JP2007071347A - Vibration damping material - Google Patents
Vibration damping material Download PDFInfo
- Publication number
- JP2007071347A JP2007071347A JP2005261282A JP2005261282A JP2007071347A JP 2007071347 A JP2007071347 A JP 2007071347A JP 2005261282 A JP2005261282 A JP 2005261282A JP 2005261282 A JP2005261282 A JP 2005261282A JP 2007071347 A JP2007071347 A JP 2007071347A
- Authority
- JP
- Japan
- Prior art keywords
- thermoplastic resin
- damping material
- vibration damping
- foam sheet
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000013016 damping Methods 0.000 title claims abstract description 115
- 239000000463 material Substances 0.000 title claims abstract description 100
- 229920005992 thermoplastic resin Polymers 0.000 claims abstract description 84
- 150000002484 inorganic compounds Chemical class 0.000 claims abstract description 29
- 229910010272 inorganic material Inorganic materials 0.000 claims abstract description 29
- 239000006260 foam Substances 0.000 claims description 54
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 claims description 22
- 239000004820 Pressure-sensitive adhesive Substances 0.000 claims description 19
- 239000010410 layer Substances 0.000 claims description 10
- 229920005672 polyolefin resin Polymers 0.000 claims description 9
- 229910052751 metal Inorganic materials 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims description 8
- 150000007522 mineralic acids Chemical class 0.000 claims description 4
- 150000003839 salts Chemical class 0.000 claims description 4
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims 1
- 239000012790 adhesive layer Substances 0.000 abstract description 30
- 238000000034 method Methods 0.000 abstract description 16
- 238000007493 shaping process Methods 0.000 abstract 2
- 229920005989 resin Polymers 0.000 description 25
- 239000011347 resin Substances 0.000 description 25
- 238000005187 foaming Methods 0.000 description 16
- 239000000853 adhesive Substances 0.000 description 13
- 230000001070 adhesive effect Effects 0.000 description 13
- 239000000839 emulsion Substances 0.000 description 10
- 238000000465 moulding Methods 0.000 description 10
- -1 polyethylene terephthalate Polymers 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 8
- 239000003431 cross linking reagent Substances 0.000 description 8
- 238000010030 laminating Methods 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- 238000007666 vacuum forming Methods 0.000 description 8
- 239000004088 foaming agent Substances 0.000 description 6
- 238000009413 insulation Methods 0.000 description 6
- 229920000139 polyethylene terephthalate Polymers 0.000 description 6
- 239000005020 polyethylene terephthalate Substances 0.000 description 6
- XOZUGNYVDXMRKW-AATRIKPKSA-N azodicarbonamide Chemical compound NC(=O)\N=N\C(N)=O XOZUGNYVDXMRKW-AATRIKPKSA-N 0.000 description 5
- 239000005038 ethylene vinyl acetate Substances 0.000 description 5
- 230000002093 peripheral effect Effects 0.000 description 5
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 5
- 239000004156 Azodicarbonamide Substances 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 4
- 239000003522 acrylic cement Substances 0.000 description 4
- 239000002390 adhesive tape Substances 0.000 description 4
- 235000019399 azodicarbonamide Nutrition 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 239000011256 inorganic filler Substances 0.000 description 4
- 229910003475 inorganic filler Inorganic materials 0.000 description 4
- 230000001678 irradiating effect Effects 0.000 description 4
- 229920001684 low density polyethylene Polymers 0.000 description 4
- 239000004702 low-density polyethylene Substances 0.000 description 4
- 239000011342 resin composition Substances 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 3
- 239000003963 antioxidant agent Substances 0.000 description 3
- 230000003078 antioxidant effect Effects 0.000 description 3
- 238000004132 cross linking Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000010894 electron beam technology Methods 0.000 description 3
- 229920000092 linear low density polyethylene Polymers 0.000 description 3
- 239000004707 linear low-density polyethylene Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 229920002943 EPDM rubber Polymers 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 2
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 229920005674 ethylene-propylene random copolymer Polymers 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229920013716 polyethylene resin Polymers 0.000 description 2
- 229920005629 polypropylene homopolymer Polymers 0.000 description 2
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- 235000014692 zinc oxide Nutrition 0.000 description 2
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 2
- MZZYGYNZAOVRTG-UHFFFAOYSA-N 2-hydroxy-n-(1h-1,2,4-triazol-5-yl)benzamide Chemical compound OC1=CC=CC=C1C(=O)NC1=NC=NN1 MZZYGYNZAOVRTG-UHFFFAOYSA-N 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- MWRWFPQBGSZWNV-UHFFFAOYSA-N Dinitrosopentamethylenetetramine Chemical compound C1N2CN(N=O)CN1CN(N=O)C2 MWRWFPQBGSZWNV-UHFFFAOYSA-N 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 229920002323 Silicone foam Polymers 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 230000005260 alpha ray Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- VJRITMATACIYAF-UHFFFAOYSA-N benzenesulfonohydrazide Chemical compound NNS(=O)(=O)C1=CC=CC=C1 VJRITMATACIYAF-UHFFFAOYSA-N 0.000 description 1
- 230000005250 beta ray Effects 0.000 description 1
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 1
- 229920005549 butyl rubber Polymers 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- YONVOYAHRUTYTG-UHFFFAOYSA-N ethyl carbamate;hydrate Chemical compound O.CCOC(N)=O YONVOYAHRUTYTG-UHFFFAOYSA-N 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 229920001903 high density polyethylene Polymers 0.000 description 1
- 239000004700 high-density polyethylene Substances 0.000 description 1
- 230000005865 ionizing radiation Effects 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- 229920001179 medium density polyethylene Polymers 0.000 description 1
- 239000004701 medium-density polyethylene Substances 0.000 description 1
- 229910000000 metal hydroxide Inorganic materials 0.000 description 1
- 150000004692 metal hydroxides Chemical class 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920005606 polypropylene copolymer Polymers 0.000 description 1
- 229920005990 polystyrene resin Polymers 0.000 description 1
- 229920001384 propylene homopolymer Polymers 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 239000013514 silicone foam Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 229920002725 thermoplastic elastomer Polymers 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 125000005147 toluenesulfonyl group Chemical group C=1(C(=CC=CC1)S(=O)(=O)*)C 0.000 description 1
Images
Landscapes
- Vibration Prevention Devices (AREA)
- Laminated Bodies (AREA)
- Soundproofing, Sound Blocking, And Sound Damping (AREA)
Abstract
Description
本発明は、優れた制振性、防音性及び成形性を有する制振材に関する。 The present invention relates to a vibration damping material having excellent vibration damping properties, soundproofing properties, and moldability.
従来から、電化製品ではモーターなどの駆動装置の振動を低減させるために制振材が用いられており、その他に、建築用途では、折板屋根などにおける雨音の低減のために制振材が、自動車用途では、走行中に発生する振動によって屋根や扉などが微振動することに起因する振動音やエンジンなどの駆動系の振動を低減するために制振材が用いられている。 Conventionally, vibration control materials have been used in electrical appliances to reduce vibrations of drive devices such as motors. In addition, in construction applications, vibration control materials have been used to reduce rain noise on folded plate roofs. In automobile applications, damping materials are used to reduce vibration noise caused by the vibration of the roof, doors, and the like due to vibrations generated during traveling and vibrations of the drive system such as the engine.
このような制振材としては、特許文献1に、ゴム又は熱可塑性エラストマー、熱可塑性樹脂及び無機粉体からなる制振性シート基材の一面にポリエチレンテレフタレート樹脂層が積層されてなる折板屋根用制振シートが提案されている。
As such a damping material,
この制振シートは、無機粉体を含有させて振動エネルギーを熱エネルギーに変換して振動エネルギーを吸収するものであるが、無機粉体を含有しているために、折り曲げ性や伸び性が低くて成形性が低く、振動を発生する対象物(以下「振動体」ということがある)の形状に沿って成形することが困難であり、制振シートを振動体の表面に該振動体との間に隙間を生じることなく貼着させることが困難であるといった問題点があった。 This vibration damping sheet contains inorganic powder and converts vibration energy into heat energy to absorb vibration energy. However, since it contains inorganic powder, it has low bendability and extensibility. Therefore, it is difficult to form along the shape of an object (hereinafter, sometimes referred to as “vibrating body”) that generates vibration, and the vibration damping sheet is placed on the surface of the vibrating body. There was a problem that it was difficult to attach without causing a gap between them.
