[go: up one dir, main page]

JP2007080885A - Optical semiconductor sealing agent, optical semiconductor and its manufacturing method - Google Patents

Optical semiconductor sealing agent, optical semiconductor and its manufacturing method Download PDF

Info

Publication number
JP2007080885A
JP2007080885A JP2005263095A JP2005263095A JP2007080885A JP 2007080885 A JP2007080885 A JP 2007080885A JP 2005263095 A JP2005263095 A JP 2005263095A JP 2005263095 A JP2005263095 A JP 2005263095A JP 2007080885 A JP2007080885 A JP 2007080885A
Authority
JP
Japan
Prior art keywords
optical semiconductor
semiconductor sealing
sealing agent
polyimide
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005263095A
Other languages
Japanese (ja)
Inventor
Shuji Kawai
修司 河合
Masato Horiuchi
正人 堀内
Hiroshi Masami
博司 真見
Hiromi Yanase
広美 柳瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Chemical Co Ltd
Original Assignee
New Japan Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Chemical Co Ltd filed Critical New Japan Chemical Co Ltd
Priority to JP2005263095A priority Critical patent/JP2007080885A/en
Publication of JP2007080885A publication Critical patent/JP2007080885A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Led Device Packages (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a transparent resin which has heat resistance and absorbs no light between a near-ultraviolet light and a visible light, as a sealing agent for semiconductor elements including a white light emitting diode. <P>SOLUTION: The optical semiconductor sealing agent contains a polyimide that is obtained by changing tetracarboxylic acid dianhydride (A), and diamine into imide and an organic solvent (B). In this case, the polyimide is such a polyimide that (i) the tetracarboxylic acid dianhydride having alicyclic structure is 50 mol% or more in the (A) component, or (ii) the diamine having alicyclic structure is 50 mol% or more in the (B) component, or (iii) the tetracarboxylic acid dianhydride having alicyclic structure is 50 mol% or more in the (A) component, and the diamine having alicyclic structure is 50 mol% or more in the (B) component. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、耐熱性、透明性、低線熱膨張係数に優れたポリイミドを含有する光半導体用の封止剤、封止樹脂、光半導体及びその製造方法に関する。更に詳しくは、分子内に脂環構造を有する溶剤可溶性ポリイミドを必須成分とする光半導体用封止剤及び該封止剤で封止された光半導体に関する。   The present invention relates to an encapsulant for optical semiconductors, an encapsulating resin, an optical semiconductor, and a method for producing the same, containing polyimide having excellent heat resistance, transparency, and low linear thermal expansion coefficient. More specifically, the present invention relates to an optical semiconductor sealing agent containing a solvent-soluble polyimide having an alicyclic structure in the molecule as an essential component and an optical semiconductor sealed with the sealing agent.

近年、発光ダイオード(Light Emitting Diode/LED)の分野では、InGaAl1-x-yN(0≦x≦1、0≦y≦1)系の窒化物半導体を用いた青色または紫外発光素子が開発されるなど短波長化・高出力化が進んでいる。これらの発光素子の光と、YAG:Ceなどの蛍光体やRGB蛍光体により波長変換された光を組合せることで白色光を得ることができ、液晶・携帯電話バックライト用途として積極的に利用されている。また、その低消費電力・長寿命性を理由に、白熱電球・蛍光灯などの照明器具代替、車両用ヘッドライト用途としても今後大いに期待されている。発光ダイオードの封止剤としては、従来、化学的安定性・電気絶縁性の観点からエポキシ樹脂が用いられてきた。一般的には、ビスフェノールAジグリシジルエーテルをメチルヘキサヒドロフタル酸無水物で硬化したものであるが、短波長化・高出力化の進んだ発光ダイオードの主発光ピークは365〜500nm領域にあり、樹脂中の芳香環の吸収により経時的な樹脂の劣化が起こり、黄変など発光輝度が顕著に低下する問題が起きている。さらに、ダブルへテロ接合や多重井戸接合など高輝度化を達成する接合技術の進歩により高出力発光が一般的となり、発熱による劣化、熱応力による半導体チップの損傷の問題も無視できなくなっている。 In recent years, in the field of light emitting diodes (LEDs), blue or ultraviolet using In x Ga y Al 1-xy N (0 ≦ x ≦ 1, 0 ≦ y ≦ 1) type nitride semiconductors. Light-emitting elements are being developed, and the trend toward shorter wavelengths and higher output is progressing. White light can be obtained by combining the light from these light emitting elements with light that has been wavelength-converted by phosphors such as YAG: Ce or RGB phosphors, and is actively used as a backlight for liquid crystals and mobile phones. Has been. In addition, because of its low power consumption and long life, it is highly expected as a substitute for lighting fixtures such as incandescent bulbs and fluorescent lamps, and as a headlight for vehicles. As a sealant for a light emitting diode, an epoxy resin has been conventionally used from the viewpoint of chemical stability and electrical insulation. Generally, bisphenol A diglycidyl ether is cured with methylhexahydrophthalic anhydride, but the main emission peak of light-emitting diodes with shorter wavelengths and higher output is in the region of 365 to 500 nm, Absorption of the aromatic ring in the resin causes deterioration of the resin over time, resulting in a problem that the light emission luminance is remarkably reduced, such as yellowing. Furthermore, high-power light emission has become common due to advances in bonding technology that achieves high brightness, such as double heterojunction and multiple well bonding, and problems such as deterioration due to heat generation and damage to semiconductor chips due to thermal stress cannot be ignored.

これらの問題を解決するため、ビスフェノール型エポキシ樹脂に代えて水素化エポキシモノマーや脂環式エポキシモノマーと酸無水物(特許文献1)の使用が提案されている。しかし、近年の半導体実装法の主流となっている表面実装型の半導体では、封止樹脂の薄膜化が重要で数百〜数十μm以下が要求される場合もある。一般的なエポキシ樹脂の場合、この様な薄膜状態で硬化する際に、空気との接触面積が大きくなることで、酸無水物の昇華、吸湿により、硬化不良が起こる問題が指摘されている。そのため硬化剤を、酸無水物から不揮発性のカチオン硬化剤に代えることが提案されている(特許文献2)。しかし、一般的にカチオン硬化剤は芳香族スルホニウム塩、芳香族ジアゾニウム塩、芳香族ヨードニウム塩など芳香環を含んでいるため、透明性、耐黄変性に劣る傾向が見られる。また、シクロヘキサントリカルボン酸モノエステルを硬化剤に用い硬化性能を向上させる方法も提案されている(特許文献3)。該硬化剤と水素化エポキシ樹脂とから得られる封止樹脂は、ガラス転移温度が100℃前後と低く、高出力発光の発熱に耐えない他、表面実装工程での冷熱サイクル中にクッラクが生じたり、Sn−Ag系など無鉛はんだ耐熱性(240〜265℃)が不足している問題があった。このように、白色発光ダイオードを始めとする光半導体封止用として、近紫外領域から可視領域にかけて光吸収がなく、耐熱性を有し、且つ薄膜上でも半導体の保護に十分な硬度を有する透明性の封止樹脂が求められていた。   In order to solve these problems, use of a hydrogenated epoxy monomer, an alicyclic epoxy monomer and an acid anhydride (Patent Document 1) has been proposed in place of the bisphenol type epoxy resin. However, in a surface-mount type semiconductor, which has become the mainstream of recent semiconductor mounting methods, it is important to reduce the thickness of the sealing resin, and there are cases where several hundreds to several tens of μm or less are required. In the case of a general epoxy resin, it has been pointed out that when the resin is cured in such a thin film state, the contact area with air becomes large, so that a curing failure occurs due to sublimation and moisture absorption of the acid anhydride. Therefore, it has been proposed to change the curing agent from an acid anhydride to a nonvolatile cationic curing agent (Patent Document 2). However, in general, a cationic curing agent contains an aromatic ring such as an aromatic sulfonium salt, aromatic diazonium salt, or aromatic iodonium salt, and thus tends to be inferior in transparency and yellowing resistance. In addition, a method for improving the curing performance using cyclohexanetricarboxylic acid monoester as a curing agent has been proposed (Patent Document 3). The sealing resin obtained from the curing agent and the hydrogenated epoxy resin has a low glass transition temperature of around 100 ° C. and cannot withstand the heat generated by high-power light emission, and cracks may occur during the cooling cycle in the surface mounting process. There is a problem that lead-free solder heat resistance (240 to 265 ° C.) such as Sn—Ag type is insufficient. Thus, for optical semiconductor sealing including white light-emitting diodes, there is no light absorption from the near ultraviolet region to the visible region, heat resistance, and transparency that has sufficient hardness to protect the semiconductor even on a thin film A sealing resin having a property has been demanded.

特開2000−196151JP 2000-196151 A 特開2005− 68303JP 2005-68303 A 特開2005− 53874JP-A-2005-53874

本発明の目的は、白色発光ダイオードを初めとする光半導体用の封止材料として、近紫外領域から可視領域にかけて光吸収がなく、耐熱性を有し、且つ硬度に優れた封止剤、特に、表面実装型の光半導体を封止するのに適した上記物性を有する封止剤、該封止剤によって封止された光半導体、及びその製造方法を提供することを目的とする。   An object of the present invention is a sealing material for optical semiconductors including white light emitting diodes, which has no light absorption from the near ultraviolet region to the visible region, has heat resistance, and has excellent hardness. An object of the present invention is to provide a sealing agent having the above-mentioned properties suitable for sealing a surface-mount type optical semiconductor, an optical semiconductor sealed with the sealing agent, and a method for manufacturing the same.

本課題を解決するため鋭意検討を行い、下記の知見を得た。
(1)特定のテトラカルボン酸二無水物と、特定のジアミンとをイミド化して得られるポリイミドが、近紫外領域から可視領域の範囲で透明性に優れていること。
(2)また、上記ポリイミドは、耐熱性に優れ、高温下での色相安定性に優れること。
(3)上記ポリイミドは、機械強度(表面硬度)に優れていること。
(4)また、上記ポリイミドと有機溶剤とを含有するポリイミド溶液が、表面実装用の半導体の製造工程に適した、粘度特性と固化特性を有していること。
(5)更に、エポキシ樹脂と併用することにより、特に低い線熱膨張係数の封止樹脂が得られること。
In order to solve this problem, intensive studies were conducted and the following findings were obtained.
(1) The polyimide obtained by imidizing a specific tetracarboxylic dianhydride and a specific diamine is excellent in transparency in the range from the near ultraviolet region to the visible region.
(2) Moreover, the said polyimide is excellent in heat resistance, and excellent in hue stability at high temperature.
(3) The polyimide has excellent mechanical strength (surface hardness).
(4) Moreover, the polyimide solution containing the said polyimide and the organic solvent has a viscosity characteristic and a solidification characteristic suitable for the manufacturing process of the semiconductor for surface mounting.
(5) Furthermore, by using together with an epoxy resin, a sealing resin having a particularly low linear thermal expansion coefficient is obtained.

本発明は係る知見に基づき完成されたものであり、以下の発明を提供するものである。   The present invention has been completed on the basis of such findings, and provides the following inventions.

[項1] (A)テトラカルボン酸二無水物と(B)ジアミンとをイミド化して得られるポリイミド、及び有機溶剤を含有する光半導体封止剤であって、該ポリイミドが、
(i)脂環構造を有するテトラカルボン酸二無水物が、(A)成分中の50モル%以上であるか、
(ii)脂環構造を有するジアミンが、(B)成分中の50モル%以上であるか、又は、
(iii)脂環構造を有するテトラカルボン酸二無水物が、(A)成分中の50モル%以上であり、且つ、脂環構造を有するジアミンが、(B)成分中の50モル%以上である、
ポリイミドであることを特徴とする光半導体封止剤。
[Item 1] An optical semiconductor sealing agent containing (A) a polyimide obtained by imidizing tetracarboxylic dianhydride and (B) diamine, and an organic solvent,
(i) the tetracarboxylic dianhydride having an alicyclic structure is 50 mol% or more in the component (A),
(ii) the diamine having an alicyclic structure is 50 mol% or more in the component (B), or
(iii) The tetracarboxylic dianhydride having an alicyclic structure is 50 mol% or more in the component (A), and the diamine having an alicyclic structure is 50 mol% or more in the component (B). is there,
An optical semiconductor sealing agent, which is polyimide.

[項2] (A)が、脂環構造を有するテトラカルボン酸二無水物100モル%である項1に記載の光半導体封止剤。   [Item 2] The optical semiconductor sealing agent according to Item 1, wherein (A) is 100 mol% of a tetracarboxylic dianhydride having an alicyclic structure.

[項3] (B)が、脂環構造を有するジアミン100モル%である項1に記載の光半導体封止剤。   CLAIM | ITEM 3 The optical semiconductor sealing agent of claim | item 1 whose (B) is 100 mol% of diamine which has an alicyclic structure.

[項4] (A)が、1,2,4,5−シクロヘキサンテトラカルボン酸二無水物である項1〜3のいずれかに記載の光半導体封止剤。   [Item 4] The optical semiconductor sealing agent according to any one of Items 1 to 3, wherein (A) is 1,2,4,5-cyclohexanetetracarboxylic dianhydride.

[項5] (B)が、4,4’−ジアミノジシクロヘキシルメタン、1,3−ジアミノシクロヘキサン、1,4−ジアミノシクロヘキサン及び1−アミノ−3−アミノメチル−3,5,5−トリメチルシクロヘキサンからなる群から選ばれる少なくとも1種である項1〜3のいずれかに記載の光半導体封止剤。   [Item 5] (B) is from 4,4′-diaminodicyclohexylmethane, 1,3-diaminocyclohexane, 1,4-diaminocyclohexane and 1-amino-3-aminomethyl-3,5,5-trimethylcyclohexane. Item 4. The optical semiconductor sealing agent according to any one of Items 1 to 3, which is at least one selected from the group consisting of:

[項6] ポリイミド100重量部に対して、有機溶剤100〜2,000重量部を含有する項1〜5のいずれかに記載の光半導体封止剤。   CLAIM | ITEM 6 The optical-semiconductor sealing agent in any one of claim | item 1-5 containing 100-2,000 weight part of organic solvents with respect to 100 weight part of polyimides.

[項7] 有機溶剤が、N−メチル−2−ピロリドン、1,3−ジメチルイミダゾリジン−2−オン、N,N−ジメチルアセトアミド、クレゾール、及びγ−ブチロラクトンからなる群から選ばれる少なくとも1種である項1〜6のいずれかに記載の光半導体封止剤。   [Item 7] The organic solvent is at least one selected from the group consisting of N-methyl-2-pyrrolidone, 1,3-dimethylimidazolidin-2-one, N, N-dimethylacetamide, cresol, and γ-butyrolactone. The optical semiconductor sealing agent in any one of claim | item 1 -6 which is these.

[項8] 更に、蛍光体を含有する項1〜7のいずれかに記載の光半導体封止剤。   CLAIM | ITEM 8 Furthermore, the optical semiconductor sealing agent in any one of claim | item 1 -7 containing a fluorescent substance.

[項9] 更に、エポキシ樹脂を含有する項1〜8のいずれかに記載の光半導体封止剤。   CLAIM | ITEM 9 Furthermore, the optical semiconductor sealing agent in any one of claim | item 1 -8 containing an epoxy resin.

[項10] 光半導体封止剤の25℃における粘度が、0.1〜30Pa・sである項1〜9のいずれかに記載の光半導体封止剤。   CLAIM | ITEM 10 The optical semiconductor sealing agent in any one of claim | item 1 -9 whose viscosity in 25 degreeC of optical semiconductor sealing agent is 0.1-30 Pa.s.

[項11] 項1〜10のいずれかに記載の光半導体封止剤を、乾燥、固化して得られる光半導体封止樹脂。   [Item 11] An optical semiconductor sealing resin obtained by drying and solidifying the optical semiconductor sealing agent according to any one of Items 1 to 10.

[項12] 層状ないし皮膜状の形態にある項11に記載の光半導体封止樹脂。   [Item 12] The optical semiconductor sealing resin according to Item 11, which is in the form of a layer or a film.

[項13] 光半導体封止樹脂のTgが、200〜350℃である項11又は12に記載の光半導体封止樹脂。   [Item 13] The optical semiconductor sealing resin according to Item 11 or 12, wherein the Tg of the optical semiconductor sealing resin is 200 to 350 ° C.

[項14] 光半導体封止樹脂の400nm光線透過率が、60〜99.5%である項11〜13のいずれかに記載の光半導体封止樹脂。   CLAIM | ITEM 14 Optical semiconductor sealing resin in any one of claim | item 11-13 whose 400 nm light transmittance of optical semiconductor sealing resin is 60 to 99.5%.

[項15] 項11〜14のいずれかに記載の光半導体封止樹脂を備えた光半導体。   CLAIM | ITEM 15 The optical semiconductor provided with the optical semiconductor sealing resin in any one of claim | item 11-14.

[項16] 光半導体が、表面実装型光半導体である項15に記載の光半導体。   [Item 16] The optical semiconductor according to Item 15, wherein the optical semiconductor is a surface-mount optical semiconductor.

