[go: up one dir, main page]

JP2007057141A - Refrigeration cycle equipment - Google Patents

Refrigeration cycle equipment Download PDF

Info

Publication number
JP2007057141A
JP2007057141A JP2005241590A JP2005241590A JP2007057141A JP 2007057141 A JP2007057141 A JP 2007057141A JP 2005241590 A JP2005241590 A JP 2005241590A JP 2005241590 A JP2005241590 A JP 2005241590A JP 2007057141 A JP2007057141 A JP 2007057141A
Authority
JP
Japan
Prior art keywords
refrigerant
refrigeration cycle
expander
power
cycle apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005241590A
Other languages
Japanese (ja)
Inventor
Atsuo Okaichi
敦雄 岡市
Hiroshi Hasegawa
寛 長谷川
Masaru Matsui
大 松井
Tomoichiro Tamura
朋一郎 田村
Yuji Ogata
雄司 尾形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005241590A priority Critical patent/JP2007057141A/en
Publication of JP2007057141A publication Critical patent/JP2007057141A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Control Of Eletrric Generators (AREA)

Abstract

【課題】冷凍サイクル装置の高圧側冷媒圧力を制御して、効率よく動作させる。
【解決手段】冷凍サイクル装置12は、圧縮機1と放熱器2と冷媒の圧力エネルギーを回転動力に変換する膨張機6aと蒸発器4とを順に接続する冷凍サイクル5と、膨張機6aで駆動されて回転動力を電力に変換する発電機6bと、切換機構9を介して発電機6bで変換された電力を蓄電する二次電池8と、冷凍サイクル5を循環する冷媒の状態を計測する冷媒状態計測手段10と、冷媒状態計測手段10の出力に基づき切換機構9を制御する制御手段11とを備え、制御手段11による切替機構9の制御によって蓄電する二次電池8の数を増減させることで、発電機6bに連結する膨張機6aの駆動周波数を調節して、高圧側冷媒圧力を安価に効率よく制御する。
【選択図】 図1
A high-pressure side refrigerant pressure of a refrigeration cycle apparatus is controlled to operate efficiently.
A refrigeration cycle apparatus 12 is driven by a refrigeration cycle 5 that sequentially connects a compressor 1, a radiator 2, an expander 6a that converts pressure energy of refrigerant into rotational power, and an evaporator 4, and an expander 6a. The generator 6b that converts the rotational power into electric power, the secondary battery 8 that stores the electric power converted by the generator 6b via the switching mechanism 9, and the refrigerant that measures the state of the refrigerant circulating in the refrigeration cycle 5 A state measuring unit 10 and a control unit 11 for controlling the switching mechanism 9 based on the output of the refrigerant state measuring unit 10 are provided, and the number of secondary batteries 8 to be stored is increased or decreased by the control of the switching mechanism 9 by the control unit 11. Therefore, the drive frequency of the expander 6a connected to the generator 6b is adjusted to efficiently control the high-pressure side refrigerant pressure at a low cost.
[Selection] Figure 1

Description

本発明は、冷凍サイクル装置に関し、特に冷媒が膨張する際の膨張エネルギーを回収するエネルギー回収手段を備えた冷凍サイクル装置に関する。   The present invention relates to a refrigeration cycle apparatus, and more particularly to a refrigeration cycle apparatus provided with energy recovery means for recovering expansion energy when a refrigerant expands.

従来の冷凍サイクル装置としては、図5に示すように、圧縮機1と放熱器2と膨張機構3と蒸発器4とを順に接続した冷凍サイクル5に冷媒を封入して循環させる冷凍サイクル装置が知られている。フロンや代替フロンを冷媒として用いた冷凍サイクル装置では、膨張機構3として膨張弁やキャピラリチューブなどが使用されている。一方、冷凍サイクル装置の高圧側冷媒圧力と低圧側冷媒圧力の差が大きい場合には、回収可能な膨張エネルギーが比較的大きいため、図6と図7に示すように、膨張機構3の代わりに膨張機130を用いて膨張エネルギーを回収して高効率化を図る技術が提案されている。
そして、膨張機の構成としては、図6に示すように、膨張機130で回収した動力をシャフト(図示せず)で圧縮機1に伝達して、圧縮機1の入力を低減する方式と、図7に示すように、膨張機130で回収した動力を発電機300で電力に変換して二次電池(図示せず)に蓄えて、圧縮機1の入力や放熱器2や蒸発器4に設けたファンの動力を補助する方式がある。
また、上記のような冷凍サイクル装置において、放熱器2の位置する高圧側冷媒圧力が臨界圧力を超える冷媒(例えば二酸化炭素)を使用する場合は、冷凍サイクル装置の運転条件に応じて、冷凍サイクル装置の冷却効率または加熱効率が理論上最も良くなる理論最適高圧が変動するため、高圧側冷媒圧力を制御する手段が必要となる。この高圧側冷媒圧力を制御するための手段として、以下のものがある。
図6に示すシャフトで動力を伝達する方式の場合、一般的に設計時に吸入容積が決まる圧縮機1と膨張機130は、シャフトで連結されて同一の駆動回転数fで駆動する。この場合、圧縮機1と膨張機130の単位時間当たりの吸入冷媒質量のバランスを、(式1)で表すことができる。ここで、Vcは圧縮機1の吸入容積を、Veは膨張機130の吸入容積を、fcは圧縮機1の駆動回転数を、feは膨張機130の駆動回転数を、ρcは圧縮機1の吸入前冷媒密度を、ρeは膨張機130の吸入前冷媒密度をそれぞれ意味する。
As a conventional refrigeration cycle apparatus, as shown in FIG. 5, there is a refrigeration cycle apparatus that encloses and circulates a refrigerant in a refrigeration cycle 5 in which a compressor 1, a radiator 2, an expansion mechanism 3, and an evaporator 4 are connected in order. Are known. In a refrigeration cycle apparatus using chlorofluorocarbon or alternative chlorofluorocarbon as a refrigerant, an expansion valve, a capillary tube, or the like is used as the expansion mechanism 3. On the other hand, when the difference between the high-pressure side refrigerant pressure and the low-pressure side refrigerant pressure of the refrigeration cycle apparatus is large, the recoverable expansion energy is relatively large. Therefore, as shown in FIGS. A technique for improving the efficiency by recovering the expansion energy using the expander 130 has been proposed.
And as a structure of an expander, as shown in FIG. 6, the system which transmits the motive power collect | recovered with the expander 130 to the compressor 1 with a shaft (not shown), and reduces the input of the compressor 1, As shown in FIG. 7, the power recovered by the expander 130 is converted into electric power by the generator 300 and stored in a secondary battery (not shown), which is input to the compressor 1, the radiator 2, and the evaporator 4. There is a method of assisting the power of the provided fan.
In the refrigeration cycle apparatus as described above, when a refrigerant (for example, carbon dioxide) in which the high-pressure side refrigerant pressure at which the radiator 2 is located exceeds the critical pressure is used, the refrigeration cycle is performed according to the operating conditions of the refrigeration cycle apparatus. Since the theoretical optimum high pressure at which the cooling efficiency or heating efficiency of the apparatus is theoretically best fluctuates, a means for controlling the high-pressure side refrigerant pressure is required. Means for controlling the high-pressure side refrigerant pressure include the following.
In the method of transmitting power with the shaft shown in FIG. 6, the compressor 1 and the expander 130 whose suction volume is generally determined at the time of design are connected by the shaft and driven at the same drive rotational speed f. In this case, the balance of the refrigerant mass sucked per unit time of the compressor 1 and the expander 130 can be expressed by (Expression 1). Here, Vc is the suction volume of the compressor 1, Ve is the suction volume of the expander 130, fc is the drive rotational speed of the compressor 1, fe is the drive rotational speed of the expander 130, and ρc is the compressor 1 Ρe means the refrigerant density before suction of the expander 130, respectively.

Figure 2007057141
Figure 2007057141

ここで、fcとfeが同値であるから、(式1)のρcとρeは、設計時のVcとVeとによって(式2)の関係を持つ。   Here, since fc and fe have the same value, ρc and ρe in (Expression 1) have a relationship of (Expression 2) depending on Vc and Ve at the time of design.

