[go: up one dir, main page]

JP2007059644A - Photovoltaic element - Google Patents

Photovoltaic element Download PDF

Info

Publication number
JP2007059644A
JP2007059644A JP2005243752A JP2005243752A JP2007059644A JP 2007059644 A JP2007059644 A JP 2007059644A JP 2005243752 A JP2005243752 A JP 2005243752A JP 2005243752 A JP2005243752 A JP 2005243752A JP 2007059644 A JP2007059644 A JP 2007059644A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
layer thickness
photovoltaic device
light receiving
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005243752A
Other languages
Japanese (ja)
Inventor
Kenichi Okumura
健一 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005243752A priority Critical patent/JP2007059644A/en
Publication of JP2007059644A publication Critical patent/JP2007059644A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

【課題】 キャリアの収集効率が最大である光起電力素子を得て、その発電効率を向上させる。
【解決手段】 半導体基板の受光面とは反対側の裏面に正および負の電極を配置した裏面電極型の光起電力素子において、半導体基板(11)の受光面と正電極(15)間の層厚aを正孔の拡散定数に基づいて決定し、受光面と負電極(14)間の層厚bを電子の拡散定数に基づいて決定する。これによって、正電極における正孔の収集割合と負電極における電子の収集割合が等しくなり、最大の効率でキャリアを収集することができるので、光起電力素子の発電効率が向上する。
【選択図】 図2
PROBLEM TO BE SOLVED: To obtain a photovoltaic device having the highest carrier collection efficiency and to improve the power generation efficiency.
In a back electrode type photovoltaic device in which positive and negative electrodes are arranged on the back surface opposite to the light receiving surface of a semiconductor substrate, the space between the light receiving surface of the semiconductor substrate (11) and the positive electrode (15) is provided. The layer thickness a is determined based on the hole diffusion constant, and the layer thickness b between the light receiving surface and the negative electrode (14) is determined based on the electron diffusion constant. As a result, the hole collection ratio at the positive electrode is equal to the electron collection ratio at the negative electrode, and carriers can be collected with maximum efficiency, so that the power generation efficiency of the photovoltaic device is improved.
[Selection] Figure 2

Description

本発明は、裏面電極型の光起電力素子に関し、特にその発電効率を改善した光起電力素子に関する。   The present invention relates to a back electrode type photovoltaic device, and more particularly to a photovoltaic device with improved power generation efficiency.

裏面電極型の光起電力素子(光電池、太陽電池等を含む)は、従来から周知である(例えば特許文献1〜4参照)。図1は、従来の光起電力素子の概略断面図である。光起電力素子100を構成する半導体基板1(p型またはn型の単結晶半導体)において光吸収が起こると正負のキャリアとしての電子および正孔が発生する。基板1の裏面側(図の下面側)には、半導体基板1で発生したキャリアを選択的に収集するためのn+層(電子収集部)2およびp+層(正孔収集部)3が不純物拡散により形成されており、これらの層によって収集されたキャリアは、基板1の下面に形成された負電極4、正電極5によって外部に出力される。なお、負電極4はn+層2に接して形成され、正電極5はp+層3と接して形成されている。この接続部以外において基板1の下面は表面保護膜(絶縁膜)6aにより被覆されている。基板1の受光面側(図の上面側)にも同様に表面保護膜6bが形成され、更にその上に反射防止膜7が形成されている。 Back electrode type photovoltaic elements (including photovoltaic cells, solar cells, and the like) have been conventionally known (see, for example, Patent Documents 1 to 4). FIG. 1 is a schematic cross-sectional view of a conventional photovoltaic device. When light absorption occurs in the semiconductor substrate 1 (p-type or n-type single crystal semiconductor) constituting the photovoltaic element 100, electrons and holes as positive and negative carriers are generated. An n + layer (electron collecting unit) 2 and a p + layer (hole collecting unit) 3 for selectively collecting carriers generated in the semiconductor substrate 1 are provided on the back surface side (lower surface side in the figure) of the substrate 1. The carriers formed by impurity diffusion and collected by these layers are output to the outside by the negative electrode 4 and the positive electrode 5 formed on the lower surface of the substrate 1. The negative electrode 4 is formed in contact with the n + layer 2, and the positive electrode 5 is formed in contact with the p + layer 3. Except for this connection portion, the lower surface of the substrate 1 is covered with a surface protective film (insulating film) 6a. Similarly, a surface protective film 6b is formed on the light receiving surface side (upper surface side in the figure) of the substrate 1, and an antireflection film 7 is further formed thereon.

