、シリカの少なくとも1種の単独酸化物またはこれらの複合酸化物からなり、金を担持した担体を基材の表面に塗布してなることを特徴とする。 The exhaust gas treatment catalyst according to the first invention for solving the above-mentioned problem is an exhaust gas treatment catalyst for removing nitrogen oxides and sulfur trioxide contained in the exhaust gas, wherein at least one single oxide of titania or silica or It is characterized in that it is made of these complex oxides and is coated on a surface of a substrate with a carrier carrying gold.
上述した課題を解決する第2の発明に係る排ガス処理触媒は、第1の発明に記載された排ガス処理触媒であって、前記担体に酸化タングステンを含有させることを特徴とする。 An exhaust gas treatment catalyst according to a second invention that solves the above-described problem is the exhaust gas treatment catalyst described in the first invention, characterized in that the carrier contains tungsten oxide.
上述した課題を解決する第3の発明に係る排ガス処理触媒は、第1または第2の発明に記載された排ガス処理触媒であって、前記基材がチタニア−酸化タングステン系脱硝触媒、コージェライト、またはムライトであることを特徴とする。 An exhaust gas treatment catalyst according to a third invention for solving the above-described problem is the exhaust gas treatment catalyst described in the first or second invention, wherein the base material is a titania-tungsten oxide denitration catalyst, cordierite, Or it is mullite.
上述した課題を解決する第4の発明に係る排ガス処理触媒は、第3の発明に記載された排ガス処理触媒であって、前記基材の酸化タングステンが、前記基材のチタニア100重量部に対して0.1〜25重量部であることを特徴とする。 An exhaust gas treatment catalyst according to a fourth invention for solving the above-mentioned problem is the exhaust gas treatment catalyst described in the third invention, wherein the tungsten oxide of the base material is 100 parts by weight of titania of the base material. 0.1 to 25 parts by weight.
上述した課題を解決する第5の発明に係る排ガス処理方法は、排ガスに含まれる窒素酸化物および三酸化硫黄を除去する排ガス処理方法であって、第1乃至第4の発明の何れかに記載された排ガス処理触媒にアンモニアを添加した前記排ガスを接触させて、前記三酸化硫黄を還元させると共に、前記窒素酸化物を還元させたことを特徴とする。 An exhaust gas treatment method according to a fifth invention for solving the above-described problem is an exhaust gas treatment method for removing nitrogen oxides and sulfur trioxide contained in the exhaust gas, and is described in any one of the first to fourth inventions. The exhaust gas to which ammonia has been added is brought into contact with the exhaust gas treatment catalyst so as to reduce the sulfur trioxide and reduce the nitrogen oxides.
上述した課題を解決する第6の発明に係る排ガス処理装置は、排ガスに含まれる窒素酸化物および三酸化硫黄を除去する排ガス処理装置であって、アンモニアを添加した前記排ガスに接触して配置され、第1乃至第4の発明の何れかに記載された排ガス処理触媒と、前記排ガス処理触媒の下流に配置された脱硝触媒とを有し、前記排ガス処理触媒にて前記三酸化硫黄を還元させると共に前記窒素酸化物を還元させ、前記脱硝触媒にて前記窒素酸化物をさらに還元させたことを特徴とする。 An exhaust gas treatment apparatus according to a sixth invention for solving the above-described problem is an exhaust gas treatment apparatus that removes nitrogen oxides and sulfur trioxide contained in exhaust gas, and is disposed in contact with the exhaust gas to which ammonia is added. The exhaust gas treatment catalyst according to any one of the first to fourth inventions, and a denitration catalyst disposed downstream of the exhaust gas treatment catalyst, wherein the sulfur trioxide is reduced by the exhaust gas treatment catalyst. The nitrogen oxide is reduced, and the nitrogen oxide is further reduced by the denitration catalyst.
第1の発明に係る排ガス処理触媒によれば、担体に担持される金が基材の表面に適度に塗布されることとなり、前記担体が塗布される前記基材を、硫黄酸化物および窒素酸化物を含みアンモニアが添加される排ガスに接触させることにより、前記金による前記アンモニアの分解反応を抑制して、前記排ガスに含まれる前記硫黄酸化物のうち三酸化硫黄の還元反応および前記排ガスに含まれる前記窒素酸化物の還元反応を促進するので、前記三酸化硫黄の濃度および前記窒素酸化物の濃度を減少させることができる。 According to the exhaust gas treatment catalyst according to the first invention, the gold supported on the carrier is appropriately applied to the surface of the substrate, and the substrate to which the carrier is applied is treated with sulfur oxide and nitrogen oxidation. The decomposition reaction of the ammonia by the gold is suppressed by contacting with the exhaust gas containing the substance and ammonia is added, and the sulfur trioxide reduction reaction among the sulfur oxides contained in the exhaust gas and contained in the exhaust gas Since the reduction reaction of the nitrogen oxide is promoted, the concentration of sulfur trioxide and the concentration of nitrogen oxide can be reduced.
第2の発明に係る排ガス処理触媒によれば、第1の発明に記載された排ガス処理触媒と同様な作用効果を奏する他、脱硝性能をさらに向上させることができる。 According to the exhaust gas treatment catalyst according to the second aspect of the invention, the same effect as the exhaust gas treatment catalyst described in the first aspect of the invention can be obtained, and the denitration performance can be further improved.
第3の発明に係る排ガス処理触媒によれば、第1または第2の発明に記載された排ガス処理触媒と同様な作用効果を奏する他、担体が塗布された基材を、硫黄酸化物および窒素酸化物を含みアンモニアが添加される排ガスに接触させることになり、前記排ガスに含まれる三酸化硫黄の還元反応、および前記排ガスに含まれる窒素酸化物の還元反応を促進するので、前記三酸化硫黄の濃度および前記窒素酸化物の濃度をさらに減少させることができる。 According to the exhaust gas treatment catalyst according to the third aspect of the invention, the same effect as the exhaust gas treatment catalyst described in the first or second aspect of the invention can be obtained, and the substrate coated with the carrier is made of sulfur oxide and nitrogen. The sulfur trioxide is brought into contact with the exhaust gas containing ammonia and added, and the sulfur trioxide reduction reaction contained in the exhaust gas and the nitrogen oxide reduction reaction contained in the exhaust gas are promoted. And the nitrogen oxide concentration can be further reduced.