[項17] 光半導体が、発光ダイオードである項15又は16に記載の光半導体。   [Item 17] The optical semiconductor according to Item 15 or 16, wherein the optical semiconductor is a light emitting diode.

[項18] 項1〜10のいずれかに記載の光半導体封止剤を、半導体上に塗布して塗膜を形成する工程と、該塗膜から溶剤を乾燥留去し、層状ないし皮膜状に固化した封止樹脂成形体を形成して、半導体を封止する工程とを含む、光半導体の製造方法。   [Item 18] A step of applying the optical semiconductor sealing agent according to any one of Items 1 to 10 on a semiconductor to form a coating film, and the solvent is dried and distilled from the coating film to form a layer or a film. Forming a solidified sealing resin molded body and sealing the semiconductor.

本発明の光半導体封止剤は、透明性、耐熱性及び機械強度に優れた封止樹脂を与えるため、光半導体等の封止樹脂として好適に用いられる。また、耐黄変性に優れており、高温下での色相の変化が少ないため、本発明の光半導体封止剤で封止された光半導体は、長期使用によっても変色が少なく、長期寿命を有している。   Since the optical semiconductor sealing agent of the present invention provides a sealing resin excellent in transparency, heat resistance and mechanical strength, it is suitably used as a sealing resin for optical semiconductors and the like. In addition, since it is excellent in yellowing resistance and there is little change in hue at high temperature, the optical semiconductor encapsulated with the optical semiconductor encapsulant of the present invention has little discoloration even after long-term use and has a long life. is doing.

[ポリイミド]
本発明に係るポリイミドは、分子内に脂環構造を特定比率で含有するポリイミドであり、特定の(A)テトラカルボン酸二無水物と、特定の(B)ジアミンとをイミド化することにより得ることができる。
[Polyimide]
The polyimide which concerns on this invention is a polyimide which contains an alicyclic structure in a specific ratio in a molecule | numerator, and is obtained by imidating specific (A) tetracarboxylic dianhydride and specific (B) diamine. be able to.

[(A)成分:テトラカルボン酸二無水物]
(A)成分としては、脂環式テトラカルボン酸二無水物、脂肪族テトラカルボン酸二無水物、芳香族テトラカルボン酸二無水物が挙げられる。脂環式テトラカルボン酸二無水物としては、分子内に少なくとも1個の脂環構造を有する炭素数8〜30のテトラカルボン酸二無水物が挙げられる。脂環構造は、単環、多環、縮合環のいずれの構造であってもよい。係る脂環式テトラカルボン酸二無水物の具体例としては、1,2,3,4−シクロブタンテトラカルボン酸ニ無水物、1,2,3,4−シクロペンタンテトラカルボン酸ニ無水物、3−カルボキシメチルシクロペンタン−1,2,4−トリカルボン酸ニ無水物、1,2,3,4−シクロヘキサンテトラカルボン酸ニ無水物、ビシクロ〔2.2.1〕ヘプタンテトラカルボン酸ニ無水物、ビシクロ〔2.2.1〕ヘプタン−5−カルボキシメチル−2,3,6−トリカルボン酸ニ無水物、ビシクロ〔2.2.2〕オクト−7−エン−2,3,5,6−テトラカルボン酸ニ無水物、ビシクロ〔2.2.2〕オクタン−2,3,5,6−テトラカルボン酸ニ無水物、ペンタシクロ〔8.2.1.14,7.02,9.03,8〕テトラデカン−5,6,11,12−テトラカルボン酸ニ無水物、5−(2,5−ジオキソテトラヒドロフリル)−3−メチル−3−シクロヘキセン−1,2−ジカルボン酸無水物、ビシクロ〔2.2.1〕ヘプタン−2−カルボキシメチル−2,5,6−トリカルボン酸ニ無水物、ビシクロ〔2.2.2〕オクタン−2−カルボキシエチル−2,5,6−トリカルボン酸ニ無水物、3,3’,4,4’−ジシクロヘキシルテトラカルボン酸ニ無水物などが挙げられる。この中でも、得られるポリイミドの耐熱性及び透明性に優れる点で、1,2,4,5−シクロヘキサンテトラカルボン酸二無水物が好ましい。これらの脂環式テトラカルボン酸二無水物は、単独で又は2種以上を混合してイミド化反応に供することができる。
[(A) component: tetracarboxylic dianhydride]
Examples of the component (A) include alicyclic tetracarboxylic dianhydrides, aliphatic tetracarboxylic dianhydrides, and aromatic tetracarboxylic dianhydrides. Examples of the alicyclic tetracarboxylic dianhydride include C8-30 tetracarboxylic dianhydrides having at least one alicyclic structure in the molecule. The alicyclic structure may be a monocyclic structure, a polycyclic structure, or a condensed ring structure. Specific examples of such alicyclic tetracarboxylic dianhydrides include 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, 3 -Carboxymethylcyclopentane-1,2,4-tricarboxylic acid dianhydride, 1,2,3,4-cyclohexanetetracarboxylic dianhydride, bicyclo [2.2.1] heptanetetracarboxylic dianhydride, Bicyclo [2.2.1] heptane-5-carboxymethyl-2,3,6-tricarboxylic acid dianhydride, bicyclo [2.2.2] oct-7-ene-2,3,5,6-tetra Carboxylic acid dianhydride, bicyclo [2.2.2] octane-2,3,5,6-tetracarboxylic acid dianhydride, pentacyclo [8.2.1.11 4,7 . 0 2,9 . 0 3,8 ] tetradecane-5,6,11,12-tetracarboxylic dianhydride, 5- (2,5-dioxotetrahydrofuryl) -3-methyl-3-cyclohexene-1,2-dicarboxylic anhydride Bicyclo [2.2.1] heptane-2-carboxymethyl-2,5,6-tricarboxylic acid dianhydride, bicyclo [2.2.2] octane-2-carboxyethyl-2,5,6- Examples thereof include tricarboxylic dianhydride and 3,3 ′, 4,4′-dicyclohexyltetracarboxylic dianhydride. Among these, 1,2,4,5-cyclohexanetetracarboxylic dianhydride is preferable in that the obtained polyimide has excellent heat resistance and transparency. These alicyclic tetracarboxylic dianhydrides can be used alone or in admixture of two or more for the imidization reaction.

脂肪族テトラカルボン酸二無水物としては、炭素数8〜30の脂肪族テトラカルボン酸二無水物が挙げられ、具体的には、1,2,3,4−ブタンテトラカルボン酸二無水物、1,2,5,6−ヘキサンテトラカルボン酸二無水物等が挙げられる。これらの脂肪族テトラカルボン酸二無水物は、単独で又は2種以上を混合して、イミド化反応に供することができる。   Examples of the aliphatic tetracarboxylic dianhydride include aliphatic tetracarboxylic dianhydrides having 8 to 30 carbon atoms, specifically, 1,2,3,4-butanetetracarboxylic dianhydride, Examples include 1,2,5,6-hexanetetracarboxylic dianhydride. These aliphatic tetracarboxylic dianhydrides may be used alone or in combination of two or more for the imidization reaction.

芳香族テトラカルボン酸二無水物としては、分子内に少なくとも1個の芳香環を含む炭素数10〜30のテトラカルボン酸二無水物が挙げられ、具体的には、3,3’,4,4’−ジフェニルスルホンテトラカルボン酸ニ無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸ニ無水物、4,4’−オキシジフタル酸ニ無水物、ピロメリット酸ニ無水物、2,2’ ,3,3’−ベンゾフェノンテトラカルボン酸ニ無水物、3,3’,4,4’−ビフェニルテトラカルボン酸ニ無水物、2,2’ ,3,3’−ビフェニルテトラカルボン酸ニ無水物、2,2−ビス(3,4−ジカルボキシフェニル)プロパンニ無水物、2,2−ビス(2,3−ジカルボキシフェニル)プロパンニ無水物、1,1−ビス(2,3−ジカルボキシフェニル)エタンニ無水物、1,2−ビス(2,3−ジカルボキシフェニル)エタンニ無水物、1,1−ビス(3,4−ジカルボキシフェニル)エタンニ無水物、1,2−ビス(3,4−ジカルボキシフェニル)エタンニ無水物、ビス(2,3−ジカルボキシフェニル)メタンニ無水物、ビス(3,4−ジカルボキシフェニル)メタンニ無水物、4,4’−(p−フェニレンジオキシ)ジフタル酸ニ無水物、4,4’−(m−フェニレンジオキシ)ジフタル酸ニ無水物、2,3,6,7−ナフタレンテトラカルボン酸ニ無水物、1,4,5,8−ナフタレンテトラカルボン酸ニ無水物、1,2−エチレンビス(アンヒドロトリメリテート)、1,4−フェニレンビス(アンヒドロトリメリテート)、1,3,3a,4,5,9b−ヘキサヒドロ−5(テトラヒドロ−2,5−ジオキソ−3−フラニル)ナフト〔1,2−c〕フラン−1.3−ジオン等が例示される。この中でも、高分子量のポリイミドが得られやすく、透明性及び溶剤溶解性に優れたポリイミドが得られる点から、3,3’,4,4’−ジフェニルスルホンテトラカルボン酸ニ無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸ニ無水物、4,4’−オキシジフタル酸ニ無水物が好ましい。これらの芳香族テトラカルボン酸二無水物は、単独で又は2種以上を混合してイミド化反応に供することができる。   Examples of the aromatic tetracarboxylic dianhydride include C 10-30 tetracarboxylic dianhydrides containing at least one aromatic ring in the molecule, specifically, 3, 3 ′, 4, 4′-diphenylsulfonetetracarboxylic dianhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, 4,4′-oxydiphthalic dianhydride, pyromellitic dianhydride, 2, 2 ′, 3,3′-benzophenonetetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 2,2-bis (2,3-dicarboxyphenyl) propane dianhydride, 1,1-bis (2,3-dicarboxy Phenyl) Tanni anhydride, 1,2-bis (2,3-dicarboxyphenyl) ethane anhydride, 1,1-bis (3,4-dicarboxyphenyl) ethane anhydride, 1,2-bis (3,4) Dicarboxyphenyl) ethane anhydride, bis (2,3-dicarboxyphenyl) methane anhydride, bis (3,4-dicarboxyphenyl) methane anhydride, 4,4 ′-(p-phenylenedioxy) diphthalic acid Dianhydride, 4,4 '-(m-phenylenedioxy) diphthalic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 1,4,5,8-naphthalenetetracarboxylic acid Dianhydrides, 1,2-ethylenebis (anhydrotrimellitate), 1,4-phenylenebis (anhydrotrimellitate), 1,3,3a, 4,5,9b-hexahydro-5 (te Rahidoro-2,5-dioxo-3-furanyl) naphtho [1,2-c] furan-1,3-dione and the like. Among these, 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride, 3,3 from the viewpoint that a polyimide having a high molecular weight is easily obtained and a polyimide having excellent transparency and solvent solubility is obtained. ', 4,4'-Benzophenonetetracarboxylic dianhydride and 4,4'-oxydiphthalic dianhydride are preferred. These aromatic tetracarboxylic dianhydrides can be used alone or in admixture of two or more for the imidization reaction.

上記(A)成分は、単独で又は2種以上を混合してイミド化反応に供することができるが、得られるポリイミドが透明性、耐黄変性に優れる点から、(A)成分としては、脂環式テトラカルボン酸二無水物を単独でイミド化反応に供することが好ましい。又、2種以上を混合してイミド化反応に供する場合には、脂環式テトラカルボン酸二無水物が、全(A)成分中の50モル%以上、好ましくは80モル%以上となるようにイミド化反応に供することが推奨される。   The component (A) can be used alone or in combination of two or more for imidization reaction. From the viewpoint that the resulting polyimide is excellent in transparency and yellowing resistance, It is preferable to subject the cyclic tetracarboxylic dianhydride alone to the imidization reaction. Moreover, when mixing 2 or more types and using for imidation reaction, alicyclic tetracarboxylic dianhydride is 50 mol% or more in all (A) components, Preferably it is 80 mol% or more. It is recommended to be subjected to imidization reaction.

又、上記テトラカルボン酸二無水物と同様に、これらのテトラカルボン酸、炭素数1〜4の脂肪族アルコールとのエステル、炭素数6〜10のフェノール類とのアリールエステル、又は酸塩化物等の形態でイミド化反応に供することができる。   Further, like the above tetracarboxylic dianhydrides, these tetracarboxylic acids, esters with aliphatic alcohols having 1 to 4 carbon atoms, aryl esters with phenols having 6 to 10 carbon atoms, or acid chlorides, etc. It can use for an imidation reaction with the form.

[(B)成分:ジアミン]
(B)成分としては、脂環式ジアミン、脂肪族ジアミン、芳香族ジアミンが挙げられる。脂環式ジアミンとしては、分子内に少なくとも1個の脂環基を有する炭素数4〜30の脂環式ジアミンが挙げられる。脂環構造は、単環、多環、縮合環のいずれの構造であってもよい。係る脂環式ジアミンの具体例としては、4,4’−ジアミノジシクロヘキシルメタン、4,4’−ジアミノ−3,3’−ジメチルシクロヘキシルメタン、4、4’−ジアミノ−3,3’,5、5’−テトラメチルシクロヘキシルメタン
1,3−ジアミノシクロヘキサン、1,4−ジアミノシクロヘキサン、1−アミノ−3−アミノメチル−3,5,5−トリメチルシクロヘキサン、2,2−ビス(4,4’−ジアミノシクロヘキシル)プロパン、1,3−ビスアミノメチルシクロヘキサン、1,4−ビスアミノメチルシクロヘキサン、2,3−ジアミノビシクロ〔2.2.1〕ヘプタン、
2,5−ジアミノビシクロ〔2.2.1〕ヘプタン、2,6−ジアミノビシクロ〔2.2.1〕ヘプタン、2,7−ジアミノビシクロ〔2.2.1〕ヘプタン、2,5−ビス(アミノメチル)−ビシクロ〔2.2.1〕ヘプタン、2,6−ビス(アミノメチル)−ビシクロ〔2.2.1〕ヘプタン、2,3−ビス(アミノメチル)−ビシクロ〔2.2.1〕ヘプタン、3(4),8(9)−ビス(アミノメチル)−トリシクロ〔5.2.1.0.6〕デカン等が挙げられる。これらの中でも、高分子量のポリイミドが得られやすく、透明性及び溶剤溶解性に優れたポリイミドが得られる点から4,4’−ジアミノジシクロヘキシルメタン、1,3−ジアミノシクロヘキサン、1,4−ジアミノシクロヘキサン、1−アミノ−3−アミノメチル−3,5,5−トリメチルシクロヘキサンが好ましい。これらの脂環式ジアミンは、単独で又は2種以上を混合してイミド化反応に供することができる。
[(B) component: diamine]
(B) As a component, alicyclic diamine, aliphatic diamine, and aromatic diamine are mentioned. As alicyclic diamine, C4-C30 alicyclic diamine which has at least 1 alicyclic group in a molecule | numerator is mentioned. The alicyclic structure may be a monocyclic structure, a polycyclic structure, or a condensed ring structure. Specific examples of the alicyclic diamine include 4,4′-diaminodicyclohexylmethane, 4,4′-diamino-3,3′-dimethylcyclohexylmethane, 4,4′-diamino-3,3 ′, 5, 5'-tetramethylcyclohexylmethane 1,3-diaminocyclohexane, 1,4-diaminocyclohexane, 1-amino-3-aminomethyl-3,5,5-trimethylcyclohexane, 2,2-bis (4,4'- Diaminocyclohexyl) propane, 1,3-bisaminomethylcyclohexane, 1,4-bisaminomethylcyclohexane, 2,3-diaminobicyclo [2.2.1] heptane,
2,5-diaminobicyclo [2.2.1] heptane, 2,6-diaminobicyclo [2.2.1] heptane, 2,7-diaminobicyclo [2.2.1] heptane, 2,5-bis (Aminomethyl) -bicyclo [2.2.1] heptane, 2,6-bis (aminomethyl) -bicyclo [2.2.1] heptane, 2,3-bis (aminomethyl) -bicyclo [2.2 .1] heptane, 3 (4), 8 (9) -bis (aminomethyl) -tricyclo [5.2.1.0 2 . 6] A decane etc. are mentioned. Among these, 4,4′-diaminodicyclohexylmethane, 1,3-diaminocyclohexane, 1,4-diaminocyclohexane are preferred because a polyimide having a high molecular weight is easily obtained and a polyimide having excellent transparency and solvent solubility is obtained. 1-amino-3-aminomethyl-3,5,5-trimethylcyclohexane is preferred. These alicyclic diamines can be used alone or in admixture of two or more for the imidization reaction.