Figure 2007057141
Figure 2007057141

つまり、圧縮機1が吸入する冷媒の密度ρcが、蒸発器4側の熱源温度TLから決まる冷媒の蒸発圧力Pevaや、圧縮機1の吸入冷媒温度Tcから決まれば、膨張機130が吸入する冷媒の密度ρeはρc×Vc/Veに固定される。そのため、放熱器2側の熱源温度THに依存する膨張機130の吸入冷媒温度Teによって高圧側冷媒圧力が自動的に決まり、最適高圧に制御できなくなるか、もしくは、高圧側冷媒圧力を最適高圧に合わせるために、放熱器2の放熱能力を低下させて膨張機130の吸入冷媒温度Teが上昇するかのいずれかになる(膨張機130の吸入冷媒温度Teを放熱器2側の熱源温度Tgよりも下げる方向の調節はできない)。
そして、高圧側冷媒圧力が自由に調節できない場合は、冷凍サイクル装置の冷却効率または加熱効率が悪化し、膨張機130の吸入冷媒温度Teを上昇させる場合は、放熱器2の放熱量と蒸発器4の吸熱量とが減少するので、同様に冷凍サイクル装置の冷却効率または加熱効率が悪化する。
そこで、図6に示されるように、膨張機130の吸入容積Veを吸入冷媒密度ρeが最も高くなる条件に合わせて設計し、吸入冷媒密度ρeが小さくなる条件において、膨張機130を通過しきれない冷媒をバイパス通路170に導き、このバイパス通路170に設けた制御弁180の開度を、圧力センサ401や温度センサ402からの検出信号に基づいて電子制御装置(ECU)400にて制御する方法がある(例えば、特許文献1参照)。
また、図7に示す発電機300で動力を電力に変換する方式の場合には、ECU400が両センサ401,402からの検出信号に基づいて発電機300の印加電圧(励磁電流)を制御する。即ち、図8に示すように発電機300のロータのロータコイル303bに、ブラシおよびスリップリングを介して制御回路310から励磁電流を供給して、励磁電流の制御で発電機300および膨張機130の回転数を制御する。このように、膨張機130の吸入冷媒密度ρeに対する制約をなくして、冷凍サイクル装置の高圧側冷媒圧力を制御する方法がある(例えば、特許文献1または特許文献2参照)。
また、膨張機により駆動される発電機の回転数制御には、サイリスタ・インバータ(図示せず)を用いる方法がある(例えば、特許文献3参照)。
また、冷凍サイクル装置の運転条件に応じて圧縮機1の圧縮機効率が変わるため、冷却効率または加熱効率を最大にするためには、冷凍サイクル装置の運転条件による圧縮機効率の変動を考慮して、最適高圧を導出する必要がある(例えば、特許文献4参照)。
特開2000−329416号公報 特開平1−168518号公報 特開昭60−42557号公報 特開2004−53150号公報
That is, if the density ρc of the refrigerant sucked by the compressor 1 is determined from the refrigerant evaporating pressure Peva determined from the heat source temperature TL on the evaporator 4 side or the suction refrigerant temperature Tc of the compressor 1, the refrigerant sucked by the expander 130 The density ρe is fixed at ρc × Vc / Ve. Therefore, the high-pressure side refrigerant pressure is automatically determined by the intake refrigerant temperature Te of the expander 130 depending on the heat source temperature TH on the radiator 2 side and cannot be controlled to the optimum high pressure, or the high-pressure side refrigerant pressure is made the optimum high pressure. In order to match, the heat dissipation capability of the radiator 2 is reduced and the intake refrigerant temperature Te of the expander 130 rises (the intake refrigerant temperature Te of the expander 130 is made higher than the heat source temperature Tg on the radiator 2 side). Can not be adjusted downward).
When the high-pressure side refrigerant pressure cannot be freely adjusted, the cooling efficiency or heating efficiency of the refrigeration cycle apparatus deteriorates. When the intake refrigerant temperature Te of the expander 130 is increased, the heat dissipation amount of the radiator 2 and the evaporator Therefore, the cooling efficiency or heating efficiency of the refrigeration cycle apparatus is similarly deteriorated.
Therefore, as shown in FIG. 6, the suction volume Ve of the expander 130 is designed according to the condition that the suction refrigerant density ρe is the highest, and it can pass through the expander 130 under the condition that the suction refrigerant density ρe becomes small. A method in which an electronic control unit (ECU) 400 controls an opening degree of a control valve 180 provided in the bypass passage 170 based on detection signals from the pressure sensor 401 and the temperature sensor 402. (For example, refer to Patent Document 1).
Further, in the case of a system in which power is converted into electric power by the generator 300 shown in FIG. 7, the ECU 400 controls the applied voltage (excitation current) of the generator 300 based on detection signals from both the sensors 401 and 402. That is, as shown in FIG. 8, an excitation current is supplied from the control circuit 310 to the rotor coil 303b of the rotor of the generator 300 via a brush and a slip ring, and the generator 300 and the expander 130 are controlled by controlling the excitation current. Control the number of revolutions. As described above, there is a method of controlling the high-pressure side refrigerant pressure of the refrigeration cycle apparatus without restrictions on the suction refrigerant density ρe of the expander 130 (see, for example, Patent Document 1 or Patent Document 2).
In addition, there is a method of using a thyristor inverter (not shown) for controlling the rotational speed of the generator driven by the expander (see, for example, Patent Document 3).
Further, since the compressor efficiency of the compressor 1 changes according to the operating conditions of the refrigeration cycle apparatus, in order to maximize the cooling efficiency or the heating efficiency, the fluctuation of the compressor efficiency due to the operating conditions of the refrigeration cycle apparatus is taken into consideration. Therefore, it is necessary to derive the optimum high pressure (see, for example, Patent Document 4).
JP 2000-329416 A JP-A-1-168518 JP 60-42557 A JP 2004-53150 A

しかしながら、圧縮機とシャフトで連結して動力回収を行う膨張機を備えた冷凍サイクル装置では、高圧側冷媒圧力に制御するために、膨張機と並列に設けたバイパス通路に冷媒を流すので、圧力エネルギーを持った冷媒をバイパスさせることで回収動力を減らしてしまっていた。
また、発電機によって動力を回収する冷凍サイクル装置では、ロータコイルに通電する励磁電流によって発電機と膨張機の回転数を制御して高圧側冷媒圧力を制御しているので、ロータコイルに通電することによる電力の損失が生じていた。
また、発電機と膨張機の回転数を制御するサイリスタ・インバータは、複雑な回路を有して高価なために冷凍サイクル装置の製造コストを上げていた。また、膨張機を用いた冷凍サイクル装置の性能を向上させるためには、圧縮機の効率だけでなく、さらに膨張機の効率を考慮しなければ最適高圧が算出できなかった。
また、地球温暖化防止のために太陽電池や風力発電装置等の創エネルギー装置が広く普及してきているが、付属の蓄電装置を太陽電池や風力発電装置以外の用途に十分利用することができていなかった。
However, in a refrigeration cycle apparatus having an expander that is connected to a compressor and a shaft to recover power, the refrigerant flows through a bypass passage provided in parallel with the expander in order to control the refrigerant pressure at a high pressure side. The recovery power was reduced by bypassing the refrigerant with energy.
Further, in the refrigeration cycle apparatus that recovers power by the generator, the high-pressure side refrigerant pressure is controlled by controlling the rotational speed of the generator and the expander by the excitation current that is supplied to the rotor coil. There was a loss of power.
In addition, the thyristor inverter that controls the rotational speeds of the generator and the expander has a complicated circuit and is expensive, which increases the manufacturing cost of the refrigeration cycle apparatus. Further, in order to improve the performance of the refrigeration cycle apparatus using the expander, the optimum high pressure cannot be calculated unless the efficiency of the expander is further taken into consideration in addition to the efficiency of the compressor.
In addition, energy-generating devices such as solar cells and wind power generators have been widely used to prevent global warming, but the attached power storage devices have been fully utilized for applications other than solar cells and wind power generators. There wasn't.

したがって本発明は、上記問題を解決するためのものであり、膨張機を用いた超臨界冷凍サイクル装置であって、高圧側冷媒圧力を安価に制御できる高効率な冷凍サイクル装置を提供することを目的としている。   Therefore, the present invention is to solve the above-mentioned problem, and is to provide a supercritical refrigeration cycle apparatus using an expander, which can control the high-pressure side refrigerant pressure at low cost. It is aimed.

第1の発明に係る冷凍サイクル装置は、圧縮機と、放熱器と、通過する冷媒の圧力エネルギーを回転動力に変換する膨張機と、蒸発器とを順に接続する冷凍サイクルと、膨張機で生じた回転動力を電力に変換する発電機と、発電機の出力端子に接続する交流側端子と整流後の電力を出力する直流側端子とを備えた整流器と、整流器の直流側端子に対して並列に接続された少なくとも二つ以上で構成される二次電池と、直流側端子と二次電池との間の接続/非接続を個別に切り替える切替機構と、冷凍サイクルを循環する冷媒の状態を計測する冷媒状態計測手段と、冷媒状態計測手段の出力に基づき放熱器側の最適高圧を算出し、放熱器側の冷媒の圧力を最適高圧に合わせるように切替機構を制御する制御手段とを備えたものである。
第1の発明によれば、膨張機で回収する動力を電力に変換する発電機の出力端子に、
整流器を通して複数の二次電池を並列に接続し、接続する二次電池の数を切替機構によって増減させることで、発電機の負荷を調節して、発電機とつながる膨張機の駆動周波数を制御できる。これにより、膨張機を通過する冷媒の容積循環量を可変として、膨張機に吸引する冷媒の密度および圧力を可変にできる。つまり、バイパス等の手段を用いずに膨張機の回転数を調節することで、冷媒状態計測手段に基づいて算出された最適高圧に放熱器側の冷媒圧力を合わせることができるので、効率的に冷凍サイクル装置を動作させることができる。さらに、冷媒状態計測手段によって膨張機が吸入する冷媒の温度と膨張機前後の冷媒圧力を検知することができ、膨張機が吸入する冷媒の密度とエンタルピーとエントロピーとを算出することができる。これにより、膨張機が理想的な断熱膨張をした場合の理論回収動力を算出することができ、発電機の発電機効率を考慮して、発電機の発電電力から膨張機の膨張機効率を算出することができる。よって、従来の圧縮機の圧縮機効率を考慮した最適高圧の算出方法に、さらに膨張機の膨張機効率を加味することで、さらに冷凍サイクル装置を効率的に動作させることができる。また、回収した動力を電力として二次電池へ貯めることにより、安価な夜間電力によって冷凍サイクル装置を運転して、電力需要が大きく電力の単価が高い昼間に膨張機で回収した動力を電力として利用できるので、ランニングコストが低く抑えられる。このため、発電機で生じる発電損失を考慮に入れても、圧縮機と膨張機を一軸で連結して膨張機で回収した動力を圧縮機のアシストに直接利用する場合より、本発明の冷凍サイクル装置の利用者のコストメリットは大きくなる。
第2の発明に係る冷凍サイクル装置は、第1の発明に係る冷凍サイクル装置において、二次電池と切替機構とを外部蓄電装置として備えたものである。
第2の発明によれば、太陽電池や風力発電装置などが備える外部蓄電装置を共通利用することにより、冷凍サイクル装置を安価に製造できる。
第3の発明に係る冷凍サイクル装置は、第1または第2の発明に係る冷凍サイクル装置において、二次電池の蓄電状態を検知する蓄電検知手段を備え、制御手段では蓄電検知手段の出力を用いて切替機構を制御するものである。
第3の発明によれば、蓄電状況の違いを検知することにより、発電機に接続する複数の二次電池の組み合わせを制御手段が決定する場合に、発電機に対する負荷を段階的にではなく滑らかに変動させることができる。これにより冷凍サイクル装置の運転条件が変動した場合に、膨張機の回転数を連続的に変化させて対応させることができるので、急激な圧力などの変動を回避できる。また冷凍サイクルの放熱器側の冷媒圧力を最適高圧に正確に一致させることができる。
第4の発明に係る冷凍サイクル装置は、第3の発明に係る冷凍サイクル装置において、蓄電検知手段として、各二次電池を流れる電流を計測する電流計測手段を用いたものである。
第4の発明によれば、二次電池の起電力が蓄電状態によって異なり、発電機に並列接続される二次電池の端子に加わる電圧が等しいことから、各二次電池を通過する電流を計測することで、各二次電池の蓄電状態を簡便に推定することができる。
第5の発明に係る冷凍サイクル装置は、第1から第4の発明に係る冷凍サイクル装置において、二次電池と商用電源との間にパワーコンディショナを備えたものである。
第5の発明によれば、冷凍サイクル装置の膨張機による動力回収で二次電池に蓄えた電力を、商用電源と共に一般の電気機器で利用することができる。
第6の発明に係る冷凍サイクル装置は、第1から第5の発明に係る冷凍サイクル装置において、冷媒として二酸化炭素を主成分とした冷媒を用いたものである。
第6の発明によれば、一般的な用途で放熱器側の冷媒圧力が臨界圧力を超えて超臨界状態になる二酸化炭素を冷媒とすることで、冷凍サイクル装置の運転状態が変化した場合に、放熱器側の冷媒圧力に最適高圧が存在する。これにより本発明を用いた場合に、冷凍サイクル装置を効率的に運用することができる。
第7の発明に係る冷凍サイクル装置は、第1または第2の発明に係る冷凍サイクル装置において、冷媒状態計測手段では膨張機が吸入する冷媒温度と膨張機前後の冷媒圧力を検知し、制御手段では吸入冷媒温度及び前後冷媒圧力から膨張機効率を算出し該膨張機効率を考慮して最適高圧を算出するものである。
第7の発明によれば、従来の圧縮機効率を考慮した最適高圧の算出方法に、膨張機効率を加味することで、さらに冷凍サイクル装置を効率的に動作させることができる。
A refrigeration cycle apparatus according to a first aspect of the present invention is produced by a compressor, a radiator, an expander that converts pressure energy of a passing refrigerant into rotational power, and a refrigeration cycle that sequentially connects an evaporator and an expander. A rectifier having a generator that converts the rotating power into electric power, an AC side terminal that is connected to the output terminal of the generator, and a DC side terminal that outputs the rectified power, and parallel to the DC side terminal of the rectifier Measures the state of the refrigerant circulating in the refrigeration cycle, the secondary battery composed of at least two connected to the battery, the switching mechanism for switching connection / disconnection between the DC terminal and the secondary battery individually And a control means for calculating the optimum high pressure on the radiator side based on the output of the refrigerant condition measuring means and controlling the switching mechanism so that the refrigerant pressure on the radiator side matches the optimum high pressure. Is.
According to the first invention, the output terminal of the generator that converts the power recovered by the expander into electric power,
By connecting multiple secondary batteries in parallel through a rectifier and increasing or decreasing the number of connected secondary batteries with a switching mechanism, the load on the generator can be adjusted to control the drive frequency of the expander connected to the generator . Accordingly, the volume circulation amount of the refrigerant passing through the expander can be made variable, and the density and pressure of the refrigerant sucked into the expander can be made variable. In other words, by adjusting the rotation speed of the expander without using a bypass or the like, the refrigerant pressure on the radiator side can be adjusted to the optimum high pressure calculated based on the refrigerant state measuring means. The refrigeration cycle apparatus can be operated. Furthermore, the refrigerant state measuring means can detect the temperature of the refrigerant sucked by the expander and the refrigerant pressure before and after the expander, and the density, enthalpy and entropy of the refrigerant sucked by the expander can be calculated. This makes it possible to calculate the theoretical recovery power when the expander has an ideal adiabatic expansion, and calculates the expander efficiency of the expander from the generated power of the generator in consideration of the generator efficiency of the generator. can do. Therefore, the refrigeration cycle apparatus can be more efficiently operated by adding the expander efficiency of the expander to the calculation method of the optimum high pressure in consideration of the compressor efficiency of the conventional compressor. In addition, by storing the recovered power in the secondary battery as electric power, the refrigeration cycle device is operated by cheap night electric power, and the power recovered by the expander during the daytime when the power demand is large and the power unit price is high is used as electric power. As a result, running costs can be kept low. For this reason, even if the power generation loss caused by the generator is taken into consideration, the refrigeration cycle of the present invention is more effective than the case where the compressor and the expander are connected by a single shaft and the power recovered by the expander is directly used for assisting the compressor. The cost merit for the user of the device is increased.
A refrigeration cycle apparatus according to a second invention is the refrigeration cycle apparatus according to the first invention, comprising a secondary battery and a switching mechanism as an external power storage device.
According to the second invention, the refrigeration cycle apparatus can be manufactured at low cost by commonly using the external power storage device included in the solar battery, the wind power generator, and the like.
A refrigeration cycle apparatus according to a third aspect of the present invention is the refrigeration cycle apparatus according to the first or second aspect of the invention, further comprising a power storage detection means for detecting a power storage state of the secondary battery, and the control means uses the output of the power storage detection means. To control the switching mechanism.
According to the third invention, when the control means determines the combination of the plurality of secondary batteries connected to the generator by detecting the difference in the storage status, the load on the generator is smoothed instead of stepwise. Can be varied. As a result, when the operating conditions of the refrigeration cycle apparatus fluctuate, the rotational speed of the expander can be continuously changed to cope with it, so that sudden fluctuations such as pressure can be avoided. In addition, the refrigerant pressure on the radiator side of the refrigeration cycle can be accurately matched to the optimum high pressure.
A refrigeration cycle apparatus according to a fourth aspect of the invention is the refrigeration cycle apparatus according to the third aspect of the invention, wherein current measurement means for measuring a current flowing through each secondary battery is used as the power storage detection means.
According to the fourth invention, since the electromotive force of the secondary battery varies depending on the storage state and the voltage applied to the terminals of the secondary battery connected in parallel to the generator is equal, the current passing through each secondary battery is measured. By doing so, the storage state of each secondary battery can be easily estimated.
A refrigeration cycle apparatus according to a fifth aspect is the refrigeration cycle apparatus according to the first to fourth aspects, wherein a power conditioner is provided between the secondary battery and the commercial power source.
According to the fifth aspect of the invention, the electric power stored in the secondary battery by the power recovery by the expander of the refrigeration cycle apparatus can be used in general electric equipment together with the commercial power source.
A refrigeration cycle apparatus according to a sixth aspect of the present invention is the refrigeration cycle apparatus according to the first to fifth aspects of the present invention, wherein a refrigerant mainly composed of carbon dioxide is used as the refrigerant.
According to the sixth invention, when the operating state of the refrigeration cycle apparatus is changed by using, as a refrigerant, carbon dioxide that becomes supercritical when the refrigerant pressure on the radiator side exceeds the critical pressure in general applications. There is an optimum high pressure for the refrigerant pressure on the radiator side. Thereby, when this invention is used, a refrigerating-cycle apparatus can be operated efficiently.
The refrigeration cycle apparatus according to a seventh aspect of the invention is the refrigeration cycle apparatus according to the first or second aspect of the invention, wherein the refrigerant state measuring means detects the refrigerant temperature sucked by the expander and the refrigerant pressure before and after the expander, and the control means Then, the expander efficiency is calculated from the suction refrigerant temperature and the front and rear refrigerant pressure, and the optimum high pressure is calculated in consideration of the expander efficiency.
According to the seventh invention, the refrigeration cycle apparatus can be operated more efficiently by adding the expander efficiency to the conventional calculation method of the optimum high pressure in consideration of the compressor efficiency.

本発明によれば、膨張機で回収する動力を電力に変換する発電機の出力端子に、整流器を通して複数の二次電池を並列に接続し、接続する二次電池の数を切替機構によって増減させることで、発電機の負荷を調節して、発電機とつながる膨張機の駆動周波数を制御できる。これにより、膨張機を通過する冷媒の容積循環量を可変として、膨張機に吸引する冷媒の密度および圧力を可変にできる。つまり、冷媒状態計測手段に基づいて算出された最適高圧に放熱器側の冷媒圧力を合わせるように膨張機の回転数を調節することができるので、効率的に冷凍サイクル装置を動作させることができる。また、回収した動力を電力として二次電池へ貯めることにより、安価な夜間電力によって冷凍サイクル装置を運転して、電力需要が大きく電力の単価が高い昼間に膨張機で回収した動力を電力として利用できるので、ランニングコストが低く抑えられる。   According to the present invention, a plurality of secondary batteries are connected in parallel through a rectifier to an output terminal of a generator that converts power recovered by an expander into electric power, and the number of connected secondary batteries is increased or decreased by a switching mechanism. By adjusting the load of the generator, the drive frequency of the expander connected to the generator can be controlled. Accordingly, the volume circulation amount of the refrigerant passing through the expander can be made variable, and the density and pressure of the refrigerant sucked into the expander can be made variable. That is, since the rotation speed of the expander can be adjusted so that the refrigerant pressure on the radiator side matches the optimum high pressure calculated based on the refrigerant state measuring means, the refrigeration cycle apparatus can be operated efficiently. . In addition, by storing the recovered power in the secondary battery as electric power, the refrigeration cycle device is operated by cheap night electric power, and the power recovered by the expander during the daytime when the power demand is large and the power unit price is high is used as electric power. As a result, running costs can be kept low.

以下、本発明の実施の形態について、図面を参照しながら説明する。
(実施の形態1)
図1は、本発明の実施の形態1の冷凍サイクル装置の構成図である。
本実施の形態の冷凍サイクル装置12は、圧縮機1と放熱器2と通過する冷媒の圧力エネルギーを回転動力に変換する膨張機6aと蒸発器4とを順に接続する冷凍サイクル5と、膨張機6aと膨張機6aで生じた回転動力を電力に変換する発電機6bとで構成される動力回収機構6と、発電機6bの出力端子6baに接続する交流側端子7aと整流後の電力を出力する直流側端子7bとを備えた整流器7と、整流器7の直流側端子7bに対して並列に接続された少なくとも二つ以上で構成される二次電池8と、直流側端子7bと二次電池8との間に設けてそれらの間の接続/非接続を個別に切り替える切替機構9と、冷凍サイクル5を循環する冷媒の状態を計測する冷媒状態計測手段10と、冷媒状態計測手段10の出力に基づいて放熱器2側の最適高圧を算出し、放熱器2側の冷媒の圧力を最適高圧に合わせるように切替機構9を制御する制御手段11とを備えている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(Embodiment 1)
FIG. 1 is a configuration diagram of a refrigeration cycle apparatus according to Embodiment 1 of the present invention.
The refrigeration cycle apparatus 12 of the present embodiment includes a refrigeration cycle 5 that sequentially connects an expander 6a and an evaporator 4 that convert the pressure energy of refrigerant that passes through the compressor 1 and the radiator 2 into rotational power, and an expander. 6a and a power recovery mechanism 6 including a generator 6b that converts rotational power generated in the expander 6a into electric power, an AC side terminal 7a connected to the output terminal 6ba of the generator 6b, and output rectified power A rectifier 7 having a DC side terminal 7b, a secondary battery 8 composed of at least two connected in parallel to the DC side terminal 7b of the rectifier 7, a DC side terminal 7b and a secondary battery. 8, a switching mechanism 9 that individually switches between connection / disconnection between them, refrigerant state measurement means 10 that measures the state of the refrigerant circulating in the refrigeration cycle 5, and output of the refrigerant state measurement means 10 Based on heatsink 2 Has an optimum high pressure is calculated, and control means 11 for controlling the switching mechanism 9 so as to adjust the pressure of the refrigerant in the radiator 2 side to the optimal high pressure.

次に、冷凍サイクル装置12の動作について説明する。
冷凍サイクル装置12において、冷媒は矢印に示す方向に循環する。気相状態にある冷媒の二酸化炭素は、圧縮機1においてその臨界点を超える高温高圧の超臨界状態にまで圧縮され、放熱器2に送られる。高温高圧の超臨界状態の冷媒は、放熱器2において圧力を保ったまま放熱しながら温度低下する。放熱器2を出た高圧の冷媒は動力回収機構6に入り、動力回収機構6において膨張仕事をして電力を発生させる。
具体的には、動力回収機構6の膨張機6aで冷媒の膨張による容積変化を回転動力に変換し、膨張機6aとシャフトで連結された発電機6bによって電力を発生させる。膨張機6aの具体例としては、スクロール型膨張機、ベーンロータリ型膨張機、ロータリ型膨張機、二段ロータリ型膨張機などがある。
そして、膨張機6aで減圧された冷媒は蒸発器4に導かれて蒸発し、再び圧縮機1に吸引される。
Next, the operation of the refrigeration cycle apparatus 12 will be described.
In the refrigeration cycle apparatus 12, the refrigerant circulates in the direction indicated by the arrow. The refrigerant carbon dioxide in the gas phase is compressed in the compressor 1 to a supercritical state of high temperature and high pressure that exceeds the critical point, and is sent to the radiator 2. The high-temperature and high-pressure refrigerant in the supercritical state decreases in temperature while radiating heat while maintaining the pressure in the radiator 2. The high-pressure refrigerant that has exited the radiator 2 enters the power recovery mechanism 6 and performs expansion work in the power recovery mechanism 6 to generate electric power.
Specifically, the expander 6a of the power recovery mechanism 6 converts the volume change due to the expansion of the refrigerant into rotational power, and electric power is generated by the generator 6b connected to the expander 6a by a shaft. Specific examples of the expander 6a include a scroll expander, a vane rotary expander, a rotary expander, and a two-stage rotary expander.
Then, the refrigerant decompressed by the expander 6a is guided to the evaporator 4 to evaporate, and is again sucked into the compressor 1.

一方、発電機6bで発生した電力は、発電機6bの出力端子6baから整流器7の交流側端子7aを経て整流器7に供給され、整流器7で直流に変換される。そして、整流器7の直流側端子7bに対して並列に接続された複数の二次電池8に蓄えられる。
これらの二次電池8は整流器7の直流側端子7bに対して切替機構9によって接続/非接続を個別に切り替え可能に接続されており、発電機6bに対する二次電池8の並列接続数を増やすと、二次電池8で構成される回路の電気抵抗が減少するため、発電機6bの起電力により流れる電流が増加する。ここで膨張機6aによって回収される動力が増減しなければ、発電機6bを流れる電流の増加によるブレーキ力が増大して発電機6bと膨張機6aの駆動回転数が減少する。
逆に、発電機6bに対する二次電池8の並列接続数を減らすと、二次電池8で構成される回路の電気抵抗が増加するため、発電機6bの起電力により流れる電流が減少する。ここで膨張機6aによって回収される動力が増減しなければ、発電機6bを流れる電流の減少によるブレーキ力が低下して発電機6bと膨張機6aの駆動回転数が増加する。
この切替機構9の制御は、冷凍サイクル5を循環する冷媒の状態を計測する冷媒状態計測手段10の出力に基づいて、放熱器2側の冷媒圧力を最適高圧に合わせるように制御手段11が行う。
On the other hand, the electric power generated in the generator 6b is supplied from the output terminal 6ba of the generator 6b to the rectifier 7 through the AC side terminal 7a of the rectifier 7, and is converted into direct current by the rectifier 7. Then, it is stored in a plurality of secondary batteries 8 connected in parallel to the DC side terminal 7 b of the rectifier 7.
These secondary batteries 8 are connected to the DC side terminal 7b of the rectifier 7 so as to be individually switchable / unconnected by the switching mechanism 9, and the number of parallel connections of the secondary batteries 8 to the generator 6b is increased. Then, since the electric resistance of the circuit composed of the secondary battery 8 is reduced, the current flowing due to the electromotive force of the generator 6b increases. Here, if the power recovered by the expander 6a does not increase or decrease, the braking force due to the increase in the current flowing through the generator 6b increases and the drive rotational speed of the generator 6b and the expander 6a decreases.
Conversely, when the number of parallel connections of the secondary battery 8 to the generator 6b is reduced, the electrical resistance of the circuit formed by the secondary battery 8 increases, and thus the current flowing due to the electromotive force of the generator 6b decreases. Here, if the power recovered by the expander 6a does not increase or decrease, the braking force due to the decrease in the current flowing through the generator 6b decreases, and the drive rotational speed of the generator 6b and the expander 6a increases.
The control mechanism 11 controls the switching mechanism 9 so that the refrigerant pressure on the radiator 2 side is adjusted to the optimum high pressure based on the output of the refrigerant state measuring means 10 that measures the state of the refrigerant circulating in the refrigeration cycle 5. .

以上のような本実施の形態の冷凍サイクル装置12では、膨張機6aで回収する動力を電力に変換する発電機6bの出力端子6baに、整流器7を通して複数の二次電池8を並列に接続し、接続する二次電池8の数を切替機構9によって増減させることで、発電機6bの負荷を調節して、発電機6bとつながる膨張機6aの駆動周波数を制御できる。これにより、膨張機6aを通過する冷媒の容積循環量を可変として、膨張機6aに吸引する冷媒の密度および圧力を可変できる。つまり、バイパス等の手段を用いずに膨張機6aの回転数を調節することで、冷媒状態計測手段10に基づいて算出された最適高圧に放熱器2側の冷媒圧力を合わせることが可能となり、効率的に冷凍サイクル装置12を動作させることができる。すなわち、冷媒をバイパスさせることで回収動力を減らしたり、ロータコイルに通電して電力を損失したりすることも無く、高圧側冷媒圧力を効率よく制御できる。   In the refrigeration cycle apparatus 12 of the present embodiment as described above, a plurality of secondary batteries 8 are connected in parallel through the rectifier 7 to the output terminal 6ba of the generator 6b that converts the power recovered by the expander 6a into electric power. The drive frequency of the expander 6a connected to the generator 6b can be controlled by adjusting the load of the generator 6b by increasing or decreasing the number of the secondary batteries 8 to be connected by the switching mechanism 9. Thereby, the volume circulation amount of the refrigerant passing through the expander 6a can be made variable, and the density and pressure of the refrigerant sucked into the expander 6a can be made variable. That is, by adjusting the rotation speed of the expander 6a without using a means such as a bypass, it becomes possible to match the refrigerant pressure on the radiator 2 side with the optimum high pressure calculated based on the refrigerant state measuring means 10, The refrigeration cycle apparatus 12 can be operated efficiently. That is, it is possible to efficiently control the high-pressure side refrigerant pressure without reducing the recovery power by bypassing the refrigerant or losing power by energizing the rotor coil.

さらに、本実施の形態の冷媒状態計測手段10によって、膨張機6aが吸入する冷媒の温度と膨張機6a前後の冷媒圧力を検知することができるので、膨張機6aが吸入する冷媒の密度とエンタルピーとエントロピーとを算出することができる。これにより、膨張機6aが理想的な断熱膨張をした場合の理論回収動力を算出することができ、発電機6bの発電機効率を考慮して、発電機6bの発電電力から膨張機6aの膨張機効率を算出することができる。本構成によって、従来の圧縮機1の圧縮機効率を考慮した最適高圧の算出方法に、膨張機6aの膨張機効率を加味することで、さらに冷凍サイクル装置12を効率的に動作させることができる。
また、回収した動力を電力として二次電池8に蓄えることにより、安価な夜間電力によって冷凍サイクル装置12を運転して、電力需要が大きく電力の単価が高い昼間に二次電池8に蓄えた電力を利用できるので、ランニングコストが低く抑えられる。このため、発電機6bで生じる発電損失を考慮に入れても、圧縮機1と膨張機6aを一軸で連結して膨張機6aで回収した動力を圧縮機1のアシストに直接利用する場合より、本実施の形態の冷凍サイクル装置12の利用者のメリットは大きくなる。
(実施の形態2)
Further, since the refrigerant state measuring means 10 of the present embodiment can detect the temperature of the refrigerant sucked by the expander 6a and the refrigerant pressure before and after the expander 6a, the density and enthalpy of the refrigerant sucked by the expander 6a. And entropy can be calculated. As a result, the theoretically recovered power when the expander 6a has undergone ideal adiabatic expansion can be calculated, and the expansion efficiency of the expander 6a can be calculated from the generated power of the generator 6b in consideration of the generator efficiency of the generator 6b. The efficiency can be calculated. With this configuration, the refrigeration cycle apparatus 12 can be operated more efficiently by adding the expander efficiency of the expander 6a to the calculation method of the optimum high pressure in consideration of the compressor efficiency of the conventional compressor 1. .
Further, by storing the recovered power as electric power in the secondary battery 8, the electric power stored in the secondary battery 8 during the daytime when the refrigeration cycle apparatus 12 is operated by cheap nighttime electric power and the electric power demand is large and the electric power unit price is high. Running costs can be kept low. For this reason, even when taking into consideration the power generation loss that occurs in the generator 6b, the compressor 1 and the expander 6a are connected by a single shaft and the power recovered by the expander 6a is used directly for assisting the compressor 1, The merit of the user of the refrigeration cycle apparatus 12 of the present embodiment is increased.
(Embodiment 2)

図2は、本発明の実施の形態2の冷凍サイクル装置の構成図である。
本実施の形態の冷凍サイクル装置112は、圧縮機1と放熱器2と通過する冷媒の圧力エネルギーを回転動力に変換する膨張機6aと蒸発器4とを順に接続する冷凍サイクル5と、膨張機6aと膨張機6aで生じた回転動力を電力に変換する発電機6bとで構成される動力回収機構6と、発電機6bの出力端子6baに接続する交流側端子107aと整流後の電力を出力する直流側端子107bとを備えた整流器107と、整流器107の直流側端子107bに対して並列に接続された少なくとも二つ以上で構成される二次電池108と個々の二次電池108の接続/非接続を個別に切り替える切替機構109とを有する外部蓄電装置120と、冷凍サイクル5を循環する冷媒の状態を計測する冷媒状態計測手段10と、冷媒状態計測手段10の出力に基づいて放熱器2側の最適高圧を算出し、放熱器2側の冷媒の圧力を最適高圧に合わせるように切替機構109を制御する制御手段111とを備えている。
即ち、本実施の形態の冷凍サイクル装置112は、実施の形態1の冷凍サイクル装置12と比較して、発電機6bで発電した電力を、整流器107の直流側端子107bを介して、二次電池108と切替機構109を有した外部蓄電装置120に送る点が異なる。そして、基本的な動作に関しては、実施の形態1と同じであるため説明を省略する。
FIG. 2 is a configuration diagram of a refrigeration cycle apparatus according to Embodiment 2 of the present invention.
The refrigeration cycle apparatus 112 according to the present embodiment includes a compressor 1, a radiator 2, a refrigeration cycle 5 that sequentially connects an expander 6 a that converts pressure energy of refrigerant passing therethrough to rotational power, and an evaporator 4, and an expander. 6a and a power recovery mechanism 6 composed of a generator 6b that converts the rotational power generated in the expander 6a into electric power, an AC side terminal 107a connected to the output terminal 6ba of the generator 6b, and output rectified power A rectifier 107 having a DC side terminal 107b to be connected, and at least two or more secondary batteries 108 connected in parallel to the DC side terminal 107b of the rectifier 107 and connection / individual secondary battery 108 An external power storage device 120 having a switching mechanism 109 for individually switching non-connection, refrigerant state measuring means 10 for measuring the state of refrigerant circulating in the refrigeration cycle 5, and refrigerant state measuring means 1 Of calculating the optimal high pressure of the radiator 2 side based on the output, and a control unit 111 for controlling the switching mechanism 109 so as to match the pressure of the refrigerant in the radiator 2 side to the optimal high pressure.
That is, in the refrigeration cycle apparatus 112 of the present embodiment, compared to the refrigeration cycle apparatus 12 of the first embodiment, the power generated by the generator 6b is recharged via the DC side terminal 107b of the rectifier 107. 108 and the external power storage device 120 having the switching mechanism 109 are different. Since the basic operation is the same as that of the first embodiment, the description thereof is omitted.

以上のような本実施の形態の冷凍サイクル装置112では、外部蓄電装置120が独立した装置となっているので、実施の形態1の効果に加えて、家庭への普及が進んでいる太陽電池や風力発電装置などを備える家庭用蓄電装置(の二次電池)と、外部蓄電装置120(の二次電池)を共通利用することが可能となり、冷凍サイクル装置112を安価に製造できる効果が得られる。
そして、家庭用蓄電装置への外部蓄電装置120の導入は、災害による電力インフラの障害時に太陽電池で発電した電力を夜間利用したり、夜間に風力発電装置が発電する電力を電力の単価が高い昼間に利用したりするための電力貯蔵を目的とする。また、安価な夜間電力を電力会社から購入して外部蓄電装置120に蓄え、昼間利用することもできる。このうち、災害時に備えて外部蓄電装置120を用いる場合は、災害時以外には冷凍サイクル装置112で外部蓄電装置120を有効利用することで、総合的なコストメリットが得られる。
(実施の形態3)
In the refrigeration cycle apparatus 112 of the present embodiment as described above, since the external power storage device 120 is an independent device, in addition to the effects of the first embodiment, A household power storage device (secondary battery) provided with a wind power generator and the like and an external power storage device 120 (secondary battery) can be used in common, and the refrigeration cycle device 112 can be manufactured at low cost. .
The introduction of the external power storage device 120 to the home power storage device uses the power generated by the solar battery at the time of failure of the power infrastructure due to a disaster at night, or the power generated by the wind power generator at night is high in unit price of power The purpose is to store electricity for daytime use. In addition, inexpensive nighttime power can be purchased from an electric power company, stored in the external power storage device 120, and used in the daytime. Among these, when the external power storage device 120 is used in preparation for a disaster, a comprehensive cost merit can be obtained by effectively using the external power storage device 120 with the refrigeration cycle device 112 except during a disaster.
(Embodiment 3)

図3は、本発明の実施の形態3の冷凍サイクル装置の構成図である。
本実施の形態の冷凍サイクル装置212は、実施の形態1の冷凍サイクル装置12と比較して、個々の二次電池8の蓄電状態を検知する蓄電検知手段221を備え、制御手段211が蓄電検知手段221の出力を用いて切替機構9を制御する点が異なる。
次に、冷凍サイクル装置212の動作について説明する。冷凍サイクル装置212の基本的な動作は実施の形態1の冷凍サイクル装置12と同様であるので、上記の異なる部分について説明する。
冷凍サイクル装置212の制御手段211は、個々の二次電池8の蓄電状態を検知する蓄電検知手段221の出力に基づいて、発電機6bに対する負荷が急激に変化しないように、切替手段9を用いて二次電池8を発電機6bに選択的に接続する。これは、蓄電状態の違いにより、個々の二次電池8の端子電圧が変化して電気抵抗が異なることを利用している。つまり、発電機6bを流れる電流を滑らかに変化させるために、個々の二次電池8の蓄電状態から二次電池8の最適な接続の組み合わせを導出する。
FIG. 3 is a configuration diagram of a refrigeration cycle apparatus according to Embodiment 3 of the present invention.
Compared with the refrigeration cycle apparatus 12 of the first embodiment, the refrigeration cycle apparatus 212 of the present embodiment includes the power storage detection means 221 that detects the power storage state of each secondary battery 8, and the control means 211 detects the power storage. The difference is that the switching mechanism 9 is controlled using the output of the means 221.
Next, the operation of the refrigeration cycle apparatus 212 will be described. Since the basic operation of the refrigeration cycle apparatus 212 is the same as that of the refrigeration cycle apparatus 12 of the first embodiment, the different parts will be described.
The control means 211 of the refrigeration cycle apparatus 212 uses the switching means 9 so that the load on the generator 6b does not change abruptly based on the output of the power storage detection means 221 that detects the power storage state of each secondary battery 8. Then, the secondary battery 8 is selectively connected to the generator 6b. This utilizes the fact that the terminal voltage of each secondary battery 8 changes due to the difference in the storage state and the electrical resistance differs. That is, in order to smoothly change the current flowing through the generator 6b, the optimum connection combination of the secondary batteries 8 is derived from the storage state of the individual secondary batteries 8.

以上のような本実施の形態の冷凍サイクル装置212では、実施の形態1の効果に加えて、蓄電検知手段221で二次電池8の蓄電状況の違いを検知することにより、発電機6bに接続する複数の二次電池8の組み合わせを制御手段211が決定する場合に、発電機6bに対する負荷を段階的にではなく滑らかに変動させることができる。これにより冷凍サイクル装置212の運転条件が変動した場合に、膨張機6aの回転数を連続的に変化させて対応させることができるので、急激な圧力などの変動を回避できる。
また、膨張機6aを通過する冷媒の容積循環量を段階的にではなく滑らかに変化させることができるので、冷凍サイクル装置212の放熱器2側の冷媒圧力を最適高圧に正確に一致させることができる。
なお、蓄電検知手段221として、二次電池8を流れるそれぞれの電流を計測する電流計測手段(例えば、一般的な電流計)を用いる構成でもよい。このような構成であれば、二次電池8の起電力が蓄電状態によって異なり、発電機6bに並列接続される二次電池8の端子に加わる電圧が等しいことから、各二次電池8を通過する電流を計測することで、各二次電池8の蓄電状態を簡便に推定することができる。
(実施の形態4)
In the refrigeration cycle apparatus 212 of the present embodiment as described above, in addition to the effects of the first embodiment, the power storage detector 221 detects the difference in the power storage status of the secondary battery 8 to connect to the generator 6b. When the control unit 211 determines the combination of the plurality of secondary batteries 8 to be performed, the load on the generator 6b can be smoothly changed instead of stepwise. As a result, when the operating condition of the refrigeration cycle apparatus 212 fluctuates, the rotation speed of the expander 6a can be continuously changed to cope with it, so that sudden fluctuations such as pressure can be avoided.
Further, since the volume circulation amount of the refrigerant passing through the expander 6a can be smoothly changed instead of stepwise, the refrigerant pressure on the radiator 2 side of the refrigeration cycle apparatus 212 can be accurately matched to the optimum high pressure. it can.
In addition, the structure using the current measurement means (for example, general ammeter) which measures each electric current which flows through the secondary battery 8 as the electrical storage detection means 221 may be sufficient. In such a configuration, the electromotive force of the secondary battery 8 varies depending on the storage state, and the voltage applied to the terminal of the secondary battery 8 connected in parallel to the generator 6b is equal. By measuring the current to be performed, the storage state of each secondary battery 8 can be easily estimated.
(Embodiment 4)

図4は、本発明の実施の形態4の冷凍サイクル装置の構成図である。
本実施の形態の冷凍サイクル装置312は、実施の形態3の冷凍サイクル装置212と比較して、二次電池8と商用電源323との間にパワーコンディショナ322を備えるものである。即ち、二次電池8に蓄えた電力を、パワーコンディショナ322を介して商用電源323につなぐ点が異なる。そして、基本的な動作に関しては、実施の形態1と同じであるため説明を省略する。
以上のような本実施の形態の冷凍サイクル装置312では、実施の形態3の効果に加えて、冷凍サイクル装置312の動力回収機構6による動力回収で二次電池8に蓄えた電力を、商用電源323と共に一般の電気機器で利用することができる。つまり、二次電池8の直流電源を直接利用できる機器だけでなく、幅広い電気機器で電力を利用することができるので、二次電池8の電力を利用しやすくなる。
FIG. 4 is a configuration diagram of a refrigeration cycle apparatus according to Embodiment 4 of the present invention.
The refrigeration cycle apparatus 312 according to the present embodiment includes a power conditioner 322 between the secondary battery 8 and the commercial power supply 323, as compared with the refrigeration cycle apparatus 212 according to the third embodiment. That is, the point that the electric power stored in the secondary battery 8 is connected to the commercial power source 323 via the power conditioner 322 is different. Since the basic operation is the same as that of the first embodiment, the description thereof is omitted.
In the refrigeration cycle apparatus 312 of the present embodiment as described above, in addition to the effects of the third embodiment, electric power stored in the secondary battery 8 by power recovery by the power recovery mechanism 6 of the refrigeration cycle apparatus 312 is used as a commercial power source. It can be used with general electrical equipment together with H.323. That is, since the power can be used not only in a device that can directly use the DC power supply of the secondary battery 8 but also in a wide range of electrical devices, the power of the secondary battery 8 can be easily used.

なお、実施の形態1から実施の形態4の作用効果は、冷媒の種類に関らず生じるが、特に、二酸化炭素を冷媒とする場合に、より有効に働くものである。
即ち、二酸化炭素を主成分とした冷媒を用いる冷凍サイクル装置の場合、圧縮機構部から吐出される冷媒の圧力が臨界圧力を越えるため、放熱器での冷却過程において、相変化が生じない。つまり、加熱用途に用いる場合に優れた特性を示すので、夜間電力を利用したヒートポンプ給湯器や蓄熱式の暖房器具に利用しやすく、膨張機で夜間回収した動力を電力として二次電池に蓄えて昼間に電力を利用する実施の形態1から実施の形態4の冷凍サイクル装置に適している。また、オゾン破壊係数0、地球温暖化係数1で可燃性や毒性の無い環境に優しい冷媒としての二酸化炭素が使用できるという利点がある。
In addition, although the effect of Embodiment 1-Embodiment 4 arises irrespective of the kind of refrigerant | coolant, when carbon dioxide is used as a refrigerant | coolant, it works more effectively.
That is, in the case of a refrigeration cycle apparatus using a refrigerant mainly composed of carbon dioxide, the pressure of the refrigerant discharged from the compression mechanism section exceeds the critical pressure, so that no phase change occurs in the cooling process in the radiator. In other words, because it shows excellent characteristics when used for heating applications, it is easy to use in heat pump water heaters and heat storage heaters that use nighttime power, and the power collected at night by the expander is stored in the secondary battery as power. It is suitable for the refrigeration cycle apparatus according to Embodiments 1 to 4 that uses electric power in the daytime. Further, there is an advantage that carbon dioxide can be used as an environmentally friendly refrigerant having an ozone depletion coefficient of 0 and a global warming coefficient of 1 and having no flammability and toxicity.

本発明の冷凍サイクル装置は、容易に冷凍サイクル装置の高圧側冷媒圧力を制御することができ、効率よく冷凍サイクル装置を動作させるため、空気調和装置、給湯機、冷蔵庫などの用途に適用できる。   The refrigeration cycle apparatus of the present invention can easily control the high-pressure side refrigerant pressure of the refrigeration cycle apparatus and efficiently operate the refrigeration cycle apparatus, and thus can be applied to uses such as an air conditioner, a water heater, and a refrigerator.

本発明の実施の形態1の冷凍サイクル装置の構成図Configuration diagram of a refrigeration cycle apparatus according to Embodiment 1 of the present invention. 本発明の実施の形態2の冷凍サイクル装置の構成図The block diagram of the refrigerating-cycle apparatus of Embodiment 2 of this invention 本発明の実施の形態3の冷凍サイクル装置の構成図Configuration diagram of refrigeration cycle apparatus according to Embodiment 3 of the present invention 本発明の実施の形態4の冷凍サイクル装置の構成図Configuration diagram of a refrigeration cycle apparatus according to Embodiment 4 of the present invention. 従来の冷凍サイクル装置の構成図Configuration diagram of conventional refrigeration cycle equipment 従来の動力伝達型膨張機を用いた冷凍サイクル装置の構成図Configuration diagram of a conventional refrigeration cycle apparatus using a power transmission type expander 従来の電力伝達型膨張機を用いた冷凍サイクル装置の構成図Configuration diagram of a conventional refrigeration cycle apparatus using a power transmission type expander 図7に示す冷凍サイクル装置の発電機の励磁回路図Excitation circuit diagram of the generator of the refrigeration cycle apparatus shown in FIG.

符号の説明Explanation of symbols

1 圧縮機
2 放熱器
3 膨張機構
4 蒸発器
5 冷凍サイクル
6 動力回収機構
6a 膨張機
6b 発電機
6ba 出力端子
7,107 整流器
7a,107a 交流側端子
7b,107b 直流側端子
8,108 二次電池
9,109 切替機構
10 冷媒状態計測手段
11,111,211 制御手段
12,112,212,312 冷凍サイクル装置
120 外部蓄電装置
221 蓄電検知手段
322 パワーコンディショナ
323 商用電源
DESCRIPTION OF SYMBOLS 1 Compressor 2 Radiator 3 Expansion mechanism 4 Evaporator 5 Refrigeration cycle 6 Power recovery mechanism 6a Expander 6b Generator 6ba Output terminal 7,107 Rectifier 7a, 107a AC side terminal 7b, 107b DC side terminal 8,108 Secondary battery 9, 109 switching mechanism 10 refrigerant state measuring means 11, 111, 211 control means 12, 112, 212, 312 refrigeration cycle apparatus 120 external power storage device 221 power storage detection means 322 power conditioner 323 commercial power supply

Claims (7)

圧縮機と、放熱器と、通過する冷媒の圧力エネルギーを回転動力に変換する膨張機と、蒸発器とを順に接続する冷凍サイクルと、
前記膨張機で生じた前記回転動力を電力に変換する発電機と、
前記発電機の出力端子に接続する交流側端子と整流後の電力を出力する直流側端子とを備えた整流器と、
前記整流器の前記直流側端子に対して並列に接続された少なくとも二つ以上で構成される二次電池と、
前記直流側端子と前記二次電池との間の接続/非接続を個別に切り替える切替機構と、
前記冷凍サイクルを循環する冷媒の状態を計測する冷媒状態計測手段と、
前記冷媒状態計測手段の出力に基づき前記放熱器側の最適高圧を算出し、前記放熱器側の冷媒の圧力を前記最適高圧に合わせるように前記切替機構を制御する制御手段とを備えたことを特徴とする冷凍サイクル装置。
A refrigeration cycle that sequentially connects a compressor, a radiator, an expander that converts the pressure energy of the refrigerant that passes into rotary power, and an evaporator;
A generator that converts the rotational power generated in the expander into electric power;
A rectifier comprising an AC side terminal connected to the output terminal of the generator and a DC side terminal for outputting rectified power;
A secondary battery composed of at least two connected in parallel to the DC side terminal of the rectifier;
A switching mechanism for individually switching connection / disconnection between the DC side terminal and the secondary battery;
Refrigerant state measuring means for measuring the state of the refrigerant circulating in the refrigeration cycle;
Control means for calculating the optimum high pressure on the radiator side based on the output of the refrigerant state measuring means and controlling the switching mechanism so that the refrigerant pressure on the radiator side matches the optimum high pressure. A characteristic refrigeration cycle apparatus.
前記二次電池と前記切替機構とを外部蓄電装置として備えたことを特徴とする請求項1に記載の冷凍サイクル装置。   The refrigeration cycle apparatus according to claim 1, wherein the secondary battery and the switching mechanism are provided as external power storage devices. 前記二次電池の蓄電状態を検知する蓄電検知手段を備え、
前記制御手段では前記蓄電検知手段の出力を用いて前記切替機構を制御することを特徴とする請求項1または請求項2に記載の冷凍サイクル装置。
A power storage detecting means for detecting a power storage state of the secondary battery;
The refrigeration cycle apparatus according to claim 1 or 2, wherein the control unit controls the switching mechanism using an output of the power storage detection unit.
前記蓄電検知手段として、前記各二次電池を流れる電流を計測する電流計測手段を用いたことを特徴とする請求項3に記載の冷凍サイクル装置。   The refrigeration cycle apparatus according to claim 3, wherein a current measuring unit that measures a current flowing through each of the secondary batteries is used as the power storage detecting unit. 前記二次電池と商用電源との間にパワーコンディショナを備えたことを特徴とする請求項1から請求項4のいずれかに記載の冷凍サイクル装置。   The refrigeration cycle apparatus according to any one of claims 1 to 4, further comprising a power conditioner between the secondary battery and a commercial power source. 前記冷媒として、二酸化炭素を主成分とした冷媒を用いたことを特徴とする請求項1から請求項5のいずれかに記載の冷凍サイクル装置。   The refrigeration cycle apparatus according to any one of claims 1 to 5, wherein a refrigerant mainly composed of carbon dioxide is used as the refrigerant. 前記冷媒状態計測手段では前記膨張機が吸入する冷媒温度と前記膨張機前後の冷媒圧力を検知し、
前記制御手段では前記吸入冷媒温度及び前記前後冷媒圧力から膨張機効率を算出し、該膨張機効率を考慮して前記最適高圧を算出することを特徴とする請求項1または請求項2に記載の冷凍サイクル装置。
The refrigerant state measuring means detects the refrigerant temperature sucked by the expander and the refrigerant pressure before and after the expander,
The said control means calculates expander efficiency from the said suction | inhalation refrigerant | coolant temperature and the said front-and-rear refrigerant | coolant pressure, and calculates the said optimal high pressure in consideration of this expander efficiency. Refrigeration cycle equipment.
JP2005241590A 2005-08-23 2005-08-23 Refrigeration cycle equipment Withdrawn JP2007057141A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005241590A JP2007057141A (en) 2005-08-23 2005-08-23 Refrigeration cycle equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005241590A JP2007057141A (en) 2005-08-23 2005-08-23 Refrigeration cycle equipment

Publications (1)

Publication Number Publication Date
JP2007057141A true JP2007057141A (en) 2007-03-08

Family

ID=37920785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005241590A Withdrawn JP2007057141A (en) 2005-08-23 2005-08-23 Refrigeration cycle equipment

Country Status (1)

Country Link
JP (1) JP2007057141A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012052801A (en) * 2011-12-12 2012-03-15 Daikin Industries Ltd Refrigeration equipment
US9538879B2 (en) 2010-10-18 2017-01-10 Nestec S.A. Heating-energy saving system and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9538879B2 (en) 2010-10-18 2017-01-10 Nestec S.A. Heating-energy saving system and method
JP2012052801A (en) * 2011-12-12 2012-03-15 Daikin Industries Ltd Refrigeration equipment

Similar Documents

Publication Publication Date Title
JP5495293B2 (en) Compressor
CN103727016B (en) Gas compressor
US8393171B2 (en) Mechanically enhanced ejector HVAC and electric power generation system
CN100510576C (en) Waste heat utilization device and control method thereof
US7650761B2 (en) Refrigerating device comprising waste heat utilization equipment
JP3903798B2 (en) Fuel cell system
JP5636297B2 (en) Cogeneration system
US20050262858A1 (en) Heat cycle
KR20120126988A (en) Thermoelectric generation device for vehicle
CA2830253C (en) A system for generating electrical energy from waste energy
JP2001272135A (en) Exhaust heat recovering mechanism of engine heat pump
KR101438046B1 (en) Heat pump system for cooling and heating using Turbine-integrated generator
KR101678914B1 (en) Turbine-integrated Eddy Current Heater for Heat Pump System using Refrigerants
WO2006085475A1 (en) Freezing cycle device
JP2007057141A (en) Refrigeration cycle equipment
JPH01168518A (en) Freezer for vehicle
JP2014230477A (en) Next-generation photovoltaic power generation method and device
JP4699972B2 (en) Waste heat utilization apparatus and control method thereof
US20160229260A1 (en) Cooling system using rankine cycle and thermoelectric module and control method thereof
KR20160128027A (en) Heat Pump System using Turbine-integrated Eddy Current Heater
JPH0445739B2 (en)
JP5299656B1 (en) Thermal energy recovery system, thermal energy recovery method, and next generation solar power generation system using the same
JP5692121B2 (en) COOLING DEVICE, VEHICLE MOUNTING IT, AND COOLING DEVICE CONTROL METHOD
JP2009216275A (en) Heat pump
KR20110073118A (en) Air Conditioning Equipment for Electric Vehicles

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080117

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081104