第4の発明に係る排ガス処理触媒によれば、第3の発明に記載された排ガス処理触媒と同様な作用効果を奏する他、担体が塗布された基材を、硫黄酸化物および窒素酸化物を含みアンモニアが添加される排ガスに接触させることになり、前記排ガスに含まれる三酸化硫黄の還元反応、および前記排ガスに含まれる窒素酸化物の還元反応を促進するので、前記三酸化硫黄の濃度および前記窒素酸化物の濃度をさらに一層減少させることができる。 According to the exhaust gas treatment catalyst of the fourth invention, the same effect as the exhaust gas treatment catalyst described in the third invention is exhibited, and the substrate coated with the carrier is treated with sulfur oxide and nitrogen oxide. The sulfur trioxide contained in the exhaust gas and the reduction reaction of nitrogen oxide contained in the exhaust gas are promoted, so that the concentration of sulfur trioxide and The nitrogen oxide concentration can be further reduced.
第5の発明に係る排ガス処理方法によれば、排ガスに含まれる窒素酸化物および三酸化硫黄を除去する排ガス処理方法であって、第1乃至第4の発明の何れかに記載された排ガス処理触媒にアンモニアを添加した前記排ガスを接触させて、前記三酸化硫黄を還元させると共に、前記窒素酸化物を還元させたことにより、前記排ガスに含まれる三酸化硫黄の濃度、および前記排ガスに含まれる窒素酸化物の濃度を減少させることができる。 According to the exhaust gas treatment method of the fifth aspect of the present invention, there is provided an exhaust gas treatment method for removing nitrogen oxides and sulfur trioxide contained in the exhaust gas, wherein the exhaust gas treatment according to any of the first to fourth aspects of the invention is performed. By contacting the exhaust gas with ammonia added to the catalyst to reduce the sulfur trioxide and reducing the nitrogen oxides, the concentration of sulfur trioxide contained in the exhaust gas and contained in the exhaust gas The concentration of nitrogen oxides can be reduced.
第6の発明に係る排ガス処理装置によれば、排ガスに含まれる窒素酸化物および三酸化硫黄を除去する排ガス処理装置であって、アンモニアを添加した前記排ガスに接触して配置され、第1乃至第4の発明の何れかに記載された排ガス処理触媒と、前記排ガス処理触媒の下流に配置された脱硝触媒とを有し、前記排ガス処理触媒にて前記三酸化硫黄を還元させると共に前記窒素酸化物を還元させ、前記脱硝触媒にて前記窒素酸化物をさらに還元させたことにより、前記排ガスに含まれる三酸化硫黄の濃度、および前記排ガスに含まれる窒素酸化物の濃度を低減することができ、排ガス処理装置の小型化や低コスト化を図ることができる。 According to the exhaust gas treatment apparatus of the sixth invention, the exhaust gas treatment apparatus removes nitrogen oxides and sulfur trioxide contained in the exhaust gas, and is disposed in contact with the exhaust gas to which ammonia has been added. The exhaust gas treatment catalyst according to any one of the fourth invention and a denitration catalyst disposed downstream of the exhaust gas treatment catalyst, wherein the exhaust gas treatment catalyst reduces the sulfur trioxide and the nitrogen oxidation The nitrogen oxides contained in the exhaust gas and the nitrogen oxides contained in the exhaust gas can be reduced by reducing the product and further reducing the nitrogen oxide with the denitration catalyst. Thus, it is possible to reduce the size and cost of the exhaust gas treatment device.
以下に、本発明に係る排ガス処理触媒、排ガス処理方法および排ガス処理装置を実施するための最良の形態を説明する。
図1は、本発明の一実施形態に係る排ガス処理装置の概略図である。
The best mode for carrying out the exhaust gas treatment catalyst, the exhaust gas treatment method and the exhaust gas treatment device according to the present invention will be described below.
FIG. 1 is a schematic view of an exhaust gas treatment apparatus according to an embodiment of the present invention.
本発明の一実施形態に係る排ガス処理触媒は、還元剤としてアンモニアを用いる(添加する)ことで、ボイラ、ガスタービン、燃焼炉、およびディーゼルエンジンを有する車両等から排出され、硫黄酸化物(SOX)および窒素酸化物(NOx)を含む排ガスからSO3を除去する(下記(1)式を参照)と同時にNOxを除去する(下記(3)および(4)式を参照)ことができる。 The exhaust gas treatment catalyst according to an embodiment of the present invention uses (adds) ammonia as a reducing agent and is discharged from a boiler, a gas turbine, a combustion furnace, a vehicle having a diesel engine, and the like. X 3 ) and SO 3 can be removed from the exhaust gas containing nitrogen oxide (NOx) (see the following formula (1)) and NOx can be removed (see the following formulas (3) and (4)).
さらに、チタニア−酸化タングステン系脱硝触媒からなる基材の上層(表面)に、チタニア、シリカの少なくとも1種の単独酸化物またはこれらの複合酸化物からなり、金を担持した担体を塗布してなる排ガス処理触媒を用いることにより、前記担体に担持される前記金が前記基材の表面に適度に塗布されることとなり、排ガス中においてSO2からSO3への酸化作用(下記(2)式を参照)が抑制されて、SO3からSO2への還元反応および排ガスに含まれる窒素酸化物の還元反応が促進される。よって、前記排ガスに含まれる三酸化硫黄の濃度、および前記排ガスに含まれる窒素酸化物の濃度を減少させることができる。 Furthermore, the upper layer (surface) of the base material made of a titania-tungsten oxide denitration catalyst is coated with a carrier carrying gold and comprising at least one single oxide of titania or silica or a composite oxide thereof. By using an exhaust gas treatment catalyst, the gold supported on the carrier is appropriately applied to the surface of the substrate, and an oxidizing action from SO 2 to SO 3 in the exhaust gas (the following equation (2) is expressed) Reference) is suppressed, and the reduction reaction from SO 3 to SO 2 and the reduction reaction of nitrogen oxides contained in the exhaust gas are promoted. Therefore, the concentration of sulfur trioxide contained in the exhaust gas and the concentration of nitrogen oxide contained in the exhaust gas can be reduced.
SO3+2NH3+O2→ SO2+N2 + 3H2O ・・・・・ (1)
2SO2 + O2 → 2SO3 ・・・・・・・・・・ (2)
4NO + 4NH3 + O2 → 4N2+ 6H2O ・・・・・ (3)
NO + NO2 + 2NH3 → 2N2+ 3H2O ・・・・・ (4)
SO 3 + 2NH 3 + O 2 → SO 2 + N 2 + 3H 2 O (1)
2SO 2 + O 2 → 2SO 3 (2)
4NO + 4NH 3 + O 2 → 4N 2 + 6H 2 O (3)
NO + NO 2 + 2NH 3 → 2N 2 + 3H 2 O (4)
金を担持する担体として、チタン、シリカの少なくとも1種の単独酸化物、またはこれらの複合酸化物を使用することができる。また、前記担体に酸化タングステンを含有させることにより、脱硝性能をさらに向上させることができる。 As a carrier for supporting gold, at least one single oxide of titanium or silica, or a composite oxide thereof can be used. Further, the denitration performance can be further improved by adding tungsten oxide to the carrier.