脂肪族ジアミンとしては、炭素数2〜22の脂肪族ジアミンが挙げられ、その具体例としては、エチレンジアミン、1,3−プロパンジアミン、1,4−ブタンジアミン、1,5−ヘブタンジアミン、1,6−ヘキサンジアミン、1,7−ヘプタンジアミン、1,8−オクタンジアミン、1,9−ノナンジアミン、1,10−デカンジアミン、1,12−ドデカンジアミン等のアルキレンジアミン、オキシジ(2−アミノエタン)、オキシジ(2−アミノプロパン)、2−(2−アミノエトキシ)エトキシアミノエタン等のポリオキシアルキレンジアミン等が例示される。これら脂肪族ジアミンは、単独で又は2種以上を混合してイミド化反応に供することができる。   Examples of the aliphatic diamine include aliphatic diamines having 2 to 22 carbon atoms. Specific examples thereof include ethylenediamine, 1,3-propanediamine, 1,4-butanediamine, 1,5-hebutanediamine, 1 , 6-hexanediamine, 1,7-heptanediamine, 1,8-octanediamine, 1,9-nonanediamine, 1,10-decanediamine, 1,12-dodecanediamine and other alkylene diamines, oxydi (2-aminoethane) And polyoxyalkylenediamines such as oxydi (2-aminopropane) and 2- (2-aminoethoxy) ethoxyaminoethane. These aliphatic diamines can be used for imidization reaction alone or in admixture of two or more.

芳香族ジアミンとしては、分子内に少なくとも1個の芳香環を有する炭素数6〜30ジアミンが挙げられ、具体的には、o−フェニレンジアミン、m−フェニレンジアミン、p−フェニレンジアミン、m−アミノベンジルアミン、p−アミノベンジルアミン、4、4’−ジアミノビフェニル、4、4’−ジアミノジフェニルメタン、1,1−ビス(4−アミノフェニル)エタン、1,2−ビス(4−アミノフェニル)エタン、2,2−ビス(4−アミノフェニル)プロパン、ビス(4−アミノフェニル)スルフィド、ビス(4−アミノフェニル)スルホキシド、ビス(4−アミノフェニル)スルホン、3,3’−ジアミノジフェニルエーテル、4、4’−ジアミノジフェニルエーテル、3,3’−ジアミノベンゾフェノン、4,4’−ジアミノベンゾフェノン、1,3−ビス(3−アミノフェノキシ)ベンゼン、1,4−ビス(4−アミノフェノキシ)ベンゼン、1,4−ビス〔1−(4−アミノフェニル)−1−メチルエチル〕ベンゼン、1,4−ビス〔4−(3−アミノフェノキシ)ベンゾイル〕ベンゼン、ビス〔4−(4−アミノフェノキシ)フェニル〕メタン、
1,1−ビス〔4−(4−アミノフェノキシ)フェニル〕エタン、1,1−ビス〔3−(4−アミノフェノキシ)フェニル〕エタン、1,2−ビス〔4−(4−アミノフェノキシ)フェニル〕エタン、1,2−ビス〔3−(4−アミノフェノキシ)フェニル〕エタン、
2,2−ビス〔4−(4−アミノフェノキシ)フェニル〕プロパン、2,2−ビス〔3−(4−アミノフェノキシ)フェニル〕プロパン、2,2−ビス〔4−(3−アミノフェノキシ)−3−メチルフェニル〕プロパン、4,4’−ビス(4−アミノフェノキシ)ビフェニル、4,4’−ビス(3−アミノフェノキシ)ビフェニル、4,4’−ビス(3−アミノフェノキシ)−3,3’−メチルビフェニル、ビス〔4−(4−アミノフェノキシ)フェニル〕スルフィド、ビス〔3−(4−アミノフェノキシ)フェニル〕スルフィド、ビス〔4−(4−アミノフェノキシ)フェニル〕スルホキシド、ビス〔3−(4−アミノフェノキシ)フェニル〕スルホキシド、ビス〔4−(4−アミノフェノキシ)フェニル〕スルホン、ビス〔3−(4−アミノフェノキシ)フェニル〕スルホン、ビス〔4−(3−アミノフェノキシ)フェニル〕エーテル、ビス〔4−(4−アミノフェノキシ)フェニル〕エーテル、ビス〔4−(4−アミノフェノキシ)フェニル〕ケトン、ビス〔3−(4−アミノフェノキシ)フェニル〕ケトン等が例示される。これらの中でも、高分子量のポリイミドが得られやすく、溶剤溶解性に優れたポリイミドが得られる点から、4、4’−ジアミノジフェニルエーテル、2,2−ビス〔4−(4−アミノフェノキシ)フェニル〕プロパンが好ましい。これらの芳香族ジアミンは、単独で又は2種以上を混合してイミド化反応に供することができる。
Examples of aromatic diamines include C6-C30 diamines having at least one aromatic ring in the molecule, and specifically include o-phenylenediamine, m-phenylenediamine, p-phenylenediamine, m-amino. Benzylamine, p-aminobenzylamine, 4,4′-diaminobiphenyl, 4,4′-diaminodiphenylmethane, 1,1-bis (4-aminophenyl) ethane, 1,2-bis (4-aminophenyl) ethane 2,2-bis (4-aminophenyl) propane, bis (4-aminophenyl) sulfide, bis (4-aminophenyl) sulfoxide, bis (4-aminophenyl) sulfone, 3,3′-diaminodiphenyl ether, 4 4'-diaminodiphenyl ether, 3,3'-diaminobenzophenone, 4,4'-diaminobenzo Enone, 1,3-bis (3-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, 1,4-bis [1- (4-aminophenyl) -1-methylethyl] benzene, 1,4-bis [4- (3-aminophenoxy) benzoyl] benzene, bis [4- (4-aminophenoxy) phenyl] methane,
1,1-bis [4- (4-aminophenoxy) phenyl] ethane, 1,1-bis [3- (4-aminophenoxy) phenyl] ethane, 1,2-bis [4- (4-aminophenoxy) Phenyl] ethane, 1,2-bis [3- (4-aminophenoxy) phenyl] ethane,
2,2-bis [4- (4-aminophenoxy) phenyl] propane, 2,2-bis [3- (4-aminophenoxy) phenyl] propane, 2,2-bis [4- (3-aminophenoxy) -3-methylphenyl] propane, 4,4'-bis (4-aminophenoxy) biphenyl, 4,4'-bis (3-aminophenoxy) biphenyl, 4,4'-bis (3-aminophenoxy) -3 , 3′-methylbiphenyl, bis [4- (4-aminophenoxy) phenyl] sulfide, bis [3- (4-aminophenoxy) phenyl] sulfide, bis [4- (4-aminophenoxy) phenyl] sulfoxide, bis [3- (4-aminophenoxy) phenyl] sulfoxide, bis [4- (4-aminophenoxy) phenyl] sulfone, bis [3- (4-aminophenyl) Enoxy) phenyl] sulfone, bis [4- (3-aminophenoxy) phenyl] ether, bis [4- (4-aminophenoxy) phenyl] ether, bis [4- (4-aminophenoxy) phenyl] ketone, bis [ Examples include 3- (4-aminophenoxy) phenyl] ketone. Among these, 4,4′-diaminodiphenyl ether and 2,2-bis [4- (4-aminophenoxy) phenyl] are preferred because a polyimide having a high molecular weight is easily obtained and a polyimide having excellent solvent solubility is obtained. Propane is preferred. These aromatic diamines can be used alone or in combination of two or more for the imidization reaction.

上記(B)成分は、単独で又は2種以上を混合してイミド化反応に供することができるが、得られるポリイミドが透明性、耐黄変性に優れる点から、(B)成分としては、脂環式ジアミンを単独でイミド化反応に供することが好ましい。又、2種以上を混合してイミド化反応に供する場合には、脂環式ジアミンが、全(B)成分中の50モル%以上、好ましくは80モル%以上となるようにイミド化反応に供することが推奨される。   The component (B) can be used alone or in combination of two or more for imidation reaction. From the viewpoint that the resulting polyimide is excellent in transparency and yellowing resistance, It is preferable to subject the cyclic diamine alone to the imidization reaction. Moreover, when mixing 2 or more types and using for imidation reaction, it is made into imidation reaction so that alicyclic diamine may be 50 mol% or more in all (B) components, Preferably it is 80 mol% or more. It is recommended to provide.

上記ジアミンと同様に、これらのイソシアネート誘導体の形態でイミド化反応に供してもよい。また、透明性に優れたポリイミドを得るため、イミド化反応に供する前に、ジアミンを精製してもよい。精製の方法は、特に限定はなく、例えば、蒸留、再結晶などの方法を使用することができる。再結晶溶剤は、特に制限がないが、オクタン、ノナン等の炭化水素類、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル等のグリコールエーテル類などが例示される。   Like the diamine, it may be subjected to an imidization reaction in the form of these isocyanate derivatives. Moreover, in order to obtain the polyimide excellent in transparency, you may refine | purify diamine before using for imidation reaction. The method of purification is not particularly limited, and for example, methods such as distillation and recrystallization can be used. The recrystallization solvent is not particularly limited, and examples thereof include hydrocarbons such as octane and nonane, and glycol ethers such as ethylene glycol dimethyl ether and diethylene glycol dimethyl ether.

[好ましい(A)成分と(B)成分の組み合わせ]
上記、(A)成分と(B)成分の中でも、下記の組み合わせから得られるポリイミドは、特に、透明性に優れる点で好ましい。
[Preferable combination of component (A) and component (B)]
Among the above components (A) and (B), a polyimide obtained from the following combination is particularly preferable in terms of excellent transparency.

(A)成分が、1,2,4,5−シクロヘキサンテトラカルボン酸二無水物、3,3’,4,4’−ジフェニルスルホンテトラカルボン酸ニ無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸ニ無水物及び4,4’−オキシジフタル酸ニ無水物からなる群から選ばれる少なくとも1種であり、(B)成分が、4,4’−ジアミノシクロヘキシルメタン、1,3−ジアミノシクロヘキサン、1,4−ジアミノシクロヘキサン、1−アミノ−3−アミノメチル−3,5,5−トリメチルシクロヘキサン、4、4’−ジアミノジフェニルエーテル及び2,2−ビス〔4−(4−アミノフェノキシ)フェニル〕プロパンから選ばれる少なくとも1種のジアミンとの組み合わせ。但し、(A)成分が、1,2,4,5−シクロヘキサンテトラカルボン酸二無水物を50モル%以上含むか、及び/又は、(B)成分が、4,4’−ジアミノシクロヘキシルメタン、1,3−ジアミノシクロヘキサン、1,4−ジアミノシクロヘキサン及び1−アミノ−3−アミノメチル−3,5,5−トリメチルシクロヘキサンからなる群から選ばれる脂環式ジアミンを50モル%以上含むものに限る。   Component (A) is 1,2,4,5-cyclohexanetetracarboxylic dianhydride, 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride, 3,3 ′, 4,4 ′ -At least one selected from the group consisting of benzophenone tetracarboxylic dianhydride and 4,4'-oxydiphthalic dianhydride, wherein (B) component is 4,4'-diaminocyclohexylmethane, 1,3- Diaminocyclohexane, 1,4-diaminocyclohexane, 1-amino-3-aminomethyl-3,5,5-trimethylcyclohexane, 4,4'-diaminodiphenyl ether and 2,2-bis [4- (4-aminophenoxy) Combinations with at least one diamine selected from phenyl] propane. However, the component (A) contains 50 mol% or more of 1,2,4,5-cyclohexanetetracarboxylic dianhydride, and / or the component (B) is 4,4′-diaminocyclohexylmethane, Limited to those containing 50 mol% or more of an alicyclic diamine selected from the group consisting of 1,3-diaminocyclohexane, 1,4-diaminocyclohexane and 1-amino-3-aminomethyl-3,5,5-trimethylcyclohexane .

また、イミド化反応の原料として、(A)成分に、脂環式テトラカルボン酸二無水物100モル%を用いてイミド化するか、及び/又は(B)成分に、脂環式ジアミン100モル%を用いてイミド化することにより得られるポリイミドは、溶剤溶解性と透明性に優れる傾向がある。   In addition, as a raw material for the imidization reaction, 100 mol% of an alicyclic tetracarboxylic dianhydride is used as the component (A) and / or 100 mol of an alicyclic diamine is used as the component (B). The polyimide obtained by imidization using% tends to be excellent in solvent solubility and transparency.

さらに、(A)成分に脂環式テトラカルボン酸二無水物を用い、且つ(B)成分に脂環式ジアミンを用いて得られる全脂環式ポリイミドは、特に透明性と耐黄変性に優れる点で好ましい。特に、(A)成分が、1,2,4,5−シクロヘキサンテトラカルボン酸二無水物であり、且つ(B)成分が、4,4’−ジアミノシクロヘキシルメタン、1,3−ジアミノシクロヘキサン、1,4−ジアミノシクロヘキサン又は1−アミノ−3−アミノメチル−3,5,5−トリメチルシクロヘキサンである全脂環式ポリイミドが好ましい。   Furthermore, the fully alicyclic polyimide obtained by using an alicyclic tetracarboxylic dianhydride as the component (A) and an alicyclic diamine as the component (B) is particularly excellent in transparency and yellowing resistance. This is preferable. In particular, the component (A) is 1,2,4,5-cyclohexanetetracarboxylic dianhydride, and the component (B) is 4,4′-diaminocyclohexylmethane, 1,3-diaminocyclohexane, , 4-diaminocyclohexane or 1-amino-3-aminomethyl-3,5,5-trimethylcyclohexane is preferred.

イミド化反応の方法には、特に制限はなく、従来公知の方法に従って行うことができる。
例えば100℃未満の温度で、テトラカルボン酸二無水物とジアミンとを有機溶剤中で、重合させて、ポリアミド酸(ポリイミド前駆体)を調製した後、脱水閉環してポリイミドを調製する二段法や、ポリアミド酸を調製することなく、直接ポリイミドを合成する一段法などが例示される。これらの方法の中でも、色相が良好なポリイミドが得られる点で、二段法が推奨される。
There is no restriction | limiting in particular in the method of imidation reaction, According to a conventionally well-known method, it can carry out.
For example, a two-stage method in which a polycarboxylic acid (polyimide precursor) is prepared by polymerizing tetracarboxylic dianhydride and diamine in an organic solvent at a temperature of less than 100 ° C., and then dehydrating and ring-closing to prepare a polyimide. And a one-step method for directly synthesizing polyimide without preparing polyamic acid. Among these methods, a two-stage method is recommended in that a polyimide having a good hue can be obtained.

以下に、二段法によるイミド化反応について説明する。二段法は上記の通り、ポリアミド酸への重合反応工程と、閉環イミド化工程と二つの工程からなる。まず、前者のポリアミド酸の重合反応工程について記載する。アルゴン、窒素等の不活性ガス気流下、ジアミンを有機溶剤に溶解した後、−10℃〜100℃、好ましくは40〜80℃の温度範囲で、テトラカルボン酸ニ無水物を徐々に添加する。又は、テトラカルボン酸二無水物を有機溶剤に溶解した後、ジアミンを徐々に添加してもよい。この際、高重合度のポリアミド酸が得られやすい点で、(A)テトラカルボン酸二無水物成分と、(B)ジアミン成分とのモル比は、(A)/(B)=0.7〜1.3であることが好ましく、特に0.9〜1.1の範囲が好ましい。又、本発明に係るポリイミドとエポキシ樹脂とを併用する場合には、得られる封止樹脂成形体の硬度に優れる点から、(A)/(B)=0.9〜1.3の範囲が好ましく、特に1.0〜1.2の範囲が好ましい。   Below, the imidation reaction by a two-stage method is demonstrated. As described above, the two-stage method comprises a polymerization reaction step to polyamic acid, a ring-closing imidization step, and two steps. First, the former polyamic acid polymerization reaction step will be described. After dissolving a diamine in an organic solvent under an inert gas stream such as argon or nitrogen, tetracarboxylic dianhydride is gradually added in a temperature range of -10 ° C to 100 ° C, preferably 40 to 80 ° C. Alternatively, diamine may be gradually added after tetracarboxylic dianhydride is dissolved in an organic solvent. In this case, the molar ratio of (A) tetracarboxylic dianhydride component to (B) diamine component is (A) / (B) = 0.7 in that a polyamic acid having a high degree of polymerization is easily obtained. It is preferable that it is -1.3, and the range of 0.9-1.1 is especially preferable. Moreover, when using together the polyimide which concerns on this invention, and an epoxy resin, the range of (A) / (B) = 0.9-1.3 from the point which is excellent in the hardness of the sealing resin molding obtained. The range of 1.0 to 1.2 is particularly preferable.

又、この時の基質濃度((A)成分と(B)成分との総重量/(A)成分と(B)成分と有機溶剤との総重量)は、5〜40重量%、好ましくは10〜30重量%である。5重量%未満の基質濃度では、重合度の高いポリアミド酸が得られにくく、最終的に得られるポリイミドが、機械的に脆弱になる傾向が見られる。一方、40重量%を越える基質濃度では、有機溶剤に不溶な塩の析出により、重合が完了しなかったり、或いは重合が完了するまでに長時間を要する傾向が見られる。   The substrate concentration (total weight of component (A) and component (B) / total weight of component (A), component (B) and organic solvent) is 5 to 40% by weight, preferably 10%. ~ 30% by weight. When the substrate concentration is less than 5% by weight, it is difficult to obtain a polyamic acid having a high degree of polymerization, and the polyimide finally obtained tends to be mechanically fragile. On the other hand, when the substrate concentration exceeds 40% by weight, there is a tendency that polymerization is not completed or a long time is required until the polymerization is completed due to precipitation of a salt insoluble in an organic solvent.