上記従来の光起電力素子では、半導体基板1はnまたはpのいずれか一方の伝導型を有し、単一のキャリア濃度で形成されているので、光吸収によって発生した電子と正孔はキャリアの収集部即ちn+層2とp+層3に到達するまでに、共に半導体基板1内を通過する。そのため、基板1内で電子と正孔が再結合して消滅する確率が高く、再結合損失により発電効率が低下するという問題があった。 In the above conventional photovoltaic device, the semiconductor substrate 1 has either n or p conductivity type and is formed with a single carrier concentration, so that electrons and holes generated by light absorption are carriers. Both of them pass through the semiconductor substrate 1 before reaching the collector, that is, the n + layer 2 and the p + layer 3. For this reason, there is a high probability that electrons and holes recombine and disappear in the substrate 1, and power generation efficiency is reduced due to recombination loss.

上記問題を解決するために、特許文献1に記載の発明では、半導体基板に、それぞれ1個の電子収集部あるいは正孔収集部を含んで基板の表面側から裏面側に延在する複数の領域を設け、隣接する領域間で導電型を異ならせ、あるいはキャリア濃度を異ならせることにより、キャリアの再結合を防止する構造をとっている(図1および図5参照)。また、同一領域内において、表面からの距離に応じてキャリア濃度に勾配を設け、さらにキャリアの再結合を防止する構造としている(図3および図7参照)。このような構造によって、光起電力素子の発電効率の向上が確認されている。   In order to solve the above problem, in the invention described in Patent Document 1, the semiconductor substrate includes a plurality of regions each including one electron collecting portion or hole collecting portion and extending from the front surface side to the back surface side of the substrate. And a structure in which recombination of carriers is prevented by changing the conductivity type between adjacent regions or by changing the carrier concentration (see FIGS. 1 and 5). Further, in the same region, a gradient is provided in the carrier concentration according to the distance from the surface, and further, carrier recombination is prevented (see FIGS. 3 and 7). Such a structure has been confirmed to improve the power generation efficiency of the photovoltaic element.

また、特許文献2に記載の光起電力素子では、半導体基板の側面、即ち切断面に基板半導体との間でショットキー障壁を形成する金属膜を設け、キャリアの捕獲中心が高濃度で形成されている半導体基板側面(即ち切断面)へのキャリアの移動を防止する構成をとっている。この構成により、キャリアの再結合損失が低下し、光起電力素子の発電効率が向上する。   In the photovoltaic device described in Patent Document 2, a metal film that forms a Schottky barrier is provided on the side surface of the semiconductor substrate, that is, the cut surface, with the substrate semiconductor, and the carrier trapping center is formed at a high concentration. The carrier is prevented from moving to the side surface (that is, the cut surface) of the semiconductor substrate. With this configuration, the carrier recombination loss is reduced, and the power generation efficiency of the photovoltaic element is improved.

また、特許文献3および4に記載の光起電力素子では、半導体基板の受光面側に不純物拡散層を設け、この拡散層と半導体基板間に形成されるエネルギー障壁によりキャリア追い返し効果を形成して、キャリアの再結合損失を低下させる技術を開示している。拡散層を還元雰囲気または不活性ガス雰囲気下で形成することにより、素子表面近傍の欠陥数が減少し、さらにキャリアの再結合損失が低下する。   Further, in the photovoltaic elements described in Patent Documents 3 and 4, an impurity diffusion layer is provided on the light receiving surface side of the semiconductor substrate, and a carrier repelling effect is formed by an energy barrier formed between the diffusion layer and the semiconductor substrate. Discloses a technique for reducing carrier recombination loss. By forming the diffusion layer in a reducing atmosphere or an inert gas atmosphere, the number of defects in the vicinity of the element surface is reduced, and the recombination loss of carriers is further reduced.