活性金属として担持する金は、担体100重量部に対して0.02重量部以上で活性を有し、好ましくは0.1重量部以上で高い活性を有する。すなわち、前記担体への金の担持量を上記範囲にすることにより、SO3からSO2への還元反応、および排ガスに含まれる窒素酸化物の還元反応が促進される。前記担体への金の担持方法は、前記担体が粉末状であればスプレードライ法で行うことができ、前記担体がハニカム型や粒状等に成型されたものであれば含浸法で行うことができる。 Gold supported as an active metal has an activity of 0.02 part by weight or more, preferably 0.1 part by weight or more, and high activity with respect to 100 parts by weight of the carrier. That is, by making the amount of gold supported on the carrier within the above range, the reduction reaction from SO 3 to SO 2 and the reduction reaction of nitrogen oxides contained in the exhaust gas are promoted. The method for supporting gold on the carrier can be carried out by a spray drying method if the carrier is in powder form, and can be carried out by an impregnation method if the carrier is formed into a honeycomb type or granular shape. .
基材として用いるチタニア−酸化タングステン系脱硝触媒はチタニア100重量部に対し、酸化タングステン量が0.1〜25重量部である。前記基材の酸化タングステン量が上述した重量部を有することにより、排ガス処理触媒に、硫黄酸化物および窒素酸化物を含みアンモニアが添加される排ガスを接触させることで、前記排ガスから三酸化硫黄および前記窒素酸化物をより顕著に減少させることができる。
また、自動車等の移動発生源の近傍では、振動による触媒の破損を回避するため、強度に優れたコージェライト(2MgO・2Al2O3・5SiO2)あるいはムライト(3Al2O3・2SiO2)等が基材として用いられる。
The titania-tungsten oxide denitration catalyst used as the substrate has a tungsten oxide content of 0.1 to 25 parts by weight with respect to 100 parts by weight of titania. When the tungsten oxide amount of the base material has the above-mentioned parts by weight, the exhaust gas treatment catalyst is brought into contact with the exhaust gas containing sulfur oxides and nitrogen oxides and added with ammonia. The nitrogen oxide can be more significantly reduced.
Further, in the vicinity of mobile sources such as automobiles, in order to avoid damage to the catalyst due to vibration, strength superior cordierite (2MgO · 2Al 2 O 3 · 5SiO 2) or mullite (3Al 2 O 3 · 2SiO 2 ) Etc. are used as the substrate.
本発明の一実施形態に係る排ガス処理装置3は、図1に示すように、上述した排ガス処理触媒1と、この排ガス処理触媒1に直列に配置される脱硝触媒2とを有する。排ガス4にはアンモニア5が添加される。排ガス処理触媒1はアンモニア5が添加された排ガス4に接触して配置され、脱硝触媒2は排ガス処理触媒1の下流側に配置される。脱硝触媒2としては、従来から用いられる触媒が使用される。アンモニア5を添加した排ガス4を排ガス処理装置3に流通させることにより、排ガス4中におけるSO2からSO3への酸化作用が抑制され、排ガス4中においてSO3からSO2への還元処理および脱硝処理が同時に行なわれる。すなわち、排ガス処理触媒1にて排ガス4中のSO3が還元されてSO2を生成すると共に、排ガス4中のNOxが還元されて窒素を生成し、脱硝触媒2にて排ガス4中のNOxがさらに還元されて窒素を生成する。
As shown in FIG. 1, the exhaust gas treatment apparatus 3 according to an embodiment of the present invention includes the above-described exhaust gas treatment catalyst 1 and a denitration catalyst 2 arranged in series with the exhaust gas treatment catalyst 1.
よって、1台の排ガス処理装置3にて、前記排ガスに含まれる三酸化硫黄の濃度、および前記排ガスに含まれる窒素酸化物の濃度を十分に低減することができるので、排ガス処理装置3の小型化や低コスト化を図ることができる。 Therefore, since the concentration of sulfur trioxide contained in the exhaust gas and the concentration of nitrogen oxide contained in the exhaust gas can be sufficiently reduced with one exhaust gas treatment device 3, the size of the exhaust gas treatment device 3 can be reduced. And cost reduction can be achieved.
[触媒調整法1]
球状チタニア(直径:2mm〜4mm)に対し、塩化金酸(HAuCl4)溶液に含浸して、例えばAu濃度を40g/Lに調整した塩化金酸(HAuCl4)溶液に1分間含浸して、100重量部のチタニア当り1重量部のAuを該チタニアに含浸担持させた。例えば、球状チタニアの含水量がチタニア1g当り0.25mLのとき、球状チタニア100重量部に対し金1重量部を含浸担持させるには、塩化金酸溶液の濃度は、以下の通り計算される。
[Catalyst preparation method 1]
Spherical titania (diameter: 2 mm to 4 mm) with respect to, chloroauric acid (HAuCl 4) solution was impregnated into, for example, chloroauric acid the Au concentration was adjusted to 40g / L (HAuCl 4) was impregnated for one minute in the solution, The titania was impregnated with 1 part by weight of Au per 100 parts by weight of titania. For example, when the water content of spherical titania is 0.25 mL per gram of titania, the concentration of the chloroauric acid solution is calculated as follows to impregnate and support 1 part by weight of gold to 100 parts by weight of spherical titania.
したがって、塩化金酸(HAuCl4)溶液中の金濃度を40g/Lに調整した溶液に球状チタニアを1分間含浸させることにより、球状チタニア100重量部に対し金1重量部が含浸することとなる。
続いて、金を含浸担持した球状チタンを乾燥した後、500℃にて5時間焼成した。
Therefore, by impregnating spherical titania with a solution in which the gold concentration in the chloroauric acid (HAuCl 4 ) solution is adjusted to 40 g / L for 1 minute, 1 part by weight of gold is impregnated with respect to 100 parts by weight of spherical titania. .
Subsequently, the spherical titanium impregnated and supported with gold was dried and then fired at 500 ° C. for 5 hours.
このチタニア−金球状触媒に水を加えて、湿式ボールミルで粉砕を行い、コート用スラリー(No.1)とした。 Water was added to the titania-gold spherical catalyst, and the mixture was pulverized with a wet ball mill to obtain a slurry for coating (No. 1).