有機溶剤としては、例えば、非プロトン系極性溶剤、フェノール系溶剤、グリコール系溶剤が挙げられる。非プロトン性極性溶剤の具体例としては、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、N−メチル−2−ピロリドン、N−メチルカプロラクタム、1,3−ジメチル−2−イミダゾリジノン等のアミド系溶剤、γ−ブチロラクトン等のラクトン系溶剤、ヘキサメチルホスホリックトリアミド、ヘキサメチルホスフィントリアミド、等の含リン系アミド系溶剤、ジメチルスルホン、ジメチルスルホキシド、スルホラン等の含硫黄系溶剤、シクロヘキサノン、メチルシクロヘキサノン等のケトン系溶剤等が挙げられる。   Examples of the organic solvent include an aprotic polar solvent, a phenol solvent, and a glycol solvent. Specific examples of the aprotic polar solvent include N, N-dimethylacetamide, N, N-dimethylformamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, 1,3-dimethyl-2-imidazolidinone and the like. Amide solvents, lactone solvents such as γ-butyrolactone, phosphorus-containing amide solvents such as hexamethylphosphoric triamide, hexamethylphosphine triamide, sulfur-containing solvents such as dimethyl sulfone, dimethyl sulfoxide, sulfolane, Examples thereof include ketone solvents such as cyclohexanone and methylcyclohexanone.

フェノール系溶剤の具体例として、フェノール、o−クレゾール、m−クレゾール、p−クレゾール、2,3−キシレノール、2,4−キシレノール、2,5−キシレノール、2,6−キシレノール、3,4−キシレノール、3,5−キシレノール等が挙げられる。   Specific examples of the phenol solvent include phenol, o-cresol, m-cresol, p-cresol, 2,3-xylenol, 2,4-xylenol, 2,5-xylenol, 2,6-xylenol, 3,4- Examples include xylenol and 3,5-xylenol.

グリコール系溶剤の具体例としては、エチレングリコールモノメチルエーテル、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテルなどが挙げられる。   Specific examples of the glycol solvent include ethylene glycol monomethyl ether, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether and the like.

上記の有機溶剤の中でも、重合反応中に不溶塩の発生が少なく、高重合度のポリアミド酸が得られ易い点で、アミド系溶剤、ラクトン系溶剤が好ましく、特にN−メチル−2−ピロリドン、1,3−ジメチルイミダゾリジン−2−オン、N,N−ジメチルアセトアミド、クレゾール、及びγ−ブチロラクトンが好ましい。   Among the above organic solvents, amide solvents and lactone solvents are preferred in that the generation of insoluble salts is small during the polymerization reaction and polyamic acid having a high degree of polymerization is easily obtained, and particularly N-methyl-2-pyrrolidone, 1,3-dimethylimidazolidin-2-one, N, N-dimethylacetamide, cresol, and γ-butyrolactone are preferred.

これらの有機溶剤は、単独で又は2種以上を混合して重合反応に供することができる。   These organic solvents can be used alone or in admixture of two or more for the polymerization reaction.

ポリアミド酸の重合反応工程に要する時間は、使用するテトラカルボン酸二無水物、ジアミン及び有機溶剤の種類やそれらの使用比率等により異なるが、通常0.5〜100時間である。   The time required for the polymerization reaction step of the polyamic acid varies depending on the types of tetracarboxylic dianhydride, diamine and organic solvent to be used, and their use ratio, but is usually 0.5 to 100 hours.

次に、ポリアミド酸を閉環イミド化する工程について記載する。閉環イミド化工程は、重合反応工程終了後に、引き続き加熱脱水イミド化することにより行う。ポリアミド酸が脱水閉環してイミド化することにより発生する水は、ポリアミド酸を加水分解し、重合度を低下させる原因となるため、速やかに反応系外に留去することが好ましい。係る目的で、前記有機溶剤に加えて、共沸溶剤を使用することが好ましい。共沸溶剤は、イミド化反応時に添加してもよいし、ポリアミド酸の重合反応工程の時から予め添加しておいてもよい。共沸溶剤の具体例としては、トルエン、キシレン、エチルベンゼン等のアルキル基で置換されていてもよい芳香族炭化水素、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン等のアルキル基で置換されていてもよいシクロヘキサン類が挙げられる。これらは、市販されているものでもよく、前者の例としてはソルベッソ100(エクソン・モービル社製)、後者の例としてはリカソルブ800、900(新日本理化社製)等を挙げることができる。これらの共沸溶剤は、単独で又は2種以上を混合して使用することができる。。これら共沸溶剤を使用する場合、その使用量は、全有機溶剤中の5〜50重量%の範囲が好ましい。又、共沸溶剤は、閉環イミド化工程終了後、減圧下で留去してもよい。   Next, it describes about the process of ring-closing imidation of a polyamic acid. The ring-closing imidization step is carried out by subsequent heat-dehydration imidization after the completion of the polymerization reaction step. The water generated when the polyamic acid is dehydrated and closed and imidized causes hydrolysis of the polyamic acid and lowers the degree of polymerization. Therefore, it is preferable to quickly distill out of the reaction system. For this purpose, it is preferable to use an azeotropic solvent in addition to the organic solvent. The azeotropic solvent may be added during the imidization reaction or may be added in advance from the polyamic acid polymerization reaction step. Specific examples of the azeotropic solvent include aromatic hydrocarbons which may be substituted with alkyl groups such as toluene, xylene and ethylbenzene, cyclohexanes which may be substituted with alkyl groups such as cyclohexane, methylcyclohexane and ethylcyclohexane. Is mentioned. These may be commercially available, and examples of the former include Solvesso 100 (manufactured by Exxon Mobil), and examples of the latter include Ricasolve 800 and 900 (manufactured by Shin Nippon Rika). These azeotropic solvents can be used alone or in admixture of two or more. . When using these azeotropic solvents, the amount used is preferably in the range of 5 to 50% by weight in the total organic solvent. The azeotropic solvent may be distilled off under reduced pressure after completion of the ring-closing imidization step.

閉環イミド化工程の反応温度は、120℃〜200℃の範囲が例示され、160〜190℃の範囲が好ましい。重合時間は使用するテトラカルボン酸ニ無水物、ジアミン及び有機溶剤の種類やそれらの使用比率等により異なるが、通常0.5〜20時間である。   Examples of the reaction temperature in the ring-closing imidization step include a range of 120 ° C to 200 ° C, and a range of 160 to 190 ° C is preferable. The polymerization time varies depending on the types of tetracarboxylic dianhydrides, diamines and organic solvents used, and their use ratios, but is usually 0.5 to 20 hours.

また、加熱脱水による閉環イミド化に代えて、又は加熱脱水による閉環イミド化を促進する目的で、無水酢酸等の低級脂肪酸二無水物、トリエチルアミン、ピリジン、ピコリンなどの3級アミンを加えて化学的方法により閉環イミド化を行うことにより、本発明に係るポリイミドを得ることができる。   Further, instead of ring-closing imidization by heat dehydration or for the purpose of promoting ring-closing imidization by heat dehydration, a lower fatty acid dianhydride such as acetic anhydride, a tertiary amine such as triethylamine, pyridine, and picoline is added for By performing ring-closing imidization by the method, the polyimide according to the present invention can be obtained.

かくして得られるポリイミド重合溶液は、イミド化反応に供した(A)成分及び(B)成分に由来する構造単位を有する以下の3つのいずれかの本発明に係るポリイミドを、イミド化反応に使用した有機溶剤に溶解してなるポリイミド重合溶液である。   The polyimide polymerization solution thus obtained was obtained by using any of the following three polyimides according to the present invention having structural units derived from the component (A) and the component (B) subjected to the imidization reaction for the imidization reaction. This is a polyimide polymerization solution dissolved in an organic solvent.

(i)脂環構造を有するテトラカルボン酸成分が、(A)成分中の50モル%以上、好ましくは80モル%以上、特に好ましくは100モル%である(A)成分と、(B)成分とをイミド化反応することによって得られるポリイミド。換言すると、(A)成分が、(a1)脂環構造を有するテトラカルボン酸二無水物、及び(a2)脂環構造を有さないテトラカルボン酸二無水物とからなり、そのモル比が(a1)/(a2)=50〜100/50〜0、好ましくは(a1)/(a2)=80〜100/20〜0、特に好ましくは(a1)/(a2)=100/0であるテトラカルボン酸二無水物と、(B)ジアミンとをイミド化することによって得られるポリイミド。   (i) The component (A) in which the tetracarboxylic acid component having an alicyclic structure is 50 mol% or more, preferably 80 mol% or more, particularly preferably 100 mol% in the component (A), and the component (B) And polyimide obtained by imidization reaction. In other words, the component (A) comprises (a1) a tetracarboxylic dianhydride having an alicyclic structure and (a2) a tetracarboxylic dianhydride having no alicyclic structure, and the molar ratio thereof is ( a1) / (a2) = 50-100 / 50-0, preferably (a1) / (a2) = 80-100 / 20-0, particularly preferably (a1) / (a2) = 100/0 Polyimide obtained by imidizing carboxylic dianhydride and (B) diamine.

(ii)(A)成分と、脂環構造を有するジアミンが、(B)成分中の50モル%以上、好ましくは80モル%以上、特に好ましくは100モル%である(B)成分とをイミド化反応することによって得られるポリイミド。換言すると、(B)成分が、(b1)脂環構造を有するジアミン、及び(a2)脂環構造を有さないジアミンとからなり、そのモル比が(b1)/(b2)=50〜100/50〜0、好ましくは(b1)/(b2)=80〜100/20〜0である(B)成分と、(A)成分とをイミド化することにより得られるポリイミド。   (ii) Component (A) and component (B) in which the diamine having an alicyclic structure is 50 mol% or more, preferably 80 mol% or more, particularly preferably 100 mol% in component (B) Polyimide obtained by chemical reaction. In other words, the component (B) is composed of (b1) a diamine having an alicyclic structure and (a2) a diamine having no alicyclic structure, and the molar ratio thereof is (b1) / (b2) = 50 to 100 Polyimide obtained by imidizing (B) component which is / 50-0, preferably (b1) / (b2) = 80-100 / 20-0, and (A) component.

(iii)脂環構造を有するテトラカルボン酸二無水物が、(A)成分中の50モル%以上、好ましくは80モル%以上、特に好ましくは100モル%以上であり(A)成分と、且つ、脂環構造を有するジアミンが、(B)成分中の50モル%以上、好ましくは80モル%以上、特に好ましくは100モル%である(B)成分とをイミド化することにより得られるポリイミド。換言すると、(A)成分が、(a1)脂環構造を有するテトラカルボン酸二無水物、及び(a2)脂環構造を有さないテトラカルボン酸二無水物とからなり、そのモル比が(a1)/(a2)=50〜100/50〜0、好ましくは(a1)/(a2)=80〜100/20〜0、特に好ましくは、(a1)単独であるテトラカルボン酸二無水物と、(B)成分が、(b1)脂環構造を有するジアミン、及び(b2)脂環構造を有さないジアミンとからなり、そのモル比が(b1)/(b2)=50〜100/50〜0、好ましくは(b1)/(b2)=80〜100/20〜0、特に好ましくは(b1)単独である(B)成分とをイミド化することにより得られるポリイミド。   (iii) The tetracarboxylic dianhydride having an alicyclic structure is 50 mol% or more, preferably 80 mol% or more, particularly preferably 100 mol% or more in the component (A), and the component (A), and The polyimide obtained by imidating the (B) component in which the diamine having an alicyclic structure is 50 mol% or more, preferably 80 mol% or more, particularly preferably 100 mol% in the (B) component. In other words, the component (A) comprises (a1) a tetracarboxylic dianhydride having an alicyclic structure and (a2) a tetracarboxylic dianhydride having no alicyclic structure, and the molar ratio thereof is ( a1) / (a2) = 50-100 / 50-0, preferably (a1) / (a2) = 80-100 / 20-0, particularly preferably (a1) a tetracarboxylic dianhydride alone The component (B) is composed of (b1) a diamine having an alicyclic structure and (b2) a diamine having no alicyclic structure, and the molar ratio thereof is (b1) / (b2) = 50 to 100/50. To 0, preferably (b1) / (b2) = 80 to 100/20 to 0, particularly preferably (b1) a polyimide obtained by imidizing the component (B) alone.

本発明に係るポリイミドの酸価としては、特に制限がないが、エポキシ樹脂を併用する場合には、得られる封止樹脂の耐熱性、線熱膨張係数のバランスに優れる点で、酸価が1〜100mgKOH/g、好ましくは、2〜90mgKOH/g、特に好ましくは3〜80mgKOH/gが推奨される。この酸価は、後記実施例の項に記載の方法により測定した値である。   Although there is no restriction | limiting in particular as an acid value of the polyimide which concerns on this invention, When using an epoxy resin together, an acid value is 1 at the point which is excellent in the balance of the heat resistance of the sealing resin obtained, and a linear thermal expansion coefficient. ˜100 mg KOH / g, preferably 2 to 90 mg KOH / g, particularly preferably 3 to 80 mg KOH / g is recommended. This acid value is a value measured by the method described in the Examples section below.

本発明に係るポリイミドの固有粘度としては、得られる光半導体封止樹脂の機械強度に優れる点から、0.3〜3.0dl/gが好ましく、より好ましくは0.4〜2.5、特に好ましくは0.5〜2.2が推奨される。この固有粘度は、後記実施例の項に記載の方法により測定した値である。   The intrinsic viscosity of the polyimide according to the present invention is preferably 0.3 to 3.0 dl / g, more preferably 0.4 to 2.5, particularly from the viewpoint of excellent mechanical strength of the obtained optical semiconductor encapsulating resin. Preferably 0.5 to 2.2 is recommended. This intrinsic viscosity is a value measured by the method described in the Examples section below.

上記ポリイミド重合溶液は、その状態でポリイミド溶液となっており、そのまま光半導体封止剤として用いることができる他、必要に応じて、濾過・脱泡工程を経て、又は濃縮・希釈などして粘度調整を施した後、光半導体封止剤として用いることができる。更に、イミド化反応に用いた有機溶剤の一部又は全部を低沸点の溶剤(例えば、トルエン、キシレン、ソルベントナフサ等の芳香族炭化水素、アセトン、メチルエチルケトン等のケトン系溶媒)に置換したり、或いは該ポリイミド重合溶液を乾燥するか又は貧溶剤(例えば、メタノール、イソプロピルアルコール等の低級アルコール、酢酸エチル、酢酸ブチル等の酢酸エステル類等)を添加するなどして本発明に係るポリイミドを単離した後、所望の有機溶剤に溶解してポリイミド溶液を調製し、それを光半導体封止剤とすることができる。有機溶剤としては、イミド化反応と同様の有機溶剤が挙げられる。その具体例としては、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、N−メチル−2−ピロリドン、N−メチルカプロラクタム、1,3−ジメチル−2−イミダゾリジノン等のアミド系溶剤、γ−ブチロラクトン等のラクトン系溶剤、ヘキサメチルホスホリックトリアミド、ヘキサメチルホスフィントリアミド等の含リン系アミド系溶剤、ジメチルスルホン、
ジメチルスルホキシド、スルホラン等の含硫黄系溶剤、シクロヘキサノン、メチルシクロヘキサノン等のケトン系溶剤、フェノール、o−クレゾール、m−クレゾール、p−クレゾール、2,3−キシレノール、2,4−キシレノール、2,5−キシレノール、2,6−キシレノール、3,4−キシレノール、3,5−キシレノール等のフェノール系溶剤、
エチレングリコールモノメチルエーテル、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル等のグリコールエーテル系溶剤などが挙げられる。これらの有機溶剤の使用量としては、ポリイミド100重量部に対して、100〜2,000重量部が好ましく、特に150〜900重量部が好ましい。
The polyimide polymerization solution is a polyimide solution in that state, and can be used as an optical semiconductor sealing agent as it is, and if necessary, undergoes a filtration / defoaming step, or is concentrated / diluted to obtain a viscosity. After the adjustment, it can be used as an optical semiconductor sealing agent. Furthermore, a part or all of the organic solvent used in the imidization reaction is replaced with a low boiling point solvent (for example, aromatic hydrocarbons such as toluene, xylene, solvent naphtha, ketone solvents such as acetone, methyl ethyl ketone), Alternatively, the polyimide according to the present invention is isolated by drying the polyimide polymerization solution or adding a poor solvent (for example, lower alcohols such as methanol and isopropyl alcohol, and acetates such as ethyl acetate and butyl acetate). After that, it is dissolved in a desired organic solvent to prepare a polyimide solution, which can be used as an optical semiconductor sealing agent. Examples of the organic solvent include the same organic solvents as in the imidization reaction. Specific examples thereof include amide solvents such as N, N-dimethylacetamide, N, N-dimethylformamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, 1,3-dimethyl-2-imidazolidinone, Lactone solvents such as γ-butyrolactone, phosphorus-containing amide solvents such as hexamethylphosphoric triamide, hexamethylphosphine triamide, dimethyl sulfone,
Sulfur-containing solvents such as dimethyl sulfoxide and sulfolane, ketone solvents such as cyclohexanone and methylcyclohexanone, phenol, o-cresol, m-cresol, p-cresol, 2,3-xylenol, 2,4-xylenol, 2,5 Phenolic solvents such as xylenol, 2,6-xylenol, 3,4-xylenol, 3,5-xylenol,
Examples thereof include glycol ether solvents such as ethylene glycol monomethyl ether, diethylene glycol dimethyl ether, and triethylene glycol dimethyl ether. The amount of these organic solvents used is preferably 100 to 2,000 parts by weight, particularly preferably 150 to 900 parts by weight, with respect to 100 parts by weight of polyimide.

[蛍光体]
本発明の光半導体封止剤には必要に応じて、蛍光体を添加することができる。蛍光体は、例えば、青色LED素子から発せられた青色光の一部を吸収し、波長変換された黄色光を発することにより、白色光を形成する作用を有するものである。蛍光体を、ポリイミドを含む溶液に予め分散させておいてから、光半導体上に塗布することで、蛍光体を封止樹脂中に均一に分散させることができる。蛍光体は樹脂溶液に比し密度が高いことから、光半導体を製造する際の塗布、乾燥中に沈降する傾向にある。沈降を抑制するため、光半導体封止剤の粘度を高くすることが好ましい。光半導体封止剤の粘度を高くする方法としては、ポリイミドの種類、濃度を適宜変更することにより容易に調整することができる。蛍光体としては特に制限がなく、従来公知の蛍光体を使用することができ、例えば、希土類元素のアルミン酸塩、チオ没食子酸酸塩、オルトケイ酸塩等が例示される。より具体的には、YAG蛍光体、TAG蛍光体、オルトシリケート蛍光体、チオガレート蛍光体、硫化物蛍光体等の蛍光体が挙げられ、YAlO:Ce、YAl12:Ce,YAl:Ce、YS:Eu、Sr(POCl:Eu、(SrEu)O・Alなどが例示される。係る蛍光体の粒径としては、この分野で公知の粒径のものが使用されるが、平均粒径としては、1〜250μm、特に2〜50μmが好ましい。これらの蛍光体を使用する場合、その添加量は、ポリイミド100重量部に対して、1〜80重量部、好ましくは、5〜60重量部が推奨される。
[Phosphor]
If necessary, a phosphor can be added to the optical semiconductor encapsulant of the present invention. For example, the phosphor has a function of forming white light by absorbing part of blue light emitted from a blue LED element and emitting wavelength-converted yellow light. The phosphor can be uniformly dispersed in the sealing resin by preliminarily dispersing the phosphor in a solution containing polyimide and then applying the phosphor onto the optical semiconductor. Since the density of the phosphor is higher than that of the resin solution, the phosphor tends to settle during coating and drying when manufacturing the optical semiconductor. In order to suppress sedimentation, it is preferable to increase the viscosity of the optical semiconductor sealing agent. The method for increasing the viscosity of the optical semiconductor sealing agent can be easily adjusted by appropriately changing the type and concentration of polyimide. There is no restriction | limiting in particular as fluorescent substance, A conventionally well-known fluorescent substance can be used, For example, rare earth element aluminate, thio gallate, orthosilicate, etc. are illustrated. More specifically, phosphors such as a YAG phosphor, a TAG phosphor, an orthosilicate phosphor, a thiogallate phosphor, and a sulfide phosphor can be mentioned, and YAlO 3 : Ce, Y 3 Al 5 O 12 : Ce, Y 4 Al 2 O 9 : Ce, Y 2 O 2 S: Eu, Sr 5 (PO 4 ) 3 Cl: Eu, (SrEu) O.Al 2 O 3 and the like are exemplified. As the particle size of the phosphor, those having a particle size known in this field are used, and the average particle size is preferably 1 to 250 μm, particularly preferably 2 to 50 μm. When these phosphors are used, the addition amount is recommended to be 1 to 80 parts by weight, preferably 5 to 60 parts by weight with respect to 100 parts by weight of polyimide.

[エポキシ樹脂]
更に、本発明の光半導体封止剤には、エポキシ樹脂を配合することができる。本発明で使用するエポキシ樹脂としとは、従来公知のエポキシ樹脂が使用できる。エポキシ樹脂を構成しているエポキシ化合物としては、1分子中に2個以上のエポキシ基を有するエポキシ化合物が、好ましく使用できる。その中でも、エポキシ当量が、100〜10,000、特に100〜3,000のエポキシ樹脂を使用するのが好ましい。更に、透明性及び対黄変性に優れる点から、分子内に芳香環を有さないエポキシ樹脂が好ましい。係る好ましいエポキシ樹脂としては、水添ビスフェノールAのジクリシジルエーテル、脂環式エポキシ樹脂、脂環式ポリカルボン酸のグリシジルエステル等が例示される。脂環式エポキシ樹脂とは、分子内に、エポキシシクロアルカン骨格を有するエポキシ化合物で、具体的には、
1−ビニル−3−シクロヘキセンジオキサイド、3,4−エポキシシクロヘキシルメチル−3’,4’−エポキシシクロヘキサンカルボキシレート、 3,4−エポキシ−6−メチルシクロヘキシル−3,4−エポキシ−6−メチルシクロヘキサンカルボキシレート、ビス(3,4−エポキシシクロヘキシルメチル)アジペート、ビス(3,4−エポキシ−6−メチルシクロヘキシルヘキシル)アジペート、テトラキス(3,4−エポキシシクロヘキシルメチル)ブタンテトラカルボキシレート、ジ(3,4−エポキシシクロヘキシルメチル)−4,5−エポキシテトラヒドロフタレート)、エチレンビス(3,4−エポキシシクロヘキサンカルボキシレート)、エチレンビス(3,4−エポキシ−6−メチルシクロヘキサンカルポキシレート)、リモネンジオキサイド、ビス(3,4−エポキシシクロヘキシル)メタン、2,2−ビス(3,4−エポキシシクロヘキシル)プロパン、ビス(3,4−エポキシシクロヘキシル)、1,2,5,6−シクロオクタジエンジオキサイド、ジシクロペンタジエンジオキサイド等が例示される。脂環式ポリカルボン酸のグリシジルエステルとしては、テトラヒドロフタル酸ジクリシジルエステル、ヘキサヒドロフタル酸ジクリジシルエステル、メチルヘキサヒドロフタル酸ジクリシジルエステル、1,2,4−シクロヘキサントリカルボン酸トリグリシジルエステル、1,2,4,5−シクロヘキサンテトラカルボン酸テトラグリシジルエステル等が例示される。
[Epoxy resin]
Furthermore, an epoxy resin can be mix | blended with the optical semiconductor sealing agent of this invention. A conventionally well-known epoxy resin can be used as an epoxy resin used by this invention. As the epoxy compound constituting the epoxy resin, an epoxy compound having two or more epoxy groups in one molecule can be preferably used. Among them, it is preferable to use an epoxy resin having an epoxy equivalent of 100 to 10,000, particularly 100 to 3,000. Furthermore, the epoxy resin which does not have an aromatic ring in a molecule | numerator from the point which is excellent in transparency and yellowing resistance is preferable. Examples of such a preferable epoxy resin include diglycidyl ether of hydrogenated bisphenol A, alicyclic epoxy resin, glycidyl ester of alicyclic polycarboxylic acid, and the like. An alicyclic epoxy resin is an epoxy compound having an epoxycycloalkane skeleton in the molecule, specifically,
1-vinyl-3-cyclohexylene dioxide, 3,4-epoxycyclohexylmethyl-3 ′, 4′-epoxycyclohexanecarboxylate, 3,4-epoxy-6-methylcyclohexyl-3,4-epoxy-6-methylcyclohexane Carboxylate, bis (3,4-epoxycyclohexylmethyl) adipate, bis (3,4-epoxy-6-methylcyclohexylhexyl) adipate, tetrakis (3,4-epoxycyclohexylmethyl) butanetetracarboxylate, di (3 4-epoxycyclohexylmethyl) -4,5-epoxytetrahydrophthalate), ethylenebis (3,4-epoxycyclohexanecarboxylate), ethylenebis (3,4-epoxy-6-methylcyclohexanecarboxylate) Limonene dioxide, bis (3,4-epoxycyclohexyl) methane, 2,2-bis (3,4-epoxycyclohexyl) propane, bis (3,4-epoxycyclohexyl), 1,2,5,6-cycloocta Examples include diene dioxide and dicyclopentadiene dioxide. As the glycidyl ester of alicyclic polycarboxylic acid, tetrahydrophthalic acid diglycidyl ester, hexahydrophthalic acid diglycidyl ester, methylhexahydrophthalic acid diglycidyl ester, 1,2,4-cyclohexanetricarboxylic acid triglycidyl ester, Examples include 1,2,4,5-cyclohexanetetracarboxylic acid tetraglycidyl ester and the like.

エポキシ樹脂を使用する場合、その使用量は、ポリイミド100重量部に対して、1〜100重量部が好ましく、特に5〜50重量部が推奨される。   When an epoxy resin is used, the amount used is preferably 1 to 100 parts by weight, particularly 5 to 50 parts by weight based on 100 parts by weight of polyimide.

[エポキシ樹脂硬化剤]
本発明の光半導体封止剤にエポキシ樹脂を配合する場合、エポキシ樹脂硬化剤を使用することができる。エポキシ樹脂硬化剤としては、エポキシ樹脂を硬化又は硬化促進作用を有する限り、特に制限なく使用できる。エポキシ樹脂硬化剤としては、具体的には、アミン系化合物、酸無水物系化合物等が例示される。
[Epoxy resin curing agent]
When an epoxy resin is blended with the optical semiconductor encapsulant of the present invention, an epoxy resin curing agent can be used. As the epoxy resin curing agent, any epoxy resin can be used without particular limitation as long as the epoxy resin has a curing or curing promoting action. Specific examples of the epoxy resin curing agent include amine compounds and acid anhydride compounds.

アミン系化合物としては、エチレンジアミン、プロピレンジアミン、ヘキサメチレンジアミン、2,5−ジメチルヘキサメチレンジアミン、トリメチルヘキサメチレンジアミン等の脂肪族ジアミン;ジエチレントリアミン、ビス(ヘキサメチレン)トリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、一般式(4)で表されるポリオキシアルキレンジアミン等の脂肪族ポリアミン;メタキシリレンジアミン、バラキシリレンジアミン、1,3,5−トリス(アミノメチル)ベンゼン等の芳香環を含む脂肪族ジアミン;ジアミノジシクロヘキシルメタン、ビス(4−アミノ−3−メチルシクロヘキシル)メタン、イソホロンジアミン、メンセンジアミン、ノルボルネンジアミン等の脂環式ジアミン;フェニレンジアミン、メチレンジアニリン、ジアミノジフェニルスルホン、メタアミノベンジルアミン等の芳香族アミン;トリエチルアミン、ベンジルジメチルアミン、トリス(ジメチルアミノメチル)フェノール、トリエタノールアミン、ピリジン、ピコリン、N,N’−ジメチルピペラジン、1,4−ジアザビシクロ[2,2,2]オクタン、1,8−ジアザビシクロ[5,4,0]ウンデセン等の3級アミン;2−メチルイミダゾール、2−ウンデシルイミダゾール、2−フェニルイミダゾール、2−エチル−4−メチルイミダゾール、2−フェニル−4−メチルイミダゾール、1−シアノエチルイミダゾール、1−シアノエチル−2−メチルイミダゾール、1−シアノエチル−2−フェニルイミダゾール等のイミダソール化合物;アジピン酸ジヒドラジト等の有機酸ヒドラジト、ジシアミンジアミド化合物、メラミン化合物、これらのアミン系化合物とエポキシ樹脂、尿素、イソシアネート化合物又は酸無水物とを反応させたアミンアダクト(味の素社製、「アミキュアPN−23」、アミキュア「MY−24」、富士化成社製、「フジキュアFXE」、「フジキュアFXR」等、チバスペシャルティケミカルズ社製「HT−939」等)、上記アミン化合物とポリカルボン酸との塩(味の素社製、「アミキュアATU」)、アミン化合物とイソシアヌル酸との分子化合物等が例示される。   Examples of amine compounds include aliphatic diamines such as ethylenediamine, propylenediamine, hexamethylenediamine, 2,5-dimethylhexamethylenediamine, and trimethylhexamethylenediamine; diethylenetriamine, bis (hexamethylene) triamine, triethylenetetramine, tetraethylenepenta Mine, aliphatic polyamines such as polyoxyalkylenediamine represented by the general formula (4); fats containing aromatic rings such as metaxylylenediamine, valaxylylenediamine, 1,3,5-tris (aminomethyl) benzene Diamines; cycloaliphatic diamines such as diaminodicyclohexylmethane, bis (4-amino-3-methylcyclohexyl) methane, isophoronediamine, mensendiamine, norbornenediamine; phenylenediamine, methyle Aromatic amines such as dianiline, diaminodiphenylsulfone, and metaaminobenzylamine; triethylamine, benzyldimethylamine, tris (dimethylaminomethyl) phenol, triethanolamine, pyridine, picoline, N, N′-dimethylpiperazine, 1,4- Tertiary amines such as diazabicyclo [2,2,2] octane and 1,8-diazabicyclo [5,4,0] undecene; 2-methylimidazole, 2-undecylimidazole, 2-phenylimidazole, 2-ethyl-4 -Imidazol compounds such as methylimidazole, 2-phenyl-4-methylimidazole, 1-cyanoethylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-phenylimidazole; Acid hydrazite, disiamine diamide compounds, melamine compounds, amine adducts obtained by reacting these amine compounds with epoxy resins, urea, isocyanate compounds or acid anhydrides (Ajinomoto Co., “Amicure PN-23”, Amicure “MY” -24 ", manufactured by Fuji Kasei Co., Ltd.," Fujicure FXE "," Fujicure FXR ", etc.," HT-939 "manufactured by Ciba Specialty Chemicals Co., Ltd.), salts of the above amine compounds and polycarboxylic acids (Ajinomoto Co.," Amicure ATU "), a molecular compound of an amine compound and isocyanuric acid, and the like.

酸無水物系化合物としては、アルケニル無水コハク酸、ポリアジピン酸無水物、ポリアゼライン酸無水物、ポリセバシン酸無水物などの脂肪族酸無水物;テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、ビシクロ〔2,2,1〕ヘプト−5−エン−2,3−ジカルボン酸無水物、メチルビシクロ〔2,2,1〕ヘプト−5−エン−2,3−ジカルボン酸無水物、ビシクロ〔2,2,1〕ヘプタン−2,3−ジカルボン酸無水物、メチルビシクロ〔2,2,1〕ヘプタン−2,3−ジカルボン酸無水物、1,2,4−シクロヘキサントリカルボン酸一無水物、1,2,4,5−シクロヘキサンテトラカルボン酸二無水物等の脂環式酸無水物;無水フタル酸、無水トリメリット酸、無水ピロメリット酸、ベンゾフェノンテトラカルボン酸無水物、エチレングリコールビスアンヒドロトリメリテート等の芳香族酸無水物が例示される。   Examples of acid anhydride compounds include aliphatic acid anhydrides such as alkenyl succinic anhydride, polyadipic acid anhydride, polyazeline acid anhydride, polysebacic acid anhydride; tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, hexahydrophthalic anhydride Acid, methylhexahydrophthalic anhydride, bicyclo [2,2,1] hept-5-ene-2,3-dicarboxylic anhydride, methylbicyclo [2,2,1] hept-5-ene-2,3 -Dicarboxylic anhydride, bicyclo [2,2,1] heptane-2,3-dicarboxylic anhydride, methylbicyclo [2,2,1] heptane-2,3-dicarboxylic anhydride, 1,2,4 -Cycloaliphatic acid anhydrides such as cyclohexanetricarboxylic acid monoanhydride and 1,2,4,5-cyclohexanetetracarboxylic dianhydride; phthalic anhydride, anhydrous Mellitic acid, pyromellitic anhydride, benzophenone tetracarboxylic acid anhydride, aromatic acid anhydrides such as ethylene glycol bisanhydrotrimellitate are exemplified.

上記の中でも、得られる光半導体封止樹脂の透明性、硬度に優れる点で、脂環式酸無水物系化合物、イミダゾール系化合物が好ましい。   Among these, alicyclic acid anhydride compounds and imidazole compounds are preferred in that the obtained optical semiconductor encapsulating resin is excellent in transparency and hardness.