特開2005−12108号公報JP 2005-12108 A 特開平2004−39751号公報Japanese Patent Laid-Open No. 2004-39751 特開2003−152207号公報JP 2003-152207 A 特開2004−71763号公報Japanese Patent Application Laid-Open No. 2004-71763

上記従来の光起電力素子においては、キャリアである電子と正孔を受光面とは反対側の裏面で収集するために、半導体基板の厚さは、電子または正孔の拡散長以内で形成される。これは、基板厚さが拡散長以内であれば、半導体基板において生成された電子、正孔が、基板裏面に達するまでに再結合によって消滅してしまう確率が低下するからである。ところが、上記従来の光起電力素子では、受光面から正電極および負電極までの深さ(半導体基板の層厚)は基板全体を通じて一様であり、あるいは異なっている場合でも両者の深さについて特に規定がない。   In the above conventional photovoltaic device, the thickness of the semiconductor substrate is formed within the diffusion length of electrons or holes in order to collect electrons and holes as carriers on the back surface opposite to the light receiving surface. The This is because if the substrate thickness is within the diffusion length, the probability that electrons and holes generated in the semiconductor substrate disappear due to recombination before reaching the back surface of the substrate decreases. However, in the conventional photovoltaic device described above, the depth from the light receiving surface to the positive electrode and the negative electrode (layer thickness of the semiconductor substrate) is uniform throughout the substrate, or even when they are different, There are no specific rules.

一方、電子と正孔では拡散定数が異なっており、一般的に電子の拡散定数の方が正孔の拡散定数よりも大きい。そのため、表面からそれぞれの電極までの距離を電子の拡散長に基づいて設定した場合には、その拡散長が電子に比べて短い正孔の収集割合が電子の収集割合より劣ってしまい、結果的に電子と正孔とを最大限に効率よく収集することが困難であった。   On the other hand, electrons and holes have different diffusion constants, and generally the electron diffusion constant is larger than the hole diffusion constant. Therefore, when the distance from the surface to each electrode is set based on the diffusion length of electrons, the collection rate of holes whose diffusion length is shorter than that of electrons is inferior to the collection rate of electrons. It was difficult to collect electrons and holes with maximum efficiency.

本発明は、従来の光起電力素子における上記のような欠点を解決する目的でなされたものであり、最も効率的にキャリアを収集することが可能な新規な構造の光起電力素子を提供することを課題とする。   The present invention has been made for the purpose of solving the above-described drawbacks of conventional photovoltaic devices, and provides a photovoltaic device having a novel structure capable of collecting carriers most efficiently. This is the issue.

上記課題を解決するために、第1の発明では、半導体基板の受光面とは反対側の裏面に正および負の電極を配置した裏面電極型の光起電力素子において、半導体基板の受光面と正電極間の層厚aを正孔の拡散定数に基づいて決定し、受光面と負電極間の層厚bを電子の拡散定数に基づいて決定する。   In order to solve the above-mentioned problem, in the first invention, in a back electrode type photovoltaic device in which positive and negative electrodes are arranged on the back surface opposite to the light receiving surface of the semiconductor substrate, the light receiving surface of the semiconductor substrate The layer thickness a between the positive electrodes is determined based on the hole diffusion constant, and the layer thickness b between the light receiving surface and the negative electrode is determined based on the electron diffusion constant.

具体的には、層厚aと層厚bが、
a:b=(Dh1/2:(De1/2
となるように、aおよびbの値を設定する。なお、Dhは半導体基板中の正孔の拡散定数、Deは同じく電子の拡散定数を示す。
Specifically, the layer thickness a and the layer thickness b are
a: b = (D h ) 1/2 : (D e ) 1/2
The values of a and b are set so that Here, D h is the diffusion constant of holes in the semiconductor substrate, and De is the diffusion constant of electrons.

光起電力素子の光吸収層を構成する半導体基板をp型シリコン基板で構成した場合、上記層厚aは87μm、上記層厚bは150μmが望ましい。また、半導体基板をp型ゲルマニウムとした場合、上記層厚aは120μm、上記層厚bは150μmが望ましい。   When the semiconductor substrate constituting the light absorption layer of the photovoltaic element is a p-type silicon substrate, the layer thickness a is desirably 87 μm and the layer thickness b is desirably 150 μm. When the semiconductor substrate is p-type germanium, the layer thickness a is desirably 120 μm and the layer thickness b is desirably 150 μm.