次に、基材として用いるチタニア−酸化タングステンのハニカム型触媒(5.9mmピッチ、壁厚1.0mm)、いわゆるチタニア−酸化タングステン系脱硝触媒を上記スラリー(No.1)に浸漬し、この触媒を乾燥した後500℃にて5時間焼成した。 Next, a titania-tungsten oxide honeycomb type catalyst (5.9 mm pitch, wall thickness 1.0 mm) used as a base material, a so-called titania-tungsten oxide denitration catalyst is immersed in the slurry (No. 1), and this catalyst is used. And dried at 500 ° C. for 5 hours.
このように焼成してなる粉末スラリーのコート量を基材の表面積1m2当り100g塗布し、得られたハニカム型触媒を排ガス処理触媒(No.1)とした。 A coating amount of the powder slurry thus fired was applied in an amount of 100 g per 1 m 2 of the surface area of the substrate, and the resulting honeycomb catalyst was used as an exhaust gas treatment catalyst (No. 1).
[触媒調整法2]
粉末状チタニア(石原産業株式会社製)と塩化金酸(HAuCl4)溶液とを混合してスラリーを調整した後、このスラリーをスプレイドライ(噴霧乾燥)して、100重量部のチタニア粉末当り1重量部の金を該粉末に担持させ、500℃にて5時間焼成した。
[Catalyst preparation method 2]
Powdered titania (manufactured by Ishihara Sangyo Co., Ltd.) and chloroauric acid (HAuCl 4 ) solution were mixed to prepare a slurry, which was then spray-dried (spray-dried) to give 1 per 100 parts by weight of titania powder. A part by weight of gold was supported on the powder and fired at 500 ° C. for 5 hours.
このチタニア−金の粉末触媒に水を加え、湿式ボールミルで粉砕を行い、コート用スラリー(No.2)とした。 Water was added to the titania-gold powder catalyst and pulverized with a wet ball mill to obtain a slurry for coating (No. 2).
以下、触媒調整法1と同様に操作し、得られたハニカム型触媒を排ガス処理触媒(No.2)とした。 Hereinafter, the same operation as in the catalyst adjustment method 1 was performed, and the obtained honeycomb catalyst was used as an exhaust gas treatment catalyst (No. 2).
[触媒調整法3]
粉末シリカ(富士シリシア化学株式会社製)と塩化金酸(HAuCl4)溶液とを混合してスラリーを調整した後、このスラリーをスプレイドライ(噴霧乾燥)して、100重量部のシリカ粉末当り1重量部の金を該粉末に担持させ、500℃にて5時間焼成した。
[Catalyst preparation method 3]
Powder silica (manufactured by Fuji Silysia Chemical Co., Ltd.) and chloroauric acid (HAuCl 4 ) solution were mixed to prepare a slurry, and then this slurry was spray-dried (spray-dried) to obtain 1 per 100 parts by weight of silica powder. A part by weight of gold was supported on the powder and fired at 500 ° C. for 5 hours.
このシリカ−金の粉末触媒に水を加え、湿式ボールミルで粉砕を行い、コート用スラリー(No.3)とした。 Water was added to the silica-gold powder catalyst and pulverized by a wet ball mill to obtain a coating slurry (No. 3).
以下、触媒調整法1と同様に操作し、得られたハニカム型触媒を排ガス処理触媒(No.3)とした。 Hereinafter, the same operation as in the catalyst adjustment method 1 was performed, and the obtained honeycomb catalyst was used as an exhaust gas treatment catalyst (No. 3).
[触媒調整法4]
オルトチタン酸テトライソプロピル(日本曹達株式会社製、Ti(OiC3H7)4)1,126gとオルトケイ酸テトラエチル(多摩化学株式会社製、Si(OC2H5)4)57.6gを混合し、別の容器にある80℃の熱湯中へ添加し、前記混合物を2時間撹拌して、TiO2、SiO2原料を加水分解させ、TiO2−SiO2の水酸化物を含むスラリーを得た。その後、このスラリーをろ過し、乾燥した後、500℃で5時間焼成して、95重量部のTiO2と5重量部のSiO2からなるTiO2−SiO2の複合酸化物粉末(No.1)を調整した。
[Catalyst preparation method 4]
1,126 g of tetraisopropyl orthotitanate (Nihon Soda Co., Ltd., Ti (OiC 3 H 7 ) 4 ) and 57.6 g of tetraethyl orthosilicate (Tama Chemical Co., Ltd., Si (OC 2 H 5 ) 4 ) were mixed. The mixture was added to 80 ° C. hot water in another container, and the mixture was stirred for 2 hours to hydrolyze the TiO 2 and SiO 2 raw materials to obtain a slurry containing TiO 2 —SiO 2 hydroxide. . Thereafter, the slurry was filtered, dried, and then fired at 500 ° C. for 5 hours to obtain a composite oxide powder of TiO 2 —SiO 2 composed of 95 parts by weight of TiO 2 and 5 parts by weight of SiO 2 (No. 1 ) Was adjusted.
複合酸化物粉末(No.1)と塩化金酸(HAuCl4)溶液とを混合してスラリーを調整した後、このスラリーをスプレイドライ(噴霧乾燥)して、100重量部のチタニア−シリカ粉末当り1重量部の金を該粉末に担持させ、500℃にて5時間焼成した。 A composite oxide powder (No. 1) and a chloroauric acid (HAuCl 4 ) solution were mixed to prepare a slurry, which was then spray-dried (spray-dried) to give 100 parts by weight of titania-silica powder. 1 part by weight of gold was supported on the powder and fired at 500 ° C. for 5 hours.
このチタニア−シリカ−金の粉末触媒に水を加え、湿式ボールミルで粉砕を行い、コート用スラリー(No.4)とした。 Water was added to the titania-silica-gold powder catalyst and pulverized with a wet ball mill to obtain a slurry for coating (No. 4).
以下、触媒調整法1と同様に操作し、得られたハニカム型触媒を排ガス処理触媒(No.4)とした。 Hereinafter, the same operation as in the catalyst preparation method 1 was performed, and the obtained honeycomb catalyst was used as an exhaust gas treatment catalyst (No. 4).
[触媒調整法5]
100重量部のチタニア(TiO2)当り、9重量部の酸化タングステン(WO3)を含有するハニカム型触媒に対し、塩化金酸(HAuCl4)溶液を含浸して、100重量部のチタニア−酸化タングステン触媒当り1重量部の金を該触媒に含浸させた。続いて、金を含浸担持したチタニア−酸化タングステン触媒を乾燥した後、500℃にて5時間焼成した。
[Catalyst preparation method 5]
A honeycomb-type catalyst containing 9 parts by weight of tungsten oxide (WO 3 ) per 100 parts by weight of titania (TiO 2 ) is impregnated with a chloroauric acid (HAuCl 4 ) solution to give 100 parts by weight of titania-oxidation. The catalyst was impregnated with 1 part by weight of gold per tungsten catalyst. Subsequently, the titania-tungsten oxide catalyst impregnated and supported by gold was dried and then calcined at 500 ° C. for 5 hours.