エポキシ樹脂硬化剤を使用する場合には、その使用量は、エポキシ樹脂の種類、配合量にもよるが、エポキシ樹脂100重量部に対して、0.1〜200重量部、特に0.1〜100重量部が好ましい。   When an epoxy resin curing agent is used, the amount used depends on the type and blending amount of the epoxy resin, but is 0.1 to 200 parts by weight, especially 0.1 to 100 parts by weight of the epoxy resin. 100 parts by weight is preferred.

[その他成分]
本発明の光半導体封止剤には、更に、必要に応じて、酸化防止剤、ヒンダードアミン光安定剤(HALS)、帯電防止剤、界面活性剤など発光ダイオードの特性改善のため種々の添加剤を配合することができる。光拡散剤は、半導体素子から発生した光を封止樹脂中で分散させ、発光を均一化する作用を有するもので、例えば、酸化チタン、酸化アルミニウム、シリカ、ゼオライト、石英ガラス、タルク、炭酸カルシウム、メラミン樹脂、ベンゾグアナミン樹脂などが挙げられる。
[Other ingredients]
The optical semiconductor encapsulant of the present invention may further contain various additives for improving the characteristics of the light emitting diode, such as an antioxidant, a hindered amine light stabilizer (HALS), an antistatic agent, and a surfactant, as necessary. Can be blended. A light diffusing agent has a function of dispersing light generated from a semiconductor element in a sealing resin and uniformizing light emission. For example, titanium oxide, aluminum oxide, silica, zeolite, quartz glass, talc, calcium carbonate , Melamine resin, benzoguanamine resin and the like.

[光半導体封止剤]
本発明の光半導体封止剤は、上記成分(ポリイミド及び有機溶剤、及び必要に応じて用いられる蛍光体、エポキシ樹脂、硬化剤、硬化促進剤、その他成分)を、前記使用割合で使用し、公知の混合方法によって調製することができる。蛍光体、エポキシ樹脂及びその他の成分を使用する場合、その混合方法、混合の順番には特に制限が無く、イミド化反応終了後の重合溶液に、蛍光体、エポキシ樹脂をそのまま添加混合してもよいし、それらを有機溶剤に分散させて添加、混合してもよいし、使用時にこれらを混合してもよい。
[Optical semiconductor encapsulant]
The optical semiconductor encapsulant of the present invention uses the above components (polyimide and organic solvent, and phosphors used as necessary, epoxy resins, curing agents, curing accelerators, other components) at the above-mentioned use ratios, It can be prepared by a known mixing method. When using phosphors, epoxy resins and other components, there are no particular restrictions on the mixing method and order of mixing, and phosphors and epoxy resins can be added and mixed as they are into the polymerization solution after the imidation reaction. They may be added to and dispersed in an organic solvent, or they may be mixed at the time of use.

本発明の光半導体封止剤の25℃における粘度は、塗布工程での作業性及び、蛍光体を使用した場合の蛍光体の沈降性のバランスに優れる点から、0.1〜30Pa・sの範囲が好ましく、より好ましくは1〜20Pa・sの範囲が推奨される。尚、粘度は、後記実施例の項に記載の方法で測定した値である。   The viscosity at 25 ° C. of the photo-semiconductor encapsulant of the present invention is 0.1 to 30 Pa · s from the viewpoint of excellent balance between workability in the coating process and sedimentation property of the phosphor when the phosphor is used. A range of 1 to 20 Pa · s is recommended. The viscosity is a value measured by the method described in the Examples section below.

[光半導体封止樹脂]
かくして得られる本発明の光半導体封止剤を、従来公知の方法に従って乾燥、固化することによって、本発明の光半導体封止樹脂を得ることができる。例えば、本発明の光半導体封止剤を、そのまま半導体の表面に公知の方法で塗布又は充填し、或いは、半導体を本発明の光半導体封止剤中に浸漬した後、光半導体封止剤の塗膜或いは充填物を乾燥、固化することにより光半導体封止樹脂(即ち、光半導体封止樹脂成形体)とすることができる。ここで、「乾燥、固化」とは、光半導体封止剤から有機溶剤を揮発させ、ポリイミド及び必要に応じて用いられるエポキシ樹脂とを化学的に反応させることであるが、実際の操業上は厳密に区別されるものではない。乾燥、固化の条件としては、光半導体の種類、使用方法等により異なるが、通常、70℃〜350℃(好ましくは80〜320℃)、10〜300分(好ましくは30〜180分)、の条件が例示される。尚、乾燥、固化の際に、温度は段階的に昇温していくことが好ましく、又、減圧下で行うことも好ましい。
[Optical semiconductor encapsulating resin]
The optical semiconductor sealing resin of the present invention can be obtained by drying and solidifying the thus obtained optical semiconductor sealing agent of the present invention according to a conventionally known method. For example, the optical semiconductor encapsulant of the present invention is directly applied or filled on the surface of the semiconductor by a known method, or the semiconductor is immersed in the optical semiconductor encapsulant of the present invention, An optical semiconductor sealing resin (that is, an optical semiconductor sealing resin molding) can be obtained by drying and solidifying the coating film or filler. Here, “drying and solidifying” means volatilizing the organic solvent from the optical semiconductor encapsulant and chemically reacting the polyimide and the epoxy resin used as necessary, but in actual operation, It is not strictly distinguished. The conditions for drying and solidification vary depending on the type of optical semiconductor, the method of use, etc., but are usually 70 ° C. to 350 ° C. (preferably 80 to 320 ° C.), 10 to 300 minutes (preferably 30 to 180 minutes). The conditions are exemplified. In drying and solidifying, the temperature is preferably raised stepwise, and it is also preferred to carry out under reduced pressure.

この場合、得られる光半導体封止樹脂は、通常、透明性の層状ないし皮膜状の形態にある。この層ないし皮膜の厚さは、使用目的にもよるが、通常10〜2,000μm、より好ましくは20〜1,000μm、特に50〜500μmが推奨される。係る層状ないし皮膜状の厚さの光半導体封止樹脂成形体を得る好ましい方法としては、本発明の光半導体封止剤を、塗布した後、乾燥、固化させる方法が挙げられ、特に、前記粘度範囲の光半導体封止剤は、この方法に好適である。   In this case, the obtained optical semiconductor encapsulating resin is usually in the form of a transparent layer or film. Although the thickness of this layer or film depends on the purpose of use, it is usually recommended to be 10 to 2,000 μm, more preferably 20 to 1,000 μm, particularly 50 to 500 μm. As a preferable method for obtaining the optical semiconductor encapsulating resin molded body having such a layered or film-like thickness, there is a method in which the optical semiconductor encapsulant of the present invention is applied and then dried and solidified. A range of photosemiconductor encapsulants are suitable for this method.

乾燥、固化して得られた本発明の光半導体封止樹脂は、透明性、耐熱性、機械強度等に優れ、光半導体の封止剤として好適に使用することができる。例えば、本発明の光半導体封止成形体のガラス転移温度(Tg)は、200〜350℃が好ましく、特に220〜320℃が推奨される。尚、Tgは、後記実施例の項に記載の方法で測定した値である。   The optical semiconductor encapsulating resin of the present invention obtained by drying and solidifying is excellent in transparency, heat resistance, mechanical strength, etc., and can be suitably used as an encapsulant for optical semiconductors. For example, the glass transition temperature (Tg) of the optical semiconductor encapsulated molded article of the present invention is preferably 200 to 350 ° C., and particularly preferably 220 to 320 ° C. Tg is a value measured by the method described in the Examples section below.

本発明の光半導体封止樹脂の全光線透過率は、85〜99.5%が好ましく、特に90〜99.5%が推奨される。また、400nmにおける光線透過率が60〜99.5%が好ましく、特に、70〜99.5%が推奨される。尚、これらの光線透過率は、後記実施例の項に記載の方法で測定した値である。   The total light transmittance of the optical semiconductor sealing resin of the present invention is preferably 85 to 99.5%, and particularly preferably 90 to 99.5%. Further, the light transmittance at 400 nm is preferably 60 to 99.5%, and particularly 70 to 99.5% is recommended. In addition, these light transmittances are the values measured by the method described in the section of Examples described later.

本発明の光半導体封止樹脂の線熱膨張係数は、10〜100ppmが好ましく、特に20〜80ppmが推奨される。尚、線熱膨張係数は、後記実施例の項に記載の方法で測定した値である。   The linear thermal expansion coefficient of the optical semiconductor encapsulating resin of the present invention is preferably 10 to 100 ppm, and particularly preferably 20 to 80 ppm. In addition, a linear thermal expansion coefficient is the value measured by the method as described in the term of an after-mentioned Example.

[光半導体]
本発明は、上記本発明の光半導体封止剤を乾燥、固化して得られる光半導体樹脂を備えた光半導体を提供するものでもある。該光半導体としては、広い範囲のものが挙げられ、
具体的には、発光ダイオード(LED)、半導体レーザー、有機EL(electro Luminescence)、フォトダイオード等の発光素子、光カプラー、フォトトランジスタ、電荷結合素子(CCD:charge coupled device)、等の受光素子が例示される。これらは、単独の素子であっても複数の素子で構成されるアレイであってもよい。光半導体の形状には特に制限がなく、砲弾型、ランプ型、SMD型(表面実装型)等いずれの形態であってもよい。この中でも、本発明の光半導体封止樹脂を層ないし被膜の形態で有するSMD型の光半導体が好ましい。また、本願発明に係るポリイミドは、近紫外領域での透明性に優れるので、LED、半導体レーザー等に好適に用いられ、特に、青色LED、紫色LED、白色LED等の500nm以下の波長の光を発するLEDに好適である。
[Optical semiconductor]
The present invention also provides an optical semiconductor provided with an optical semiconductor resin obtained by drying and solidifying the optical semiconductor sealing agent of the present invention. Examples of the optical semiconductor include a wide range,
Specifically, light-emitting elements such as light-emitting diodes (LEDs), semiconductor lasers, organic EL (electro luminescence), and photodiodes, optical couplers, phototransistors, and charge coupled devices (CCDs) are included. Illustrated. These may be a single element or an array composed of a plurality of elements. There is no restriction | limiting in particular in the shape of an optical semiconductor, Any forms, such as a shell type, a lamp | ramp type, and a SMD type (surface mount type), may be sufficient. Among these, the SMD type optical semiconductor which has the optical semiconductor sealing resin of this invention with the form of the layer thru | or film is preferable. In addition, since the polyimide according to the present invention is excellent in transparency in the near-ultraviolet region, it is suitably used for LEDs, semiconductor lasers, and the like, and in particular, emits light having a wavelength of 500 nm or less such as blue LEDs, purple LEDs, and white LEDs. Suitable for emitting LED.

[光半導体の製造方法]
上記の様に、本発明の光半導体封止剤は、表面実装型の光半導体、特にLEDの封止剤として有用である。以下に、光半導体の製造方法の一例として、表面実装型のLEDにおける本発明の光半導体封止剤の使用方法について説明する。
[Optical Semiconductor Manufacturing Method]
As described above, the optical semiconductor encapsulant of the present invention is useful as an encapsulant for surface-mounted optical semiconductors, particularly LEDs. Below, the usage method of the optical-semiconductor sealing agent of this invention in surface mount type LED is demonstrated as an example of the manufacturing method of an optical semiconductor.

図1は、本発明の半導体を模式断面図である。リード電極の正端子2aと負端子2bをインサート成型したガラスエポキシ基板1上に、サファイア基板3上に形成した半導体素子4がエポキシ樹脂などのダイボンド樹脂で接着され、更に、この光半導体素子の一面側に正負の電極5a、5bを設け、リード電極2a、2bと金線等の導電性ワイヤー6で電気的に接続された構造を有している。尚、半導体素子の材質としては、従来公知のGaAs、GaP、GaAlAs、GaN、InGaN、InGaAlN等が使用できる。   FIG. 1 is a schematic cross-sectional view of a semiconductor of the present invention. A semiconductor element 4 formed on a sapphire substrate 3 is bonded to a glass epoxy substrate 1 in which a positive terminal 2a and a negative terminal 2b of a lead electrode are insert-molded with a die bond resin such as an epoxy resin. Positive and negative electrodes 5a and 5b are provided on the side, and the lead electrodes 2a and 2b are electrically connected to the conductive wires 6 such as gold wires. As a material of the semiconductor element, conventionally known GaAs, GaP, GaAlAs, GaN, InGaN, InGaAlN, or the like can be used.

係る光半導体上に、本発明の光半導体封止剤を、浸漬、スプレー、スピンコート、ロールコート、カーテンコート、バーコート又はスクリーン印刷等により、塗布した後、乾燥、固化することにより、光半導体上に本発明の光半導体封止樹脂の層ないし皮膜8を形成することができる。又、光半導体封止剤に蛍光体を配合した場合には、蛍光体7が分散した光半導体樹脂の層ないし皮膜8を得ることができる。ここで、「乾燥、固化」とは、光半導体封止剤から有機溶剤を揮発させ、ポリイミド及び必要に応じて用いられるエポキシ樹脂とを化学的に反応させることであるが、実際の操業上は厳密に区別されるものではない。乾燥、固化の条件としては、光半導体の種類、使用方法等により異なるが、通常、70℃〜300℃(好ましくは80〜250℃)、10〜300分(好ましくは30〜180分)、の条件が例示される。尚、乾燥、固化の際に、温度は段階的に昇温していくことが好ましく、又、減圧下で行うことも好ましい。   An optical semiconductor encapsulant of the present invention is applied on the optical semiconductor by dipping, spraying, spin coating, roll coating, curtain coating, bar coating, screen printing, or the like, and then dried and solidified to form an optical semiconductor. The layer or film 8 of the optical semiconductor sealing resin of the present invention can be formed thereon. In addition, when a phosphor is blended in the optical semiconductor sealing agent, an optical semiconductor resin layer or film 8 in which the phosphor 7 is dispersed can be obtained. Here, “drying and solidifying” means volatilizing the organic solvent from the optical semiconductor encapsulant and chemically reacting the polyimide and the epoxy resin used as necessary, but in actual operation, It is not strictly distinguished. The conditions for drying and solidification vary depending on the type of optical semiconductor, the method of use, etc., but are usually 70 ° C. to 300 ° C. (preferably 80 to 250 ° C.) and 10 to 300 minutes (preferably 30 to 180 minutes). The conditions are exemplified. In drying and solidifying, the temperature is preferably raised stepwise, and it is also preferable to carry out under reduced pressure.

尚、光半導体封止樹脂の層ないし皮膜は単層である必要はなく、例えば、半導体素子上に、蛍光体を含まない本発明の光半導体封止剤を、塗布、乾燥、固化させて下層を作成した後、その上に、蛍光体を含む本発明の光半導体封止剤を塗布、乾燥、固化して、封止樹脂の上層にのみ蛍光粒子を分散させた多層構造とすることもできる。また、反対に、蛍光体を含有する封止樹脂を下層を形成した後、蛍光体を含有しない封止樹脂を上層として形成した多層構造とすることもできる。   The layer or film of the optical semiconductor encapsulating resin does not need to be a single layer. For example, the optical semiconductor encapsulant of the present invention containing no phosphor is applied, dried and solidified on a semiconductor element. After that, the optical semiconductor encapsulant of the present invention containing a phosphor is coated, dried and solidified thereon to form a multilayer structure in which the fluorescent particles are dispersed only in the upper layer of the encapsulating resin. . On the other hand, after forming a lower layer of a sealing resin containing a phosphor, a multilayer structure in which a sealing resin not containing a phosphor is formed as an upper layer can also be used.

かくして得られる光半導体は、更に、銅張積層板などの配線基板9に形成された電子回路上にはんだ付けされる。はんだは近年、Pbフリーが主流となりつつあり、例えば、Sn−Ag系はんだが代替として使用されつつある。このようなはんだ工程に必要な温度は260℃であり、本発明の光半導体封止樹脂は、係るはんだ工程に耐えうる耐熱性を有している。   The optical semiconductor thus obtained is further soldered onto an electronic circuit formed on the wiring board 9 such as a copper clad laminate. In recent years, Pb-free solder is becoming mainstream in solder, for example, Sn-Ag solder is being used as an alternative. The temperature required for such a soldering process is 260 ° C., and the optical semiconductor sealing resin of the present invention has heat resistance that can withstand such a soldering process.

以下に実施例および比較例を挙げて本発明を詳細に説明するが、本発明は下記の実施例に限定されるものでない。下記の製造例、実施例及び比較例において、各特性の測定方法は以下の通りである。 EXAMPLES The present invention will be described in detail below with reference to examples and comparative examples, but the present invention is not limited to the following examples. In the following production examples, examples, and comparative examples, the measuring method of each characteristic is as follows.

[ポリイミドの物性評価]
(a)ポリイミド濃度
イミド化反応終了後の反応生成物であるポリイミド溶液を、TG−DTA装置(セイコーインスツル株式会社製 EXSTAR 6000、TG−DTA 6200)を用いて、窒素気流下(100ml/min)、5℃/minの昇温速度で400℃まで昇温したときの残存重量を測定し、ポリイミド濃度(wt%)とした。
[Physical property evaluation of polyimide]
(A) Polyimide concentration Using a TG-DTA apparatus (EXSTAR 6000, TG-DTA 6200, manufactured by Seiko Instruments Inc.), a polyimide solution that is a reaction product after the imidation reaction is completed (100 ml / min). ) The residual weight when the temperature was raised to 400 ° C. at a rate of temperature increase of 5 ° C./min was determined as the polyimide concentration (wt%).

(b)固有粘度
イミド化反応終了後の反応生成物であるポリイミド溶液を、ポリイミド濃度が0.5g/dlとなるように、NMP又はミックスクレゾールで希釈した溶液の流下時間を、オストワルド粘度計を用いて30℃で測定した。尚、対照としてNMP又はミックスクレゾールの流下時間を測定し、下記式より固有粘度を算出した。
固有粘度(dl/g)=ln[(t−t)/t)]/0.5
(B) Intrinsic viscosity The polyimide solution, which is a reaction product after the imidation reaction, was diluted with NMP or mixed cresol so that the polyimide concentration was 0.5 g / dl. And measured at 30 ° C. As a control, the flow time of NMP or mixed cresol was measured, and the intrinsic viscosity was calculated from the following formula.
Intrinsic viscosity (dl / g) = ln [(t 1 −t 0 ) / t 0 )] / 0.5

(c)溶液粘度
イミド化反応終了後の反応生成物であるポリイミド溶液を、E型粘度系を用いて、25℃で測定した。
(d)酸価
イミド化反応終了後の反応生成物であるポリイミド溶液約2gを精秤し、NMP50mlで希釈した後、JIS K 0070−1966に準じて酸価を測定し、ポリイミド樹脂純分に換算した。
(C) Solution viscosity The polyimide solution which is a reaction product after the imidation reaction was measured at 25 ° C using an E-type viscosity system.
(D) Acid value About 2 g of the polyimide solution, which is the reaction product after the imidation reaction, is precisely weighed and diluted with 50 ml of NMP, and then the acid value is measured according to JIS K 0070-1966. Converted.

[製造例1]
温度計、撹拌機、窒素導入管、分液デカンタ、冷却管を備えた5L4つ口フラスコに、窒素気流下、4,4’−ジアミノジシクロヘキシルメタン(以下、「HDAM」と略記する。)272.8g(1.30モル)と、N−メチル−2−ピロリドン(以下、「NMP」という。)2350gを仕込んで溶解させた後、50℃で1,2,4,5−シクロヘキサンテトラカルボン酸ニ無水物(以下、「HPMDA」と略記する。)299.7g(1.33モル)を固体のまま投入し、120℃まで昇温して完全に溶解させた。共沸溶剤としてキシレンを280g添加し、分液デカンタでキシレンと共沸してくる水を分離しながら、180℃で5時間反応を行った。温度を100℃まで冷却し、反応系を40mmHgの減圧とし、約30gのキシレンを留去、回収し、イミド化反応生成物であるポリイミド(ポリイミドA)を含有する溶液を得た。このポリイミドA溶液の樹脂濃度、固有粘度、溶液粘度及び酸価を表1に示した。
[Production Example 1]
In a 5 L four-necked flask equipped with a thermometer, a stirrer, a nitrogen inlet tube, a separator decanter, and a condenser tube, 4,4′-diaminodicyclohexylmethane (hereinafter abbreviated as “HDAM”) in a nitrogen stream 272. After 8 g (1.30 mol) and 2350 g of N-methyl-2-pyrrolidone (hereinafter referred to as “NMP”) were charged and dissolved, 1,2,4,5-cyclohexanetetracarboxylic acid dicarboxylate at 50 ° C. Anhydrous anhydride (hereinafter abbreviated as “HPMDA”) 299.7 g (1.33 mol) was charged as a solid, heated to 120 ° C. and completely dissolved. 280 g of xylene was added as an azeotropic solvent, and the reaction was carried out at 180 ° C. for 5 hours while separating the water azeotroped with xylene with a separating decanter. The temperature was cooled to 100 ° C., the reaction system was reduced to 40 mmHg, and about 30 g of xylene was distilled off and collected to obtain a solution containing polyimide (polyimide A) as an imidization reaction product. The resin concentration, intrinsic viscosity, solution viscosity and acid value of this polyimide A solution are shown in Table 1.

[製造例2]
温度計、撹拌機、窒素導入管、分液デカンタ、冷却管を備えた1L4つ口フラスコに、窒素気流下で、2,2−ビス〔4−(4−アミノフェノキシ)フェニル〕プロパン(以下、「BAPP」と略記する。)49.81g(0.121モル)と、ミックスクレゾール(ナカライテスク製)420gを仕込んで溶解させた後、50℃でHPMDA27.20g(0.121モル)を固体のまま投入し、120℃まで昇温して完全に溶解させた。共沸溶剤としてキシレンを60g添加し、分液デカンタでキシレンと共沸してくる水を分離しながら、180℃で5時間反応を行った。温度を100℃まで冷却し、反応系を40mmHgの減圧とし、約40gのキシレンを留去、回収し、イミド化反応生成物であるポリイミド(ポリイミドB)を含有する溶液を得た。このポリイミドB溶液の樹脂濃度、固有粘度、溶液粘度を表1に示した。
[Production Example 2]
To a 1 L four-necked flask equipped with a thermometer, a stirrer, a nitrogen introduction tube, a separator decanter, and a cooling tube, 2,2-bis [4- (4-aminophenoxy) phenyl] propane (hereinafter, referred to as a nitrogen stream) 49.81 g (0.121 mol) and 420 g of mixed cresol (manufactured by Nacalai Tesque) were charged and dissolved, and then 27.20 g (0.121 mol) of HPMDA was dissolved at 50 ° C. The solution was charged as it was, and heated up to 120 ° C. to be completely dissolved. 60 g of xylene was added as an azeotropic solvent, and the reaction was carried out at 180 ° C. for 5 hours while separating the water azeotroped with xylene with a separating decanter. The temperature was cooled to 100 ° C., the reaction system was reduced to 40 mmHg, and about 40 g of xylene was distilled off and collected to obtain a solution containing polyimide (polyimide B) as an imidization reaction product. The resin concentration, intrinsic viscosity, and solution viscosity of this polyimide B solution are shown in Table 1.

[製造例3]
温度計、撹拌機、窒素導入管、分液デカンタ、冷却管を備えた1L4つ口フラスコに、窒素気流下で、HDAM25.5g(0.121モル)と、溶剤NPM300g仕込んで溶解させた後、50℃で3,3’,4,4’−ジフェニルスルホンテトラカルボン酸二無水物(以下、「DSDA」と略記する。)43.3g(0.121モル)を固体のまま投入し、120℃まで昇温して完全に溶解させた。共沸溶剤としてキシレンを90g添加し、分液デカンタでキシレンと共沸してくる水を分離しながら、180℃で5時間反応を行った。温度を100℃まで冷却し、反応系を40mmHgの減圧とし、約20gのキシレンを留去、回収し、イミド化反応生成物であるポリイミド(ポリイミドC)を含有するポリイミド溶液を得た。このポリイミドC溶液の樹脂濃度、固有粘度、溶液粘度及び酸価を表1に示した。
[Production Example 3]
In a 1 L four-necked flask equipped with a thermometer, a stirrer, a nitrogen inlet tube, a separator decanter, and a condenser tube, 25.5 g (0.121 mol) of HDAM and 300 g of solvent NPM were charged and dissolved in a nitrogen stream. At 50 ° C., 43.3 g (0.121 mol) of 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride (hereinafter abbreviated as “DSDA”) was charged as a solid, and 120 ° C. The solution was heated to complete dissolution. 90 g of xylene was added as an azeotropic solvent, and the reaction was carried out at 180 ° C. for 5 hours while separating the water azeotroped with xylene with a separating decanter. The temperature was cooled to 100 ° C., the pressure of the reaction system was reduced to 40 mmHg, and about 20 g of xylene was distilled off and collected to obtain a polyimide solution containing polyimide (polyimide C) as an imidization reaction product. Table 1 shows the resin concentration, intrinsic viscosity, solution viscosity, and acid value of this polyimide C solution.

[製造例4]
HDAMに代えてBAPP49.8g(0.121モル)を用い、キシレンを30g添加した以外は、製造例3と同様にして、イミド化反応生成物であるポリイミド(ポリイミドD)を含有するポリイミド溶液を得た。このポリイミドD溶液の樹脂濃度、溶液粘度、固有粘度を表1に示した。
[Production Example 4]
A polyimide solution containing polyimide (polyimide D) as an imidization reaction product was prepared in the same manner as in Production Example 3 except that 49.8 g (0.121 mol) of BAPP was used instead of HDAM and 30 g of xylene was added. Obtained. The resin concentration, solution viscosity, and intrinsic viscosity of this polyimide D solution are shown in Table 1.

[実施例1〜4、比較例1]
<光半導体封止樹脂の評価>
上記製造例で得られたポリイミド溶液又は、ポリイミド溶液及びエポキシ樹脂硬化剤からなる表2に記載の組成を有する光半導体封止剤を調製した。
[Examples 1 to 4, Comparative Example 1]
<Evaluation of optical semiconductor encapsulating resin>
The optical semiconductor sealing agent which has the composition of Table 2 which consists of the polyimide solution obtained by the said manufacture example or a polyimide solution and an epoxy resin hardening | curing agent was prepared.

<光半導体封止樹脂の製造、評価1>
各実施例、比較例の光半導体封止剤を、ガラス基板上に塗布し、ギャップ長0.8mmになるようにテープシールを巻いたガラス棒で流延した。この基板を、減圧下80℃で1時間さらに180℃で1時間乾燥し、冷却後、光半導体封止剤の乾燥フィルムをガラス基板から剥離し、ステンレス製の金枠で固定して減圧下320℃で1時間乾燥させることで、膜厚100μmの光半導体封止樹脂のフィルム1を得た。得られたフィルムAを用いて、全光線透過率、400nm光線透過率、黄色度(YI)、硬度を下記条件で測定した。その結果を表2に示す。
<Manufacture and evaluation 1 of optical semiconductor sealing resin>
The optical-semiconductor sealing agent of each Example and the comparative example was apply | coated on the glass substrate, and it casted with the glass rod which wound the tape seal | sticker so that it might become 0.8 mm of gap length. This substrate was dried under reduced pressure at 80 ° C. for 1 hour and further at 180 ° C. for 1 hour, and after cooling, the dried film of the optical semiconductor sealing agent was peeled off from the glass substrate and fixed with a stainless steel frame, and the reduced pressure was reduced to 320 The film 1 of optical semiconductor sealing resin with a film thickness of 100 micrometers was obtained by making it dry at 1 degreeC for 1 hour. Using the obtained film A, total light transmittance, 400 nm light transmittance, yellowness (YI), and hardness were measured under the following conditions. The results are shown in Table 2.

<光半導体封止樹脂の製造、評価2>
各実施例、比較例の光半導体封止剤を、ガラス基板上に塗布し、ギャップ長0.4mmになるようにテープシールを巻いたガラス棒で流延した。この基板を、減圧下80℃で1時間さらに180℃で1時間乾燥し、冷却後、光半導体封止剤の乾燥フィルムをガラス基板から剥離し、ステンレス製の金枠で固定して減圧下320℃で1時間乾燥させることで、膜厚50μmの光半導体封止樹脂のフィルム2を得た。得られたフィルムBを用いて、ガラス転移温度、線熱膨張係数を下記条件で測定した。その結果を表2に示す。
<Manufacture and evaluation of optical semiconductor encapsulating resin 2>
The optical semiconductor sealing agent of each Example and Comparative Example was applied on a glass substrate and cast with a glass rod wound with a tape seal so that the gap length was 0.4 mm. This substrate was dried under reduced pressure at 80 ° C. for 1 hour and further at 180 ° C. for 1 hour, and after cooling, the dried film of the optical semiconductor sealing agent was peeled off from the glass substrate and fixed with a stainless steel frame, and the reduced pressure was reduced to 320 The film 2 of optical semiconductor sealing resin with a film thickness of 50 micrometers was obtained by making it dry at 1 degreeC for 1 hour. Using the obtained film B, the glass transition temperature and the linear thermal expansion coefficient were measured under the following conditions. The results are shown in Table 2.

[比較例2]
ビスフェノールA型エポキシ樹脂(エポキシ当量205、以下、「エポキシ樹脂F」と略記する。)100重量部に対して、ヘキサヒドロ無水フタル酸無水物(新本理化製、商品名「リカシッド MH−700」、以下、「硬化剤G」と略記する。)82重量部、2−エチルー4−メチルイミダゾール(以下、「促進剤H」と略記する。)1.8部を混合し、120℃で2時間さらに150℃で3時間硬化させ、膜厚100μmの硬化物を得た。得られた硬化物の、全光線透過率、400nm光線透過率、黄色度(YI)、硬度、ガラス転移温度、線熱膨張係数を測定した。
[Comparative Example 2]
Hexahydrophthalic anhydride (manufactured by Shinmoto Rika, trade name “Licacid MH-700”, with respect to 100 parts by weight of bisphenol A type epoxy resin (epoxy equivalent 205, hereinafter abbreviated as “epoxy resin F”), Hereinafter, it is abbreviated as “curing agent G.” 82 parts by weight and 1.8 parts of 2-ethyl-4-methylimidazole (hereinafter abbreviated as “accelerator H”) are mixed and further stirred at 120 ° C. for 2 hours. Curing was performed at 150 ° C. for 3 hours to obtain a cured product having a thickness of 100 μm. The obtained cured product was measured for total light transmittance, 400 nm light transmittance, yellowness (YI), hardness, glass transition temperature, and linear thermal expansion coefficient.

(e)全光線透過率
各実施例又は比較例で得られたフィルム1又は硬化物から、30mmx30mmの測定試料を切り出し、ヘイズメーター(東洋精機社製 HAZE GARD II)を用い、JIS K−7361−1に準じて、全光線透過率を測定した。
(E) Total light transmittance A 30 mm × 30 mm measurement sample was cut out from the film 1 or cured product obtained in each example or comparative example, and a haze meter (HAZE GARD II, manufactured by Toyo Seiki Co., Ltd.) was used. JIS K-7361 The total light transmittance was measured according to 1.

(f)400nm光線透過率
各実施例又は比較例で得られたフィルム1又は硬化物から、30mmx30mmの測定試料を切り出し、分光光度計(Shimadzu UV-2100、積分球使用)を用いて400nm光線透過率を測定した。また、空気中、150℃で24時間熱処理した後、再度測定した。
(F) 400 nm light transmittance From a film 1 or cured product obtained in each example or comparative example, a 30 mm × 30 mm measurement sample is cut out and transmitted using a spectrophotometer (Shimadzu UV-2100, using an integrating sphere). The rate was measured. Moreover, after heat-processing in air at 150 degreeC for 24 hours, it measured again.

(g)黄色度:YI
各実施例又は比較例で得られたフィルム1から、30mmx30mmの測定用試料として、JIS K−7105に準じてYIを測定した。また、空気中、150℃で24時間加熱処理した後、再度測定した。
(G) Yellowness: YI
From the film 1 obtained in each Example or Comparative Example, YI was measured according to JIS K-7105 as a measurement sample of 30 mm × 30 mm. Moreover, after heat-processing in air at 150 degreeC for 24 hours, it measured again.

(h)硬度(鉛筆ひっかき値)
各実施例又は比較例で得られたフィルム1又は硬化物から、測定試料として、JIS K−7105−1990に準じて硬度測定した。
(H) Hardness (pencil scratch value)
From the film 1 or cured product obtained in each example or comparative example, the hardness was measured as a measurement sample according to JIS K-7105-1990.

(i)ガラス転移温度(Tg)
各実施例又は比較例で得られたフィルム2又は硬化物から、20mmx5mmの測定用試料を切り出し、動的粘弾性測定機(Rheogel-E4000)を用いて、正弦波で周波数10Hzによる引張りモードで、昇温速度5℃/分における損失ピーク(tanδ)より求めた。
(I) Glass transition temperature (Tg)
From the film 2 or cured product obtained in each Example or Comparative Example, a 20 mm × 5 mm measurement sample was cut out, and using a dynamic viscoelasticity measuring machine (Rheogel-E4000), in a tension mode with a sine wave at a frequency of 10 Hz, It calculated | required from the loss peak (tan-delta) in the temperature increase rate of 5 degree-C / min.

(j)線熱膨張係数
各実施例又は比較例で得られたフィルム2又は硬化物から、15mmx5mmの測定試料を切り出し、TMA−4000(マックサイエンンス社製)を用いて、引張りモード荷重10gにて、昇温速度10℃/分の条件下で測定し、100℃〜200℃の範囲での伸びの平均値として線熱膨張係数を求めた。
(J) Linear thermal expansion coefficient A 15 mm × 5 mm measurement sample is cut out from the film 2 or cured product obtained in each example or comparative example, and the tensile mode load is 10 g using TMA-4000 (manufactured by MacScience). The linear thermal expansion coefficient was determined as an average value of elongation in the range of 100 ° C to 200 ° C.