又、自動車用途においては、上述した駆動系の振動の他に、エンジンから発生する音の車室内への侵入が室内音環境を悪化させる要因となっており、そのために、エンジン、フロアシート、トランクなどに防音材を使用している。 In addition, in automobile applications, in addition to the drive system vibration described above, the intrusion of sound generated from the engine into the vehicle interior is a factor that deteriorates the interior sound environment. For this reason, the engine, floor seat, trunk Soundproof material is used for
このような防音材としては、特許文献2に、ゴム成分を90重量%以上含有するバインダー成分、充填材成分及び添加材類などを混練、圧延し、20℃における弾性率を5×107 Pa以下としてなる遮音性シートが提案されている。 As such a soundproofing material, in Patent Document 2, a binder component containing 90% by weight or more of a rubber component, a filler component and additives are kneaded and rolled, and an elastic modulus at 20 ° C. is 5 × 10 7 Pa. The following sound-insulating sheets have been proposed.
この遮音性シートは、密度を増加させて遮音性を付与するために、バインダー成分中に充填材成分を含有させてあり、そのために、遮音性シートは、高比重なものとなっており硬くて切断加工が困難であると共に、折り曲げなどの成形性にも乏しいといった問題点を有していた。 In order to increase the density and to provide sound insulation, this sound insulation sheet contains a filler component in the binder component. Therefore, the sound insulation sheet has a high specific gravity and is hard. In addition to being difficult to cut, the moldability such as bending is poor.
更に、上記遮音性シートは伸び性にも乏しく、金型を用いて遮音性シートを成形しようとしても、遮音性シートに亀裂を生じ或いは切断してしまい、所望形状を有する成形品に成形することができなかった。 Further, the sound insulating sheet is poor in extensibility, and even if an attempt is made to mold the sound insulating sheet using a mold, the sound insulating sheet is cracked or cut, and formed into a molded product having a desired shape. I could not.
従って、自動車の床鋼板などの複雑な形状を有する振動金属板に、遮音性シートを振動金属板の形状に沿った状態に成形した上で貼着しようとしても、遮音性シートを振動金属板の形状に沿った形状に正確に成形することができないことから、遮音性シートと振動金属板との間に隙間を生じ、この隙間を埋める作業を別途要するなどの問題点を生じていた。 Therefore, even if a sound insulating sheet is formed in a state along the shape of the vibrating metal plate on a vibrating metal plate having a complicated shape such as a floor steel plate of an automobile, the sound insulating sheet is attached to the vibrating metal plate. Since it cannot be accurately formed into a shape that conforms to the shape, there is a problem that a gap is formed between the sound insulating sheet and the vibration metal plate, and a work for filling the gap is required separately.
本発明は、振動を発生する対象物(振動体)の形状に沿って成形することができ優れた制振性を有すると共に防音性にも優れた制振材を提供する。 The present invention provides a vibration damping material that can be molded along the shape of an object (vibrating body) that generates vibrations and that has excellent vibration damping properties and excellent soundproofing properties.
本発明の制振材Aは、図1に示したように、無機化合物を含有する熱可塑性樹脂発泡シートBの一面に発泡粘着剤層Cが積層一体化されており、上記熱可塑性樹脂発泡シートBを構成している熱可塑性樹脂100重量部に対して無機化合物が30〜300重量部含有されていることを特徴とする。 As shown in FIG. 1, the vibration damping material A of the present invention has a foamed adhesive layer C laminated and integrated on one surface of a thermoplastic resin foam sheet B containing an inorganic compound. 30 to 300 parts by weight of an inorganic compound is contained with respect to 100 parts by weight of the thermoplastic resin constituting B.
上記熱可塑性樹脂発泡シートBを構成している熱可塑性樹脂としては、特に限定されず、例えば、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン、直鎖状低密度ポリエチレン、エチレン−酢酸ビニルなどのポリエチレン系樹脂や、プロピレン単独重合体、プロピレンと他のオレフィンとの共重合体などのポリプロピレン系樹脂などのポリオレフィン系樹脂の他に、ポリスチレン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、石油樹脂などの有機材料などが挙げられ、制振材が剛性に優れており、取扱中に撓みや反りが発生しにくく作業性に優れている点で、ポリオレフィン系樹脂が好ましく、ポリエチレン系樹脂とエチレン−酢酸ビニル共重合体とを併用することがより好ましい。 The thermoplastic resin constituting the thermoplastic resin foam sheet B is not particularly limited, and examples thereof include high-density polyethylene, medium-density polyethylene, low-density polyethylene, linear low-density polyethylene, and ethylene-vinyl acetate. Besides polyolefin resins such as polyethylene resins, propylene homopolymers, polypropylene resins such as copolymers of propylene and other olefins, polystyrene resins, polyester resins, polyamide resins, polyimide resins, Organic materials such as petroleum resins are listed, and the damping material is excellent in rigidity, and is less likely to bend and warp during handling, and is excellent in workability. Polyolefin resins are preferable, and polyethylene resins and More preferably, an ethylene-vinyl acetate copolymer is used in combination.
そして、上記熱可塑性樹脂発泡シートB中に無機化合物を所定割合でもって含有させることによって制振材Aに防音性能を付与している。このような無機化合物としては、例えば、硫酸バリウム、硫酸マグネシウムなどの無機酸の金属塩の他に、水酸化アルミニウム、水酸化マグネシウムなどの金属水酸化物が挙げられるが、制振材は成形時に加熱されるので、この加熱によって分解する虞れのない、無機酸の金属塩が好ましく、硫酸バリウムがより好ましい。 And the soundproofing performance is provided to the damping material A by making the said thermoplastic resin foam sheet B contain an inorganic compound in a predetermined ratio. Examples of such inorganic compounds include metal hydroxides such as aluminum hydroxide and magnesium hydroxide in addition to metal salts of inorganic acids such as barium sulfate and magnesium sulfate. Since it is heated, a metal salt of an inorganic acid that is not likely to be decomposed by this heating is preferable, and barium sulfate is more preferable.
更に、熱可塑性樹脂発泡シートB中における無機化合物の含有量は、少ないと、制振材の防音性が低下する一方、多いと、制振材の成形性が低下するので、熱可塑性樹脂発泡シートBを構成している熱可塑性樹脂100重量部に対して30〜300重量部に限定され、75〜250重量部が好ましい。 Further, if the content of the inorganic compound in the thermoplastic resin foam sheet B is small, the soundproofing property of the vibration damping material is lowered, whereas if it is large, the moldability of the vibration damping material is lowered. It is limited to 30 to 300 parts by weight with respect to 100 parts by weight of the thermoplastic resin constituting B, and is preferably 75 to 250 parts by weight.
このように、本発明の制振材Aでは、熱可塑性樹脂発泡シートB中に無機化合物を所定割合で充填することによって優れた防音性能が付与されている。ここで、熱可塑性樹脂中に無機充填材、特に、硫酸バリウムなどの比重の大きな無機化合物を高充填させると、一般的に熱可塑性樹脂は、その伸び性が低下して成形性が低下し、真空成形などの成形方法を適用し難くなる。 Thus, in the damping material A of the present invention, excellent soundproofing performance is imparted by filling the thermoplastic resin foam sheet B with an inorganic compound at a predetermined ratio. Here, when a thermoplastic resin is highly filled with an inorganic filler, particularly an inorganic compound having a large specific gravity such as barium sulfate, generally, the thermoplastic resin has a reduced extensibility and a moldability is lowered. It becomes difficult to apply a forming method such as vacuum forming.