このチタニア−酸化タングステン−金のハニカム型触媒をクラッシャーで10mm以下とし、さらに水を加えて湿式ボールミルで粉砕を行い、コート用スラリー(No.5)とした。 This titania-tungsten oxide-gold honeycomb type catalyst was adjusted to 10 mm or less with a crusher, further added with water and pulverized with a wet ball mill to obtain a coating slurry (No. 5).
以下、触媒調整法1と同様に操作し、得られたハニカム型触媒を排ガス処理触媒(No.5)とした。 Hereafter, it operated similarly to the catalyst adjustment method 1, and the obtained honeycomb type catalyst was made into the exhaust gas treatment catalyst (No. 5).
[触媒調整法6]
100重量部のチタニア(TiO2)当り、9重量部の酸化タングステン(WO3)を含有するハニカム型触媒に対し、塩化金酸(HAuCl4)溶液を含浸して、100重量部のチタニア−酸化タングステン触媒当り2重量部の金を該触媒に含浸させた。続いて、金を含浸担持したチタニア−酸化タングステン触媒を乾燥した後、500℃にて5時間焼成した。
[Catalyst preparation method 6]
A honeycomb-type catalyst containing 9 parts by weight of tungsten oxide (WO 3 ) per 100 parts by weight of titania (TiO 2 ) is impregnated with a chloroauric acid (HAuCl 4 ) solution to give 100 parts by weight of titania-oxidation. The catalyst was impregnated with 2 parts by weight of gold per tungsten catalyst. Subsequently, the titania-tungsten oxide catalyst impregnated and supported by gold was dried and then calcined at 500 ° C. for 5 hours.
このチタニア−酸化タングステン−金のハニカム型触媒をクラッシャーで10mm以下とし、さらに水を加えて湿式ボールミルで粉砕を行い、コート用スラリー(No.6)とした。 This titania-tungsten oxide-gold honeycomb type catalyst was adjusted to 10 mm or less with a crusher, further added with water and pulverized with a wet ball mill to obtain a coating slurry (No. 6).
以下、触媒調整法1と同様に操作し、得られたハニカム型触媒を排ガス処理触媒(No.6)とした。 Hereinafter, the same operation as in the catalyst adjustment method 1 was performed, and the obtained honeycomb catalyst was used as an exhaust gas treatment catalyst (No. 6).
[触媒調整法7]
触媒調整法4と同様に操作して得られた複合酸化粉末(No.1)1000gと10%のメチルアミン溶液1Lにパラタングステン酸アンモニウム((NH4)10W12O41・5H2O)101.3gを溶解した溶液を混合した後、さらに水3Lを加え混合してスラリーを調整した。このスラリーをスプレイドライ(噴霧乾燥)して、100重量部の複合酸化粉末(No.1)当り、9重量部の酸化タングステン(WO3)を担持させ、500℃にて5時間焼成した。
[Catalyst preparation method 7]
Composite oxide powder obtained by the same procedure as catalyst preparation method 4 (No.1) 1000 g and 10% ammonium paratungstate methylamine solution 1L ((NH 4) 10 W 12 O 41 · 5H 2 O) After mixing the solution in which 101.3 g was dissolved, 3 L of water was further added and mixed to prepare a slurry. This slurry was spray-dried (spray-dried), loaded with 9 parts by weight of tungsten oxide (WO 3 ) per 100 parts by weight of the composite oxide powder (No. 1), and fired at 500 ° C. for 5 hours.
続いて、TiO2−SiO2−WO3粉末と塩化金酸(HAuCl4)溶液とを混合してスラリーを調整した後、このスラリーをスプレイドライ(噴霧乾燥)して、100重量部のチタニア−シリカ−酸化タングステン粉末当り1重量部の金を該粉末に担持させ、500℃にて5時間焼成した。このチタニア−シリカ−酸化タングステン−金の粉末触媒に水を加え、湿式ボールミルで粉砕を行いコート用スラリー(No.7)とした。 Subsequently, a TiO 2 —SiO 2 —WO 3 powder and a chloroauric acid (HAuCl 4 ) solution were mixed to prepare a slurry, which was then spray-dried (spray dried) to obtain 100 parts by weight of titania- 1 part by weight of gold per silica-tungsten oxide powder was supported on the powder and fired at 500 ° C. for 5 hours. Water was added to the titania-silica-tungsten oxide-gold powder catalyst and pulverized with a wet ball mill to obtain a slurry for coating (No. 7).
以下、触媒調整法1と同様に操作し、得られたハニカム型触媒を排ガス処理触媒(No.7)とした。 Hereinafter, the same operation as in the catalyst preparation method 1 was performed, and the obtained honeycomb catalyst was used as an exhaust gas treatment catalyst (No. 7).
[触媒調整法8]
基材として用いるコージェライトのハニカム(4.2mmピッチ、壁厚0.6mm)を触媒調整法6で得られたコート用スラリー(No.6)に浸漬し、この触媒を乾燥した後500℃にて5時間焼成した。
[Catalyst preparation method 8]
A cordierite honeycomb (4.2 mm pitch, wall thickness 0.6 mm) used as a substrate is dipped in the slurry for coating (No. 6) obtained by the catalyst preparation method 6, and the catalyst is dried and then heated to 500 ° C. And baked for 5 hours.
このように焼成してなる粉末スラリーのコート量を基材の表面積1m2当り100g塗布して、得られたハニカム型触媒を排ガス処理触媒(No.8)とした。 100 g of the coating amount of the powder slurry thus fired was applied per 1 m 2 of the surface area of the substrate, and the resulting honeycomb catalyst was used as an exhaust gas treatment catalyst (No. 8).