第1の発明にかかる光起電力素子では、光吸収層を構成する半導体基板の厚さを、基板裏面に設けた正電極部分では正孔の拡散定数に応じて、負電極部分では電子の拡散定数に応じて設定するので、正孔の収集割合と電子の収集割合が等しくなる。その結果、本光起電力素子において、最も効率的にキャリアを収集することができるので、発電効率が向上する。   In the photovoltaic device according to the first invention, the thickness of the semiconductor substrate constituting the light absorption layer is determined according to the hole diffusion constant in the positive electrode portion provided on the back surface of the substrate, and the diffusion of electrons in the negative electrode portion. Since it is set according to the constant, the hole collection ratio and the electron collection ratio are equal. As a result, in the present photovoltaic device, carriers can be collected most efficiently, so that power generation efficiency is improved.

キャリアが半導体基板中で拡散効果のみによって移動できる距離Lは、
L=(D×τ)1/2
で示される。ここでDはキャリアの拡散定数、τはキャリアのライフタイムである。この距離Lを半導体基板の厚さとすれば、最も効率的にキャリアを収集することができる。キャリアを正孔とした場合の距離Laを受光面と正電極間の層厚aとし、キャリアを電子とした場合の距離Lbを受光面と負電極間の層厚bとすることによって、正および負のキャリアに対して最大の収集効率が得られる。半導体基板中における正孔と電子のライフタイムはほぼ同じであるため、距離Laと距離Lbの比は、Dhを正孔の拡散定数、Deを電子の拡散定数とした場合、
La:Lb=(Dh1/2:(De1/2
となる。したがって、上記の層厚aおよびbを、
a:b=(Dh1/2:(De1/2
によって決定すれば、正負のキャリアに対して最大の収集効率が得られる。
The distance L that the carrier can move in the semiconductor substrate only by the diffusion effect is
L = (D × τ) 1/2
Indicated by Here, D is a carrier diffusion constant, and τ is a carrier lifetime. If this distance L is the thickness of the semiconductor substrate, carriers can be collected most efficiently. By setting the distance La when the carrier is a hole as the layer thickness a between the light receiving surface and the positive electrode and the distance Lb when the carrier is an electron as the layer thickness b between the light receiving surface and the negative electrode, Maximum collection efficiency is obtained for negative carriers. Since the lifetimes of holes and electrons in the semiconductor substrate are substantially the same, the ratio of distance La to distance Lb is such that D h is the hole diffusion constant and De is the electron diffusion constant.
La: Lb = (D h ) 1/2 : (D e ) 1/2
It becomes. Therefore, the above layer thicknesses a and b are
a: b = (D h ) 1/2 : (D e ) 1/2
The maximum collection efficiency can be obtained for positive and negative carriers.

なお、正孔の拡散定数Dh=12cm2/s、電子の拡散定数De=36cm2/sであるシリコン半導体基板の場合、距離aを87μm、距離bを150μmとした場合に効率よくキャリアを収集することができる。 In the case of a silicon semiconductor substrate having a hole diffusion constant D h = 12 cm 2 / s and an electron diffusion constant D e = 36 cm 2 / s, carriers are efficiently obtained when the distance a is 87 μm and the distance b is 150 μm. Can be collected.

また、正孔の拡散定数Dh=64cm2/s、電子の拡散定数De=100cm2/sであるゲルマニウム半導体基板の場合、距離aを120μm、距離bを150μmとした場合に、効率よくキャリアを収集することができる。 Further, in the case of a germanium semiconductor substrate in which the hole diffusion constant D h = 64 cm 2 / s and the electron diffusion constant D e = 100 cm 2 / s, the distance a is 120 μm and the distance b is 150 μm. You can collect careers.

図2に本発明の一実施形態にかかる光起電力素子10の断面構造を示す。図において、11はp型またはn型の半導体基板、12は電子収集層としてのn+層、13は正孔収集層としてのp+層、14は負電極、15は正電極を示す。半導体基板11の裏面側は、各電極とn+層またはp+層との接触部を残して表面保護膜(絶縁膜)16aによって被覆され、半導体基板11の受光面側も表面保護膜16bによって被覆されている。表面保護膜16b上には、反射防止膜17が形成され、入射光が反射されず効率よく半導体基板に入射するようにされている。 FIG. 2 shows a cross-sectional structure of the photovoltaic device 10 according to one embodiment of the present invention. In the figure, 11 is a p-type or n-type semiconductor substrate, 12 is an n + layer as an electron collection layer, 13 is a p + layer as a hole collection layer, 14 is a negative electrode, and 15 is a positive electrode. The back surface side of the semiconductor substrate 11 is covered with a surface protective film (insulating film) 16a leaving a contact portion between each electrode and the n + layer or p + layer, and the light receiving surface side of the semiconductor substrate 11 is also covered with the surface protective film 16b. It is covered. An antireflection film 17 is formed on the surface protective film 16b so that incident light is efficiently reflected and incident on the semiconductor substrate.