そこで、本発明の制振材では、無機化合物を含有させることによる熱可塑性樹脂の伸び性の低下を補完すべく、熱可塑性樹脂を発泡させて熱可塑性樹脂発泡シートとし、この熱可塑性樹脂発泡シート中に無機化合物を含有させている。このように、熱可塑性樹脂を発泡させて熱可塑性樹脂発泡シートとすることによって、熱可塑性樹脂の引張り時の破断点の伸び率を向上させることができ、その結果、熱可塑性樹脂発泡シートの成形性を向上させることができ、制振材を真空成形などの公知の成形方法を用いて所望形状に精度良く成形することができる。 Therefore, in the vibration damping material of the present invention, the thermoplastic resin is foamed into a thermoplastic resin foam sheet to complement the decrease in elongation of the thermoplastic resin due to the inclusion of the inorganic compound, and this thermoplastic resin foam sheet. An inorganic compound is contained therein. In this way, by expanding the thermoplastic resin into a thermoplastic resin foam sheet, it is possible to improve the elongation at break when the thermoplastic resin is pulled, and as a result, molding the thermoplastic resin foam sheet. The vibration damping material can be accurately formed into a desired shape using a known forming method such as vacuum forming.
即ち、本発明の制振材Aは、熱可塑性樹脂を発泡させて熱可塑性樹脂発泡シートとして伸び性を向上させていることから、この熱可塑性樹脂発泡シート中に無機化合物を高充填させることが可能となり、その結果、本発明の制振材は、優れた防音性を備えている上に成形性にも優れたものとなっている。 That is, since the damping material A of the present invention has a thermoplastic resin foamed to improve the stretchability as a thermoplastic resin foamed sheet, the thermoplastic resin foamed sheet can be highly filled with an inorganic compound. As a result, the vibration damping material of the present invention has excellent soundproofing properties and excellent moldability.
そして、無機化合物を含有させた熱可塑性樹脂発泡シートBの見掛け密度は、小さいと、制振材の防音性が低下することがある一方、大きいと、制振材の成形性が低下することがあるので、0.1〜0.8g/cm3 が好ましく、0.25〜0.7g/cm3 がより好ましい。なお、無機化合物を含有させた熱可塑性樹脂発泡シートBの見掛け密度は、JIS Z6767に準拠して測定されたものをいう。 And when the apparent density of the thermoplastic resin foam sheet B containing an inorganic compound is small, the soundproofing property of the vibration damping material may be lowered, while when it is large, the moldability of the vibration damping material may be lowered. Therefore, 0.1 to 0.8 g / cm 3 is preferable, and 0.25 to 0.7 g / cm 3 is more preferable. In addition, the apparent density of the thermoplastic resin foam sheet B containing an inorganic compound refers to that measured according to JIS Z6767.
又、熱可塑性樹脂発泡シートBを構成している熱可塑性樹脂の樹脂倍率は、熱可塑性樹脂発泡シートBを構成している熱可塑性樹脂の伸び性が低下して、制振材の成形性が低下することがあるので、300%以上が好ましく、500%以上がより好ましく、大き過ぎると、制振材の成形時に制振材に破れや亀裂を生じることがあるので、1500%以下が好ましく、1000%以下がより好ましい。 In addition, the resin magnification of the thermoplastic resin constituting the thermoplastic resin foam sheet B decreases the extensibility of the thermoplastic resin constituting the thermoplastic resin foam sheet B, and the moldability of the damping material is reduced. Since it may decrease, 300% or more is preferable, 500% or more is more preferable, and if it is too large, the vibration damping material may be torn or cracked at the time of molding the vibration damping material. 1000% or less is more preferable.
なお、熱可塑性樹脂発泡シートを構成している熱可塑性樹脂の樹脂倍率は、熱可塑性樹脂自体の発泡前後における体積膨張率を示す指標であり、具体的には、下記式1で算出されたものをいう。なお、無機化合物の密度をAg/cm3 と、熱可塑性樹脂発泡シートを構成している熱可塑性樹脂の密度をBg/cm3 とする。熱可塑性樹脂発泡シート中に含有されている無機化合物の重量をXgと、熱可塑性樹脂の重量をYgとする。無機化合物を含有する熱可塑性樹脂発泡シート全体の見掛け密度をCg/cm3 とする。
The resin magnification of the thermoplastic resin constituting the thermoplastic resin foam sheet is an index indicating the volume expansion coefficient before and after foaming of the thermoplastic resin itself, and specifically, calculated by the following
そして、熱可塑性樹脂発泡シートBの厚みは、薄いと、制振材の防音性が低下し或いは制振材の機械的強度が低下することがある一方、厚いと、制振材の成形性が低下することがあるので、2〜4mmが好ましい。 And if the thickness of the thermoplastic resin foam sheet B is thin, the soundproofing property of the damping material may be lowered or the mechanical strength of the damping material may be lowered. Since it may fall, 2-4 mm is preferable.
次に、無機化合物を含有する熱可塑性樹脂発泡シートBの製造方法を説明する。この熱可塑性樹脂発泡シートBの製造方法としては特に限定されず、例えば、(1)熱可塑性樹脂、無機化合物及び熱分解型発泡剤からなる発泡性樹脂組成物をラボプラストミルなどの汎用の攪拌装置に供給して溶融混練した上でプレス成形などの汎用の成形方法によって発泡性樹脂シートを作製し、この発泡性樹脂シートを、必要に応じて電子線、α線、β線などの電離性放射線を照射することによって架橋した後、発泡性樹脂シートを熱分解型発泡剤の分解温度以上の温度に加熱して発泡させて熱可塑性樹脂発泡シートを製造する方法、(2)熱可塑性樹脂、無機化合物及び熱分解型発泡剤からなる発泡性樹脂組成物を押出機に供給して溶融混練して押出機から発泡性樹脂シートを連続的に押出し、この発泡性樹脂シートを必要に応じて電子線、α線、β線などの電離性放射線を照射することによって架橋した後、発泡性樹脂シートを熱分解型発泡剤の分解温度以上の温度に加熱して発泡させて熱可塑性樹脂発泡シートを連続的に製造する方法などが挙げられる。 Next, the manufacturing method of the thermoplastic resin foam sheet B containing an inorganic compound is demonstrated. The method for producing the thermoplastic resin foam sheet B is not particularly limited. For example, (1) a general-purpose stirrer such as a lab plast mill is used for a foamable resin composition comprising a thermoplastic resin, an inorganic compound, and a pyrolytic foaming agent. A foamable resin sheet is produced by a general-purpose molding method such as press molding after being supplied to the apparatus and melt-kneaded, and this foamable resin sheet is ionized such as electron beam, α-ray, and β-ray as necessary. A method of producing a thermoplastic resin foamed sheet by heating and foaming the foamable resin sheet to a temperature equal to or higher than the decomposition temperature of the thermally decomposable foaming agent after crosslinking by irradiating radiation; (2) a thermoplastic resin; A foamable resin composition comprising an inorganic compound and a thermally decomposable foaming agent is supplied to an extruder, melted and kneaded, and the foamable resin sheet is continuously extruded from the extruder. After cross-linking by irradiating ionizing radiation such as strands, α rays, β rays, etc., the foamable resin sheet is heated to a temperature equal to or higher than the decomposition temperature of the thermally decomposable foaming agent and foamed to form a thermoplastic resin foam sheet The method of manufacturing continuously is mentioned.
なお、上記熱分解型発泡剤としては、従来から発泡シートの製造に用いられているものであれば、特に限定されず、例えば、アゾジカルボンアミド、ベンゼンスルホニルヒドラジド、ジニトロソペンタメチレンテトラミン、トルエンスルホニルヒドラジド、4,4−オキシビス(ベンゼンスルホニルヒドラジド)などが挙げられ、これらは単独で用いられても二種類以上が併用されてもよい。 The pyrolytic foaming agent is not particularly limited as long as it is conventionally used in the production of foamed sheets. For example, azodicarbonamide, benzenesulfonylhydrazide, dinitrosopentamethylenetetramine, toluenesulfonyl Examples thereof include hydrazide and 4,4-oxybis (benzenesulfonylhydrazide), and these may be used alone or in combination of two or more.
更に、上記熱可塑性樹脂発泡シートBの一面には発泡粘着剤層Cが積層一体化されている。この発泡粘着剤層Cを構成する粘着剤としては、特に限定されず、例えば、ウレタン系粘着剤、アクリル系粘着剤などが挙げられ、アクリル系粘着剤を含有していることが好ましい。 Furthermore, a foamed adhesive layer C is laminated and integrated on one surface of the thermoplastic resin foam sheet B. It does not specifically limit as an adhesive which comprises this foaming adhesive layer C, For example, a urethane type adhesive, an acrylic adhesive, etc. are mentioned, It is preferable that the acrylic adhesive is contained.
上記粘着剤を用いて発泡粘着剤層Cを製造する方法としては、汎用されている方法を用いることができ、例えば、粘着剤のエマルジョンに空気を混合させて発泡させた後、この発泡粘着剤エマルジョンを任意の面に所定厚みで塗布して乾燥させる方法が挙げられる。 As a method for producing the foamed pressure-sensitive adhesive layer C using the above-mentioned pressure-sensitive adhesive, a widely used method can be used. For example, this foamed pressure-sensitive adhesive is prepared by mixing air into a pressure-sensitive adhesive emulsion and then foaming. The method of apply | coating an emulsion by arbitrary thickness to arbitrary surfaces and drying it is mentioned.
更に、発泡粘着剤層C中に架橋剤を含有させて発泡粘着剤層Cを架橋させることによって、発泡粘着剤層Cの粘弾性による制振作用を維持しつつ発泡粘着剤層Cの厚み精度を向上させることができる。このような架橋剤としては、発泡粘着剤層Cを架橋させることができれば、特に限定されず、例えば、エポキシ系架橋剤、アミン系架橋剤、シラン系架橋剤などが挙げられる。 Furthermore, by adding a crosslinking agent in the foamed adhesive layer C to crosslink the foamed adhesive layer C, the thickness accuracy of the foamed adhesive layer C is maintained while maintaining the damping action by the viscoelasticity of the foamed adhesive layer C. Can be improved. Such a crosslinking agent is not particularly limited as long as the foamed pressure-sensitive adhesive layer C can be crosslinked, and examples thereof include an epoxy crosslinking agent, an amine crosslinking agent, and a silane crosslinking agent.
又、発泡粘着剤層C中における架橋剤の含有量としては、多いと、発泡粘着剤層の架橋密度が高くなり過ぎて、発泡粘着剤層の粘弾性による制振作用が却って低下することがあるので、発泡粘着剤層Cを構成する樹脂成分100重量部に対して6重量部以下が好ましく、1〜4重量部がより好ましい。 Moreover, as content of the crosslinking agent in the foaming adhesive layer C, when there is much, the crosslinking density of a foaming adhesive layer will become high too much, and the damping effect by the viscoelasticity of a foaming adhesive layer may decline on the contrary. Therefore, 6 parts by weight or less is preferable with respect to 100 parts by weight of the resin component constituting the foamed adhesive layer C, and 1 to 4 parts by weight is more preferable.
そして、発泡粘着剤層Cの密度は、低いと、発泡粘着剤層の粘弾性による制振作用が低下することがある一方、高いと、制振材の軽量性が低下することがあるので、0.05〜1g/cm3 が好ましく、0.1〜1g/cm3 がより好ましく、0.15〜1g/cm3 が特に好ましい。 And, if the density of the foamed pressure-sensitive adhesive layer C is low, the vibration damping effect due to the viscoelasticity of the foamed pressure-sensitive adhesive layer may be reduced, whereas if it is high, the lightness of the vibration damping material may be reduced. preferably 0.05 to 1 g / cm 3, more preferably 0.1~1g / cm 3, 0.15~1g / cm 3 is particularly preferred.
更に、発泡粘着剤層Cの厚みは、薄いと、制振材の制振性が低下することがある一方、厚いと、制振材の軽量性が低下することがあるので、0.5〜5mmが好ましく、1〜3mmがより好ましい。 Furthermore, if the thickness of the foamed pressure-sensitive adhesive layer C is thin, the vibration damping performance of the vibration damping material may be reduced. On the other hand, if the thickness is large, the light weight of the vibration damping material may be reduced. 5 mm is preferable, and 1 to 3 mm is more preferable.
又、制振材Aの軽量性を向上させるために発泡粘着剤層Cには無機充填剤が含有されていないことが好ましい。このような無機充填剤としては、例えば、例えば、炭酸カルシウム、炭酸マグネシウム、ケイ酸塩(カオリン、タルクなど)、ケイ酸(珪藻土、軽質無水ケイ酸、ホワイトカーボンなど)、酸化亜鉛(亜鉛華)、酸化チタン、硫酸バリウム、硫酸カルシウムなどが挙げられる。 Further, in order to improve the lightness of the damping material A, it is preferable that the foamed adhesive layer C does not contain an inorganic filler. Examples of such inorganic fillers include, for example, calcium carbonate, magnesium carbonate, silicates (kaolin, talc, etc.), silicic acid (diatomaceous earth, light anhydrous silicic acid, white carbon, etc.), zinc oxide (zinc white). , Titanium oxide, barium sulfate, calcium sulfate and the like.
次に、上記熱可塑性樹脂発泡シートBの一面に発泡粘着剤層Cを積層一体化して制振材Aを製造する方法としては、特に限定されず、例えば、熱可塑性樹脂発泡シートBの一面に両面粘着テープを介して発泡粘着剤層Cを積層一体化して制振材を製造する方法、熱可塑性樹脂発泡シートBの一面に粘着剤を介して発泡粘着剤層Cを積層一体化して制振材Aを製造する方法、熱可塑性樹脂発泡シートBの一面に上記発泡粘着剤エマルジョンを直接塗布した後、発泡粘着剤エマルジョンを乾燥させて、熱可塑性樹脂発泡シートBの一面に発泡粘着剤層Cを積層一体化して制振材Aを製造する方法などが挙げられる。 Next, the method for producing the damping material A by laminating and integrating the foamed adhesive layer C on one surface of the thermoplastic resin foam sheet B is not particularly limited. For example, on the one surface of the thermoplastic resin foam sheet B A method of manufacturing a vibration damping material by laminating and integrating a foamed adhesive layer C via a double-sided adhesive tape, and a vibration damping material by laminating and integrating the foamed adhesive layer C via a pressure sensitive adhesive on one surface of a thermoplastic resin foam sheet B Method of manufacturing material A, after directly applying the foamed adhesive emulsion on one surface of the thermoplastic resin foam sheet B, drying the foamed adhesive emulsion, and foaming adhesive layer C on one surface of the thermoplastic resin foam sheet B And the like, and the like.
又、上記制振材Aの厚みは、薄いと、制振材の制振性が低下し或いは機械的強度が低下することがある一方、厚いと、制振材の軽量性が低下することがあるので、4〜7mmが好ましい。 Further, if the thickness of the damping material A is thin, the damping performance of the damping material may be reduced or the mechanical strength may be reduced. On the other hand, if the thickness is thick, the lightness of the damping material may be reduced. Since there exists, 4-7 mm is preferable.
なお、上記制振材Aとして、熱可塑性樹脂発泡シートBの一面に発泡粘着剤層Cが積層一体化された場合を説明したが、複数個の制振材A,A・・・を厚み方向に積層一体化させてもよい。この場合、熱可塑性樹脂発泡シートBと発泡粘着剤層Cとが互いに交互になるように、複数個の制振材A、A・・・を積層する必要がある。 In addition, although the case where the foaming adhesive layer C was laminated and integrated on one surface of the thermoplastic resin foam sheet B was explained as the damping material A, a plurality of damping materials A, A. And may be laminated and integrated. In this case, it is necessary to laminate a plurality of damping materials A, A... So that the thermoplastic resin foam sheet B and the foamed adhesive layer C are alternated with each other.
そして、上記制振材Aは、その発泡粘着剤層Cが振動体側となるようにして振動体の表面に固着させて用いられるが、上記制振材Aは、成形性に優れた熱可塑性樹脂発泡シートBの一面に発泡粘着剤層Cを積層一体化させてなるものであり優れた成形性を有していることから、振動体の形状に沿った形状に成形させることができる。 The damping material A is used by being fixed to the surface of the vibrating body such that the foamed adhesive layer C is on the vibrating body side. The damping material A is a thermoplastic resin having excellent moldability. Since the foamed adhesive layer C is laminated and integrated on one surface of the foamed sheet B and has excellent moldability, it can be formed into a shape that conforms to the shape of the vibrator.
従って、制振材Aを振動体の表面に該振動体との間に隙間を生じさせないように固着させることができ、振動体の振動エネルギーを制振材Aによって確実に熱エネルギーに変換して振動体の振動を減衰させ振動体の振動を低減させ或いは停止させることでき、更に、振動体の振動の低減或いは停止によって振動体から発生する騒音の低減或いは停止を図ることができる。 Therefore, the damping material A can be fixed to the surface of the vibrating body so as not to generate a gap between the vibrating body, and the vibration energy of the vibrating body can be reliably converted into thermal energy by the damping material A. It is possible to attenuate the vibration of the vibrating body to reduce or stop the vibration of the vibrating body, and to reduce or stop the noise generated from the vibrating body by reducing or stopping the vibration of the vibrating body.
そして、制振材Aは、熱可塑性樹脂発泡シートBによって防音性能をも備えており、振動体から発生する騒音の遮蔽効果も発揮すると共に、制振材Aを挟んだ反対側から発生する騒音も遮蔽し、優れた防音性を発揮する。 And the damping material A is also provided with soundproofing performance by the thermoplastic resin foam sheet B, and also exhibits a shielding effect of noise generated from the vibrating body, and noise generated from the opposite side across the damping material A. Shields and exhibits excellent soundproofing.
なお、制振材Aを振動体の表面に固着させる方法としては、例えば、両面粘着テープや粘着剤を用いて、制振材Aを振動体の表面に固着させる方法、制振材Aの発泡粘着剤層Cの粘着力で、制振材Aを振動体の表面に固着させる方法などが挙げられる。又、制振材を成形する成形方法としては、従来から公知の成形方法を用いることができ、例えば、真空成形、圧空成形などが挙げられる。 As a method of fixing the damping material A to the surface of the vibrating body, for example, a method of fixing the damping material A to the surface of the vibrating body using a double-sided adhesive tape or an adhesive, foaming of the damping material A Examples thereof include a method of fixing the damping material A to the surface of the vibrating body with the adhesive force of the adhesive layer C. In addition, as a molding method for molding the vibration damping material, a conventionally known molding method can be used, and examples thereof include vacuum molding and pressure molding.
本発明の制振材は、無機化合物を含有する熱可塑性樹脂発泡シートの一面に発泡粘着剤層が積層一体化されており、上記熱可塑性樹脂発泡シートを構成している熱可塑性樹脂100重量部に対して無機化合物が30〜300重量部含有されていることを特徴とするので、優れた制振性及び防音性、特に、遮音性を有していると共に成形性にも優れている。 In the vibration damping material of the present invention, a foamed adhesive layer is laminated and integrated on one surface of a thermoplastic resin foam sheet containing an inorganic compound, and 100 parts by weight of the thermoplastic resin constituting the thermoplastic resin foam sheet In contrast, since the inorganic compound is contained in an amount of 30 to 300 parts by weight, it has excellent vibration damping properties and soundproofing properties, in particular, sound insulation properties and excellent moldability.
従って、本発明の制振材は、振動体の形状に沿った形態に公知の成形方法を用いて精度良く成形することができるので、振動体上に制振材を振動体との間に殆ど隙間を生じさせることなく安定的に貼着させることができ、制振処理及び防音処理を確実に施すことができる。 Therefore, since the vibration damping material of the present invention can be accurately molded using a known molding method in a form that conforms to the shape of the vibration body, the vibration damping material is almost between the vibration body and the vibration body. It is possible to stably stick without generating a gap, and it is possible to reliably perform the vibration damping process and the soundproofing process.
更に、本発明の制振材において、熱可塑性樹脂発泡シートを構成している熱可塑性樹脂がポリオレフィン系樹脂である場合には剛性に優れており、取り扱い中に撓みや反りが発生しにくく、作業性にも優れている。 Furthermore, in the vibration damping material of the present invention, when the thermoplastic resin constituting the thermoplastic resin foam sheet is a polyolefin-based resin, it has excellent rigidity and is less likely to bend or warp during handling. Also excellent in properties.
そして、本発明の制振材において、無機化合物が、無機酸の金属塩である場合には、制振材を成形する際に加えられる熱にもかかわらず安定的に熱可塑性樹脂発泡シート中に存在し、制振材をその防音性能を損なうことなく所望形状に成形させることができる。 In the vibration damping material of the present invention, when the inorganic compound is a metal salt of an inorganic acid, the thermoplastic resin foam sheet can be stably formed despite the heat applied when the vibration damping material is molded. Exists, and the damping material can be formed into a desired shape without impairing its soundproofing performance.
又、本発明の制振材において、見掛け密度が0.1〜0.8g/cm3 である場合には、制振材は、より優れた防音性及び成形性を有する。 Further, in the vibration damping material of the present invention, when the apparent density is 0.1 to 0.8 g / cm 3 , the vibration damping material has more excellent soundproofing and moldability.
(実施例1)
水−アクリル系粘着剤エマルジョン(大日本インキ化学社製 商品名「ボンコート350」、アクリル系粘着剤成分(樹脂成分):50重量%)90重量部、水−ウレタン系粘着剤エマルジョン(大日本インキ化学社製 商品名「ハイドランHW−930」、ウレタン系粘着剤成分(樹脂成分):50重量%)10重量部、塩化アンモニウム系気泡剤(大日本インキ化学社製 商品名「F−1」)5重量部、エポキシ系架橋剤(大日本インキ化学社製 商品名「CR−5L」)2重量部、シリコーン系整泡剤(大日本インキ化学社製 商品名「ボンコートNBA−1」)0.5重量部及びカルボキシメチルセルロース水溶液(ダイセル化学工業社製、4重量%)6重量部を均一に混合後に濾過して粘着剤エマルジョンを作製し、この粘着剤エマルジョンに泡立て器を用いて空気を混合して発泡させ、発泡粘着剤エマルジョンを作製した。
Example 1
90 parts by weight of water-acrylic adhesive emulsion (trade name “Boncoat 350” manufactured by Dainippon Ink and Chemicals, Inc., acrylic adhesive component (resin component): 50% by weight), water-urethane adhesive emulsion (Dainippon Ink) Product name “Hydran HW-930” manufactured by Kagaku Co., Ltd., 10 parts by weight of urethane-based adhesive component (resin component): 50% by weight, ammonium chloride-based foaming agent (trade name “F-1” manufactured by Dainippon Ink and Chemicals, Inc.) 5 parts by weight, 2 parts by weight of an epoxy-based crosslinking agent (trade name “CR-5L” manufactured by Dainippon Ink Chemical Co., Ltd.), and a silicone foam stabilizer (trade name “Boncoat NBA-1” manufactured by Dainippon Ink Chemical Co., Ltd.) 5 parts by weight and 6 parts by weight of a carboxymethylcellulose aqueous solution (manufactured by Daicel Chemical Industries, Ltd., 4% by weight) were uniformly mixed and then filtered to prepare a pressure-sensitive adhesive emulsion. Using whisk foamed by mixing air down to prepare a foaming adhesive emulsion.
次に、一面が離型処理面とされたポリエチレンテレフタレートフィルムを用意し、このポリエチレンテレフタレートフィルムの離型処理面に上記発泡粘着剤エマルジョンを均一な厚みとなるように塗布した後、発泡粘着剤エマルジョンの水分を蒸発、除去して、ポリエチレンテレフタレートフィルム上に厚み2.8mmの発泡粘着剤層(密度:0.20g/cm3 )を積層してなる発泡粘着シートを作製した。 Next, after preparing a polyethylene terephthalate film with one surface being a release-treated surface, and applying the foamed adhesive emulsion to the release-treated surface of the polyethylene terephthalate film so as to have a uniform thickness, the foamed adhesive emulsion The foamed adhesive sheet was prepared by laminating a 2.8 mm thick foamed adhesive layer (density: 0.20 g / cm 3 ) on a polyethylene terephthalate film.
一方、 低密度ポリエチレン(三井住友ポリオレフィン社製 商品名「LE520」)65重量部、エチレン−酢酸ビニル共重合体(三井デュポンポリケミカル社製 商品名「エバフレックスEV460」、酢酸ビニル含有量:19重量%)35重量部、硫酸バリウム(竹原化学社製 商品名「W−1」)150重量部、アゾジカルボンアミド(大塚化学社製 商品名「ユニフォームAZ SO−40」)4重量部及び発泡助剤としてステアリン酸亜鉛(堺化学社製 商品名「SZ−2000」)1重量部からなる発泡性樹脂組成物をラボプラストミルに供給して110℃にて15分間に亘って混練して均一に混合した後、発泡性樹脂組成物を110℃にてプレス成形して厚みが2.5mmの発泡性樹脂シートを作製した。 Meanwhile, 65 parts by weight of low density polyethylene (trade name “LE520” manufactured by Sumitomo Mitsui Polyolefin Co., Ltd.), ethylene-vinyl acetate copolymer (trade name “Evaflex EV460” manufactured by Mitsui DuPont Polychemical Co., Ltd.), vinyl acetate content: 19 weight %) 35 parts by weight, barium sulfate (trade name “W-1” manufactured by Takehara Chemical Co., Ltd.) 150 parts by weight, azodicarbonamide (trade name “Uniform AZ SO-40” manufactured by Otsuka Chemical Co., Ltd.), and foaming aid As a foaming resin composition consisting of 1 part by weight of zinc stearate (trade name “SZ-2000” manufactured by Sakai Chemical Co., Ltd.), supplied to a lab plast mill, kneaded at 110 ° C. for 15 minutes and uniformly mixed Then, the foamable resin composition was press-molded at 110 ° C. to produce a foamable resin sheet having a thickness of 2.5 mm.
この発泡性樹脂シートに800KVの条件下にて電子線を2.0Mrad照射させることによって発泡性樹脂シートを架橋した。この発泡性樹脂シートをオーブンに供給して、発泡性樹脂シートを240℃にて80秒間に亘って放置して発泡させて、低密度ポリエチレン及びエチレン−酢酸ビニル共重合体からなるポリオレフィン系樹脂よりなる発泡シート中に硫酸バリウムが含有されてなる熱可塑性樹脂発泡シートを得た。なお、得られた硫酸バリウムが含有されてなる熱可塑性樹脂発泡シートは、その見掛け密度が0.33g/cm3 で、厚みが3.7mmであった。又、低密度ポリエチレン及びエチレン−酢酸ビニル共重合体からなるポリオレフィン系樹脂の密度は、0.9g/cm3 であり、硫酸バリウムの密度は4.3g/cm3 であった。熱可塑性樹脂発泡シートを構成しているポリオレフィン系樹脂の樹脂倍率は、650.4%であった。 The foamable resin sheet was cross-linked by irradiating the foamable resin sheet with 2.0 Mrad of an electron beam under the condition of 800 KV. This foamable resin sheet is supplied to an oven, and the foamable resin sheet is left to foam at 240 ° C. for 80 seconds to be foamed from a polyolefin resin composed of low-density polyethylene and an ethylene-vinyl acetate copolymer. A foamed thermoplastic resin sheet containing barium sulfate was obtained. The obtained thermoplastic resin foam sheet containing barium sulfate had an apparent density of 0.33 g / cm 3 and a thickness of 3.7 mm. The density of the polyolefin resin comprising low density polyethylene and ethylene-vinyl acetate copolymer was 0.9 g / cm 3 , and the density of barium sulfate was 4.3 g / cm 3 . The resin magnification of the polyolefin resin constituting the thermoplastic resin foam sheet was 650.4%.
そして、熱可塑性樹脂発泡シートの一面に両面粘着テープ(積水化学工業社製 商品名「No5761」)を介して発泡粘着シートをその発泡粘着剤層が熱可塑性樹脂発泡シートに対向した状態に積層一体化させて、熱可塑性樹脂発泡シートの一面に発泡粘着剤層を積層一体化してなる制振材を得た。 Then, the foamed adhesive sheet is laminated on one surface of the thermoplastic resin foam sheet with a double-sided adhesive tape (trade name “No5761” manufactured by Sekisui Chemical Co., Ltd.) in a state where the foamed adhesive layer faces the thermoplastic resin foam sheet. Thus, a vibration damping material obtained by laminating and integrating a foamed adhesive layer on one surface of a thermoplastic resin foam sheet was obtained.
(実施例2)
ポリエチレンテレフタレートフィルム上に厚み3.2mmで且つ密度が0.20g/cm3 の発泡粘着剤層を積層させて発泡粘着シートを作製する代わりに、ポリエチレンテレフタレートフィルム上に厚み2.9mmで且つ密度が0.23g/cm3 の発泡粘着剤層を積層させて発泡粘着シートを作製したこと以外は実施例1と同様の要領で発泡粘着シートを作製した。
(Example 2)
Instead of laminating a foamed pressure-sensitive adhesive layer having a thickness of 3.2 mm and a density of 0.20 g / cm 3 on the polyethylene terephthalate film, a foamed pressure-sensitive adhesive sheet is produced instead of a thickness of 2.9 mm on the polyethylene terephthalate film. A foamed pressure-sensitive adhesive sheet was produced in the same manner as in Example 1 except that a foamed pressure-sensitive adhesive sheet was produced by laminating a 0.23 g / cm 3 foamed pressure-sensitive adhesive layer.
又、硫酸バリウムを150重量部の代わりに100重量部としたこと、アゾジカルボンアミドを4重量部の代わり3重量部としたこと、ステアリン酸亜鉛を1重量部の代わりに0.8重量部としたこと以外は実施例1と同様にして熱可塑性樹脂発泡シートを得た。なお、得られた熱可塑性樹脂発泡シートは、その見掛け密度が0.32g/cm3 で、厚みが3.6mmであった。又、熱可塑性樹脂発泡シートを構成しているポリオレフィン系樹脂の樹脂倍率は、541.6%であった。 In addition, 100 parts by weight of barium sulfate instead of 150 parts by weight, 3 parts by weight of azodicarbonamide instead of 4 parts by weight, 0.8 parts by weight of zinc stearate instead of 1 part by weight A thermoplastic resin foam sheet was obtained in the same manner as in Example 1 except that. In addition, the obtained thermoplastic resin foam sheet had an apparent density of 0.32 g / cm 3 and a thickness of 3.6 mm. Further, the resin magnification of the polyolefin resin constituting the thermoplastic resin foam sheet was 541.6%.
そして、熱可塑性樹脂発泡シートの一面に実施例1と同様の要領で発泡粘着剤層を積層一体化して制振材を得た。 And the foaming adhesive layer was laminated | stacked and integrated on the one surface of the thermoplastic resin foam sheet in the same way as Example 1, and the damping material was obtained.
(比較例1)
実施例2と同様の要領の要領で発泡粘着シートを作製した。一方、エチレン−プロピレンランダム共重合体(チッソ社製 商品名「XK0235」)45重量部、アイソタクチックホモポリプロピレン(出光社製 商品名「SH152」)15重量部、直鎖状低密度ポリエチレン(出光社製 商品名「0238CN」)40重量部、アゾジカルボンアミド6.8重量部、架橋剤(共栄化学社製 商品名「TND−23H」)3重量部、酸化防止剤A(旭電化社製 商品名「アデカスタブAO−60」)1重量部、酸化防止剤B(旭電化社製 商品名「アデカスタブCDA−1」)0.5重量部及び酸化防止剤C(大内新興化学社製 商品名「ノクラック400S」)0.5重量部を押出機に供給して溶融混練して押出し、厚みが1.2mmの発泡性樹脂シートを得た。
(Comparative Example 1)
A foamed pressure-sensitive adhesive sheet was produced in the same manner as in Example 2. On the other hand, ethylene-propylene random copolymer (trade name “XK0235” manufactured by Chisso Corporation) 45 parts by weight, isotactic homopolypropylene (trade name “SH152” manufactured by Idemitsu Co., Ltd.) 15 parts by weight, linear low density polyethylene (Idemitsu) Product name “0238CN”) 40 parts by weight, azodicarbonamide 6.8 parts by weight, cross-linking agent (trade name “TND-23H” manufactured by Kyoei Chemical Co., Ltd.) 3 parts by weight, antioxidant A (product of Asahi Denka Co., Ltd.) Name “Adekastab AO-60”) 1 part by weight, antioxidant B (trade name “Adekastab CDA-1” manufactured by Asahi Denka Co., Ltd.) 0.5 part by weight and antioxidant C (trade name “made by Ouchi Shinsei Chemical Co., Ltd.” Nocrack 400S ") 0.5 parts by weight was supplied to an extruder, melt kneaded and extruded to obtain a foamable resin sheet having a thickness of 1.2 mm.
得られた発泡性樹脂シートの両面に電子線を800kVで3.6Mrad照射して発泡性樹脂シートを架橋させた。次に、この発泡性樹脂シートを250℃に加熱して厚みが3.0mmで且つ密度が0.07g/cm3 の熱可塑性樹脂発泡シートを得た。エチレン−プロピレンランダム共重合体、アイソタクチックホモポリプロピレン及び直鎖状低密度ポリエチレンの密度は0.9g/cm3 であり、硫酸バリウムの密度は4.3g/cm3 であった。熱可塑性樹脂発泡シートを構成しているポリオレフィン系樹脂の樹脂倍率は、1285.7%であった。 The foamable resin sheet was cross-linked by irradiating an electron beam with 3.6 krad at 800 kV on both sides of the obtained foamable resin sheet. Next, this foamable resin sheet was heated to 250 ° C. to obtain a thermoplastic resin foam sheet having a thickness of 3.0 mm and a density of 0.07 g / cm 3 . The density of the ethylene-propylene random copolymer, isotactic homopolypropylene and linear low density polyethylene was 0.9 g / cm 3 , and the density of barium sulfate was 4.3 g / cm 3 . The resin magnification of the polyolefin resin constituting the thermoplastic resin foam sheet was 1285.7%.
そして、熱可塑性樹脂発泡シートの一面に実施例1と同様の要領で発泡粘着剤層を積層一体化して制振材を得た。 And the foaming adhesive layer was laminated | stacked and integrated on the one surface of the thermoplastic resin foam sheet in the same way as Example 1, and the damping material was obtained.
(比較例2)
エチレン−プロピレン−ジエンゴム(EPDM)シート(見掛け密度:2.4g/cm3 、厚み:2.0mm)を制振材とした。
(Comparative Example 2)
An ethylene-propylene-diene rubber (EPDM) sheet (apparent density: 2.4 g / cm 3 , thickness: 2.0 mm) was used as a damping material.
(比較例3)
無機フィラーを含有するブチルゴムシートの一面にアルミニウムシートを積層一体化してなる制振材(日東電工社製 商品名「レジェトレックスD−N300」、見掛け密度:2.2g/cm3 、厚み:1.5mm)を用いた。
(Comparative Example 3)
Damping material formed by laminating and integrating an aluminum sheet on one side of a butyl rubber sheet containing an inorganic filler (Nitto Denko's trade name “Legertrex DN300”, apparent density: 2.2 g / cm 3 , thickness: 1.5 mm ) Was used.
得られた制振材の制振性、成形性及び防音性を下記の要領で測定し、その結果を表1,2及び図2に示した。 The damping properties, moldability and soundproofing properties of the obtained damping material were measured in the following manner, and the results are shown in Tables 1 and 2 and FIG.
(制振性)
JIS G0602に規定する中央支持定常加振法に準拠して270〜5000Hzにおける損失係数を測定した。具体的には、制振材から縦15mm×横250mmの平面長方形状の試験片を切り出し、この試験片をJIS G3141に規定されているSPCC鋼板(平面長方形状(縦15mm、横250mm)、厚さ0.8mm)上に両面粘着テープ(積水化学工業社製 商品名「セキスイテープNo.5761」)を介して貼着して270〜4600Hzにおける損失係数を測定し、図2及び表2にその結果を示した。なお、試験片を鋼板上に貼着させるにあたっては、試験片の発泡粘着剤層が鋼板側となるようにした。
(Vibration control)
The loss factor at 270 to 5000 Hz was measured in accordance with the central support steady excitation method defined in JIS G0602. Specifically, a 15 mm long x 250 mm flat rectangular test piece is cut out from the vibration damping material, and this test piece is a SPCC steel plate (planar rectangular shape (15 mm long, 250 mm wide), thickness) specified in JIS G3141. 0.8 mm), and a loss factor at 270 to 4600 Hz was measured through a double-sided adhesive tape (trade name “Sekisui Tape No. 5761” manufactured by Sekisui Chemical Co., Ltd.). Results are shown. In addition, when sticking a test piece on a steel plate, it was made for the foaming adhesive layer of a test piece to become a steel plate side.
なお、実施例1及び実施例2において、約3300Hz以上の周波数領域の損失係数が測定されていない。この理由は、約3300Hz以上の周波数領域において、制振材の共振点を見つけることができない程充分に、制振材が制振性を発揮しているからである。実施例1及び実施例2の制振材は、約3300Hz以上の周波数領域においても、約3300Hz付近と同程度の制振性を示す。 In Example 1 and Example 2, the loss factor in the frequency region of about 3300 Hz or higher is not measured. The reason for this is that the damping material exhibits sufficient damping performance so that the resonance point of the damping material cannot be found in a frequency region of about 3300 Hz or higher. The vibration damping materials of Example 1 and Example 2 exhibit the same level of vibration damping performance as that in the vicinity of about 3300 Hz even in a frequency region of about 3300 Hz or higher.
又、比較例3において、約690Hz以上の周波数領域の損失係数が測定されていない。この理由は、約690Hz以上の周波数領域において、制振材の共振点を見つけることができない程充分に、制振材が制振性を発揮しているからである。比較例3の制振材は、約690Hz以上の周波数領域においても、約690Hz付近と同程度の制振性を示す。 In Comparative Example 3, the loss factor in the frequency region of about 690 Hz or higher is not measured. The reason for this is that the damping material exhibits sufficient damping performance so that the resonance point of the damping material cannot be found in a frequency region of about 690 Hz or higher. The vibration damping material of Comparative Example 3 exhibits the same level of vibration damping as that in the vicinity of about 690 Hz even in a frequency region of about 690 Hz or higher.
(成形性)
制振材をその両面温度が140℃となるように遠赤外線ヒーターを用いて加熱した。次に、図3に示したような有底円筒状の雌金型1を用意して、この雌金型1を用いて制振材を真空成形し、平面円形状の底面部21と、この底面部21に直交した状態に底面部21の外周縁に延設された円筒状の周壁部22とからなる有底円筒状の成形品2を得た。なお、制振材の真空成形は、成形品2の周壁部22の厚みが均一であること、底面部21に亀裂や孔が生じていないこと、底面部21の厚みと周壁部22の厚みとが略同一であることの三条件を満たす範囲内において、制振材を最大限、深く真空成形した。
(Formability)
The damping material was heated using a far-infrared heater so that the double-sided temperature was 140 ° C. Next, a bottomed cylindrical female die 1 as shown in FIG. 3 is prepared, and the damping material is vacuum-formed using the female die 1 to obtain a flat circular
そして、成形品の外底面の直径Dと、雌金型内に制振材を真空吸引した深さHとから下記式2に基づいて真空成形最大絞り比(H/D)を算出し、これを成形性の指標とした。真空成形最大絞り比(H/D)が大きければ大きいほど制振材は成形性に優れている。
真空成形最大絞り比(H/D)=深さH/直径D・・・式2
Then, the vacuum forming maximum drawing ratio (H / D) is calculated based on the following formula 2 from the diameter D of the outer bottom surface of the molded product and the depth H in which the damping material is vacuum sucked into the female mold. Was used as an index of moldability. The higher the vacuum forming maximum drawing ratio (H / D), the better the damping material is.
Vacuum forming maximum drawing ratio (H / D) = depth H / diameter D: Formula 2
実施例1〜3では、真空成形最大絞り比が0.8以上であり、制振材は何れも優れた成形性を有していた。比較例1は、真空成形最大絞り比が0.50であり、この程度の成形性では制振材を金型形状に沿った形状に正確に成形することはできない。比較例2,3の制振材は、成形性に劣り底面部に直ちに孔が生じて全く真空成形できなかった。 In Examples 1 to 3, the vacuum forming maximum drawing ratio was 0.8 or more, and all the damping materials had excellent formability. In Comparative Example 1, the vacuum forming maximum drawing ratio is 0.50, and with this formability, the damping material cannot be accurately formed into a shape along the mold shape. The damping materials of Comparative Examples 2 and 3 were inferior in moldability, and holes were immediately formed in the bottom portion, and could not be vacuum formed at all.
(防音性)
制振材の遮音性をJIS A1416に基づいて測定し、防音性の指標とした。具体的には、音源室と残響室との仕切扉に開設された一辺が600mmの正方形状の制振材取付用の開口部に制振材を取り付けて開口部を全面的に閉止した。しかる後、音源室の音源から90dBの音を発生させ、残響室にて音の大きさAを騒音計(RION社製 商品名「精密騒音計NA−27」)を用いて測定した。
(Soundproof)
The sound insulating property of the damping material was measured based on JIS A1416 and used as a soundproofing index. Specifically, the damping material was attached to the opening for attaching the damping material having a square shape of 600 mm on one side opened in the partition door between the sound source room and the reverberation room, and the opening was completely closed. Thereafter, a sound of 90 dB was generated from the sound source in the sound source room, and the loudness A was measured in the reverberation room using a sound level meter (trade name “Precision Sound Level Meter NA-27” manufactured by RION).
次に、制振材取付用の開口部に制振材を取り付けることなく、開口部を全面的に開放した状態にて、上述と同様の要領にて音の大きさBを測定し、下記式3に基づいて遮音性を算出した。
遮音性(dB)=(音の大きさB)−(音の大きさA)・・・式3
Next, without attaching the damping material to the opening for attaching the damping material, the sound volume B is measured in the same manner as described above with the opening fully opened, and the following formula The sound insulation was calculated based on 3.
Sound insulation (dB) = (sound volume B) − (sound volume A) Equation 3
1 雌金型
2 成形品
21 底面部
22 周壁部
A 制振材
B 熱可塑性樹脂発泡シート
C 発泡粘着剤層
1 Female mold 2 Molded product
21 Bottom
22 Peripheral wall A Damping material B Thermoplastic resin foam sheet C Foam adhesive layer
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005261282A JP2007071347A (en) | 2005-09-08 | 2005-09-08 | Vibration damping material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005261282A JP2007071347A (en) | 2005-09-08 | 2005-09-08 | Vibration damping material |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007071347A true JP2007071347A (en) | 2007-03-22 |
Family
ID=37932973
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005261282A Pending JP2007071347A (en) | 2005-09-08 | 2005-09-08 | Vibration damping material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007071347A (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04319433A (en) * | 1991-04-18 | 1992-11-10 | Nippon Steel Corp | Damping steel plate with excellent workability and its manufacturing method |
JPH05124141A (en) * | 1991-10-30 | 1993-05-21 | Nichias Corp | Damping material |
JPH0554845U (en) * | 1991-03-28 | 1993-07-23 | 日新製鋼株式会社 | Damping plate for attachment |
JPH06134909A (en) * | 1992-10-26 | 1994-05-17 | Sekisui Chem Co Ltd | Surface modified polyolefinic resin foam, self-adhesive polyolefinic resin foam and production thereof |
JPH06248242A (en) * | 1993-02-26 | 1994-09-06 | Nippon Kakoh Seishi Kk | Peelable foamed adhesive sheet |
JPH10183883A (en) * | 1996-10-31 | 1998-07-14 | Sekisui Chem Co Ltd | Vibration damping sheet for folded-plate roof, vibration damping material, and folded-plate roof |
JP2000081084A (en) * | 1998-09-03 | 2000-03-21 | Nitto Denko Corp | Vibration reducing method and disk drive |
JP2000301640A (en) * | 1999-02-15 | 2000-10-31 | Sekisui Chem Co Ltd | Vibration damping sheet, vibration damping material and folded plate roof |
-
2005
- 2005-09-08 JP JP2005261282A patent/JP2007071347A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0554845U (en) * | 1991-03-28 | 1993-07-23 | 日新製鋼株式会社 | Damping plate for attachment |
JPH04319433A (en) * | 1991-04-18 | 1992-11-10 | Nippon Steel Corp | Damping steel plate with excellent workability and its manufacturing method |
JPH05124141A (en) * | 1991-10-30 | 1993-05-21 | Nichias Corp | Damping material |
JPH06134909A (en) * | 1992-10-26 | 1994-05-17 | Sekisui Chem Co Ltd | Surface modified polyolefinic resin foam, self-adhesive polyolefinic resin foam and production thereof |
JPH06248242A (en) * | 1993-02-26 | 1994-09-06 | Nippon Kakoh Seishi Kk | Peelable foamed adhesive sheet |
JPH10183883A (en) * | 1996-10-31 | 1998-07-14 | Sekisui Chem Co Ltd | Vibration damping sheet for folded-plate roof, vibration damping material, and folded-plate roof |
JP2000081084A (en) * | 1998-09-03 | 2000-03-21 | Nitto Denko Corp | Vibration reducing method and disk drive |
JP2000301640A (en) * | 1999-02-15 | 2000-10-31 | Sekisui Chem Co Ltd | Vibration damping sheet, vibration damping material and folded plate roof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20070034079A (en) | Vibration damper | |
WO2004104350A1 (en) | Fireproof resin sash | |
KR20190025337A (en) | Sound Blocking Material For Vehicle Containing Polyester Foam Sheet | |
JP2013053179A (en) | Crosslinked polyolefin resin foamed sheet, pressure-sensitive adhesive tape, and sealing material | |
TWI687468B (en) | Foamed composite sheet | |
US20070012509A1 (en) | Damping material resin compositions, damping materials, restraining-type damping members, and use thereof | |
JP2019059819A (en) | Polyolefin resin foam sheet and adhesive tape using the same | |
JP5227059B2 (en) | Laminated foam sheet | |
JP2007071347A (en) | Vibration damping material | |
JPWO2007034672A1 (en) | Soundproof material | |
JP4953686B2 (en) | Damping material | |
JP2007015292A (en) | Damping material | |
JP2013053178A (en) | Crosslinked polyolefin resin foamed sheet, pressure-sensitive adhesive tape, and sealing material | |
JP2007040515A (en) | Vibration control structure of vibrating body, and its manufacturing method | |
JP2009228692A (en) | Vibration damping material | |
JP2006069193A (en) | Damping material | |
JP2012251661A (en) | Damping sheet for automobile | |
JP2011189674A (en) | Laminated sheet | |
JP4928096B2 (en) | Damping material | |
JP2006071090A (en) | Vibration damping material | |
JP2007292249A (en) | Damping material | |
WO2020175698A1 (en) | Polyolefin resin foam sheet and adhesive tape using same | |
JP2009241486A (en) | Damping sheet for automobile | |
JP2009074581A (en) | Vibration damping material and manufacturing method of vibration damping structure | |
KR20160140570A (en) | Adhesive tape and method for producing adhesive tape |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080520 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090513 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090602 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20100406 |