(比較例1)
[比較触媒調整法1]
100重量部のチタニア(TiO2)当り、9重量部の酸化タングステン(WO3)を含有するハニカム型触媒(TiO2−WO3ハニカム型触媒)に対し、塩化金酸(HAuCl4)溶液を含浸して、100重量部のチタニア−酸化タングステン触媒当り1重量部の金を該触媒に含浸させた。続いて、金を含浸担持したチタニア−酸化タングステン触媒を乾燥した後、500℃にて5時間焼成した。
(Comparative Example 1)
[Comparative Catalyst Preparation Method 1]
A honeycomb type catalyst (TiO 2 -WO 3 honeycomb type catalyst) containing 9 parts by weight of tungsten oxide (WO 3 ) per 100 parts by weight of titania (TiO 2 ) is impregnated with a chloroauric acid (HAuCl 4 ) solution. The catalyst was then impregnated with 1 part by weight of gold per 100 parts by weight of titania-tungsten oxide catalyst. Subsequently, the titania-tungsten oxide catalyst impregnated and supported by gold was dried and then calcined at 500 ° C. for 5 hours.
このように焼成してなるハニカム型触媒を比較排ガス処理触媒(No.1)とした。 The honeycomb catalyst thus fired was used as a comparative exhaust gas treatment catalyst (No. 1).
(比較例2)
[比較触媒調整法2]
100重量部のチタニア(TiO2)当り、9重量部の酸化タングステン(WO3)を含有するハニカム型触媒を比較排ガス処理触媒(No.2)とした。
(Comparative Example 2)
[Comparative Catalyst Preparation Method 2]
A honeycomb type catalyst containing 9 parts by weight of tungsten oxide (WO 3 ) per 100 parts by weight of titania (TiO 2 ) was used as a comparative exhaust gas treatment catalyst (No. 2).
(比較例3)
[比較触媒調整法3]
100重量部のチタニア(TiO2)当り、9重量部の酸化タングステン(WO3)と0.7重量部の五酸化バナジウム(V2O5)を含有するハニカム型触媒を比較排ガス処理触媒(No.3)とした。
(Comparative Example 3)
[Comparative Catalyst Preparation Method 3]
A honeycomb type catalyst containing 9 parts by weight of tungsten oxide (WO 3 ) and 0.7 parts by weight of vanadium pentoxide (V 2 O 5 ) per 100 parts by weight of titania (TiO 2 ) was compared with a comparative exhaust gas treatment catalyst (No .3).
[SO3還元性能および脱硝性能の測定]
上記排ガス処理触媒(No.1〜No.7)および比較排ガス処理触媒(No.1〜No.3)をそれぞれ表1に示す形状、すなわち30mm(5穴)×30mm(5穴)×462mm長さの触媒に形成し、排ガス処理触媒No.8を30mm(7穴)×30mm(7穴)×317mm長さの触媒に形成し、このように形成した触媒を直列に2本連結させる。このような形状の排ガス処理触媒(No.1〜No.8)および比較排ガス処理触媒(No.1〜No.3)に対して、下記の表1に示す条件で排ガスを流通させて、当該触媒の1本目出口(AV=42.74(m3N/m2・h))、2本目出口(AV=21.37(m3N/m2・h)において、SO3還元率および脱硝性能をそれぞれ測定した。表1において、Ugsは空塔速度(流体の流量/流路断面積)を示し、AVは面積速度(ガス量/触媒での全接触面積)を示す。
[Measurement of SO 3 reduction performance and denitration performance]
Each of the exhaust gas treatment catalysts (No. 1 to No. 7) and the comparative exhaust gas treatment catalysts (No. 1 to No. 3) has the shape shown in Table 1, that is, 30 mm (5 holes) × 30 mm (5 holes) × 462 mm long The catalyst for the exhaust gas treatment catalyst No. 8 is formed into a catalyst having a length of 30 mm (7 holes) × 30 mm (7 holes) × 317 mm, and the two catalysts thus formed are connected in series. With respect to the exhaust gas treatment catalyst (No. 1 to No. 8) and the comparative exhaust gas treatment catalyst (No. 1 to No. 3) having such a shape, the exhaust gas was circulated under the conditions shown in Table 1 below. At the first outlet of the catalyst (AV = 42.74 (m 3 N / m 2 · h)) and at the second outlet (AV = 21.37 (m 3 N / m 2 · h)), the SO 3 reduction rate and denitration In Table 1, Ugs represents a superficial velocity (fluid flow rate / flow channel cross-sectional area), and AV represents an area velocity (gas amount / total contact area with catalyst).
上記表1による測定結果を下記表2に示す。
表2において、SO3還元率および脱硝率は、下記式にてそれぞれ表される。
SO3還元率(%) = (1−出口SO3濃度/入口SO3濃度)×100
脱硝率(%) = (1−出口NOx濃度/入口NOx濃度)×100
The measurement results according to Table 1 are shown in Table 2 below.
In Table 2, the SO 3 reduction rate and the denitration rate are respectively expressed by the following formulas.
SO 3 reduction rate (%) = (1−outlet SO 3 concentration / inlet SO 3 concentration) × 100
Denitration rate (%) = (1−Outlet NOx concentration / Inlet NOx concentration) × 100
上記表2に示される結果から、現状の脱硝触媒(比較排ガス処理触媒No.2,No.3)では、SO3還元性能がマイナス側である、すなわちSO2をSO3に酸化するのに対し、本発明に係る排ガス処理触媒は、SO3還元性能および脱硝性能を有することが判った。排ガス処理触媒(No.1,No.2,No.3,No.4)の測定結果から、金を担持する担体として、チタニア、シリカの少なくとも1種の単独酸化物、またはこれらの複合酸化物(チタニア−シリカの複合酸化物)が有効に働くことが判った。排ガス処理触媒(No.1,No.5)の測定結果、および排ガス処理触媒(No.4,No.7)の測定結果から、チタニア、チタニア−シリカの担体に酸化タングステン(WO3)を含有させることで、SO3還元性能および脱硝性能が向上することが判った。 From the results shown in Table 2 above, the current denitration catalysts (Comparative exhaust gas treatment catalysts No. 2 and No. 3) have a negative SO 3 reduction performance, that is, SO 2 is oxidized to SO 3. It has been found that the exhaust gas treatment catalyst according to the present invention has SO 3 reduction performance and denitration performance. From the measurement results of the exhaust gas treatment catalyst (No. 1, No. 2, No. 3, No. 4), as a carrier supporting gold, at least one single oxide of titania or silica, or a composite oxide thereof It was found that (a composite oxide of titania-silica) works effectively. From the measurement results of the exhaust gas treatment catalyst (No. 1, No. 5) and the measurement result of the exhaust gas treatment catalyst (No. 4, No. 7), the support of titania and titania-silica contains tungsten oxide (WO 3 ). As a result, it was found that the SO 3 reduction performance and the denitration performance were improved.