半導体基板11の正電極15が形成されている部分の層厚aと、負電極14が形成されている部分の層厚bは、半導体基板11における電子と正孔の拡散定数DeおよびDhに基づいて決定され、したがって本光起電力素子10では、基板の厚さが一様ではなく電極の極性毎に異なっている。具体的には、a:b=(Dh1/2:(De1/2となるように、層厚aおよびbを設定する。その結果、半導体基板の層厚aおよびbは、正孔および電子の拡散距離に対応した値をとるようになり、最も効率よくキャリアを収集することができる。 The layer thickness a of the portion of the semiconductor substrate 11 where the positive electrode 15 is formed and the layer thickness b of the portion where the negative electrode 14 is formed are the diffusion constants De and D h of electrons and holes in the semiconductor substrate 11. Therefore, in the present photovoltaic element 10, the thickness of the substrate is not uniform but varies depending on the polarity of the electrode. Specifically, the layer thicknesses a and b are set so that a: b = (D h ) 1/2 : (D e ) 1/2 . As a result, the layer thicknesses a and b of the semiconductor substrate have values corresponding to the diffusion distances of holes and electrons, and carriers can be collected most efficiently.

なお、例えば特許文献1乃至4に示した従来の光起電力素子では、半導体基板の厚さを一様としているため、その厚さを例えば電子の拡散距離に対応して設定すれば、正孔の収集割合が低下する。一方、半導体基板の厚さを正孔の拡散距離に対応して設定すれば、半導体基板の層厚が電子の拡散距離よりも小さくなり、受光層としての充分な厚さを確保することができない。これに対して、本発明の光起電力素子10では、半導体基板の層厚が正電極部分と負電極部分でそれぞれ最適化されているので、最大のキャリア収集効率を得ることができ、その結果、発電効率も向上する。   For example, in the conventional photovoltaic elements shown in Patent Documents 1 to 4, since the thickness of the semiconductor substrate is uniform, if the thickness is set corresponding to the diffusion distance of electrons, for example, holes The collection rate of will decrease. On the other hand, if the thickness of the semiconductor substrate is set corresponding to the hole diffusion distance, the layer thickness of the semiconductor substrate becomes smaller than the electron diffusion distance, and a sufficient thickness as the light receiving layer cannot be secured. . On the other hand, in the photovoltaic device 10 of the present invention, since the layer thickness of the semiconductor substrate is optimized in each of the positive electrode portion and the negative electrode portion, the maximum carrier collection efficiency can be obtained. The power generation efficiency is also improved.

本実施形態による光起電力素子10の具体例を下記に示す。なお、光起電力素子10を構成するバルクは、単結晶Siによって形成されているものとする。また、Cはキャリア濃度を示す。   A specific example of the photovoltaic element 10 according to the present embodiment is shown below. In addition, the bulk which comprises the photovoltaic element 10 shall be formed with single crystal Si. C represents the carrier concentration.

(実施例1)
半導体基板(光吸収部)11:p型Si基板、C=1×1014cm-3
a=87μm、b=150μm(SiのDe=36cm2/s、Dh=12cm2/s)
電子収集部12:n+型Si層、C=1×1019cm-3、拡散深さ1μm
正孔収集部13:p+型Si層、C=1×1019cm-3、拡散深さ1μm
負電極14:Al、膜厚2μm
正電極15:Al、膜厚2μm
表面保護膜16a:SiO2、膜厚0.1μm
表面保護膜16b:SiO2、膜厚10nm
反射防止膜17:MgF2/ZnSの2層膜、膜厚110nm/50nm
Example 1
Semiconductor substrate (light absorption part) 11: p-type Si substrate, C = 1 × 10 14 cm −3
a = 87μm, b = 150μm ( Si of D e = 36cm 2 / s, D h = 12cm 2 / s)
Electron collector 12: n + type Si layer, C = 1 × 10 19 cm −3 , diffusion depth 1 μm
Hole collector 13: p + type Si layer, C = 1 × 10 19 cm −3 , diffusion depth 1 μm
Negative electrode 14: Al, film thickness 2 μm
Positive electrode 15: Al, film thickness 2 μm
Surface protective film 16a: SiO 2 , film thickness 0.1 μm
Surface protective film 16b: SiO 2 , film thickness 10 nm
Antireflection film 17: MgF 2 / ZnS two-layer film, film thickness 110 nm / 50 nm

(実施例2)
半導体基板(光吸収部)11:p型Ge基板、C=1×1015cm-3
a=120μm、b=150μm(GeのDe=100cm2/s、Dh=64cm2/s)
電子収集部12:n+型Ge層、C=1×1019cm-3、拡散深さ1μm
正孔収集部13:p+型Ge層、C=1×1019cm-3、拡散深さ1μm
負電極14:Al、膜厚2μm
正電極15:Al、膜厚2μm
表面保護膜16a:SiNx、膜厚0.1μm
表面保護膜16b:SiNx、膜厚10nm
反射防止膜17:SiO2/TiO2の2層膜、膜厚100nm/60nm
(Example 2)
Semiconductor substrate (light absorption part) 11: p-type Ge substrate, C = 1 × 10 15 cm −3
a = 120μm, b = 150μm ( Ge of D e = 100cm 2 / s, D h = 64cm 2 / s)
Electron collector 12: n + -type Ge layer, C = 1 × 10 19 cm −3 , diffusion depth 1 μm
Hole collector 13: p + type Ge layer, C = 1 × 10 19 cm −3 , diffusion depth 1 μm
Negative electrode 14: Al, film thickness 2 μm
Positive electrode 15: Al, film thickness 2 μm
Surface protective film 16a: SiN x , film thickness 0.1 μm
Surface protective film 16b: SiN x , film thickness 10 nm
Antireflection film 17: SiO 2 / TiO 2 bilayer film, film thickness 100 nm / 60 nm

上記実施例1および2では、半導体基板材料としてSiおよびGeを挙げているが、SiGe、SiC、C等のIV族半導体材料を用いても同様な効果が得られることは勿論である。また、半導体基板をp型半導体によって構成しているが、n型半導体であっても良い。さらにまた、本発明の特徴を、背景技術の項で説明した従来例としての光起電力素子の構成に組み込むことにより、さらに光電変換効率を改善して発電効率の高い光起電力素子を得ることができる。   In Examples 1 and 2 above, Si and Ge are cited as semiconductor substrate materials, but it is needless to say that similar effects can be obtained even when IV group semiconductor materials such as SiGe, SiC, and C are used. Moreover, although the semiconductor substrate is composed of a p-type semiconductor, it may be an n-type semiconductor. Furthermore, by incorporating the features of the present invention into the configuration of the conventional photovoltaic device described in the background section, a photovoltaic device with higher power generation efficiency can be obtained by further improving the photoelectric conversion efficiency. Can do.

従来の光起電力素子の断面構造を示す図。The figure which shows the cross-section of the conventional photovoltaic device. 本発明の一実施形態にかかる光起電力素子の断面構造を示す図。The figure which shows the cross-section of the photovoltaic device concerning one Embodiment of this invention.

符号の説明Explanation of symbols

11 半導体基板
12 電子収集部
13 正孔収集部
14 負電極
15 正電極
16a、16b 表面保護膜
17 反射防止膜
DESCRIPTION OF SYMBOLS 11 Semiconductor substrate 12 Electron collecting part 13 Hole collecting part 14 Negative electrode 15 Positive electrode 16a, 16b Surface protective film 17 Antireflection film

Claims (4)

半導体基板の受光面とは反対側の裏面に正および負の電極を配置した裏面電極型の光起電力素子において、前記半導体基板の前記受光面と前記正電極間の層厚aを正孔の拡散定数に基づいて決定し、前記受光面と前記負電極間の層厚bを電子の拡散定数に基づいて決定したことを特徴とする、光起電力素子。   In a back electrode type photovoltaic device in which positive and negative electrodes are arranged on the back surface opposite to the light receiving surface of the semiconductor substrate, the layer thickness a between the light receiving surface and the positive electrode of the semiconductor substrate is set to the hole thickness. A photovoltaic element, wherein the photovoltaic element is determined based on a diffusion constant, and a layer thickness b between the light receiving surface and the negative electrode is determined based on an electron diffusion constant. 請求項1に記載の光起電力素子において、Dを前記半導体基板中の正孔の拡散定数、Dを同じく電子の拡散定数とした場合、前記層厚aおよびbは、以下の式、
a:b=(D1/2:(D1/2
に従って決定されることを特徴とする、光起電力素子。
In the photovoltaic device according to claim 1, the diffusion constant of holes in the semiconductor substrate to D h, when the diffusion constant of the same electrons D e, the layer thickness a and b, the following equation,
a: b = (D h ) 1/2 : (D e ) 1/2
A photovoltaic device, characterized in that it is determined according to:
請求項2に記載の光起電力素子において、前記半導体基板をp型シリコン基板で構成し、前記層厚aを87μm、前記層厚bを150μmとしたことを特徴とする、光起電力素子。   3. The photovoltaic device according to claim 2, wherein the semiconductor substrate is a p-type silicon substrate, the layer thickness a is 87 [mu] m, and the layer thickness b is 150 [mu] m. 請求項2に記載の光起電力素子において、前記半導体基板をp型ゲルマニウムで構成し、前記層厚aを120μm、前記層厚bを150μmとしたことを特徴とする、光起電力素子。   3. The photovoltaic element according to claim 2, wherein the semiconductor substrate is made of p-type germanium, the layer thickness a is 120 [mu] m, and the layer thickness b is 150 [mu] m.
JP2005243752A 2005-08-25 2005-08-25 Photovoltaic element Withdrawn JP2007059644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005243752A JP2007059644A (en) 2005-08-25 2005-08-25 Photovoltaic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005243752A JP2007059644A (en) 2005-08-25 2005-08-25 Photovoltaic element

Publications (1)

Publication Number Publication Date
JP2007059644A true JP2007059644A (en) 2007-03-08

Family

ID=37922866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005243752A Withdrawn JP2007059644A (en) 2005-08-25 2005-08-25 Photovoltaic element

Country Status (1)

Country Link
JP (1) JP2007059644A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100461462C (en) * 2007-06-11 2009-02-11 江苏林洋新能源有限公司 Crystalline silicon battery with single-sided lead-out electrode on N-type substrate and manufacturing method
WO2009096539A1 (en) * 2008-01-30 2009-08-06 Kyocera Corporation Solar battery element and solar battery element manufacturing method
GB2466342A (en) * 2008-11-12 2010-06-23 Silicon Cpv Plc Photovoltaic solar cells
WO2011105430A1 (en) * 2010-02-23 2011-09-01 京セラ株式会社 Dopant material, semiconductor substrate, solar cell element, and process for production of dopant material
WO2012018119A1 (en) * 2010-08-06 2012-02-09 三洋電機株式会社 Solar cell and method for manufacturing solar cell
JPWO2011093329A1 (en) * 2010-01-26 2013-06-06 三洋電機株式会社 Solar cell and manufacturing method thereof
US8633375B2 (en) 2010-12-29 2014-01-21 Samsung Electronics Co., Ltd. Solar cell and method for Manufacturing the same
JP6266176B1 (en) * 2016-11-15 2018-01-24 信越化学工業株式会社 High photoelectric conversion efficiency solar cell manufacturing method

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100461462C (en) * 2007-06-11 2009-02-11 江苏林洋新能源有限公司 Crystalline silicon battery with single-sided lead-out electrode on N-type substrate and manufacturing method
JP4999937B2 (en) * 2008-01-30 2012-08-15 京セラ株式会社 Solar cell element and method for manufacturing solar cell element
WO2009096539A1 (en) * 2008-01-30 2009-08-06 Kyocera Corporation Solar battery element and solar battery element manufacturing method
GB2466342B (en) * 2008-11-12 2013-07-17 Silicon Cpv Plc Photovoltaic solar cells
CN102246324A (en) * 2008-11-12 2011-11-16 矽利康有限公司 Back contact photovoltaic solar cells with grooves
WO2010055346A3 (en) * 2008-11-12 2011-03-31 Silicon Cpv Plc Deep grooved rear contact photovoltaic solar cells
KR101561682B1 (en) 2008-11-12 2015-10-20 실리콘 씨피브이 피엘씨 Deep grooved rear contact photovoltaic solar cells
GB2466342A (en) * 2008-11-12 2010-06-23 Silicon Cpv Plc Photovoltaic solar cells
US8889462B2 (en) 2008-11-12 2014-11-18 Silicon Cpv Plc Photovoltaic solar cells
JPWO2011093329A1 (en) * 2010-01-26 2013-06-06 三洋電機株式会社 Solar cell and manufacturing method thereof
WO2011105430A1 (en) * 2010-02-23 2011-09-01 京セラ株式会社 Dopant material, semiconductor substrate, solar cell element, and process for production of dopant material
JP5701287B2 (en) * 2010-02-23 2015-04-15 京セラ株式会社 Dopant material, semiconductor substrate, solar cell element, and method for producing dopant material
WO2012018119A1 (en) * 2010-08-06 2012-02-09 三洋電機株式会社 Solar cell and method for manufacturing solar cell
US8633375B2 (en) 2010-12-29 2014-01-21 Samsung Electronics Co., Ltd. Solar cell and method for Manufacturing the same
JP6266176B1 (en) * 2016-11-15 2018-01-24 信越化学工業株式会社 High photoelectric conversion efficiency solar cell manufacturing method
WO2018092189A1 (en) * 2016-11-15 2018-05-24 信越化学工業株式会社 High photoelectric conversion efficiency solar cell, method for manufacturing same, solar cell module, and solar power generation system
EP3355364A4 (en) * 2016-11-15 2018-08-01 Shin-Etsu Chemical Co., Ltd. High photoelectric conversion efficiency solar cell, method for manufacturing same, solar cell module, and solar power generation system
US20190013423A1 (en) * 2016-11-15 2019-01-10 Shin-Etsu Chemical Co., Ltd. High photovoltaic-conversion efficiency solar cell, method for manufacturing the same, solar cell module, and photovoltaic power generation system
TWI650874B (en) * 2016-11-15 2019-02-11 日商信越化學工業股份有限公司 High photoelectric conversion efficiency solar cell and manufacturing method thereof
CN110073504A (en) * 2016-11-15 2019-07-30 信越化学工业株式会社 The solar battery of high-photoelectric transformation efficiency, its manufacturing method, solar cell module and photovoltaic generating system
US11201253B2 (en) 2016-11-15 2021-12-14 Shin-Etsu Chemical Co., Ltd. High photovoltaic-conversion efficiency solar cell, method for manufacturing the same, solar cell module, and photovoltaic power generation system

Similar Documents

Publication Publication Date Title
KR101219926B1 (en) Heterocontact solar cell with inverted geometry of its layer structure
US8952244B2 (en) Solar cell
JP4671002B2 (en) Photoelectric conversion device
KR20080091329A (en) Photovoltaic cell
EP2184786A1 (en) Photovoltaic force device
US20120222737A1 (en) Hot carrier energy conversion structure and method of fabricating the same
JP2006173381A (en) Photovoltaic element
JP2007059644A (en) Photovoltaic element
KR101228685B1 (en) Substrate for ci(g)s solar cell and ci(g)s solar cell using the same
JP2004039751A (en) Photovoltaic element
TW201327870A (en) Method for preparing solar cell
JP3724272B2 (en) Solar cell
JP4945916B2 (en) Photoelectric conversion element
KR101667631B1 (en) Thin film solar cell and methode for fabricating the same
JPH11274532A (en) Solar cell
JP6321504B2 (en) Quantum dot solar cell
KR20190045889A (en) crystalline silicon flexible solar cell and manufacturing method
JP3368825B2 (en) Solar cell
JP2011066072A (en) Solar cell
KR101562265B1 (en) Thin film solar cell and manufacturing method thereof
TWI489645B (en) Method for preparing solar cell
TWI463688B (en) Method for preparing solar cell
KR101954864B1 (en) crystalline silicon flexible solar cell and manufacturing method
JP2005012108A (en) Photovoltaic element
KR101228666B1 (en) Substrate with multi-layer bottom electrode for ci(g)s solar cell and ci(g)s solar cell using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080721

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090114