Figure 2007080885
Figure 2007080885

Figure 2007080885
Figure 2007080885

表2から明らかなように、芳香族ポリイミドの皮膜(比較例1)では、透明性が低く、YIが高いため光半導体封止剤としては不適である。また、従来のエポキシ樹脂(比較例2)では、硬度が低く、全光線透過率、熱処理後の400nm光線透過率、及びTgが低く、耐熱性、耐黄変性に劣ることが明かである。これに対して、本願発明の脂環構造を有するポリイミドを含有する光半導体封止剤から得られる光半導体封止樹脂は、十分な硬度を有し、また、Tg、透明性が高く、耐黄変性の全てに優れた特性を有しており、光半導体封止樹脂として優れていることが明かである。   As is apparent from Table 2, the aromatic polyimide film (Comparative Example 1) is not suitable as an optical semiconductor sealing agent because of its low transparency and high YI. In addition, the conventional epoxy resin (Comparative Example 2) has low hardness, low total light transmittance, 400 nm light transmittance after heat treatment, and Tg, and is clearly inferior in heat resistance and yellowing resistance. On the other hand, the optical semiconductor sealing resin obtained from the optical semiconductor sealing agent containing the polyimide having the alicyclic structure of the present invention has sufficient hardness, and has high Tg, high transparency, and yellow resistance. It is clear that it has excellent properties for all modifications and is excellent as an optical semiconductor sealing resin.

本発明によれば、耐熱性、透明性、機械強度に優れた封止膜を形成できる光半導体封止剤を提供することができる。該光半導体封止剤は、上記の優れた特徴を生かし、光半導体用途材料として、工業的に極めて利用価値が高く、特に表面実装型の白色LEDの封止剤として有用である。   ADVANTAGE OF THE INVENTION According to this invention, the optical semiconductor sealing agent which can form the sealing film excellent in heat resistance, transparency, and mechanical strength can be provided. The optical semiconductor encapsulant makes use of the above-described excellent characteristics and is industrially extremely useful as an optical semiconductor material, and is particularly useful as an encapsulant for surface-mounted white LEDs.

表面実装型発光ダイオードの模式的断面図Schematic cross-sectional view of a surface-mounted light-emitting diode

符号の説明Explanation of symbols

1 ・・・ガラスエポキシ基板
2a、b・・・正負リード電極
3 ・・・サファイア基板
4 ・・・光半導体素子
5a、b・・・正負電極
6 ・・・ワイヤー
7 ・・・蛍光体
8 ・・・封止樹脂の層ないし皮膜
9 ・・・配線基板
10 ・・・はんだ
DESCRIPTION OF SYMBOLS 1 ... Glass epoxy board | substrate 2a, b ... Positive / negative lead electrode 3 ... Sapphire substrate 4 ... Optical semiconductor element 5a, b ... Positive / negative electrode 6 ... Wire 7 ... Phosphor 8 ..Sealing resin layer or film 9... Wiring substrate 10... Solder

Claims (18)

(A)テトラカルボン酸二無水物と(B)ジアミンとをイミド化して得られるポリイミド、及び有機溶剤を含有する光半導体封止剤であって、該ポリイミドが、
(i)脂環構造を有するテトラカルボン酸二無水物が、(A)成分中の50モル%以上であるか、
(ii)脂環構造を有するジアミンが、(B)成分中の50モル%以上であるか、又は、
(iii)脂環構造を有するテトラカルボン酸二無水物が、(A)成分中の50モル%以上であり、且つ、脂環構造を有するジアミンが、(B)成分中の50モル%以上である、
ポリイミドであることを特徴とする光半導体封止剤。
(A) A polyimide obtained by imidizing tetracarboxylic dianhydride and (B) diamine, and an optical semiconductor sealing agent containing an organic solvent,
(i) the tetracarboxylic dianhydride having an alicyclic structure is 50 mol% or more in the component (A),
(ii) the diamine having an alicyclic structure is 50 mol% or more in the component (B), or
(iii) The tetracarboxylic dianhydride having an alicyclic structure is 50 mol% or more in the component (A), and the diamine having an alicyclic structure is 50 mol% or more in the component (B). is there,
An optical semiconductor sealing agent, which is polyimide.
(A)が、脂環構造を有するテトラカルボン酸二無水物100モル%である請求項1に記載の光半導体封止剤。   The optical semiconductor sealing agent according to claim 1, wherein (A) is 100 mol% of tetracarboxylic dianhydride having an alicyclic structure. (B)が、脂環構造を有するジアミン100モル%である請求項1に記載の光半導体封止剤。   The optical semiconductor sealing agent according to claim 1, wherein (B) is 100 mol% of a diamine having an alicyclic structure. (A)が、1,2,4,5−シクロヘキサンテトラカルボン酸二無水物である請求項1〜3のいずれかに記載の光半導体封止剤。   The optical semiconductor sealing agent according to claim 1, wherein (A) is 1,2,4,5-cyclohexanetetracarboxylic dianhydride. (B)が、4,4’−ジアミノジシクロヘキシルメタン、1,3−ジアミノシクロヘキサン、1,4−ジアミノシクロヘキサン及び1−アミノ−3−アミノメチル−3,5,5−トリメチルシクロヘキサンからなる群から選ばれる少なくとも1種である請求項1〜3のいずれかに記載の光半導体封止剤。   (B) is selected from the group consisting of 4,4′-diaminodicyclohexylmethane, 1,3-diaminocyclohexane, 1,4-diaminocyclohexane and 1-amino-3-aminomethyl-3,5,5-trimethylcyclohexane The optical-semiconductor sealing agent in any one of Claims 1-3 which is at least 1 type selected. ポリイミド100重量部に対して、有機溶剤100〜2,000重量部を含有する請求項1〜5のいずれかに記載の光半導体封止剤。   The optical-semiconductor sealing agent in any one of Claims 1-5 containing 100-2,000 weight part of organic solvents with respect to 100 weight part of polyimides. 有機溶剤が、N−メチル−2−ピロリドン、1,3−ジメチルイミダゾリジン−2−オン、N,N−ジメチルアセトアミド、クレゾール、及びγ−ブチロラクトンからなる群から選ばれる少なくとも1種である請求項1〜6のいずれかに記載の光半導体封止剤。   The organic solvent is at least one selected from the group consisting of N-methyl-2-pyrrolidone, 1,3-dimethylimidazolidin-2-one, N, N-dimethylacetamide, cresol, and γ-butyrolactone. The optical-semiconductor sealing agent in any one of 1-6. 更に、蛍光体を含有する請求項1〜7のいずれかに記載の光半導体封止剤。   Furthermore, the optical-semiconductor sealing agent in any one of Claims 1-7 containing fluorescent substance. 更に、エポキシ樹脂を含有する請求項1〜8のいずれかに記載の光半導体封止剤。   Furthermore, the optical-semiconductor sealing agent in any one of Claims 1-8 containing an epoxy resin. 光半導体封止剤の25℃における粘度が、0.1〜30Pa・sである請求項1〜9のいずれかに記載の光半導体封止剤。   The optical semiconductor sealing agent according to any one of claims 1 to 9, wherein the optical semiconductor sealing agent has a viscosity of 0.1 to 30 Pa · s at 25 ° C. 請求項1〜10のいずれかに記載の光半導体封止剤を、乾燥、固化して得られる光半導体封止樹脂。   The optical semiconductor sealing resin obtained by drying and solidifying the optical semiconductor sealing agent in any one of Claims 1-10. 層状ないし皮膜状の形態にある請求項11に記載の光半導体封止樹脂。   The optical semiconductor sealing resin according to claim 11, which is in a layered or film-like form. 光半導体封止樹脂のTgが、200〜350℃である請求項11又は12に記載の光半導体封止樹脂。   The optical semiconductor sealing resin according to claim 11 or 12, wherein Tg of the optical semiconductor sealing resin is 200 to 350 ° C. 光半導体封止樹脂の400nm光線透過率が、60〜99.5%である請求項11〜13のいずれかに記載の光半導体封止樹脂。   The optical semiconductor sealing resin according to any one of claims 11 to 13, wherein the optical semiconductor sealing resin has a light transmittance of 400 nm of 60 to 99.5%. 請求項11〜14のいずれかに記載の光半導体封止樹脂を備えた光半導体。   The optical semiconductor provided with the optical semiconductor sealing resin in any one of Claims 11-14. 光半導体が、表面実装型光半導体である請求項15に記載の光半導体。   The optical semiconductor according to claim 15, wherein the optical semiconductor is a surface-mount optical semiconductor. 光半導体が、発光ダイオードである請求項15又は16に記載の光半導体。   The optical semiconductor according to claim 15 or 16, wherein the optical semiconductor is a light emitting diode. 請求項1〜10のいずれかに記載の光半導体封止剤を、半導体上に塗布して塗膜を形成する工程と、該塗膜から溶剤を乾燥留去し、層状ないし皮膜状に固化した封止樹脂成形体を形成して、半導体を封止する工程とを含む、光半導体の製造方法。


A step of applying the optical semiconductor encapsulant according to any one of claims 1 to 10 on a semiconductor to form a coating film, and the solvent is dried and distilled from the coating film to solidify into a layer or a film. Forming an encapsulating resin molding and encapsulating the semiconductor.


JP2005263095A 2005-09-09 2005-09-09 Optical semiconductor sealing agent, optical semiconductor and its manufacturing method Pending JP2007080885A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005263095A JP2007080885A (en) 2005-09-09 2005-09-09 Optical semiconductor sealing agent, optical semiconductor and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005263095A JP2007080885A (en) 2005-09-09 2005-09-09 Optical semiconductor sealing agent, optical semiconductor and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2007080885A true JP2007080885A (en) 2007-03-29

Family

ID=37940917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005263095A Pending JP2007080885A (en) 2005-09-09 2005-09-09 Optical semiconductor sealing agent, optical semiconductor and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2007080885A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007116979A1 (en) * 2006-04-12 2007-10-18 Hitachi Chemical Company, Ltd. Resin composition for encapsulating filler, method of flip chip mounting with the same, and product of flip chip mounting
WO2008010494A1 (en) * 2006-07-18 2008-01-24 Mitsubishi Gas Chemical Company, Inc. Polyimide resin
JP2009019105A (en) * 2007-07-11 2009-01-29 Nitto Denko Corp Resin for sealing optical semiconductor elements made of polyimide
JP2009147329A (en) 2007-12-14 2009-07-02 Cree Inc Textured encapsulant surface in LED package
WO2010074038A1 (en) * 2008-12-24 2010-07-01 旭硝子株式会社 Light-emitting module and method for manufacturing same
US8858004B2 (en) 2005-12-22 2014-10-14 Cree, Inc. Lighting device
US8901585B2 (en) 2003-05-01 2014-12-02 Cree, Inc. Multiple component solid state white light
US9142734B2 (en) 2003-02-26 2015-09-22 Cree, Inc. Composite white light source and method for fabricating
US9666772B2 (en) 2003-04-30 2017-05-30 Cree, Inc. High powered light emitter packages with compact optics
WO2017131361A3 (en) * 2016-01-29 2018-08-02 주식회사 효성 Infrared led package comprising rare-earth metal oxide particles
US10615324B2 (en) 2013-06-14 2020-04-07 Cree Huizhou Solid State Lighting Company Limited Tiny 6 pin side view surface mount LED
CN115197399A (en) * 2022-07-12 2022-10-18 中山大学 A kind of preparation method of alicyclic epoxy polyimide and application thereof
JP2023501269A (en) * 2019-10-28 2023-01-18 ソウル バイオシス カンパニー リミテッド Light-emitting element for display and LED display device having the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1160732A (en) * 1997-08-27 1999-03-05 Hitachi Chem Co Ltd Polyimide-based resin and optical element using the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1160732A (en) * 1997-08-27 1999-03-05 Hitachi Chem Co Ltd Polyimide-based resin and optical element using the same

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9142734B2 (en) 2003-02-26 2015-09-22 Cree, Inc. Composite white light source and method for fabricating
US9666772B2 (en) 2003-04-30 2017-05-30 Cree, Inc. High powered light emitter packages with compact optics
US8901585B2 (en) 2003-05-01 2014-12-02 Cree, Inc. Multiple component solid state white light
US8858004B2 (en) 2005-12-22 2014-10-14 Cree, Inc. Lighting device
WO2007116979A1 (en) * 2006-04-12 2007-10-18 Hitachi Chemical Company, Ltd. Resin composition for encapsulating filler, method of flip chip mounting with the same, and product of flip chip mounting
WO2008010494A1 (en) * 2006-07-18 2008-01-24 Mitsubishi Gas Chemical Company, Inc. Polyimide resin
US8110652B2 (en) 2006-07-18 2012-02-07 Mitsubishi Gas Chemical Company, Inc. Polyimide resin
JP2009019105A (en) * 2007-07-11 2009-01-29 Nitto Denko Corp Resin for sealing optical semiconductor elements made of polyimide
US9431589B2 (en) 2007-12-14 2016-08-30 Cree, Inc. Textured encapsulant surface in LED packages
JP2009147329A (en) 2007-12-14 2009-07-02 Cree Inc Textured encapsulant surface in LED package
WO2010074038A1 (en) * 2008-12-24 2010-07-01 旭硝子株式会社 Light-emitting module and method for manufacturing same
JPWO2010074038A1 (en) * 2008-12-24 2012-06-14 旭硝子株式会社 Light emitting element module and method for manufacturing the same
US10615324B2 (en) 2013-06-14 2020-04-07 Cree Huizhou Solid State Lighting Company Limited Tiny 6 pin side view surface mount LED
WO2017131361A3 (en) * 2016-01-29 2018-08-02 주식회사 효성 Infrared led package comprising rare-earth metal oxide particles
JP2023501269A (en) * 2019-10-28 2023-01-18 ソウル バイオシス カンパニー リミテッド Light-emitting element for display and LED display device having the same
US12159966B2 (en) 2019-10-28 2024-12-03 Seoul Viosys Co., Ltd. Light emitting device for display and led display apparatus having the same
JP7709433B2 (en) 2019-10-28 2025-07-16 ソウル バイオシス カンパニー リミテッド Light emitting element for display and LED display device having the same
CN115197399A (en) * 2022-07-12 2022-10-18 中山大学 A kind of preparation method of alicyclic epoxy polyimide and application thereof
CN115197399B (en) * 2022-07-12 2023-06-16 中山大学 Preparation method and application of alicyclic epoxy polyimide

Similar Documents

Publication Publication Date Title
US11125393B2 (en) LED filament light bulb having different surface roughness filament base layer
JP2007080885A (en) Optical semiconductor sealing agent, optical semiconductor and its manufacturing method
TW202014449A (en) Polyimide precursor resin composition resin film and method of producing resin film
TWI869664B (en) Polyimide, resin composition, polyimide film and method for producing the same
JP2015117278A (en) Functionalized polyimide resin and epoxy resin composition including the same
TW201625718A (en) Polyimide film, substrate using same, and method for producing polyimide film
CN101429278B (en) Resin for optical semiconductor element encapsulation containing polyimide and optical semiconductor device obtained from the resin
KR102593077B1 (en) Polyimide precursor and resin composition containing same, polyimide resin film, resin film and method of producing same
KR20030014108A (en) Adhesive film for semiconductor, lead frame and semiconductor device using the same
WO2016046997A1 (en) Method for manufacturing element-laminated film, element-laminated film, and display device
TWI859509B (en) Polyimide precursor composition, polyimide film, polyimide film/substrate laminate and its manufacturing method, and manufacturing method of flexible electronic device
CN113201219B (en) Polyimide precursor composition and polyimide film/substrate laminate
CN113549217B (en) Polyimide precursor, resin composition containing same, polyimide resin film, and method for producing same
JP7235157B1 (en) Polyimide precursor composition, polyimide film and polyimide film/substrate laminate
JP2019019279A (en) Resin composition, resin film and light-emitting device
JP6947323B1 (en) Polyimide precursor composition and polyimide film
JP7215588B2 (en) Method for manufacturing flexible electronic device
KR20240070585A (en) Polyimide precursor composition and polyimide film
CN117120515A (en) Polyimide precursor composition and polyimide film
JPWO2014038446A1 (en) Curable epoxy resin composition, cured product thereof, and optical semiconductor device
WO2012070612A1 (en) Method for producing electronic device, electronic device, method for producing electronic device package, electronic device package, and method for producing semiconductor device
TWI868408B (en) Polyimide precursor composition, polyimide film, and polyimide film/substrate laminate
WO2022185718A1 (en) Poly(amide-imide) resin, resin composition, and semiconductor device
JP2009019105A (en) Resin for sealing optical semiconductor elements made of polyimide
KR20240062569A (en) Unidirectionally Fracturing Polymer Film and Manufacturing Method for the Same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080813

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110111

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110419