また、排ガス処理触媒(No.5)と比較排ガス処理触媒(No.1)の測定結果から、触媒成分が同じチタン−タングステン−金であっても、比較排ガス処理触媒(No.1)では、触媒1本目出口のSO3還元性能が触媒2本目出口のSO3還元性能より上回ることが判った。 Further, from the measurement results of the exhaust gas treatment catalyst (No. 5) and the comparative exhaust gas treatment catalyst (No. 1), even if the catalyst component is the same titanium-tungsten-gold, the comparative exhaust gas treatment catalyst (No. 1) SO 3 reduction performance of the catalyst 1 -th exit was found to exceed than SO 3 reduction performance of the two first outlet catalyst.
これは、金を担持した触媒において、脱硝反応の速度とSO3還元性能の速度では前者が速く、脱硝反応は触媒表面で反応が完結するため、触媒内部ではNH3濃度が低下することによる、と考えられる。そのため、このようなNH3濃度の低下に伴い、SO3からSO2への還元能は、SO2からSO3への酸化能を下回るようになる。したがって、比較排ガス処理触媒(No.1)では触媒内部まで金が存在しており、見かけ上SO3濃度は上昇することが判った。 This is because, in the catalyst supporting gold, the former is faster in the rate of denitration reaction and the rate of SO 3 reduction performance, and the denitration reaction is completed on the catalyst surface, so the NH 3 concentration decreases inside the catalyst. it is conceivable that. Therefore, with such a decrease in NH 3 concentration, the ability to reduce SO 3 to SO 2 becomes lower than the ability to convert SO 2 to SO 3 . Therefore, it was found that in the comparative exhaust gas treatment catalyst (No. 1), gold exists inside the catalyst and the SO 3 concentration apparently increases.
排ガス処理触媒(No.6)と排ガス処理触媒(No.8)の測定結果から、コートした触媒粉が同じであっても、基材の種類により、SO3還元性能の差および脱硝性能の差を生じることが判った。 From the measurement results of the exhaust gas treatment catalyst (No. 6) and the exhaust gas treatment catalyst (No. 8), even if the coated catalyst powder is the same, the difference in SO 3 reduction performance and the difference in denitration performance depends on the type of substrate. It was found that
本発明は、ディーゼルエンジンを有する車両、ガスタービンおよび燃焼炉等から排出される排ガスに含まれる窒素酸化物(NOx)および三酸化硫黄(SO3)を除去する排ガス処理触媒、排ガス処理方法および排ガス処理装置に利用することが可能であり、特に排ガスに含まれるSO3濃度およびNOx濃度を減少させることができ、硫黄分の高い石炭あるいは重質油等を燃料として燃焼させるボイラの排ガス処理に適用して有用な排ガス処理触媒、排ガス処理方法および排ガス処理装置に利用することが可能である。 The present invention relates to an exhaust gas treatment catalyst, an exhaust gas treatment method, and an exhaust gas for removing nitrogen oxide (NOx) and sulfur trioxide (SO 3 ) contained in exhaust gas discharged from a vehicle having a diesel engine, a gas turbine, a combustion furnace, and the like. It can be used for treatment equipment, and it can reduce SO 3 concentration and NOx concentration contained in exhaust gas, and is applicable to boiler exhaust gas treatment that burns coal with high sulfur content or heavy oil as fuel. Therefore, it can be used for a useful exhaust gas treatment catalyst, exhaust gas treatment method and exhaust gas treatment apparatus.
1 排ガス処理触媒
2 脱硝触媒
3 排ガス処理装置
4 排ガス
5 アンモニア
1 Exhaust gas treatment catalyst 2 Denitration catalyst 3 Exhaust gas treatment device 4
Claims (6)
チタニア、シリカの少なくとも1種の単独酸化物またはこれらの複合酸化物からなり、金を担持した担体を基材の表面に塗布してなる
ことを特徴とする排ガス処理触媒。 An exhaust gas treatment catalyst for removing nitrogen oxides and sulfur trioxide contained in exhaust gas,
An exhaust gas treatment catalyst characterized by comprising a support carrying gold supported on a surface of a substrate, which is made of at least one single oxide of titania or silica or a composite oxide thereof.
ことを特徴とする請求項1に記載された排ガス処理触媒。 The exhaust gas treatment catalyst according to claim 1, wherein the carrier contains tungsten oxide.
ことを特徴とする請求項1または請求項2に記載された排ガス処理触媒。 The exhaust gas treatment catalyst according to claim 1 or 2, wherein the base material is a titania-tungsten oxide denitration catalyst, cordierite, or mullite.
ことを特徴とする請求項3に記載された排ガス処理触媒。 The exhaust gas treatment catalyst according to claim 3, wherein the tungsten oxide of the base is 0.1 to 25 parts by weight with respect to 100 parts by weight of titania of the base.
請求項1乃至請求項4の何れかに記載された排ガス処理触媒にアンモニアを添加した前記排ガスを接触させて、前記三酸化硫黄を還元させると共に、前記窒素酸化物を還元させた
ことを特徴とする排ガス処理方法。 An exhaust gas treatment method for removing nitrogen oxides and sulfur trioxide contained in exhaust gas,
The exhaust gas obtained by adding ammonia to the exhaust gas treatment catalyst according to any one of claims 1 to 4 is contacted to reduce the sulfur trioxide and reduce the nitrogen oxides. Exhaust gas treatment method.
アンモニアを添加した前記排ガスに接触して配置され、請求項1乃至請求項4の何れかに記載された排ガス処理触媒と、前記排ガス処理触媒の下流に配置された脱硝触媒とを有し、前記排ガス処理触媒にて前記三酸化硫黄を還元させると共に前記窒素酸化物を還元させ、前記脱硝触媒にて前記窒素酸化物をさらに還元させた
ことを特徴とする排ガス処理装置。 An exhaust gas treatment apparatus for removing nitrogen oxides and sulfur trioxide contained in exhaust gas,
The exhaust gas treatment catalyst according to any one of claims 1 to 4, which is disposed in contact with the exhaust gas to which ammonia has been added, and a denitration catalyst disposed downstream of the exhaust gas treatment catalyst, An exhaust gas treatment apparatus, wherein the sulfur trioxide is reduced by an exhaust gas treatment catalyst, the nitrogen oxide is reduced, and the nitrogen oxide is further reduced by the denitration catalyst.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005274930A JP4918241B2 (en) | 2005-09-22 | 2005-09-22 | Exhaust gas treatment catalyst, exhaust gas treatment method and exhaust gas treatment device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005274930A JP4918241B2 (en) | 2005-09-22 | 2005-09-22 | Exhaust gas treatment catalyst, exhaust gas treatment method and exhaust gas treatment device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007083161A true JP2007083161A (en) | 2007-04-05 |
JP4918241B2 JP4918241B2 (en) | 2012-04-18 |
Family
ID=37970684
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005274930A Expired - Fee Related JP4918241B2 (en) | 2005-09-22 | 2005-09-22 | Exhaust gas treatment catalyst, exhaust gas treatment method and exhaust gas treatment device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4918241B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014065031A (en) * | 2012-09-05 | 2014-04-17 | Mitsubishi Heavy Ind Ltd | Exhaust gas treatment catalyst and method of regenerating the same |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03258316A (en) * | 1990-03-08 | 1991-11-18 | Toyota Motor Corp | Collecting filter |
WO1992019366A1 (en) * | 1991-04-30 | 1992-11-12 | Nippon Shokubai Co., Ltd. | Method of oxidative decomposition of organic halogen compound |
JPH0796187A (en) * | 1993-09-28 | 1995-04-11 | Agency Of Ind Science & Technol | Catalyst for removal of nox and method for removing nox |
JPH11267459A (en) * | 1998-03-20 | 1999-10-05 | Mitsubishi Heavy Ind Ltd | Reducing method of nitrogen oxide and so3 in exhaust gas |
JP2000024500A (en) * | 1998-07-09 | 2000-01-25 | Mitsubishi Heavy Ind Ltd | Catalyst for exhaust gas treatment, exhaust gas treatment and treatment apparatus |
JP2000084359A (en) * | 1998-09-17 | 2000-03-28 | Toyota Central Res & Dev Lab Inc | How to reduce sulfate |
JP2001286734A (en) * | 2000-04-06 | 2001-10-16 | Mitsubishi Chemicals Corp | Method for decomposing chlorinated organic compounds and method for treating combustion exhaust gas |
JP2001314766A (en) * | 2000-05-11 | 2001-11-13 | Nissan Motor Co Ltd | Catalyst for removing nitrogen oxide and system for cleaning exhaust gas |
-
2005
- 2005-09-22 JP JP2005274930A patent/JP4918241B2/en not_active Expired - Fee Related
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03258316A (en) * | 1990-03-08 | 1991-11-18 | Toyota Motor Corp | Collecting filter |
WO1992019366A1 (en) * | 1991-04-30 | 1992-11-12 | Nippon Shokubai Co., Ltd. | Method of oxidative decomposition of organic halogen compound |
JPH0796187A (en) * | 1993-09-28 | 1995-04-11 | Agency Of Ind Science & Technol | Catalyst for removal of nox and method for removing nox |
JPH11267459A (en) * | 1998-03-20 | 1999-10-05 | Mitsubishi Heavy Ind Ltd | Reducing method of nitrogen oxide and so3 in exhaust gas |
JP2000024500A (en) * | 1998-07-09 | 2000-01-25 | Mitsubishi Heavy Ind Ltd | Catalyst for exhaust gas treatment, exhaust gas treatment and treatment apparatus |
JP2000084359A (en) * | 1998-09-17 | 2000-03-28 | Toyota Central Res & Dev Lab Inc | How to reduce sulfate |
JP2001286734A (en) * | 2000-04-06 | 2001-10-16 | Mitsubishi Chemicals Corp | Method for decomposing chlorinated organic compounds and method for treating combustion exhaust gas |
JP2001314766A (en) * | 2000-05-11 | 2001-11-13 | Nissan Motor Co Ltd | Catalyst for removing nitrogen oxide and system for cleaning exhaust gas |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014065031A (en) * | 2012-09-05 | 2014-04-17 | Mitsubishi Heavy Ind Ltd | Exhaust gas treatment catalyst and method of regenerating the same |
Also Published As
Publication number | Publication date |
---|---|
JP4918241B2 (en) | 2012-04-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6410202B2 (en) | Ship combustion system | |
JP4813830B2 (en) | Exhaust gas treatment catalyst, exhaust gas treatment method and exhaust gas treatment device | |
KR20030070827A (en) | Process for purification of exhaust gases and catalyst used for purification of exhaust gases in this process | |
JP2008119651A (en) | Catalyst for removing nitrogen oxides and exhaust gas treatment method | |
KR101362606B1 (en) | NOx REMOVAL CATALYST FOR HIGH-TEMPERATURE FLUE GAS, MANUFACTURING METHOD THEREOF, AND NOx REMOVAL METHOD FOR HIGH-TEMPERATURE FLUE GAS | |
JP2004330179A (en) | Catalyst for removing nitrogen oxides, molded catalyst, exhaust gas treatment method, and combined power generation facility | |
JP4508584B2 (en) | Denitration catalyst for high temperature exhaust gas | |
JP4204692B2 (en) | Nitrogen oxide removal catalyst, method for producing the same, and method for removing nitrogen oxides using the catalyst | |
JP5804980B2 (en) | NOx removal catalyst for exhaust gas treatment and exhaust gas treatment method | |
JP5386096B2 (en) | Exhaust gas treatment catalyst | |
JP2006289211A (en) | Ammonia oxidation catalyst | |
JP4918241B2 (en) | Exhaust gas treatment catalyst, exhaust gas treatment method and exhaust gas treatment device | |
JP4508597B2 (en) | Exhaust gas treatment catalyst capable of SO3 reduction treatment, method for producing the same, and exhaust gas treatment method using the exhaust gas treatment catalyst | |
JP2006150223A (en) | Exhaust-gas cleaning filter, production method of the filter and exhaust-gas cleaning apparatus | |
JPH11267459A (en) | Reducing method of nitrogen oxide and so3 in exhaust gas | |
JP4658681B2 (en) | Denitration catalyst | |
JP5078958B2 (en) | Exhaust gas treatment catalyst, exhaust gas treatment method and exhaust gas treatment device | |
KR20020058179A (en) | Catalyst for selective catalytic reduction of nitrogen oxides including sulfur dioxide at low temperature | |
JP2007209899A (en) | Catalyst for oxidizing metal mercury, exhaust gas cleaning catalyst provided with the same and method for manufacturing the same | |
JPH08229412A (en) | Catalyst and method for removing nitrogen oxide | |
JP2006231281A (en) | Exhaust gas-treating catalyst, its manufacturing method and exhaust gas-treating method | |
JP3537210B2 (en) | Catalyst for removing nitrogen oxides and method for removing nitrogen oxides using the catalyst | |
JP2011514243A (en) | Catalyst for removing nitrogen oxides, method for producing the same, and method for removing nitrogen oxides using the same | |
JP4948331B2 (en) | Ship exhaust gas treatment method | |
JP2003117352A (en) | Method and device for cleaning exhaust gas |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080917 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101216 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110111 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110310 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110802 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110907 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120110 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120130 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150203 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4918241 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150203 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |